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Abstract

We study the economic effects generated by the proliferation of the
Covid-19 epidemic and the implementation of non-pharmaceutical
interventions by developing a SEIRD-RBC model, where the outbreak
and policy interventions shape the labor input dynamic. We microfound
an Epidemic-Macro model grounded on the RBC tradition, useful for
epidemic and economic analysis at business cycle frequency, which is
able to reproduce the highly debated health-output trade-off. Assuming
a positive approach, we show the potential of our model by matching
the epidemic and macroeconomic empirical evidence of the Italian case.
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1 Introduction

The COVID-19 pandemic has affected our lives remarkably over the last two

years. In response to the proliferation of Coronavirus, national governments

worldwide implemented the widest spectrum of interventions seeking to miti-

gate the spread of the outbreak. Since then, our everyday life and customs

have been turned upside down by the Non-Pharmaceutical Interventions

(NPIs).1 Even though their implementation was crucial to reducing new

infections and saving lives, individuals were hit by another effect, namely, the

manifestation of a forceful economic recession.

It is in this context that we propose an analysis on the dynamics of the

Covid-19 outbreak along with its effects on the economy, developing an origi-

nal epidemiological-macroeconomic model, which also takes into account the

implementation of NPIs.

Since the outbreak of the disease - starting from the basic Susceptible-Infected-

Recovered (SIR) model formulated by Kermack and McKendrick in 1927 -

epidemiologists have developed more complex models with the purpose of

matching the time path of Covid-19 epidemic data and to make predictions to

guide governments’ actions. Accordingly, we extend the SIR model through

the inclusion of the exposed (E) and deceased (D) compartments, yielding

the well-known SEIRD model.2

1NPIs - also known as social-distancing measures - concern disruptions and closures of
business activities and travel, testing and mask-wearing requirements as well as lock-downs
on a portion of the population.

2The choice to consider exposed individuals as well, when studying Covid-19 properties,
was followed by Atkeson (2020), Cadwell et al. (2021) and Piguillem and Shi (2020), while
SEIRD models were adopted by Loli Piccolomini et al. (2020) and Romano et. al (2020).
More sophisticated models involve additional epidemic compartments which allow for an
infected individual to be asymptomatic or symptomatic (Romano et al., 2020; Giordano
et al., 2020), detected or undetected by testing (Giordano et al., 2020) and present mild,
severe or critical health conditions (Gatto et al., 2020; Giordano et al., 2020; Noll et al.,
2020). However, we decided not to include these extensions as we want to keep the epidemic
framework simple.
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Moreover, given the wide-ranging NPIs adopted by governments, epidemiolo-

gists have modified standard models to take into account also their effects on

transition probabilities, thus formulating models with time-varying parame-

ters. Actually, the infection rate is severely affected by those interventions

that seek to reduce contacts among individuals. While the majority of the

literature captures the effect of interventions by changing the infection rate

at discretion (Giordano et al., 2020), defining it as a step-function (Noll et

al., 2020) or as a direct function of time (Loli Piccolomini et al., 2020), we

follow the idea of Romano et al. (2020), who define it as a direct function of a

proxy of the NPIs.3 The case fatality rate is another parameter that is highly

affected by external factors. In particular, the inception of new variants,

vaccines and deficiencies in the healthcare system can alter its value (Cadwell

et al., 2021; Sadeghi et al., 2020). We consider these externalities indirectly,

setting the case fatality rate time-varying, described by a step-function.

Furthermore, the novel disease and NPIs have pushed economists to analyse

the generation and exacerbation of epidemic-driven economic shocks. As

highlighted by Baldwin and di Mauro (2020), these shocks are triggered by

three sources: First of all, the spreading of Covid-19 initially generates a

supply-side shock, i.e. a labor supply shock, as ill and deceased workers

cannot supply labor; secondly, further negative shocks are triggered by NPIs

as these temporary shut down all activities that require a high level of physi-

cal contact, impose a lock-down regime on a portion of the population and

suspend transport routes through air and sea. Accordingly, NPIs affect both

3From the Google Covid-19 Community Mobility Report, they construct a mobility
function as the weighted average on the mobility data in different places. This parameter
gives an idea of how NPIs have modified community movements in specific locations.
Differently, we utilise the Containment and Health Index (CHIndex) - computed by Hale
et al. (2021) - and derive a continuous function describing how the CHIndex perturbs the
infection rate.
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the aggregate supply - via a disruption of industrial production - and the

aggregate demand - through shrinkage of exports, imports and consumption.4

In addition, aggregate demand is affected by economic agents’ behavioural

responses to the epidemic evolution. Demand for goods and services drops as

consumers follow saving-for-emergency, wait-and-see and hoarding strategies.

Firms reduce investments due to closures of company plants, supply-chain

contagions and negative expectations on future economic activity.

Part of the literature has theorised and modelled aggregate demand short-

ages triggered by aggregate supply plunges, envisaging the recurrence of a

supply-demand vicious spiral (Fornaro and Wolf, 2020; Guerrieri et al., 2022).

McKibbin and Fernando (2021) have considered multiple exogenous supply

and demand shocks, while for Faria-e-Castro (2021), the Covid-19 outbreak

generates a demand shock.5 Ciccarone et al. (2021) and Gagnon et al. (2020)

set up an analysis on the intergenerational costs and benefits of pandemics

and lockdowns, employing a life-cycle macroeconomic scheme.6

Other researchers have focused the analysis on economic as well as health

issues, developing a new category of models that can be defined as SIR-

Macro/Health models, where epidemic dynamics are combined with the

macroeconomic setup (Alvarez et al., 2021; Eichenbaum et al., 2021; Gonzalez-

Eiras and Nieptal, 2020; Piguillem and Shi, 2020). These studies have in

common the formulation of a maximisation problem that takes into account

4This is since ill consumers are prevented from access to stores due to quarantine
restrictions. As a result, the demand for non-essential consumption goods falls.

5For instance, the economic effects of Covid-19 epidemic are modelled as a permanent fall
in the growth rate of labor productivity (Fornaro and Wolf, 2020), a one-period reduction
in the labor supply (Guerrieri et al., 2022), a simultaneous reduction in labor supply, a
rise in the cost of doing business, shifts in consumer preferences and increase in equity
risk premia on companies and countries (Fernando and McKibbin, 2021) and as a negative
shock to the marginal utility of consumption (Faria-e-Castro, 2021).

6Both papers introduce the outbreak as an exogenous shock to the mortality rate of the
elderly.
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a health-output trade-off, where the point of view of a Social Planner who

seeks to find the optimal lock-down or social distancing policies is assumed.7

Differently from the aforementioned literature, we employ an economic model

grounded on the Real Business Cycle tradition. To link the Macro framework

with the SIR framework, we revive the Hansen’s version of the RBC model

(Hansen, 1985), which introduces a distinction between the intensive and

extensive margin of labor.8 Starting from this specification, we modify the

model in order to let the SEIRD block determines exogenously the path of the

extensive margin, while economic agents derive optimally the actual worked

hours. Additionally, to overcome the manifestation of excessive consumption

smoothing, we introduce one heterogeneity among households: In our econ-

omy, households are distinguished between Optimising and Rule-of-Thumb

as described, for example, in Galì et al. (2007).

Our approach diverges from the step-up of the SIR-Macro literature, inas-

much as our model is microfounded along the lines of the business cycle

tradition. Basically, the SIR-Macro literature employs health-related models,

in which the relevant economic trade-offs are shaped by the health status of

the economic agents and by the transition probabilities between epidemic

compartments. This comes at the cost of giving up the canonical behavioural

equations of economic agents, namely, Euler equations are absent from the

analysis. Additionally, we do not follow a normative approach, but a positive

one, since we aim to build a model that can replicate the empirical evidence

of Italy.

Three versions of the model are presented, each featuring a labor supply shock.

In the simplest version, Model 0 (M0), the possibility to work is restricted by

7The Social Planner manages a trade-off as individuals, on one hand, benefit from
the mitigation of the virus, and, on the other, worsen economically due to disruptions in
activities.

8where their product defines the actual worked hours.
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the harmfulness of the disease. Hence, in the first version, only the epidemic

shock is activated. In Model 1 (M1), we show how the implementation and,

successively, the removal of NPIs produce multiple epidemic waves. Even

though interventions almost neutralise the epidemic shock, these end up

generating a further negative shock on labor supply. In the last version,

Model 2 (M2), we follow a quantitative approach, namely, the epidemic and

NPIs shocks are modelled in order to replicate both the epidemiological and

business cycle empirical evidence of Italy in the period 24/02/20 - 24/02/22.

There are three main results of this study. First of all, we developed a model

for epidemic and economic analysis which is stunningly simple. Actually, M0

can be seen as a toy model and a starting point for more complex analyses,

which seek to capture further aspects. The possibility of reproducing epidemic

waves - as done in M1 - is an example. Secondly, by comparing M0 with M1,

it is possible to observe the presence of the health-output trade-off, discussed

in the literature. In detail, when the government has to decide whether to

intervene with NPIs and choose their strictness, it bears a trade-off inasmuch

as interventions reduce the number of infections and save lives in the face of

a more forceful and long-lasting economic recession. Finally, M2, our most

sophisticated version of the model, is able to match suitably the empirical

evidence of Italy, reproducing the path of the five waves of infections and the

quarterly conjunctural growth rate of macroeconomic variables.

The paper is organised as follows: in section 2, we described the epidemi-

ological and macroeconomic frameworks on which our model is grounded.

From their combination, we obtain the simplest version of our model, M0. In

section 3, the model is modified, allowing for the presence of NPIs. Here, two

model versions are illustrated, namely, M1 and M2. In section 4, the model

is calibrated on epidemic and economic data of Italy and in section 5, results
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of the three versions are displayed. Section 6 summarises and concludes.

2 The Epidemiological-Macroeconomic Model

We employed a discrete-time deterministic SEIRD model, where individuals

are separated into groups - or compartments - depending on their disease

status and can move from one compartment to another as the infectious virus

spreads among the population.

The economy is featured by a RBC model, whose standard version is modified

by two specifications. We revive the Hansen’s version of the RBC model

(Hansen, 1985) - making, however, some adjustments - and introduce one

heterogeneity among households: they are distinguished between Optimising

and Rule-of-Thumb as described in Galì et al. (2007).

2.1 The Epidemiological Framework

In a canonical discrete-time SEIRD model 9 the population is subdivided

among five compartments:

• Susceptible (S ), where individuals have not been infected with the
disease and are exposed to the risk of infection,

• Exposed (E ), composed of individuals who have been infected but
cannot transmit the disease due to the incubation period,10

• Infected (I ), composed of individuals who have been infected with
the disease and are capable of spreading it to those in the susceptible
compartment,

9The model is deterministic, allowing us to exactly predict the path of epidemic variables
throughout the progression of the infectious disease.

10The period between exposure and onset of clinical symptoms is called the incubation
period. In this amount of time, the virus cannot be transmitted. In addition, in this model
we assume the absence of asymptomatic individuals. Hence, exposed individuals can only
be in the pre-symptomatic phase. For models with asymptomatic individuals, see Giordano
et al. (2020) and Romano et al. (2020).
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• Recovered (R), where individuals have been infected and then recovered
from the disease through immunisation,

• Deceased (D), composed of individuals who have deceased due to the
infectious illness.

The dynamic of the population can be represented by the following sequence:

S E I

R

D

b ε

γ

µ

Since we are mainly interested in short-run analysis, we consider a closed pop-

ulation. Accordingly, this model does not take into account births, migration

and deaths which are not related to the disease.

The rate at which susceptible individuals become exposed depends on the

number of susceptible and infected individuals and their effective contact

rate b. This parameter - also known in the literature as the infection rate -

accounts for the transmissibility of the disease as well as the mean number of

contacts per individual. 11 Consequently, the whole number of susceptible

individuals contracting the disease from infectious individuals per unit of

time is given by the product bStIt. In other words, this term represents the

number of newly exposed individuals in time t. Then, only a fraction ε of

exposed individuals become infected in each period, with ε−1 representing

the incubation period. The rate at which infected individuals move into

the recovered compartment depends on the amount of time during which an

individual is contagious, which is captured by the recovery rate γ. Hence,

γ−1 represents the average time of being infected. Finally, the rate at which

11The model assumes homogeneous mixing of the population, meaning that all individuals
in the population have an equal probability of making contact with one another. However,
this does not reflect human social structures, where contact occurs within limited networks.
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infected individuals decease is indicated with µ, known as the case fatality

rate.

In the epidemiological field, the infectiousness of a disease - namely its trans-

missibility within a population - is described by the basic reproduction number,

indicated with R0. This parameter characterises the initial propagation of an

infectious virus and, in a SEIRD model without births and non-disease-related

deaths, is computed as the ratio of the infection rate and the sum of the

recovery and case fatality rate, R0 = b (γ + µ)−1.12

From the definition of the basic reproduction number, it is possible to write

the infection rate as:

b = R0(γ + µ) (1)

Summing up, the epidemiological model is described by the following first

order non-linear difference equations:

St+1 − St = −b
StIt
P

(2)

Et+1 − Et = b
StIt
P

− εEt (3)

It+1 − It = εEt − γIt − µIt (4)

Rt+1 −Rt = γIt (5)

Dt+1 −Dt = µIt (6)

where population is defined as:

P = St + Et + It +Rt +Dt

12The basic reproduction number is the average number of secondary infections produced
by a typical case of an infection in a population where everyone is susceptible. In general,
an infectious disease spreads within a susceptible population if R0 is greater than one.
Under this condition, the number of infected individuals increases exponentially over time.
Conversely, if R0 < 1, the virus does not spread as the number of infected agents converges
monotonically to zero, while with R0 = 1 the infection remains constant.
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with the initial condition S0 > 0 and I0 > 0. Additionally, it is imposed that:

St, Et, It, Rt, Dt ≥ 0

St + Et + It ≤ P

2.2 Linking the SEIRD and RBC Blocks

An epidemic can be seen as an external real shock that perturbs the equilib-

rium of the economic system. In detail, it damages the health of individuals,

compromising their ability and propensity to work and produce until recovery

is achieved. Therefore, we decide to take into account this external phe-

nomenon by modelling it as a labor supply shock. After having established

which epidemic compartments are still able to work, the SEIRD model deter-

ministically derives the path of the available labor force over time. As result,

macroeconomic variables display short-run variations until long-run equilibria

are reached again.

We assume that the labor force is equal to the population net of infected and

deceased individuals. As a matter of fact, we are supposing that infected

individuals are too ill to work, while exposed individuals can still supply labor

since they are in a pre-symptomatic phase. Hence, in the absence of NPIs,

the labor force - which is equal to the employment level in a RBC model - is

given by:

Nt = St + Et +Rt (7)

From equation (7) it is possible to define the employment rate:

nt =
Nt

P −Dt

(8)
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We stress that nt is the variable that generates a bridge between the two

frameworks. As long as the infectious disease is in circulation, the employment

rate will change, modifying economic agents’ behavioural responses.

2.3 The Macroeconomic Framework

In this study, we employ a RBC model considering the specification of

Hansen (1985), where the economy is characterised by indivisible labor.13

From this original version, we borrow the separation between extensive and

intensive margin and the shape of the utility function, making, however,

some adjustments. In our model, the extensive margin is not a control

variable for households and firms, but it is determined by the epidemiological

model.14 The extensive margin can be interpreted as the employment rate

nt. The intensive margin represents the worked hours (h0t ) and, differently

from Hansen’s version, is not constant but time-dependent. At each time, it

adjusts to variations of the extensive margin and of the actual worked hours

(ht) in order to guarantee the following relation:

ht = nth
0
t (9)

where variables are in per capita terms. Hence, the product of the two margins

represents the actual worked hours in each time. As shown successively, ht is

derived optimally through the simultaneous solution of households and firms’

13In detail, households get to choose the probability of working, but, once in the labor
market, they work for a fixed amount of hours. Hansen (1985) introduces into the analysis
a distinction between the intensive and the extensive margin of labor, yielding - thanks
to the lotteries setup - a utility function linear in labor which holds for any value of the
elasticity of labor.

14This assumption is particularly suitable for the case of Italy, where the government
has introduced a ban on dismissals on 17th March 2020 through the Cura Italia decree-law,
whose validity has been extended until nowadays.
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maximisation problems.

We assume that households’ utility function is logarithmic in consumption

and still linear in labor as in Hansen (1985), even though the coefficient that

multiplies actual worked hours, vt, is no longer constant. Accordingly, it is

represented by the following equation:15

U(ct, ht;h
0
t ) = log(ct)− vtht (10)

Hereafter we refer to vt as the Hansen’s variable, which is defined by:

vt = −
ψ

h0t

[

(1− h0t )
1−θ − 1

1− θ

]

(11)

where ψ and θ are the households’ relative preference for labor and the inverse

of the elasticity of labor, respectively.

Furthermore, we assume that the economy is characterised by homogeneous

firms and heterogeneous households, namely, Optimising (Opt) and Rule-of-

Thumb (RoT ) households in the sense of Galì et al. (2007). In particular,

RoT consumers are financially constrained so that they do not save and invest;

they are assumed to consume their current income fully. Labor is supplied by

both households, while capital is provided only by Opt households. Firms

employ the two production factors in the production process, remunerating

labor (ht) with the real wage (wt) and capital (kt) with the real interest rate

(rt). Markets are perfectly competitive and complete.

From the solution of the maximisation problem of RoT and Opt households

and firms,16 we obtain the following equations, i.e. the Euler equation of Opt

households, the modified Hansen labor supply of RoT and Opt households

15The derivation of the utility function is presented in appendix A.
16See appendix B.
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and the capital and labor demand of firms:

1

cpt
= βE

[

1 + rt+1

cpt+1

]

(12)

wt = vpt c
p
t (13)

wt = vrt c
r
t (14)

rt = (1− φ)
yt
kt

− δ (15)

wt = φ
yt
ht

(16)

where variables with the superscript p and r refer to Opt and RoT households,

respectively. Households’ time preference is indicated with β, while δ and

φ are the deprecation rate of capital and the labor share of production,

respectively. Aggregation is computed through a weighted average of the

corresponding variables for each household type. Formally:

h0t = (1− λ)h0,pt + λh0,rt (17)

ct = (1− λ)cpt + λcrt (18)

it = (1− λ)ipt (19)

kt = (1− λ)kpt (20)

where (1−λ) and λ are respectively the share of optimising and rule-of-thumb

households in the economy.

Combining the SEIRD with the RBC block, we derive the simplest version of

our model - labeled as Model 0 (M0) - where no NPIs are established.17 In

this way, it is possible to observe and analyse the plain effect of the epidemic

on the economy. Accordingly, M0 may be seen as a counterfactual scenario,

17In appendix C and D the equilibrium equations of the RBC block and the steady state
of the model are illustrated , respectively.
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which illustrates epidemic and economic outcomes when the government

decides not to intervene to hinder the outbreak from spreading.

Calibration and results of Model 0 are exhibited in paragraph 4.1 and 5,

respectively.

3 Non-Pharmaceutical Interventions

In this paragraph, M0 is modified allowing for the presence of NPIs.

Two versions of the basic model are illustrated. In Model 1 (M1), NPIs

are introduced following a qualitative approach, where it is shown how the

implementation of government interventions may generate epidemic waves

and a forceful output downturn. In Model 2 (M2), we assume a quantitative

approach, modelling the effects of NPIs on transition probabilities more

rigorously in order to match the epidemic and business cycle evidence of Italy.

3.1 Qualitative Approach, Model 1

In M0, the SEIRD block produces only one peak, as shown in Figure 1.

Thus, the outbreak dies out as soon as the first wave ends. This occurs

since, following basic epidemic models, we have employed fixed parameters.

To obtain multiple waves - which indicate repressions and revivals of the

virus - the infection rate must change, reducing and augmenting over time

(Atkeson, 2020). Actually, NPIs - such as school and workplace closures,

lockdowns, face coverings... - diminish contacts among individuals and thus

lessen the infection rate. As these measures are relaxed, contacts rise again,

which augments inevitably the infection rate. Consequently, to model the

impact of NPIs, we take inspiration from Noll et al. (2020) and introduce a

13



time-dependent infection rate in equations (2) and (3), defined by:

bt = bf(ηt) (21)

where b is the constant infection rate in the absence of NPIs18 and f(ηt)

describes a generic (decreasing) function of NPIs, labeled with ηt. For the

sake of simplicity, we assume this function to be equal to:

f(ηt) = (1− κηt)

with 0 ≤ ηt ≤ 1 and 0 ≤ κ ≤ 1.19 The former can be interpreted as the NPIs

rate, which measures the strictness of interventions (1 = strictest), and is

described by a step-function, as shown in paragraph 4.2; the latter represents

an efficacy coefficient of the overall interventions. As κ tends to 1, the higher

is the reduction effect on the infection rate.

Furthermore, to model the negative supply shock generated by NPIs, we

modify equation (7), assuming that the labor force is defined by:

Nt = (St + Et +Rt)(1− g(ηt)) (22)

where g(ηt) is a function of the NPIs which represent the fraction of labor

force that is effectively kept out from the production process. Its functional

form is given by:

g(ηt) = αη2t

18See equation (1).
19We take this idea from Alavarez et al. (2020). Accordingly, it is possible to assume

a limited effect of NPIs since individuals subject to restrictions might still be subject to
some contact and thus infect and be infected.
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with 0 ≤ α ≤ 1. Hence, the labor force is not only reduced by infected and

deceased individuals, but also by the share of individuals (g(ηt)) who are

subjected to restrictions. Parameter α, in the same way as κ, represents

an efficacy coefficient, which captures the effectiveness of NPIs in reducing

labor supply.20 As the efficacy coefficient converges to one, NPIs negative

effects on labor force augment, thus generating a higher plunge in output.

The manifestation of a health-output trade-off depends on the values assigned

to α. Actually, as the latter assumes smaller values, NPIs reduce less labor

force, preserving, however, the same effect on the infection rate.

Calibration and results of Model 1 are presented in paragraphs 4.2 and 5,

respectively.

3.2 Quantitative Approach, Model 2

In order to replicate the empirical evidence of Italy, we need to take into

account further aspects. When the analysis is focused on an extended period,

external factors may change the properties of the spreading epidemic, i.e.

transition probabilities. In this circumstance, it is necessary to adopt time-

varying parameters to include the effects of these external factors.21 To this

20Actually, even under restrictions, some labourers can still supply work. It is easy
to get this idea by thinking of the extraordinary implementation of remote - or smart -
working displayed worldwide from March 2020, which allowed households to work even
under lockdown requirements. Nonetheless, not all sectors of the economy can operate
remotely, such as the manufacturing sector and, for this reason, NPIs still generate a
significant negative shock on labor supply.

21In particular, the infection rate is remarkably reduced by self-protective behaviours
and government actions - i.e. non-pharmaceutical interventions - which aim at diminishing
contacts among individuals (Giordano et al., 2020; Loli Piccolomini et al., 2020; Noll et
al., 2020; Romano et al., 2020; Sadeghi et al., 2020; Zhang et al., 2021). In addition, the
infection rate can be scaled down through the production and distribution of vaccines that
immunise the susceptible population and can be moved up by more transmissible virus’
variants (Angeli et al., 2022; Caldwell et al., 2021 and Zhang et al., 2021). The incubation
period is disease-specific and thus virus variants may present slightly different incubation
rates. The recovery rate depends not only on the nature of the epidemic disease but also
on the available medical resources and the efficiency of the healthcare system (Giordano et

15



aim, we impose a time-dependent infection rate (bt) and case fatality rate

(µt), which modify equations (2)-(3) and (6) of the canonical SEIRD model.

The time-varying case fatality rate is described by a step-function, to be

illustrated in paragraph 4.3. As for f(ηt) in equation (21), we borrow from

reality a proxy of NPIs, namely, a measure that assigns a numerical value

to restrictions adopted in Italy. We employ the Containment and Health

Index (CHIndex) - which is one of the efforts of the OxCGRT22 project -

elaborated by Hale et al. (2021). More specifically, this index is a composite

measure based on thirteen policy response indicators including school closures,

workplace closures, travel bans, testing policy, contact tracing, face coverings,

and vaccine policy re-scaled to a value from 0 to 100 (100 = strictest). The

functional form of f(ηt) is given by:

f(ηt) =
(

1− κ1,tηt − κ2,tη
2
t

)

(23)

where

ηt =
CHIndex

t

100

with −1 ≤ κi,t ≤ 0, i = 1, 2. As before, ηt can be interpreted as the NPIs

rate. Conversely, the two coefficients - which multiply, respectively, ηt and

its square - are time-varying, reflecting the fact that the effectiveness of

NPIs in reducing the infection rate changes over time.23 Moreover, not all

the NPIs impede workers from supplying labor. For instance, face-covering

al., 2020; Romano et al., 2020 and Sadeghi et al., 2020). Finally, the case fatality rate can
be pushed up by the inception of new variants and deficiencies in the healthcare system
(Caldwell et al., 2021 and Sadeghi et al., 2020).

22The Oxford Coronavirus Government Response Tracker.
23When considering an extended period, it is difficult to assume that NPIs maintain

the same effect on the infection rate, as other factors perturb their impact. Thus, by
imposing time-varying efficacy parameters we are assuming that equal policy interventions,
implemented at different times, can have differential effects on reducing the infection rate.
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requirements, testing policies and other health measures allow the supply of

labor if workers comply with them. Differently, lock-downs, workplace closures

and travel restrictions lessen the possibility to work. For this reason, to model

the impact of restrictions on Nt we do not use the CHIndex, as it contains

interventions that do not affect labor, but we build our own index, labeled

as Modified Stringency Index (MSIndex). This is obtained starting from the

dataset collected by the OxCGRT project and following their methodology

for calculating indices.24 In detail, the new index is constituted by five

indicators, i.e. workplaces closures, public transport disruptions, stay-at-

home requirements, restrictions on internal movements and international

travel.25

The definition of labor force given by equation (7) changes, becoming:

Nt = (St + Et +Rt)(1− g(χt))

where

g(χt) = αtχ
2
t and χt =

MSIndex
t

100

with 0 ≤ αt ≤ 1 and 0 ≤ χt ≤ 1. Contrary to M1, coefficient αt is not

constant over time, but it varies according to the step-function depicted in

paragraph 4.3.26

Calibration and results of Model 2 are conveyed in paragraph 4.3 and 5,

respectively.

24A full description is available at https://github.com/OxCGRT/

covid-policy-tracker/blob/master/documentation/index_methodology.md.
25Referring to the code-book for OxCGRT, our index is computed using only indicators

C2, C5, C6, C7 and C8. Conversely, the Stringency Index - computed by the Oxford team -
contains also C1, C3, C4 and H1. It is for this reason that we rename our index as Modified

Stringency Index.
26In the first phase of the Covid-19 outbreak, policy interventions were more disruptive

than in the following phases, since production processes were not designed to work under
restrictions.
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4 Model Calibration

We calibrate the model on Italian data. Our analysis covers a time period

that goes from 24/02/2020 to 24/02/2022 (732 days), in which Italy faced

a sequence of five waves of Covid-19. Since epidemiological models usually

present a daily frequency, we decided to maintain it, calibrating macroe-

conomic parameters on a daily basis.27 Epidemic data is taken from the

dataset of the Italian Civil Protection Department, available in the GitHub

repository.28

4.1 Model 0

The basic reproduction number is derived from Romano et al. (2020), equal

to 3.8, which is in the range of values estimated by Gatto et al. (2020).

Like Romano et al. (2020), we set the incubation period equal to 3 days,

lying in the range of values obtained by Guan et al. (2020). The number

of days to recover is equal to 10, which is in line with values employed by

Angeli et al. (2022) and close to the value assumed by Piguillem and Shi

(2020) and Ferguson et al. (2020). The case fatality rate is set equal to 2%,

which is within the value range used by Loli Piccolomini et al. (2020) and

Piguillem and Shi (2020). Lastly, from equation (1) we compute the value of

the infection rate, equal to 0.456, which is in line with values assigned by the

literature (Giordano et al., 2020; Loli Piccolomini et al., 2020; Romano et al.,

(2020)). Table 1 summarises our choice of parameters.

27This is also the choice of Alvarez et al (2021), Gonzalez-Eiras and Niepelt (2020) and
Piguillem and Shi (2020).

28Find data at https://github.com/pcm-dpc/COVID-19.
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Table 1: SEIRD block Calibration

Definition Parameter Value Reference

Population P 59, 641, 488 [20]
Initial Infections I1 221 [24]
Initial Recoveries R1 1 [24]
Initial Deceases D1 7 [24]
Basic Reproduction Number R0 3.8 [13, 28]
Incubation Rate ε 1/3 [16, 28]
Recovery Rate γ 1/10 [2, 9, 26]
Infection Rate b 0.456 [14, 22, 28]
Case Fatality Rate µ 0.02 [22, 26]

Macroeconomic parameters assume standard values, converted on a daily

basis. The daily time preference β and the daily depreciation rate δ are set

to match a yearly real interest rate equal to 4.04% and a yearly depreciation

rate equal to 10%. The calibration of the RBC model is displayed in table 2.

Table 2: RBC block Calibration

Definition Parameter Value

Daily Time Preference β 0.9992
Daily Depreciation Rate δ 2.74e−4

Labor Share of Output φ 0.64
Inverse of the Elasticity of Labor θ 3
RoT Households’ Relative Preference for Labor ψr 1.6
Opt Households’ Relative Preference for Labor ψp 0.8843
Share of RoT Households in the economy λ 0.8

In order to make comparisons across the three versions of the model, we

maintain the same calibration for common parameters. Hence, θ and λ -

given the wide range of values provided by the literature - are calibrated by
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adopting a sensitivity analysis to increase the matching of M2 with real data.

Differently, the two households’ relative preferences for labor are determined

by the following equations, imposing that in steady state h̄0,p = h̄0,r = 1/3

and n̄ = 1:

ψr =

[

1− θ

1−
(

1− h̄0,r
)1−θ

]

1

n̄

ψp =
1− θ

1 + z

[

1− θ

1−
(

1− h̄0,p
)1−θ

]

1

n̄

4.2 Model 1

In Model 1, the variable ηt and parameters κ and α are introduced.

The NPIs rate assumes values according to the following step-function:

ηt =



























0 if t ≤ 60

0.8 if 60 < t ≤ 160

0 if t > 160

Thus, in the first 60 days, the government decides not to intervene, allowing

the virus to spread across the population. Successively, strict NPIs are

imposed for 100 days, which are removed from day 160 until the end of

simulation.

As shown in paragraph 5, we conduct three simulations for M1 in which α

assumes different values, while κ remains constant. Table 3 summarises our

choice of parameters.29

29Increasing values of α imply a higher degree of NPIs efficacy in reducing labor supply.
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Table 3: Efficacy Coefficients

Simulation κ α

1 0.8 0.3
2 0.8 0.5
3 0.8 0.7

4.3 Model 2

In Model 2, we employ time-dependent infection and case fatality rates. The

former is described by the combination of equations (21) and (23), while a

step-function is employed to set values of the latter. Time-varying coefficients

κi,t (i = 1, 2) and variable µt are estimated by minimising a simple mean of

the sum of squared errors (SSE) of the share of infections and deceases. The

minimisation problem is described by: 30

min
{

κ1,t,κ2,t,µt

}T

t=1

1

2

[

T
∑

t=1

(

IReal
t − It
P

)2

+
T
∑

t=1

(

DReal
t −Dt

P

)2
]

s.t. bt = b
(

1− κ1,tηt − κ2,tη
2
t

)

St+1 − St = −bt
StIt
P

Et+1 − Et = bt
StIt
P

− εEt

It+1 − It = εEt − γIt − µtIt

Rt+1 −Rt = γIt

Dt+1 −Dt = µtIt

(24)

30It is solved using the built-in function fmincon of Matlab, giving as starting values 1
for κ1, κ2 and 0 for µ0, and imposing as lower and upper bond 0 ≤ κi,t ≤ 1 (i = 1, 2) and
0 ≤ µt ≤ 1. The SSE of the share of infections and deceased is computed with data from
the Italian Civil Protection Department (IReal

t , DReal
t ) and data obtained from the model

(It, Dt).
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where T = 732. The period in which the problem is solved was divided into

five sub-intervals, allowing estimated parameters to vary, and, thus, assuming

the form of the following step-functions:

µt =























































µ1 if t0 < t ≤ t1

µ2 if t1 < t ≤ t2

µ3 if t2 < t ≤ t3

µ4 if t3 < t ≤ t4

µ5 if t > t4

κi,t =























































κi,1 if t0 < t ≤ t1

κi,2 if t1 < t ≤ t2

κi,3 if t2 < t ≤ t3

κi,4 if t3 < t ≤ t4

κi,5 if t > t4

with i = 1, 2 and where t0 corresponds to day one (24/02/20) in which µt = µ

and κi,t = 0.31 The length of intervals is related to the time period of the five

waves exhibited in Italy. Table 4 reports values of time-dependent parameters,

obtained from the solution of problem (24).

Table 4: Calibration of µt and κi,t (i = 1, 2)

Period (Date) Interval (Day) µt (%) κ1,t κ2,t

25/02/20− 21/07/20 2− 149 0.812 0.3114 0.9855
22/07/20− 19/02/21 150− 362 0.091 0.9978 0.0423
20/02/21− 12/07/21 363− 505 0.053 0.1441 0.9945
13/07/21− 22/10/21 506− 607 0.026 0.4152 0.7544
23/10/21− 24/02/22 608− 732 0.038 0.0005 0.8744

Moreover, in our model the presence of NPIs has an immediate impact on

the infection rate. This means that as the government raises the strictness of

interventions, bt declines promptly. Nevertheless, it has been experienced in

31In the first period, we are imposing the absence of NPIs.
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reality that the effect of non-pharmaceutical interventions is displayed with a

certain temporal lag. Therefore, to capture this aspect we assume a delay of 33

days in the impact of NPIs on the infection rate, which is determined in order

to optimise the matching between real and artificial data on infections and

deceased.32 Conversely, effects on the labor force are observed instantly, since,

for instance, the decision to restrict travel and/or to lock-down households

has an immediate impact on the possibility to supply labor. Therefore, in

our model measures contained in the MSIndex have a direct impact.

Finally, parameter αt - representing the effectiveness of interventions in

producing a negative shock on the labor force - is calibrated in order to

match the conjunctural quarterly growth rate of actual worked hours in Italy.

Accordingly, its values are depicted in table 5.

Table 5: Calibration of αt

Period Value

1 0
2− 128 0.65
129− 220 0.20
221− 402 0.15
403− 732 0.05

The fact that αt assumes a value of 0.65 in the first part of simulation and

then declines progressively means that, in the first months of the Covid-19

epidemic, policy interventions are more effective in reducing labor supply,

while, successively, their negative effects weaken.33

32In practice, we impose that on 24th February 2020 the CHIndex
t assumes the value

exhibited on 22nd January 2020, which is equal to 0.
33See note 26.
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5 Results

This section reports and comments on results obtained from simple numer-

ical simulations, where the initial and final steady states are computed on

24/02/2020 and 24/02/2022, respectively. The evolution of the pandemic is

the driver of our deterministic simulations, which can also be affected (in M1

and M2) by the implementation of NPIs and by the possible evolution of the

time-dependent coefficients discussed in section 4.

Figures 1 and 2 display the dynamics of the SEIRD and RBC blocks produced

by M0, where for each macroeconomic variable the relative deviation from

the steady state (x̃t) is conveyed.

Figure 1: SEIRD Model and IRFs of Labor Related Variables (M0)

Note: The top-left panel shows the time path of susceptible, exposed, infected and removed individuals,
while the bottom-left panel depicts the time path of deceased individuals. The top-centre panel displays
the time path of the share of infected individuals. The bottom-centre, top-right and bottom-right panels
report, respectively, the relative deviation from steady state of the intensive margin, extensive margin and
actual worked hours. Source: Authors, developed with with Dynare-4.6.1 and Matlab-R2018a.
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Figure 2: IRFs of the Main Macroeconomic Variables (M0)

Note: The top-left and bottom-left panels show, respectively, the relative deviation from steady state
of output and capital stock. The top-centre and bottom-centre panels display, respectively, the relative
deviation from steady state of consumption and investments. The top-right and bottom-right panels
exhibit, respectively, the relative deviation from steady state of the wage rate and the real interest rate.
Source: Authors, developed with with Dynare-4.6.1 and Matlab-R2018a.

Given our calibration and the absence of NPIs, the epidemic ends within 238

days34, in which the share of infections exhibits a maximum of 29% on day

82. The share of deceased reaches a value of 16.3% from day 157 until the

end of simulation.

As the virus kicks in, labor force reduces due to ill workers, or in other words,

the outbreak generates a fall in the endowment of the labor input. Conse-

quently, the extensive margin nt reduces by 31.3% on day 84. Simultaneously,

the intensive margin h0t increases by 18.8% on day 84. This may be since

disease-free members of the representative household are willing to work more

hours in order to compensate for the lower income yielded by ill members.

Likewise, firms want to compensate for the reduction of the extensive margin,

which otherwise will generate a sharp plunge in production. Notwithstanding

34On day 239, the number of infections is lower than one.
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this, the shrinkage of the extensive margin drowns out the rise of the intensive

margin, resulting in a tumble of the actual worked hours ht by 18.3% on day

84.

Moreover, the plunge in actual worked hours undoubtedly generates a recessive

effect on output, which falls by 12.2% on day 84. Households’ income resources

are reduced, therefore, consumption and investment decline. However, house-

holds are averse to deep consumption reductions since they prefer to smooth

consumption over time. Once their income drops, households are willing to

reduce savings, i.e. investments, on behalf of consumption. Nevertheless, since

in this economy we assume the presence of RoT households (accounting for

80% of households), the manifestation of the so-called consumption smoothing

is less effective. As a result, consumption and investments fall, respectively,

by 7.1% and 26.9% on day 84. Successively, less investment today generates a

lower capital accumulation tomorrow, determining a fall in the capital stock

over time.35 Considering the reduction in labor input, firms have to adjust

the level of capital stock. Therefore, capital demand moves backward. This

shift more than compensates for the reduction in savings supply as shown by

the real interest rate fall of 42.1%. Conversely, the increase in the hourly wage

rate wt - equal to 7.5% on day 84 - implicates that the fall in labor supply

is higher than the drop in labor demand. Finally, macroeconomic variables

converge to their steady state value as soon as the epidemic is expelled from

the population.

In figures 3 and 4 we report the outcome produced by Model 1 in which we

allow for the presence of NPIs. To analyse the economic impact of govern-

ment interventions we ran three simulations in which NPIs assume a different

35From day 149, capital stock increases. However, due to the small value of investments,
it augments slightly taking a long time before reaching the steady state again, which occurs
after the time frame of our simulation.
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efficacy (α) in reducing the labor force.

Figure 3: IRFs of Labor Related Variables (M1)

Note: The top-left and top-centre panels shows the time path of the share of infected individuals and
the epidemic shock. The bottom-left panel exhibits the time path of the NPIs shock and the top-right,
bottom-centre and bottom-right panels display, respectively, the relative deviation from steady state of the
intensive margin, extensive margin and actual worked hours, under three simulations where alpha assumes
the following values: 0.3 (dashed line), 0.5 (solid line) and 0.7 (dashdot line). Source: Authors, developed
with with Dynare-4.6.1 and Matlab-R2018a.

Figure 4: IRFs of the Main Macroeconomic Variables (M1)

Note: The top-left, top-centre, top-right, bottom-left, down-centre and bottom-right panels display,
respectively, the relative deviation from steady state of output, consumption, wage rate, capital stock,
investments and real interest rate, under three simulations where alpha assumes the following values: 0.3
(dashed line), 0.5 (solid line) and 0.7 (dashdot line). Source: Authors, developed with with Dynare-4.6.1
and Matlab-R2018a.
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It is possible to observe that by implementing measures that reduce the

infection rate, the government is able to lessen the spread of the outbreak,

which infects 6.1% of the population on day 88 and then starts to decline.

However, the complete removal of NPIs on day 161 enables the virus to be

transmitted more rapidly, producing a surge of infections and the manifestation

of a second wave. After reaching a maximum of 4.7% on day 205, the share

of infections declines and the epidemic dies after 488 days.

To highlight how shocks generated by the epidemic and NPIs affect overall

the extensive margin, we re-wright it by merging equations (8) and (22), to

obtain:

nt =

(

St + Et +Rt

P −Dt

)

(1− αη2t )

where the first term in the bracket on the right-hand side represents the effect

of the Epidemic Shock and the second term captures the employment effect of

the NPIs Shock. As shown in figure 3 the impact of NPIs is displayed as soon

as ηt is modified, making the extensive margin plunge or rocket. By contrast,

when the NPIs rate is maintained constant, it is possible to appreciate the

gradual effect of the epidemic shock.

We observe that nt reduces by 24.3-48.3% at the peak (day 91), given 0.3 ≤

α ≤ 0.7. In addition, it reaches a second bottom on day 207, falling by

5.3%, which is generated by the manifestation of a second epidemic wave.

As already highlighted in M0, other macroeconomic variables are affected by

variations in the extensive margin, thus exhibiting two minima as well.36

From the comparison of M0 and M1 a trade-off between health and output

arises. Its severity is conditional on the value of the efficacy coefficient α.

36At the first minimum, actual worked hours, output, consumption and investments
tumble, respectively, by 13.8-31.1%, 9.1-21.3%, 5.2-12.8% and 20.6-46.2%, while at the
second minimum reduce by 2.9%, 2.3%, 1.3% and 5.0%.
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According to our simulations, when NPIs are not implemented, the epidemic

runs out in 238 days, hitting the population strenuously, namely, infecting

17,3 million individuals at the peak and taking 9.7 million lives overall. The

epidemic shock knocks off output by 12.2% at the minimum. Conversely, in

the scenario in which the government intervenes with NPIs, the outbreak

lasts for a longer period, conveying multiple waves. However, it infects a

lower portion of the population (3.6 million at the first peak and 2.8 million

at the second peak) and causes the death of fewer individuals (8.8 million).

Notwithstanding this, when α > 0.415, the NPIs shock, which adds to the

remaining epidemic shock, generates a more forceful and long-lasting recession.

Figures 5 and 6 display the results of Model 2, where parameters are calibrated

in order to match the empirical evidence of Italy in the analysed period.

Figure 5: IRFs of Labor Related Variables (M2)

Note: The top-left, top-centre and bottom-left panels show, respectively, the time path of the Containment

and Health Index, Modified Stringency Index and the infection rate. The top-right, bottom-centre and
bottom-right panels exhibit the relative deviation from steady state of the intensive margin, extensive
margin. and actual worked hours. Source: Authors, developed with with Dynare-4.6.1 and Matlab-R2018a.
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Figure 6: IRFs of the Main Macroeconomic Variables (M2)

Note: Top-left, top-centre, top-right, bottom-left, bottom-centre and bottom-right panels display, respec-
tively, the relative deviation from steady state of output, consumption, wage rate, capital stock, investments
and real interest rate. Source: Authors, developed with with Dynare-4.6.1 and Matlab-R2018a.

First of all, it is interesting to observe the path of the infection rate over

time (figure 5), which is affected by the Containment and Health Index and

ki,t (i = 1, 2), according to our function f(ηt). As the strictness of non-

pharmaceutical interventions augments, bt reduces slackening the propagation

of the virus among individuals. Conversely, when the strictness of interventions

softens, the infection rate increases. The presence of rises and declines in the

index replicates the interchange of suppression phases and weakening periods

adopted by the Italian government. It is possible to also appreciate the effect

of the Modified Stringency Index on the extensive margin, which results as

being the main shock on nt as NPIs almost neutralise the epidemic shock.

Accordingly, the extensive margin falls by 50.8% on day 63. As explained

for M1, the presence of several bottom points - exhibited by macroeconomic

variables - highlights the presence of multiple epidemic waves, where infections

rise, reach a maximum and, then, decline. Differently from the outcome of
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the two previous models, in M2 macroeconomic variables do not come back to

the initial steady state at the end of simulation, since on day 732 the number

of infections is still considerable.

Figure 7: The Epidemiological Empirical Evidence of Italy vs Model 2

The three panels report, respectively, the time path of infected, recovered and deceased individuals
derived from simulation (red lines) and real data (dashed black lines). Vertical grey lines are drawn in
correspondence of ti, with i =

{

1, 2, 3, 4
}

, which highlight intervals of the five epidemic waves. Source:
Authors, developed with with Dynare-4.6.1 and Matlab-R2018a.

We observe in figure 7 that the employment of a time-varying infection rate

allows us to replicate approximately the five different waves of Covid-19

infections, which characterised the evolution of the epidemic in Italy in the

period 24/02/20 - 24/02/22. In the same way, the path of deceased is closely

matched thanks to the variation of the case fatality rate.37 However, our

model overestimates recoveries starting from day 200.38

37In appendix E, table E.1 illustrates the goodness-of-fit of data on infections and
deceased.

38To reduce the overestimation, we could change problem (24) by adding the SSE of
the share of recoveries in the objective function. However, we saw in simulation that this
procedure, on one hand, eliminates the overestimation of recoveries, but, on the other,
worsens the fit of infections, yielding an underestimation. Differently, the overestimation
may be reduced if we set the recovery rate γ time-varying, as done for µ, allowing γ to
vary in the five sub-intervals.
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We conclude this paragraph by reporting in figure 8 a comparison between

the quarterly conjunctural growth rate of actual worked hours, output, con-

sumption and investment computed from M2 and those obtained from real

data39, covering a time period that goes from Q1-2020 to Q4-2021.40

Figure 8: The Macroeconomic Empirical Evidence of Italy vs Model 2

Note: the four panels report, respectively, the quarterly conjunctural growth rate of actual worked hours,
output, consumption and investment computed from simulation (red lines) and real data (dashed black
lines). To conduct a fair comparison, we have converted the frequency of model data from daily to quarterly
and, since variables in our model are in per capita terms, each measure was transformed in absolute terms,
multiplying it by (P −Dt). Source: Authors, developed with Dynare-4.6.1 and Matlab-R2018a.

It is possible to observe that our model is able to match quantitatively - with

a suitable degree of accuracy - the quarterly conjunctural growth rates of

Italian economic aggregates. Even though aggregate consumption exhibits

smaller volatility, its path replicates the oscillations reported by the empirical

evidence. As explained before, this is due to the consumption smoothing of

39Real data is taken from Istat, where aggregate consumption is compared with the final
household’s spending and aggregate investment with gross fixed investment.

40Since our simulation starts from 24/02/20, to compute growth rates in Q1-2020 we
assume that each variable is in steady steady state from 01/01/2020 until 24/02/2020.
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Opt households.

The goodness-of-fit of the model relies also on the implementation of the

time-varying coefficient αt. This is necessary inasmuch as the reintroduction

of NPIs to hinder new waves of Covid-19 did not have the same negative

impact on the economy as the implementation of first interventions. Actually,

in the first months of 2020, the outbreak along with policy interventions

sneaked up on economic agents, yielding severe recessive effects. However, as

the government lingered on the implementation of NPIs, firms and households

adapted, weakening the negative impact of interventions. This may explain

why a lower fall of economic aggregates is associated with equal values of

MSIndex
t , starting from the third quarter of 2020.

6 Conclusions

This paper proposes a unified framework for analysing the economic effects

generated by the proliferation of an epidemic and the implementation of non-

pharmaceutical interventions. Such framework is based on direct integration

of a slightly modified version of the RBC model a la Hansen (with financially

constrained households) with a SEIRD epidemiological model.

We depart from the standard SIR-Macro set-up that typically employs health-

related models in which the health status and the transition probabilities

between epidemic compartments shape the relevant agents’ decisions; con-

versely, we propose a simplified and direct integration in which the SEIRD

block together with the NPIs determine exogenously the path of the extensive

margin of the labor input (in line with RBC spirit), while economic agents

derive optimally the actual worked hours and the intertemporal allocations

of consumption and asset accumulation.
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We present three versions of our model in order to highlight different aspects.

M0 points out how the epidemic shock alters the equilibrium of macroeconomic

variables when the government decides not to interfere with the spread of the

virus. In M1, NPIs are introduced; since these interventions not only reduce

the infection rate but also have a negative impact on the labor force, NPIs

shock adds to the remaining epidemic shock producing a forceful economic

recession and the occurrence of new waves of infections and deceased when

NPIs are relaxed. This eventuality lays the foundation for a debate on the

presence of a health-output trade-off faced by the government when choosing

whether to intervene to hinder the spread of the outbreak and save lives at the

cost of a more forceful and long-lasting economic recession. In M2, we bring

our model to data; we calibrate the NPIs on the basis of proxies such as the

Containment and Health Index and the Modified Stringency Index. Thanks

to time-varying infection and case fatality rates and efficacy coefficients (i.e.

κ1,t, κ2,t and αt), the model is able to replicate the time path of infections

and deceased as well as quarterly conjunctural variations of the main macroe-

conomic variables, exhibited in Italy between 24/02/20 and 24/02/22.

We believe that the strength of our analysis lies in its simplicity and capacity

to replicate the epidemic and business cycle evidence of the Italian economy,

in which employment variations have been strictly related to the harmful-

ness of the epidemic and NPIs introduced by the government and not to

the decisions of agents. This is particularly true for the Italian case where

the government has introduced a long-lasting ban on dismissals. Further,

because of its parsimony, it is straightforward to integrate our setup into

more structured business-cycle models in order to study a much broader set

of issues.
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Appendix

A Derivation of the Utility Function

We consider a utility function logarithmic in consumption (ct) and CRRA

in leisure (1 − h0t ). Following Hansen (1985), we apply the lotteries setup,

deriving:

U = log(ct) +

[

ntψ
(1− h0t )

1−θ − 1

1− θ
+ (1− nt)ψ

11−θ − 1

1− θ

]

Hence, leisure is multiplied by the respective probability of being employed

and unemployed. Rearranging the equation and substituting nt = ht(h
0
t )

−1,

we obtain:

U = log(ct) +
ht
h0t
ψ

[

(1− h0t )
1−θ − 1

1− θ
−

11−θ − 1

1− θ

]

+ ψ
11−θ − 1

1− θ

Omitting constant terms - as they do not affect the household’s optimal choice

- we get equation (10):

U = log(ct)− vtht

where

vt = −
ψ

h0t

[

(1− h0t )
1−θ − 1

1− θ

]

≥ 0

B Maximisation Problems

Opt households’ maximisation problem. As in the basic model, house-

holds maximise their expected utility - defined, here, by equation (10) - subject

to the budget constraint and the low of motion of capital. Thus, the problem
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is described by:

max
{

c
p
t ,h

p
t ,k

p
t+1

}

∞

t=0

E0

∞
∑

t=0

βt
[

log cpt − vpt h
p
t

]

s.t. cpt + ipt = wth
p
t + (δ + rt)k

p
t

kpt+1 = (1− δ)kpt + ipt

with

vpt = −
ψp

h0,pt

[

(1− h0,pt )1−θ − 1

1− θ

]

By applying the Lagrange multiplayer approach, we derive the first-order

conditions (FOCs). Combining them, we obtain equations (12) and (13).

RoT households’ maximisation problem. In this case, the optimisation

problem is different from that of Opt households, as the low of motion of

capital does not enter as a constraint and the budget constraint is modified.

Hence, the problem is described by:

max
{

crt ,h
r
t

}

∞

t=0

E0

∞
∑

t=0

βt
[

log crt − vrth
r
t

]

s.t. crt = wth
r
t

with

vrt = −
ψr

h0,rt

[

(1− h0,rt )1−θ − 1

1− θ

]

As done before, we compute the FOC of the problem, yielding equation (14).

Firms’ maximisation problem. Firms maximise profits by combining capi-

tal stock and labor through a Cobb-Douglas production function. Accordingly,
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the problem is defined as:

max
ht,kt

yt − wtht − (rt + δ)kt

s.t. yt = k1−φ
t hφt

From the FOCs of the problem, we determine equations (15) and (16).
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C Equilibrium of the RBC Block

The equilibrium of the RBC model is described by the following system of 17

equations:

1

cpt
= βE

[

1 + rt+1

cpt+1

]

wt = vpt c
p
t

cpt + ipt = wth
p
t + (δ + rt)k

p
t

kpt+1 = (1− δ)kpt + ipt

vpt = −
ψp

h0,pt

[

(1− h0,pt )1−θ − 1

1− θ

]

wt = vrt c
r
t

crt = wth
r
t

vrt = −
ψr

h0,rt

[

(1− h0,rt )1−θ − 1

1− θ

]

h0t = (1− λ)h0,pt + λh0,rt

ct = (1− λ)cpt + λcrt

it = (1− λ)ipt

kt = (1− λ)kpt

nt =
Nt

P −Dt

ht = h0tnt

yt = k1−φ
t hφt

rt = (1− φ)
yt
kt

− δ

wt = φ
yt
ht
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D Steady State of the Model

Differently from a short-run macroeconomic model, in an epidemic model

the initial steady state is different from the final steady state inasmuch

as individuals move permanently from the susceptible compartment to the

recovered and deceased compartments. Therefore, in the first period:

S1 = P − (E1 + I1 +R1 +D1)

while with t→ ∞:

St → 0, Et → 0

It → 0, (Rt +Dt) → P

Even though the macroeconomic model is driven by epidemic variables, initial

and final steady states (s.s.) coincide, as time converges to infinity.

From equation (7), we derive the s.s. labor force:41

N̄ = S̄ + Ē + R̄

where χ̄ = 0. From equation (8), we derive the s.s. extensive margin:42

n̄ =
N̄

P − D̄

Combining the budget constraint of Opt Households with equation (13)

and making some substitutions, we derive the s.s. intensive margin of Opt

41N1 = P − (I1 +D1) and limt→∞ Nt = P .
42n1 = 1− I1

P−D1

≈ 1 and limt→∞ nt = 1.
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Households:

h̄0,p = 1−

(

1−
1− θ

ψp(1 + z)

1

n̄

)
1

1−θ

where

z =
f

φ(1− λ)

(

1− φ

f + δ

)

and f =
1

β
− 1

Combining the budget constraint of RoT Households with equation (14), we

derive the s.s. intensive margin of RoT Households:

h̄0,r = 1−

(

1−
1− θ

ψr

1

n̄

)
1

1−θ

From the definition of Hansen’s variable for Opt Households, we derive its

steady state value:

v̄p = −
ψp

h̄0,p

[

(1− h̄0,p)1−θ − 1

1− θ

]

From the definition of the Hansen’s variable for RoT Households, we derive

its steady state value:

v̄r = −
ψr

h̄0,r

[

(1− h̄0,r)1−θ − 1

1− θ

]

From equation (17), we derive the s.s. aggregate intensive margin:

h̄0 = (1− λ)h̄0,p + λh̄0,r

From equation (9), we derive the s.s. aggregate actual worked hours:

h̄ = n̄h̄0
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Combining the production function with the s.s. output-capital ratio43, we

derive the s.s. aggregate capital stock:

k̄ =

(

1− φ

f + δ

)
1

φ

h̄

From equation (20), we derive the s.s. capital stock of Opt Households:

k̄p =
k̄

1− λ

Combining the law of motion of capital stock for Opt Households with the

s.s. aggregate capital stock, we derive the s.s. aggregate investment level:

ı̄ = δ

(

1− φ

f + δ

)
1

φ

h̄

From equation (19), we derive the s.s. investment level of Opt Households:

ı̄p =
ı̄

1− λ

Combining the production function with the s.s. aggregate capital stock, we

derive the s.s. aggregate output:

ȳ =

(

1− φ

f + δ

)
1−φ

φ

h̄

Combining equation (16) with the s.s. aggregate output, we derive the s.s.

wage rate:

w̄ =

(

1− φ

f + δ

)
1−φ

φ

43It is obtained combining the s.s. Euler equation with the s.s. capital demand and it is
equal to ȳ

k̄
= f+δ

1−φ
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From equation (12), we derive the s.s. real interest rate:

r̄ =
1

β
− 1

From equation (13), we derive the s.s. consumption of Opt Households:

c̄p =
w̄

v̄p

From equation (14), we derive the s.s. consumption of RoT Households:

c̄r =
w̄

v̄r

From equation (18), we derive the s.s. aggregate consumption:

c̄ = (1− λ)c̄p + λc̄r

E Goodness-of-Fit of Data

To evaluate the goodness-of-fit of simulated data (infections and deceased),

we compute the Root Mean Squared Error (RMSE), expressed by:

RMSE =

√

∑T

t

(

XReal
t −Xt

)2

T − t+ 1

where XReal
t and Xt refer, respectively, to real and simulated data of a single

epidemic compartment among infected and deceased.

Results are reported in table E.1, where goodness-of-fit measures are computed

for each epidemic wave interval.
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Table E.1: Goodness-of-Fit of Data on Infections and Deceases

Period RMSE RMSE/P
t− T Infections (e+5) Deceased (e+4) Infections (%) Deceased (%)

1− 149 0.308 0.941 0.05 0.016
150− 362 0.777 0.710 0.13 0.012
363− 505 0.870 1.372 0.15 0.023
506− 607 0.634 1.338 0.11 0.022
608− 732 4.689 1.248 0.79 0.021
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