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Abstract

The goal of this study is to assess the strength and mode of price de-

pendence by time scale, among the extra virgin olive oil markets of Italy,

Spain and Greece. These three Mediterranean countries are responsible for

95% of olive oil production within the European Union and they account for

more than 50% of the olive oil exports worldwide. For the empirical analysis,

monthly prices from the aforementioned countries are utilized along with the

tools of discrete wavelets and nonparametric copulas. Results indicate that:

(a) Price linkages in the short-run are significantly different from those in the

longer-run, with price dependence being stronger in the longer-run, and (b) in

the very long run, price shocks of the same sign but of different magnitude are

transmitted from Italy to Spain with a higher probability than they are trans-

mitted from Italy to Greece. Accordingly, the time scale affects the intensity

as well as the pattern of dependence, pointing this way to asymmetric price

co-movement. Regarding the integration of the three markets, the finding of

asymmetric co-movement is not consistent with well-integrated markets.

Keywords: Wavelets; Copulas; Extra virgin olive oil; Price dependence.

JEL classification: C14, Q13, L66
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1 Introduction

Market integration of geographically separated markets has been a subject of great

importance for economists as well as for policy makers. Integration is a prerequisite

for economic efficiency, namely the maximization of benefits accruing to the society

from the existence and the efficient operation of markets (Fousekis and Grigoriadis,

2019). Well functioning integrated spatial markets are characterized by strong price

dependence, meaning that price shocks in one market induce price responses to the

other.

The European Union (EU), as a prime example, has been engaged in a process of

market integration for a very long period of time. Starting in 1993, with the Single

Market Programme (SMP), all tariff and non-tariff barriers between the geograph-

ically separated markets of the member states within the EU were removed.1 The

main idea behind the SMP was to promote trade and create a more efficient market.

As a consequence, over the last twenty-five years, there has been a number of empir-

ical studies on the integration of the (especially food) markets among the member

states of the EU (Zanias, 1993; Morgan and Wakelin, 1999; Emmanouilides and

Fousekis, 2015a, 2012; Serra et al., 2006; Fousekis and Grigoriadis, 2019; Sanjuán

and Gil, 2001). The aforementioned empirical research on the integration of the EU

food markets has been undertaken with a variety of statistical tools and economet-

ric techniques. More specifically, the linear co-integration analysis was employed by

Zanias (1993) as well as by Sanjuán and Gil (2001). Non-linear co-integration tech-

niques were employed by Emmanouilides and Fousekis (2012) and by Emmanouilides

and Fousekis (2015a). Parametric and non-parametric regressions were employed by

Serra et al. (2006). Lastly, the statistical tool of copulas was utilized by the studies

of Emmanoulides et al. (2014) and by Grigoriadis et al. (2016). In the majority of

the studies, the empirical findings indicate that markets are well integrated. On

the other hand, there are some works that suggest a low degree of integration (C.

Emmanoulides, P. Fousekis, and V. Grigoriadis, 2014, found a low degree of inte-

gration in the short-run) or no integration (Zanias, 1993) among the food markets

1The Single Market Programme was adopted in 1985 and was fully implemented by 1993.
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examined.

In the last decade, copulas have gained momentum in the analysis of co-movement

between stochastic processes (Reboredo, 2011, 2012; Emmanouilides and Fousekis,

2015a; Panagiotou and Stavrakoudis, 2016; Emmanoulides et al., 2014; Goodwin

and Hungerford, 2015; Neumeyer et al., 2019; BenSäıda, 2018; Garćıa-Gómez et al.,

2020; Gaupp et al., 2017; Sriboonchitta et al., 2013). The most attractive feature of

the copulas is that they can deal with non-linearities, asymmetries and heavy tails

of the marginal and the joint distributions of variables. In addition, copulas allow

for the joint behavior of random processes to be modelled independently of their

marginal distributions. The latter presents significant flexibility in empirical works

(Panagiotou and Stavrakoudis, 2016; Emmanouilides and Fousekis, 2015b; Goodwin

and Hungerford, 2015; Fousekis et al., 2017).

On the other hand, a noticeable disadvantage of the copulas as well as of the

commonly used approaches, is that they do not account for the role of time scale

(time horizon) in price dependency. The latter means that some agents operate on

short time scales/horizons, some on medium time scales and some others operate on

much longer planning time horizons. As noted by Fousekis and Grigoriadis (2016b),

differences in agents’ time horizons may render the relationships between economic

time series scale and frequency dependent. Scale and frequency are inversely related:

a high scale is related with low frequency whereas a low scale is related with a high

frequency. Accordingly, when it comes to spatial market integration, scale/frequency

dependence suggest that the strength and the mode of price linkages may differ by

time scale and time frequency.

In the most recent study, Emmanouilides and Proskynitopoulos (2019) analyze

the spatial price causality structure between the pig meat markets of 24 European

countries. More specifically, the authors studied the EU pig meat market as a dy-

namic complex network of linkages between prices in member states. The study

investigated the temporal development of the spatial network of price relationships,

and through the dynamics of its major structural characteristics we draw insights

about the horizontal agricultural market integration process in the EU. For the

empirical part, weekly time-series data from 2007 to 2018 were utilized along with

3



non-linear Granger causality. The data provide evidence not only for a large degree

of heterogeneity in market power between countries, but also for the existence of

market segregation into high and low power groups (clubs) that are strongly con-

nected to each other. The presence of such groups is an inefficiency of the market

system in the European Union.

In the light of the preceding, the goal of this study is to analyze the strength and

the pattern of price dependence among the major extra virgin olive oil markets in

the EU, namely Italy, Spain and Greece. These three Mediterranean countries are

responsible for 95% of olive oil production within the EU (European Commission,

2020a). Concurrently, more than 70% of the world olive oil production stems from

the EU (European Commission, 2020b). On the consumption side, Italy, Spain

and Greece account for 80% of olive oil consumption within the EU (European

Commission, 2020a). Statistics regarding olive oil intra-trade among Italy, Spain and

Greece are also very remarkable. More specifically, above 70% of Spain’s exports

and almost 90% of Greek exports have Italy as their destination; 98% of Italy’s

imports from EU members stem from Spain and Greece (European Commission,

2020b). The exports of Spain and Greece to Italy consist to a large degree of extra

virgin and virgin olive oil (European Commission, 2020a).

In the present work, the evaluation of price dependence is undertaken with the

employment of discrete wavelets along with copulas, while utilizing monthly prices

of extra virgin olive oil from Italy, Spain and Greece. More specifically, the tool of

discrete wavelets is applied initially to analyse the activity of the individual time

series into different components where each component is associated with a time

scale (Fousekis and Grigoriadis, 2016a,b). Afterwards, the tool of non-parametric

copulas is employed to extract information about dependence by scale/frequency

level.

The present manuscript builds on the work by Emmanoulides et al. (2014). The

aforementioned study, assesses the degree and the structure of price dependence

in the principal EU extra virgin olive oil markets (Spain, Italy and Greece), with

the utilization of the statistical tool of parametric copulas and monthly data. On

average, the empirical results reveal olive oil prices are likely to boom together but
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not to crash together. The present study builds on the study by Emmanoulides et al.

(2014) since it utilizes monthly extra virgin olive oil data in order to also assess the

degree and the structure of price dependence Spain, Italy and Greece. However

it departs from the seminal study in two ways: First of all, with the utilization

of discrete wavelets, data are divided the assessment of price dependence has been

undertaken for low, medium and high frequencies, namely time scales. Secondly,

the degree and the structure of price dependence, for the different time scales, has

been estimated with the use of nonparametric copulas. As Fousekis and Grigoriadis

(2016a) point out, the non-parametric estimation of copulas allows the data “to

speak for themselves”, eliminating this way potential misspecification bias.

The combination of the statistical tools of discrete wavelets and nonparametric

copulas, enables us to determine the extent to which the mode and the strength

of price linkages change by the time horizon (i.e. short-, medium-, and longer-

run). The work by Fousekis and Grigoriadis (2016b) on the to investigation of

price dependence in the international butter markets, has been (so far) the only

earlier study that has employed both wavelets and copulas for agricultural/dairy

commodities. The authors used monthly wholesale prices from Oceania and the

European Union and the statistical tools of copulas and wavelets. Their empirical

results suggested that price linkages between the two butter-producing regions are

weak in the short-run but stronger in the long-run. Furthermore, the time scale

was relevant not only for the intensity but for the structure of price co-movement

between Oceania and the EU. More specifically, in the long run, strong positive

shocks were transmitted with a higher intensity compared to strong negative ones,

indicating asymmetric price dependence.

In what follows, Section 2 presents the methodology for copulas and wavelets,

Section 3 the data and Section 4 the empirical analysis, the results and discussion.

Section 5 offers conclusions.
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2 Methodological framework

2.1 Discrete wavelets

As documented in the literature, financial time series data tend to demonstrate

high non-normality, for instance, skewness, leptokurtosis and volatility clustering,

particularly in the case of high-frequency data (Engle, 1982; Andersen et al., 2001;

Lambert and Laurent, 2001). Different frequencies are associated with different time

scales. An appealing feature of the wavelet method is that it transforms the original

time series into different frequency components and the resolution is matched to its

scale (Gençay et al., 2001; Percival and Walden, 2000; Reboredo and Rivera-Castro,

2014). The fundamental idea behind wavelets is to analyze according to scale.

Wavelets are functions that satisfy certain mathematical requirements and are

used in representing data or other functions. Wavelet algorithms process data at

different scales or resolutions. Wavelets are well-suited for approximating data with

sharp discontinuities.

Wavelet is a well-established technique that decomposes a time series into small

waves that begin at a specific point in time and end at a later specific point in time. A

significant advantage of this approach is that frequency information can be obtained

without losing the timescale dimension. Another advantage of wavelet analysis is

that it does not need to assume anything about the data generating process for the

return series under investigation (Gençay et al., 2001; Ramsey, 2002).

We can obtain a discrete wavelet transform (DWT) through discretizing the

continuous variables a and b on the right hand side of equation (1) (Gencay et al

2001, p. 103).

r(t) = 1/Cψ

∫

∞

0

∫

∞

−∞

(1/a2)D(a, b)ψa,b(t)dbda (1)

where r(t) stands for the wavelet transformation, Cψ represents the abstract

admissibility condition, D(a,b) is a function of a and b, and ψa,b(t) is the wavelet

basis function.

Let a = 2−j,b = k2−j, j = 1,...,J. Then, r(t) ∈ L2(R) can be represented by the
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following expansion:

r(t) =
∑

k∈Z

SJ,k FJ,k(t) +
∑

k∈Z

dJ,k CJ,k(t) + ..+
∑

k∈Z

dj,k Cj,k(t) +
∑

k∈Z

d1,k C1,k(t) (2)

where J is a positive integer that denotes the number of multi-resolution scales

and k is a translation parameter. Equation (2) is the multiresolution decomposition

of the signal. The definition of FJ,k(t) and Cj,k(t) are given by:

FJ,k(t) = 2J/2 F (2Jt− k) (3)

Cj,k(t) = 2j/2C(2jt− k) (4)

The so-called father wavelet FJ ,k and mother wavelet Cj,k satisfy the following

conditions:

< FJ,k(t), FJ,k′(t) >=

∫

∞

−∞

FJ,k(t)FJ,k′(t)dt = Gk,k′ (5)

< Cj,k(t), FJ,k′(t) >=

∫

∞

−∞

Cj,k(t)FJ,k′(t)dt = 0 (6)

< Cj,k(t), Cj′,k′(t) >=

∫

∞

−∞

Cj,k(t)Cj′,k′(t)dt = Gj,j′ Gk,k′ (7)

where Gm,n = 1 if m = n, Gm,n = 0 if m ̸= n, and < ·,· > is the inner product.

Similar to the continuous transform, the wavelet is controlled by two parameters:

time and frequency. The translation parameter k indicates the location and the

non-zero proportion of the wavelets, where as the length of the wavelet is reflected

by j, which is a scalar factor. The scaling coefficients

SJ,k =

∫

FJ,k(t) r(t)dt (8)

based on the father wavelet represent the soft components of the original data at
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the coarsest scale. Meanwhile, the wavelet coefficients

dj,k =

∫

Cj,k(t) r(t)dt (9)

based on the mother wavelet are used to capture the details of the high-frequency

components of the original data. If all the integer translations are substituted by

a sequence of dyadic scales, and let a = 2−j and b = k2−j, then we obtain the

maximal overlap discrete wavelet transform (MODWT). As documented in Percival

and Mofjeld (1997), Percival (1995) and Gençay et al. (2001), MODWT refers to

some flexible properties that the DWT does not possess. MODWT does not have

any restriction on the data size T, whereas the j-th order partial of DWT imposes a

restriction on the data size: T has to be a multiple of 2j. The wavelet coefficients and

scaling coefficients of a MODWT multiresolution analysis linking with zero-phase

filters indicate that the location of events in the original data cannot be changed. We

can take advantage of this information and encode the wavelet coefficients with a bit

rate that produces minimal subjective distortions. Another advantage of MODWT

is that it provides an asymptotically more efficient variance estimator than simple

DWT. Furthermore, the pattern of wavelet coefficients and scaling coefficients is not

changed by a shift in the original time series because the MODWT is translation

invariant.

2.2 Local and global dependence with the use of copulas

Copulas have realized widespread application in empirical models of joint probability

distributions (see Nelsen (2007); Joe (2014) for more details). The aforementioned

models use a copula function to tie together two marginal probability functions that

may or may not be related to one another. A two–dimensional copula, C(u1, u2),

is a multivariate distribution function in the unit hypercube [0, 1]2 with uniform

U(0,1) marginal distributions. As long as the marginal distributions are continuous,

a unique copula is associated with the joint distribution, H, and is described in

equation (10). This function constitutes a form of the principal result of copula
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theory (Sklar’s theorem). It is obtained as:

C(u1, u2) = H(H−1
1 (u1), H

−1
2 (u2)) (10)

Given a two-dimensional copula, C(u1, u2), and two univariate distributions,

H1(x) and H2(y), equation (10) is a two-variate distribution function with marginals

H1(x) and H2(y), whose corresponding density function can be written as:

h(x, y) = c(H1(x), H2(y))h1(x)h2(y), (11)

where the functions h1 and h2 are the marginal distribution density function of

the distribution functions H1 and H2 respectively. In addition x,y are stochastic

processes and u1 and u2 are related to x,y.

There are two types of dependence measures: i) global dependence measures

provide information about the strength of dependence between stochastic processes

over all their support, and ii) local dependence measures provide information about

the intensity of dependence over different subsets of the support. Both dependence

measures (local and global) are invariant to strictly increasing transformations of the

processes that they describe. Such transformations are the functions of the ranks of

the underlying marginal distributions.

The most common employed rank-based measure of global dependence is Spear-

man’s rho (ρ). The aforementioned measure can be expressed with the use of the

following copula distribution function:

ρ = 12

∫ 1

0

∫ 1

0

C(u1, u2) du1du2 − 3, (12)

(Schweizer and Wolff, 1981). Spearman’s rho (ρ) is useful for summarizing the

strength of dependence on average.2 However, the intensity of dependence might

differ for the various subsets of the support. Richer insights about the relationships

under study may be, therefore, obtained from assessing local dependence. The

relevant notions for that are the quantile dependence coefficients.

2Spearman’s rho (ρ) assumes values between -1 and 1.
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Another rank based test of functional dependence is Kendall’s τ . It is calculated

from the number of concordant (PN) and disconcordant (QN) pairs of observations

in the following way:

τN =
PN −QN

(

N
2

) =
4PN

N(N − 1)
− 1, (13)

If a copula function (C) is known then τ can be calculated as:

τ = 1− 4

∫ ∫

[0,1]2

∂C

∂u1

∂C

∂u2
du1 du2 (14)

Equations (15) and (16) present the quantile dependence coefficients. Tail de-

pendence coefficients, denoted with λ, are limits of the former. Accordingly, tail

(extreme) co-movement is measured by the upper, λU , and the lower, λL, depen-

dence coefficients, such that λU , λL ∈ [0, 1], which are defined as

λqU = Pr(u2 > q|u1 > q) =
1− 2q + C(q, q)

1− q
, 1/2 < q < 1 (15)

λqL = Pr(u2 ≤ q|u1 ≤ q) =
C(q, q)

q
, 0 < q ≤ 1/2. (16)

Equation (15) defines a set of upper quantile dependence coefficients providing

the conditional probability that the random process u2 receives a value strictly higher

than its q quantile given that the random process u1 receives a value strictly higher

than its q quantile, as well (Fousekis and Grigoriadis, 2016b) Equation (16) defines

a set of lower quantile dependence coefficients providing the conditional probability

that the random process u2 receives a value at most equal to its q quantile given

that the random process u1 receives a value at most equal to its q quantile, as well.

By varying q one may trace out how the intensity of dependence behaves at the

different parts of the support.
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3 Data

The data for the empirical application are monthly extra virgin olive oil prices

(measured in euros per 100 kilograms) from Italy, Spain, and Greece. The time

period of interest is January 2000 to March 2020. Data were obtained from the

European Commission (2020c). Figure 1 presents the evolution of prices of the

extra virgin olive oil for the aforementioned countries.3

Worldwide, olive oil production averages 2.7 million tons. The European Union

(EU) is the major producer of olive oil in the world. The EU accounts for about 75%

of the world production of olive oil. Spain with 60%, Italy with 21% and Greece

with 14% account for about 95% of the EU production. Spain is also the leading

olive oil producer in the world; 35% of the total olive oil production in Spain is

extra virgin. Italy comes in second place worldwide; 60% of the production in Italy

is extra virgin olive oil (European Commission, 2020a). Greece holds third place;

it produces approximately 350,000 tons of olive oil annually, of which more than

80% is extra virgin. The exports of Spain and Greece to Italy consist to a large

degree of extra virgin and virgin olive oil, sold in bulk. These exports are bottled

and/or blended by a small number of major Italian companies and are distributed

worldwide (Emmanoulides et al., 2014; Panagiotou, 2015). Especially for the case

of Greece, nearly half of the annual olive oil production is exported but only some

5% of this reflects the origin of the bottled product. Trade flows between Spain

and Greece are insignificant when compared with those of the two countries with

Italy. It is worth mentioning that although Italy is a deficit market within the EU,

it is one of the biggest olive oil exporters in the world, with a share of about 30%.

Spain’s share worldwide is approximately 20% (Panagiotou, 2015).

With regard to consumption patterns, Italy and Greece consume primarily extra

virgin olive oil, whereas consumption of extra virgin olive oil in Spain represents

almost 50% of the total olive oil domestic consumption (European Commission,

3According to the relevant Regulation by the European Commission, the extra virgin category
refers to olive oils obtained from the fruit of the olive tree at the optimum stage of ripening,
solely by mechanical or other physical means that do not lead to alteration of the oil and have
not undergone any treatment other than washing, decantation, centrifugation or filtration. Extra
virgin olive oil has a maximum of 0.8 grams oleic acid per 100 grams of oil.
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2020b). European Union is the world’s biggest consumer of olive oil, with a share

close to 70%. Spain, Italy, and Greece account for about 80% of the EU’s consump-

tion (Emmanoulides et al., 2014; Panagiotou, 2015).
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Figure 1: Time series of extra virgin olive oil prices.

Following the relevant literature, that have employed wavelets along with copulas

in order to empirically investigate time series (Reboredo and Rivera-Castro, 2014;

Fousekis and Grigoriadis, 2016b), the present paper utilizes the rates of price change

(raw price shocks), calculated as dlnPit, where Pit is the price of extra virgin olive

oil in market i = Italy, Spain and Greece at time t. Figure 8, in the section of the

Appendix, presents the logarithmic returns of the extra virgin olive oil prices for

Spain, Greece and Italy.

In order to obtain the copula data which is required for the empirical analysis

of the study, we follow the semi-parametric approach proposed by Chen and Fan

(2006). The approach involves three steps:

1. Due to the fact that the rates of price change may exhibit autocorrelation and

ARCH effects, the data are filtered: a skewed-t-ARMA–GARCH model is fit-

ted to the raw price shocks for each of the series. Accordingly, Table 1 presents
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the p-values resulting from the application of the Lung-Box and the auto-

regressive conditional heteroskedasticity Lagrange multiplier (ARCH–LM) tests

to the filtered data at various lag lengths. Lag order is indicated in parenthesis.

Normality of residuals has been tested with Kolmogorov-Smirnov and Cramer

von Mises tests. In all cases both tests rejected normality with p-value < 0.001.

Results in Table 1 indicate that the filtered data are free from autocorrelation

and from ARCH effects.

2. The obtained residuals are standardized (filtered data), creating this way the

copula data on (0,1). Copula data are then used to calculate the respective

empirical distribution functions.

3. The estimation of copula models is conducted by applying the maximum like-

lihood (ML) estimator to the copula data (Canonical ML).

Table 1: Residual diagnostics from ARMA-GARCH precedure.

ESP GRE ITA

mean -0.0015 -0.0032 -0.0042
variance 0.0019 0.0027 0.0030
kurtosis 4.5278 6.1279 8.2679
skewness 0.5134 -0.1412 0.5884
KS 0.0008 <0.0001 <0.0001
CvM <0.0001 <0.0001 <0.0001
LB(1) 0.3544 0.4512 0.7246
LB(5) 0.1456 1.0000 0.9996
LB(9) 0.1123 0.9978 0.6421
AR(3) 0.4222 0.6146 0.7855
AR(5) 0.1872 0.6463 0.7210
AR(7) 0.1435 0.7241 0.7904

Lastly, random processes can be influenced by the presence of extreme market

conditions. Thus, before selecting the appropriate functional form for a copula, we

need to test for time–varying dependence. If the copula parameters are constant

over the period of time examined in this study, then the empirical copula is derived

non-parametrically directly from the data. On the other hand, if the parameters are

influenced by breaks and/or persistent shifts, then it is possible that more than one
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copula families might be selected in order to describe the nature of price dependence

between the two market levels. Copula stability was tested with the employment of

Busetti and Harvey (2011) test. Table 2 presents the values of the constancy test for

the three quantiles of the bivariate empirical copulas (0.25, 0.5 and 0.75) for each

one of the three pairs. Under the null hypothesis of stationarity, the quantile (τ)

of the bivariate empirical copula is constant. The values of the statistics are in all

cases below the 5 per cent critical value (0.461), suggesting that the null hypothesis

of constancy cannot be rejected. Hence, there is not sufficient statistical evidence

for breaks and/or persistent shifts in the empirical copulas examined in this study.

Table 2: Busetti-Harvey test statistics.

τ = 0.25 τ = 0.50 τ = 0.75

ESP/GRE 0.125 0.095 0.077
ESP/ITA 0.055 0.128 0.079
GRE/ITA 0.072 0.301 0.047

Critical values are 0.743, 0.461 and 0.347 for the
1, 5 and 10% levels of significance, respectively.

All computations in this study have been carried out with R (version 4.0.3, R

Core Team (2014)).

4 Empirical models, results and discussion

4.1 Empirical models

In the first step of the empirical analysis, all three time series are filtered through

wavelet transform technique in order to decompose them into time scale components.

Wavelets analysis does not need any stationary assumptions in order to decompose

the time series. Accordingly, the Maximal-Overlap DWT, a modified version of the

DWT, has been applied to the standardized innovations. The compact Daubechies

least asymmetric wavelet filter of length 8 (LA(8)) has been employed in the present

study. The latter is the most commonly used in economic applications (Fousekis

and Grigoriadis, 2016b; Reboredo and Rivera-Castro, 2014).
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With 243 observations available, the maximum decomposition level J , given by

log2(T ), equals to 8. However, following the practice of earlier works (Crowley and

Hallett, 2014), and in order to make qualitative inferences about the time period

(short-run, medium-run and longer-run), the maximum decomposition level J has

been set equal to three. The first detail (D1) represents activity taking place within

a period of 2 to 4 months (very short- and short-run dynamics), the second detail

(D2) represents activity taking place between 4 and 8 months and the third detail

(D3) represents activity taking place between 8 and 16 months. Lastly, the smooth

(S3) represents activity taking place beyond 16 months (longer-run dynamics). The

MRD has been implemented using the waveslim package in R (Whitcher, 2022).

Figures 2, 3 and 4 present the details and the smooths produced from the ap-

plication of the MRD to the filtered rates of price shocks in Spain (ESP), Greece

(GRE) and Italy (ITA), respectively. As one can observe, for every country, for

shorter time periods, the price changes are more volatile, but as we move to longer

time periods, price changes are smoother.
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Figure 2: Wavelets of ESP: from top to bottom we have D1, D2, D3 (the three
details) and S3 (the smooth), respectively.
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Figure 3: Wavelets of GRE: from top to bottom we have D1, D2, D3 (the three
details) and S3 (the smooth), respectively.
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Figure 4: Wavelets of ITA: from top to bottom we have D1, D2, D3 (the three
details) and S3 (the smooth), respectively.

In order to proceed with the estimation of the scale-by-scale copula functions, the

filtered rates of price change, the details as well as the smooths have been converted

to copula data using probability integral transforms and a scaling factor equal to

T/T+1 (Emmanouilides and Fousekis, 2015a; Reboredo, 2012). For the estimation

of the quantile dependence, we utilize the copula functions in (14) and (15). The

estimated copulas are then employed in order to estimate dependence measures.

Among the infinite number of such coefficients, the relevant literature has paid most
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of its attention on the tail dependence coefficients. The latter measure co-movement

at the very extremes of a joint distribution. Accordingly, the lower tail dependence

coefficient is the limit of a lower dependence coefficient as q goes to zero, whereas the

upper tail dependence coefficient is the limit of an upper tail dependence coefficient

as q goes to one.

In the case of the bivariate parametric copula families, even though explicit

mathematical expressions for the tail dependence coefficients are available, their

measurement, however, present various estimation problems. For a semi-parametric

approach though, since explicit formulae exist, what is needed is to estimate tail

coefficients are the estimates of the copula parameters. In the present manuscript,

tail dependence estimation is based on non-parametric copulas. More specifically, if

we set q close enough to zero (one), the sample estimate of λqL (λqU) assumes zero

values as well. In order to overcome this problem, the employment of a ‘cut-off’

quantile measured in the neighbour of 1/
√
T , with T being the sample size, can

provide a reasonable solution to the aforementioned problem (Dobrić and Schmid,

2005). Estimates at the 1/
√
T quantile and at the 1 − 1/

√
T quantile can be con-

sidered as approximations for the lower and the upper tail dependence coefficients,

respectively.

In the present study and following Fousekis and Grigoriadis (2016b), the quantile

pairs 0.05/0.95 and 0.10/0.90 have been employed in order to evaluate dependence

under extreme negative and extreme positive prices shocks, respectively, whereas the

quantile pair 0.40/0.60 has been used to evaluate dependence under strong and weak

negative and positive price shocks, respectively. The statistical test of symmetry by

Patton (2013) has been employed in order to test for the presence of asymmetric

price linkages.

Figures 5, 6, and 7, present the contour plots from the estimated copula prob-

ability density functions, by time scale, for the pairs of ESP/GRE, ITA/ESP and

ITA/GRE, respectively.4 In all three pairs, for the high frequencies, the probability

mass is scattered around the joint support indicating weak intensity of dependence.

4For the computation and the derivation of the contour plots, the package ”nonpar” in the R
software has been used.
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On the other hand, at the low frequencies, the probability mass generally tends to

be concentrated closer to the positive diagonal suggesting stronger positive quadrant

dependence.
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Figure 5: ESP/GRE non parametric copula
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Figure 6: ITA/ESP non parametric copula
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Figure 7: ITA/GRE non parametric copula

4.2 Results

Before proceeding with the empirical findings, we need to identify the causal mar-

kets. Causal markets are the markets from which the price shocks are originated.

Emmanoulides et al. (2014) tested for the causal market(s) among Italy, Spain and

Greece, for the case of the extra virgin olive oil. Results indicated that Italy is the

causal market leading price changes in Spain and in Greece. Spain, however, leads

price changes in Greece. The present study adopts and uses the findings obtained
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by Emmanoulides et al. (2014).

Tables 3, 4 and 5 present the estimates of quantile dependence coefficients along

with their respective standard errors by time scale. The time scales examined in the

present study are 2-4 months, 4-8 months, 8-16 months and larger than 16 months.

For the pair Spain-Greece (Table 3) and for the time scales from 2-4 months and

higher, the lower (0.05) dependence coefficients and the upper (0.95) tail dependence

coefficients tend to increase, suggesting that price linkages at both the upper and the

lower part of the joint support become stronger with the time horizon. Hence, price

crashes and/or price booms in Spain are more likely to be transferred to Greece in

the longer run than in the short run. For time scales from 2 to 4 months, the lower

tail dependence coefficient assumes a value zero, indicating that in the very short-run

price crashes are not transmitted from Spain to Greece. For the time period beyond

the sixteen months (> 16 months), the value of the lower tail dependence coefficient

quite big, assuming a value of 0.678. The aforementioned results indicate that in

the time period beyond 16 months, large negative price shocks are transmitted from

Spain to Greece with a much higher probability than large negative price shocks are

transmitted in the short-run. On the other hand, for the time period 2-4 months,

the upper tail dependence coefficient assumes a value (0.119) that is almost one

quarter of the value of the upper tail dependence coefficient for the time period >

16 months (0.461). Hence, extreme positive price shocks are transmitted from Spain

to Greece with a much higher probability in the longer run than they do in the very

short run.

The aforementioned results indicate it is not only the strength of price linkages

that changes with the time scale but it is the structure of those linkages as well. The

comparison of two upper (or two lower) quantile dependence coefficients provides

information on the intensity by which price shocks of the same sign but of different

magnitude are transmitted from one region to the other. To be specific, let us

consider the values of the 0.90 and of the 0.60 quantile dependence coefficients for

the highest scale (> 16 months). These are 0.567 and 0.611 respectively, suggesting

that the probability mass when the price shock in one region lies in the quantile

interval [0.9, 1], which is 0.106 = 0.567− 0.461, is bigger than the interval that lies
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in the quantile interval [0.6, 0.9], which is 0.044 = 0.611–0.567. Given, however, that

the latter interval is three times as wide as the former, the result implies that strong

positive price shocks are likely to be transmitted with higher intensity compared to

weaker positive price shocks. The same holds for almost all of the rest of the time

scales for all positive price shocks. For purposes of clarification, we need to point

out the relative “widths” of the quantile intervals are in terms of % of observations

included and not in absolute sizes of the price shocks.

At this point we can investigate the same for the negative price shocks. Let us

consider the values of the 0.10 and of the 0.40 quantile dependence coefficients for

the for the highest scale (> 16 months). These are 0.586 and 0.678 respectively,

suggesting that the probability mass when the price shock in one region lies in the

quantile interval [0.05, 0.10] is 0.09 = 0.678− 0.586, and the interval that lies in the

quantile interval [0.1, 0.4] is 0.115 = 0.701− 0.586. Given, however, that the latter

interval is six times as wide as the former, the result implies that strong negative

price shocks are likely to be transmitted with higher intensity compared to weaker

negative price shocks. The same holds for almost all of the rest of the time scales

for all negative price shocks.

For the pair Italy-Spain (Table 4), for the time scale 2-4 months, the probability

that price crashes and/or price booms will transfer from Italy to Spain is zero.

For the time scale > 16 months, price crashes do not transfer from Italy to Spain

(probability is zero). Hence, in the very short run and in the longer run, price price

crashes do not do not transfer from Italy to Spain.

Most of the activity appears to take place for the time scale 8-16 months. Strong

and weaker price shocks (increases and decreases) appear to transfer with the highest

intensity as compared to the rest of the time scales.

Furthermore, let us consider the values of the 0.90 and of the 0.60 quantile

dependence coefficients for the aforementioned scale (8-16 months). These are 0.596

and 0.492 respectively, suggesting that the probability mass when the price shock in

one region lies in the quantile interval [0.9, 1] which is 0.215 = 0.811−0.596 is bigger

than the interval that lies in the quantile interval [0.6, 0.9] (0.104 = 0.596–0.492).

Given, however, that the latter interval is three times as wide as the former, the
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result implies that strong positive price shocks are likely to be transmitted with

higher intensity compared to weaker positive price shocks. The same does not hold

for the time periods 2-4 months and > 16 months.

For the pair Italy-Greece (Table 5), for the time scale 2-4 months, the probability

that price crashes will transfer from Italy to Greece is 0.226 and it is almost the

same with the probability that price booms transfer from Italy to Greece in the very

short run (0.227). For the time scale > 16 months, price crashes and price booms

do not transfer from Italy to Greece: the probability that a crash and/or a boom in

prices in the Italian extra virgin olive oil will transfer to Greece is zero. Accordingly,

for the time scale > 16 months, price booms and price crashes do not transfer from

Italy to Greece.

The comparison of two upper (or two lower) quantile dependence coefficients

provides information on the intensity by which price shocks of the same sign but of

different magnitude are transmitted from one region to the other. To be specific, let

us consider the values of the 0.90 and of the 0.60 quantile dependence coefficients

for the lowest time scale (2-4 months). These are 0.165 and 0.093 respectively,

suggesting that the probability mass that lies in the quantile interval [0.6, 0.9] is

0.072 = 0.165−0.093, whereas the probability mass when the price shock lies in the

quantile interval [0.9, 1] is 0.062 = 0.227 − 0.165. Given, however, that the latter

interval is three times as wide as the former, the result implies that strong positive

price shocks are likely to be transmitted with almost the same intensity compared to

weaker positive price shocks. This implies that strong positive price shocks are likely

to be transmitted with higher intensity compared to weaker positive price shocks.
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Table 3: Dependence Coefficient ESP/GRE

Period Quantile Dep Coeff Quantile Dep Coeff p-value for symmetry

2-4 0.05 0.000(0.001) 0.95 0.119(0.002) 0.012
0.10 0.056(0.002) 0.90 0.184(0.003) 0.034
0.40 0.307(0.002) 0.60 0.352(0.002) 0.872

4-8 0.05 0.422(0.004) 0.95 0.348(0.004) 0.764
0.10 0.411(0.003) 0.90 0.362(0.004) 0.485
0.40 0.458(0.002) 0.60 0.494(0.002) 0.795

8-16 0.05 0.274(0.003) 0.95 0.358(0.005) 0.658
0.10 0.309(0.004) 0.90 0.433(0.004) 0.412
0.40 0.432(0.003) 0.60 0.368(0.003) 0.541

> 16 0.05 0.678(0.005) 0.95 0.461(0.005) 0.345
0.10 0.586(0.005) 0.90 0.567(0.005) 0.981
0.40 0.701(0.003) 0.60 0.611(0.003) 0.853

Table 4: Dependence Coefficient ITA/ESP

Period Quantile Dep Coeff Quantile Dep Coeff p-value for symmetry

2-4 0.05 0.000(0.001) 0.95 0.000(0.001) 0.742
0.10 0.117(0.002) 0.90 0.203(0.003) 0.718
0.40 0.178(0.002) 0.60 0.267(0.002) 0.435

4-8 0.05 0.455(0.004) 0.95 0.208(0.004) 0.389
0.10 0.496(0.004) 0.90 0.288(0.003) 0.365
0.40 0.354(0.003) 0.60 0.429(0.003) 0.672

8-16 0.05 0.656(0.004) 0.95 0.811(0.004) 0.541
0.10 0.633(0.003) 0.90 0.596(0.004) 0.801
0.40 0.495(0.003) 0.60 0.492(0.003) 0.952

> 16 0.05 0.000(0.001) 0.95 0.169(0.005) 0.023
0.10 0.000(0.003) 0.90 0.378(0.004) 0.011
0.40 0.525(0.002) 0.60 0.668(0.002) 0.769
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Table 5: Dependence Coefficient ITA/GRE

Period Quantile Dep Coeff Quantile Dep Coeff p-value for symmetry

2-4 0.05 0.226(0.004) 0.95 0.227(0.004) 0.951
0.10 0.192(0.004) 0.90 0.165(0.003) 0.892
0.40 0.210(0.003) 0.60 0.093(0.002) 0.453

4-8 0.05 0.161(0.005) 0.95 0.119(0.004) 0.789
0.10 0.186(0.004) 0.90 0.143(0.003) 0.872
0.40 0.361(0.002) 0.60 0.404(0.002) 0.675

8-16 0.05 0.202(0.004) 0.95 0.374(0.006) 0.569
0.10 0.248(0.004) 0.90 0.228(0.005) 0.894
0.40 0.336(0.003) 0.60 0.334(0.003) 0.987

> 16 0.05 0.000(0.001) 0.95 0.000(0.001) 0.894
0.10 0.000(0.003) 0.90 0.090(0.003) 0.034
0.40 0.655(0.002) 0.60 0.533(0.003) 0.765

4.3 Discussion

Prices in Spain and Greece (Table 3) boom together but they do not crash together

in the very short run (2-4 months). In the short run, price co-movement between

Spain and Greece reflects the fact that these two countries serve as necessary inputs

to the blending/bottling industry in Italy, This is the case especially for Greece:

82% of the Greek olive oil production is extra virgin and 88% of Greek olive oil

exports have Italy as their destination (Panagiotou, 2015).

On the other hand, in the longer run (t > 16 months), the probability that ex-

treme negative price shocks in Spain will transfer to Greece is higher when compared

to the probability that extreme positive price shocks will. Hence, in the low time

scale (2-4) months as well as in the high time scale months, asymmetry appears to be

present since positive and negative shocks are transmitted with different intensities.

Price crashes and price booms in Italy do not transfer to Spain (Table 4) in the

very short run (2-4 months). As a consequence, processors, consumers and primary

producers in Spain are not likely to be affected by price crashes/boomd in Italy. The

findings are quite different for the pair Italy - Greece (Table 4). Prices in Italy and

Greece crash and boom together in the very short run (2-4 months), indicating that
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extreme positive and extreme negative price shocks in Italy will transfer to Greece

with almost the same probability. Accordingly, processors, consumers and primary

producers in Greece will be affected by price crashes and/or booms in Italy.

For the time scale beyond 16 months, only price booms in Italy will transfer to

Spain. In the middle run, there is transmission of negative price shocks from Italy to

Spain and Greece. The degree of transmission of negative price shocks from Italy to

Spain and from Italy to Greece depends on two parameters. The first one is whether

the producers in the exporting countries of Spain and Greece have access to different

markets for their product. The second one is whether processors/blenders in Italy

will keep on importing significant volumes of extra virgin olive oil from Spain and

Greece because of its taste. Regarding the former, Spain has a significant share of

approximately 20% in the world exports of olive oil and, therefore, access to different

marketing channels. When it comes to the latter, Italian olive oil processing firms

often use product differentiation as a tool for market segmentation and therefore

they do not want to alter blends, even when domestic supply of olive oil becomes

cheaper (Emmanoulides et al., 2014). When the aforementioned two conditions are

in place, prices of extra virgin olive oil in Spain and in Greece will not fall along

with a crash in the price of the Italian extra virgin olive oil. The empirical results

of the present work suggest that these two conditions most likely hold.

For the time scale > 16 months (t > 16 months), the probability that extreme

positive price shocks in Italy will transfer to Spain and Greece is larger when com-

pared to the probability that extreme negative price shocks will. Hence, asymmetry

seems to be present, for t > 16 months, for the pairs Italy-Spain and Italy-Greece.

Positive price shocks in Italy will increase the demand for imports of extra virgin

olive oil from Spain and Greece. When positive price shocks in Italy are transmitted

to Greece and Spain, primary producers of extra virgin olive oil in Greece and Spain

are likely to benefit from higher prices in the market of Italy. On the other hand,

extra virgin olive oil processors in those two countries will probably experience an

increase when purchasing their primary product. Lastly, consumers in Spain and

Greece are likely to face higher prices for the purchase of extra virgin olive oil when

a positive price shock takes place in Italy.
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In 2006, the EU implemented the Single Market Review (SMR). With the initi-

ation of the SMR, the EU started formally to pay attention on the price differences

among member states in order to understand and explain the price adjustment mech-

anisms among the member states. According to the empirical findings of this work,

for the pairs ITA-ESP and ITA-GRE, prices boom together but they do not crash

together, especially in the short-run. These differences in the trends of dependence

patterns between these three Mediterranean countries, might provide policy makers

some useful insights when it comes to the product of extra virgin olive oil.

Finally, for the pair between Italy and Greece, the findings that in the short

run price crashes and/or booms transfer from Italy to Greece whereas price crashes

and/or booms do not transfer for t > 16 months, might be significant information

for the producers as well as for the blenders of extra virgin olive oil in Greece. The

reason is that 82% of the Greek olive oil production is extra virgin and 88% of Greek

olive oil exports have Italy as their destination (Panagiotou, 2015).

5 Conclusions

Well functioning integrated spatial markets are characterized by strong price link-

ages. The European Union, as a prime example, has been engaged in a process of

market integration for a very long period of time. The objective of the present study

has been to investigate price dependence by time scale, among the three major EU

extra virgin olive oil markets. This has been pursued with the utilization of wavelets

and copulas along with monthly observations of the extra virgin olive oil prices in

Italy, Spain and Greece.

According to the empirical results, over the period from 2000 to 2020, there has

been a variety of degrees and intensities of price linkages among the three geograph-

ically separated markets within the European Union. These can be summarized

as:

• Price linkages in the short-run are significantly different from those in the

longer-run. More specifically, price dependence is smaller at the very high

frequencies (2-4 months) and bigger at the low frequency ones (t > 16 months).
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This suggests that price dependence gets stronger in the longer-run. Hence, the

time scale affects the pattern of dependence. The latter points to asymmetric

price co-movement.

• For t > 16 months, price shocks of the same sign but of different magnitude are

transmitted from Italy to Spain with a higher probability than they are trans-

mitted from Italy to Greece. Accordingly, the time scale affects the intensity

of dependence.

• Lastly, when it comes to integration of the three markets, the asymmetric co-

movement in most of the cases is not consistent with well-integrated markets.

There has been one earlier study by Emmanoulides et al. (2014) that investigated

the integration of olive oil markets in the Mediterranean. The aforementioned work

used copulas along with monthly data at the aggregates (net over all scales). For the

case of the extra virgin olive oil, the results revealed asymmetric tail dependence

coefficients for the pairs ITA-ESP and ITA-GRE. More specifically, the authors

found that prices boom together in both pairs but they do not crash together (price

crashes in Italy do not transfer to Spain or Greece). For the pair ESP-GRE the

results suggested symmetric tail dependence: prices boom and crash together with

the same probability. The authors concluded that there is evidence in favor of

asymmetric price co-movements and suggested that the three major EU olive oil

markets cannot be thought of as one great pool.

The empirical findings of the present work seem to verify the findings by Em-

manoulides et al. (2014) regarding the intensity and strength of price linkages among

the three pairs. Furthermore, this study, like the work by Emmanoulides et al.

(2014), concluded that the degree of integration is very low in the short-run but,

generally, much higher in the intermediate run among the three Mediterranean coun-

tries. Also, for most time scales the markets are likely to crash than to boom together

(asymmetry in co-movement).

One potential avenue for future research may involve the use of continuous

wavelets in order to examine price dependence between the three Mediterranean

countries for the same commodity.
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Figure 8: Time series of (log) returns of extra virgin olive oil prices.
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A. BenSäıda. The contagion effect in european sovereign debt markets: A regime-

switching vine copula approach. International Review of Financial Analysis, 58:

153–165, 2018.

F. Busetti and A. Harvey. When is a copula constant? A test for changing relation-

ships. Journal of Financial Econometrics, 15:347–333, 2011.

X. Chen and Y. Fan. Estimation of copula-based semiparametric time series models.

Journal of Econometrics, 130:307–335, 2006.

P. M. Crowley and A. H. Hallett. The great moderation under the microscope: de-

composition of macroeconomic cycles in us and uk aggregate demand. In Wavelet

applications in economics and finance, pages 47–71. Springer, 2014.
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