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Abstract 

Global mine production of copper has risen more than 80 times over the last 135 years. What 

were the main drivers? I examine this question based on copper market data from 1880 to 2020. I 

employ a structural time series model with sign restrictions to identify demand and supply 

shocks. I find that a deterministic trend drove most of the increase in the level of copper output. 

At the same time, unpredictable demand and supply shocks caused substantial fluctuations 

around the trend. A global commodity demand shock that is, for example, linked to a three 

percent unexpected expansion of the global economy due to rapid industrialization causes a ten 

percent rise in the real copper price, incentivizing a five percent increase in global copper 

production. The paper provides empirical evidence for the feedback control cycle of mineral 

supply. 
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1. Introduction 

The long-run supply of non-renewable resources and its drivers has been a recurrent topic in 

economics and geology. Hotelling (1931) and extensions such as Dasgupta and Heal (1974), 

Nordhaus et al. (1992) and Weitzman (1999) suggest that the production from a non-renewable 

resource would decline at the rate of interest as its deposits get exhausted. 

However, Wellmer and Hagelüken (2015), Wellmer et al. (2019), Wellmer and Dahlheimer 

(2020), and others argue that supply is driven by the so-called feedback control cycle of mineral 

supply. If there is a shortage in the market, prices will rise. This will encourage investment and 

innovation in mining, recycling, and processing of minerals. Schwerhoff et al. (2019) provide a 

formal general equilibrium growth model, where a rise in resource demand incentives firms to 

invest into new extraction technology and to expand production. They also show that the 

extraction of 65 non-renewable resources strongly increased over the last 300 years. 

This paper is to my knowledge the first to examine empirically the long-run drivers of non-

renewable resource production. Stuermer and Von Hagen (2012) and Stuermer (2017) find that 

periods of industrialization are a major driver of the demand for copper and other minerals, while 

a broad literature has established that such global commodity demand shocks are a major driver 

of various commodity prices (see e.g., Kilian, 2009, Stuermer, 2018, Jacks and Stuermer, 2020, 

Baumeister and Hamilton, 2021 and others). This paper goes one step further and shows how 

global commodity demand shocks drive global copper production. 

I use a standard structural Bayesian VAR model for commodity markets to decompose global 

copper production into a predictable trend component and unpredictable fluctuations driven by 

three different types of shocks (e.g., Kilian, 2009, Baumeister and Peersman, 2013, Jacks and 

Stuermer, 2020, Boer et al., 2021, and many others). We use global copper market data from 

1880 to 2020. In line with the literature, I define shocks as changes in the variables that are 

unpredictable based on the model. I include three endogenous variables, namely the percentage 

change in global real GDP, the percentage change in global copper mine production and the real 

price of copper. 

Sign restrictions based on standard economic theory allow me to distinguish three different 

shocks that I interpret as follows: First, a global commodity demand shock driven by the global 

business cycle. This type of shock captures an unexpected shift in the demand curve for all 

commodities, e.g., an unexpected strong increase in the consumption of all commodities due to 

rapid industrialization in Asia. As markets adjust, this type of shock leads to a global supply 

response and hence drives copper production up. Second, I define a copper supply shock as an 

unexpected shift in the supply curve. Examples include strikes, natural disasters that affect 
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mines, or the earlier than expected opening of a major mine. Finally, I assume a copper-specific 

demand shock that shifts the demand curve due to unexpected changes in consumption that are 

specific to the copper market. 

I find that most of the rise in copper production is driven by a deterministic constant and a linear 

trend in the annual average growth rate of copper production. The linear trend declines, implying 

that the growth rate of output decreases from roughly nine percent at the beginning to about two 

percent at the end of our sample. This result shows that mining firms base their investment 

decisions on predictable long-term trends unaffected by price shocks. 

At the same time, there are substantial medium- and long-term fluctuations in global output 

around the constant and the long-term trend. These fluctuations are driven by demand and supply 

shocks in roughly similar proportions. Global commodity demand shocks that are, for example, 

linked to fast industrialization and an expansion of the world economy drive up prices and lead 

to an increase in mining production. An unexpected expansion of the global economy by three 

percent causes a ten percent rise in real copper prices, incentivizing a five percent increase in 

global copper production. This paper hence provides empirical evidence for the feedback control 

cycle of mineral supply. 

The methodology also allows to zoom-in on different sub-periods. For example, a series of 

subsequent negative demand shocks drove down copper production during the 1980s and early 

1990s. A mix of positive demand and supply shocks led to increasing production since the late 

1990s. Since 2013 copper specific demand shocks and positive supply shocks led to strong 

production increases. These were interrupted by strong negative demand shocks due to the Great 

Recession and the Covid-19 pandemic. 

Our analysis is subject to three major limitations. First, I find a relatively short-cycled but 

persistent supply response peaking in the second year after the shock. Data limitation do not 

allow the model to disentangle the different factors that may drive this, including expansions of 

existing mines, higher capacity utilization of existing mines, and the building of new mines. 

These factors could also play varying roles at different time horizons, offsetting each other at the 

aggregate. 

Furthermore, the model is a global model over a long sample period. Controlling for the World 

War periods, the long sample period is a sensible assumption as copper has mostly been traded in 

relatively integrated global markets, where the law of one price holds approximately. Historical 

data issues may still bias results. Finally, I assume no structural break or shift over the long-time 

horizon. It follows that estimated coefficients are presumed to be constant. Major changes are 

interpreted as shocks in our framework. 
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The remainder of the paper is structured as follows. Section 2 provides a description of the data. 

Section 3 lays out the econometric model including the identification strategy, and section 4 

presents the results. Finally, section 5 concludes. 

2. Data 

I use historical annual data for global real GDP, global copper production and the real copper 

price, as depicted in Figure 1. I build on Boer et al. (2021), Stuermer (2018), Jacks and Stuermer 

(2020) and Schwerhoff et al. (2019) in assembling the dataset. 

I construct a series for global real GDP by using data for 1880 to 2007 from Schwerhoff et al. 

(2019) who build on Maddison (2010). I expand the data to 2020 based on growth rates of global 

real GDP from the International Monetary Fund’s World Economic Outlook database. The data 

follows the global business cycle in line with narrative evidence from economic history. 

I employ global copper production data from Schwerhoff et al. (2019) for the period 1880 to 

2020. These data include mine production only. The series shows higher volatility during the 

world war periods and their direct aftermath when converting it to percentage change. I control 

for the two world war periods and the respective three consecutive years by using annual time 

dummies. 

Annual price data is sourced from Boer et al. (2021) for the sample period of 1880 to 2020. I 

employ the U.S. all urban consumers price index to adjust prices for inflation. I take logs of the 

price series to make them more symmetric. 
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Figure 1: Historical copper market data from 1880 to 2020 used in the regression model. Note: GDP = 

Global real GDP (percentage change); PROD = Global copper output (percentage change); PRICE = Real 

price of copper (log). 

3. Econometric Model 

I set up a VAR model with three endogenous variables 𝐲𝐲𝒕𝒕 = (𝚫𝚫𝚫𝚫𝚫𝚫𝚫𝚫𝒕𝒕,𝚫𝚫𝚫𝚫𝒕𝒕,𝚫𝚫𝒕𝒕)′, namely the 

percent change of global real GDP, the percentage change of global copper production 𝚫𝚫𝚫𝚫𝑡𝑡, and 

the log of the real price of copper 𝚫𝚫𝑡𝑡.2 I estimate 𝐲𝐲𝑡𝑡 = 𝐀𝐀1𝐲𝐲𝑡𝑡−1 +⋯+ 𝐀𝐀𝑝𝑝𝐲𝐲𝑡𝑡−𝑝𝑝 + 𝚷𝚷 𝚫𝚫𝑡𝑡 + 𝐮𝐮𝑡𝑡 , (1) 

with a lag length of 𝑝𝑝 = 4, where 𝐀𝐀𝑖𝑖 are the reduced-form VAR coefficients and 𝐮𝐮𝑡𝑡 the reduced-

form forecast errors. These errors have no economic interpretation. The matrix of deterministic 

terms 𝚫𝚫𝑡𝑡 consists of a constant, a linear trend, annual dummies during the two world war periods 

and the three respective following years. 

The reduced-form VAR in (1) can be expressed in a structural form given by 

 

2 Note that the methodological section leans heavily on Boer et al. (2021). 
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𝐁𝐁0𝐲𝐲𝑡𝑡 = 𝐁𝐁1𝐲𝐲𝑡𝑡−1+. . . +𝐁𝐁𝑝𝑝𝐲𝐲𝑡𝑡−𝑝𝑝 + 𝚪𝚪 𝚫𝚫𝑡𝑡 + 𝛆𝛆𝑡𝑡, (2) 

where 𝛆𝛆𝑡𝑡 are independent structural shocks with an economic interpretation. These are related to 

the reduced-form errors via the linear transformation 𝐮𝐮𝑡𝑡 = 𝐁𝐁0−1𝛆𝛆𝑡𝑡. Thus, 𝐁𝐁0−1 contains the impact 

effects of the structural shocks on the three endogenous variables in 𝐲𝐲𝑡𝑡. By assuming a unit 

variance for the uncorrelated structural shocks, i.e., 𝔼𝔼(𝛆𝛆𝑡𝑡𝛆𝛆𝑡𝑡′) = 𝐈𝐈𝑛𝑛 (an identity matrix), the 

reduced-form covariance matrix 𝚺𝚺𝑢𝑢 is related to the structural impact multiplier matrix as 𝚺𝚺𝑢𝑢 =𝔼𝔼(𝐮𝐮𝑡𝑡𝐮𝐮𝑡𝑡′) = 𝐁𝐁0−1𝔼𝔼(𝛆𝛆𝑡𝑡𝛆𝛆𝑡𝑡′)𝐁𝐁0−1′ = 𝐁𝐁0−1𝐁𝐁0−1′. 
 

3.1 Identification 

Without further information it is not possible to identify 𝐁𝐁0−1 and thereby the structural form in 

equation (2). The literature has come up with different restrictions placed directly on 𝐁𝐁0−1 to 

solve this identification problem. I apply conventional sign restrictions (e.g., Faust, 1998, 

Canova and Nicolo, 2002, and Uhlig, 2005) on the elements in 𝐁𝐁0−1, i.e., I assume that the 

structural shocks have either a positive or negative effect on the endogenous variables on impact. 

I base these impact restrictions on economic intuition as specified in Table 3 following Boer et 

al. (2021) and others. 

 Global real GDP Global copper production Real copper price 

Global commodity 

demand shock 

 

+
 

+ + 

Copper supply shock 

 
+
 

+ - 

Copper-specific 

demand shock 

 

-
 

+ + 

Table 1: Sign restrictions on impact effects. 

I interpret the first shock as a global commodity demand shock that is related to the global 

business cycle, shifting the demand curve for all commodities simultaneously. The assumed sign 

restrictions imply that a positive shock increases global economic activity, global copper 

production and its real price on impact during the first year. As we assume that the effects of the 

shocks are symmetric, the reverse effects hold as well, meaning that a negative global 

commodity demand shock decreases global economic activity, global copper production and the 

real copper price. 
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I label the second shock as a copper supply shock, capturing unexpected shifts in the supply 

curve, for example, production outages, or a stronger than expected increase in production. A 

positive shock that increases global copper production is assumed to have a positive impact on 

global economic activity3 and to decrease the real copper price on impact (or vice versa). 

I interpret the third shock as a copper-specific demand shock. This shock represents a shift in the 

demand curve due to factors that affect the demand for only copper. Note that this shock may 

also capture precautionary demand shocks, namely shifts in the demand for inventory due to 

forward-looking behavior. I assume that a positive shock increases the production and price on 

impact (or vice versa). I also presume that a positive shock decreases global economic output on 

impact because of the higher copper price and hence higher costs of copper as an input (see also 

Kilian, 2009; Baumeister and Peersman, 2013) (or vice versa). I recognize that this effect is 

likely close to zero, as copper inputs into manufacturing are relatively small compared to global 

aggregate output. 

3.2 Historical Decomposition 

Based on the structural model, a historical decomposition allows me decompose the global 

copper production variable into the contributions of the deterministic trend and the world-war 

dummies as well as the three identified shocks. To explain it differently, we basically compute 

what the counter-factual global copper production would have looked like when removing the 

effects of the deterministic components or each of the shocks. 

The historical decomposition is used in the literature on commodities markets in different 

contexts. Examples include among others Kilian (2009), Kilian and Murphy (2014), Stuermer 

(2018), Baumeister and Hamilton (2019), Rausser and Stuermer (2020), and Jacks and Stuermer 

(2021). 

Employing the historical decomposition, can decompose each of the three endogenous variables 

according to: 

𝑦𝑦�𝑡𝑡 =�𝜙𝜙𝑖𝑖𝑡𝑡−1
𝑖𝑖=0 𝐵𝐵0−1𝜖𝜖𝑡𝑡−𝑖𝑖 +�𝜙𝜙𝑖𝑖𝑡𝑡−1

𝑖𝑖=0 𝛱𝛱⋆𝐷𝐷𝑡𝑡−𝑖𝑖 + 𝛤𝛤1(𝑡𝑡)𝑦𝑦0+. . . +𝛤𝛤𝑝𝑝(𝑡𝑡)𝑦𝑦−𝑝𝑝+1 , (3) 

where the matrix 𝐵𝐵0−1 is the estimated structural multiplier matrix of the endogenous variables, 𝛱𝛱⋆ is the structural form matrix for the deterministic terms, the upper tilde denotes variables that 

are derived from the historical, and 𝜙𝜙𝑖𝑖 are the estimated reduced form impulse responses that 

 

3 I recognize that this effect is likely very minor and could go close to zero due to the small share of the copper 

industry in global aggregate output. 
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capture the responses of the endogenous variables to a one unit shock 𝑖𝑖 periods ago. They are 

computed from 𝜙𝜙𝑖𝑖 = 𝐽𝐽𝐀𝐀𝑖𝑖𝐽𝐽′ and �𝐴𝐴1(𝑡𝑡),⋯ ,𝐴𝐴𝑝𝑝(𝑡𝑡)� = 𝐽𝐽𝐴𝐴𝑡𝑡, with (𝐾𝐾 × 𝐾𝐾𝑝𝑝) matrix 𝐽𝐽 =�𝐼𝐼𝐾𝐾, 0(𝐾𝐾×𝐾𝐾),⋯ , 0(𝐾𝐾×𝐾𝐾)�. The companion matrix 𝐀𝐀 is defined as a (𝑝𝑝𝐾𝐾 × 𝑝𝑝𝐾𝐾) matrix: 

𝐀𝐀 = ⎣⎢⎢
⎡𝐴𝐴1 ⋯ 𝐴𝐴𝑝𝑝−1 𝐴𝐴𝑝𝑝𝐼𝐼𝐾𝐾 0 0⋱ ⋮
0 𝐼𝐼𝐾𝐾 0 ⎦⎥⎥

⎤
. 

The first term on the right-hand side of equation 3 contains the sum of the cumulative 

contributions of the three structural shocks to each of the endogenous variables. The second term 

contains the contributions of the deterministic terms to the endogenous variables. The last term 

on the right hand includes the cumulative effect of the initial states on the endogenous variables, 

which become negligible for stationary processes as 𝑡𝑡 → ∞.4 

 

3.3 Estimation and Inference 

Estimation and inference are based on standard Bayesian techniques laid out in Waggoner and 

Zha (1999), Rubio-Ramirez et al. (2010), and Antolin-Diaz et al. (2021). To draw candidate 

models, I use the algorithm from Antolin-Diaz et al. (2021) that builds on Waggoner and Zha 

(1999). The algorithm uses a Gibbs sampler procedure that iterates between draws from the 

conditional distributions of the structural parameters  

Hence, I pick a random draw of structural parameters out of 25,000 potential draws. I use a 

Minnesota-type prior with standard shrinkage parameters (see Giannone et al., 2015) in 

combination with a sum-of-coefficients prior (Doan et al., 1984) and a dummy-initial-

observation prior (Sims, 1993) to estimate equation (1). 

Identification via sign restrictions does not yield point estimates but instead sets of possible 

parameter intervals for the different elements in 𝐁𝐁0−1. For each model a set of 1,000 admissible 

draws is obtained, where each draw consists of a conditional forecast, future shocks, and an 

associated 𝐁𝐁0−1 matrix that satisfies the identifying restrictions. These draws are also used for 

inference, i.e., they yield an indication of the uncertainty around the pointwise median estimates. 

Following Antolin-Diaz and Rubio-Ramirez (2018) and Antolin-Diaz et al. (2021), we report 

 

4 For more methodological background on historical decompositions see Kilian and Lutkepohl (2017, p. 116-120). 

5The algorithm by Antolin-Diaz et al. (2021) was written to derive structural scenarios. Here it is used only for 

identification of the shocks and to derive the structural vector auto-regressive model output. 
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pointwise median and percentiles of impulse responses for set-identified structural VAR models, 

as it is common in the literature. 

The literature has made substantial recent progress on inference in Bayesian models, which is 

important to consider when interpreting our results. First, Baumeister and Hamilton (2015, 2020) 

and Watson (2019) remark that readers are used to associating error bands with sampling 

uncertainty, but in large-sample sign-restricted SVARs these error bands only result from the 

prior for the rotation matrix 𝑄𝑄, not sampling Inoue and Kilian (2020) point out that the share of 

uncertainty resulting from the prior on 𝑄𝑄 tends to be rather small in most applications, in 

particular, when assuming several sign restrictions. For our model with three variables the Haar 

prior placed on the rotation matrix 𝑄𝑄 is uninformative about the structural impulse responses (a 

special case as Baumeister and Hamilton 2015 show). 

 

4. Empirical Results 

4.1 How do Shocks Affect Global Copper Output? 

In a first step the econometric model allows us to show how each shock affects the three 

different endogenous variables in the impulse response functions (see figure 2). 

The upper left panel illustrates that a one standard deviation global commodity demand shock 

(AD) is associated with a roughly three percent increase in global real GDP. The lower left panel 

shows that this three percent positive shock to global real GDP causes a roughly 10 percent 

increase in the copper price. Considering the middle-left panel, this implies that supply responds 

with a persistent five percent increase in global copper production. 

The panel in the middle depicts how a one standard deviation copper-supply shock (MS) is 

associated with a roughly seven percent persistent increase in global copper output. Such an 

increase leads to a roughly three percent decline in the copper price that dissipates over time. The 

effects of this shock on global real GDP are close to zero. 

A one standard deviation copper-specific demand shock (MD) is associated with a 13 percent 

increase in price (see lower right panel). It does not exert a clear effect on copper output. It is 

positive during the first year and then turns negative but is overall indistinguishable from zero. 

The effect on real global GDP is slightly negative. The effects seem not to be estimated with a 

high precision. 

Overall, the impulse response functions show that global commodity demand shocks have a 

substantial impact on global copper mining output. 
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Figure 2: Impulse responses of three endogenous variables to the three identified shocks. Notes The 

responses are based on 1,000 draws showing the point-wise median (blue solid line) with 68% point-wise 

credible sets (blue shaded areas). The shocks refer to one standard deviation shocks. GDP = Global real 

GDP; PROD = Global copper output; PRICE = Real price of copper. AD = Global commodity shock; MS 

= Copper supply shock; MD = Copper-specific demand shock. 

 

4.2 To What Extent is Global Copper Output Predictable 

In a second step, I use a historical decomposition to disentangle the deterministic trend 

component from the unpredictable fluctuations that are driven by the three different types of 

shocks. To do so, I transform the global copper output variable from percent changes back to 

levels. 

Figure 3 shows how the deterministic trend and the world war dummies contribute to the 

evolution of global copper production in levels. They explain a large portion of it. The world war 

periods led to substantial increases in production, followed by a period with lower production. 

Note that the linear trend turns into a non-linear trend when converting the percentage changes to 

levels. There is actually a predictable decline in the annual average growth rate of copper 

production from 9 percent at the beginning to about 2 percent at the end of the sample. 
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Figure 3: Global copper output explained by the constant, trend and world war dummies. 

Figure 4 shows the joint contribution of the three different shocks to the fluctuations of global 

copper production around the deterministic trend using the historical decomposition again. The 

trend component is shut-off. One can see that the three shocks drove global copper production 

above its long run trend during the 1930s, which then got suddenly reversed in a steep drop 

during the 1929-1930 Great Depression. There is another brief upward movement right before 

the outbreak of World War II. 

After World War II, output fluctuated mostly below its long-run trend. However, there were 

strong upwards movements in the 1960s and in the early 1970s. Afterwards the joint three shocks 

drove global copper output sharply down in the 1980s and 1990s. 

Starting in the mid-1990s, the shocks drove global copper output sharply up. There is another 

sharp decline during the Great Recession in 2008-2009, which is followed by steep increases in 

global copper output. Finally, during the 2020 pandemic, output declined steeply. Overall, the 

predictable, deterministic terms drove most of the level of global copper output. However, 

unexpected shocks to copper markets caused large fluctuations around the trend. 
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Figure 4: Fluctuations in the level of global copper output. Note: The fluctuations in copper output 

become larger over time because they move around an increasing deterministic trend as shown in figure 

3. 

 

4.3 What Drives Fluctuations in Global Copper Output? 

As a final step, I disentangle the contribution of each of the three types of shock to explain the 

fluctuations in global copper output. 

Figure 5 shows the contribution of each type of shock to the level of global copper output. For 

example, the blue line illustrates how the global copper mine output would have evolved if there 

had been only global commodity demand shocks. Subsequent positive demand shocks first drove 

up global output in the 1920s. Afterwards negative global commodity demand shocks during the 

Great Depression drove copper output sharply down. During the 1960s and 1970s, subsequent 

demand shocks put upward pressure on copper production mostly in line with the global business 

cycles. 
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Figure 5: Accumulated contribution of the three shocks to the fluctuations in global copper output. Note: 

The fluctuations in copper output become larger over time because they move around an increasing 

deterministic trend as shown in figure 3. 

 

In the late 1990s and 2000s, a series of massive subsequent positive demand shocks - most likely 

due to the economic boom in parts of Asia - led to strong positive supply responses. During the 

Great Recession negative commodity demand chocks caused a strong decline in copper output. 

After some upwards pressure in the mid-2010s, the pandemic triggered another strong negative 

demand shock that led to a negative response of global copper output. 

Copper supply shocks mostly exerted negative pressures on global copper output. This is 

particularly the case during the 1980s and 1990s when the Soviet Union broke up. They are 

about just as important in driving output fluctuations like global commodity demand shocks. 

Copper-specific demand shocks led to a positive impact on output in the interwar period. The 

impact also spikes in 2009 and 2020. This could be driven by the service sector shrinking more 

during periods of recessions than mining output and copper consumption, driving up the copper 

intensity of the global economy. However, as the impulse response functions are not clear-cut for 

this type of shock, the results for copper-specific demand shocks should be taken with a grain of 

salt. 

5. Conclusion 

This paper is the first to empirically examine the long-run drivers of non-renewable resource 

output. It does so at the example of the copper market, based on annual data on global mine 
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production, real copper price, and global real GDP from 1880 to 2020. I employ a structural time 

series model to identify demand and supply shocks based on standard sign restrictions. 

I show that there is no empirical evidence for the hypothesis that copper mine pro- duction is 

declining at the rate of interest due to a limited stock of resources in line with Hotelling (1931). 

At the same time, I find evidence that the feedback control cycle of mineral supply (see Wellmer 

and Dahlheimer (2020), Wellmer and Hagelueken (2015), Wellmer et al. (2019), and others) is 

an important contributor to long-run fluctuations in global copper output. Global commodity 

demand shocks drive up prices incentivize the expansion of global copper mine production, or 

vice versa. 

I also find that most of the rise in production is driven by a predictable constant and trend in the 

growth rate of copper production, which declines from 9 percent of annual growth in production 

at the beginning to about 2 percent at the end of the sample. 

Global commodity demand shocks were an equally important contributor to fluctuations around 

this trend like copper supply shocks. A series of subsequent negative demand shocks drove down 

copper production during the 1980s and early 1990s, positive demand and supply shocks have 

led to increasing production since the late 1990s. Since 2013 a combination of demand shocks 

and supply shocks have driven up production with strong declines due to the Great Recession 

and the Covid-19 pandemic. 

The results open a puzzle for future research. I find that the impact of the global commodity 

demand shocks on global copper mine production is at its peak two years after the demand 

shock. However, the control cycle duration typically assumes lead times between deposit 

discovery and start of operations of about 5 to 10 years. It is therefore not clear how the observed 

relations between price and production relate to the feedback control cycle. Future research with 

more granular data could disentangle the different factors that may drive this, including 

expansions of existing mines, higher capacity utilization of existing mines, and the building of 

new mines. These factors could also play varying roles at different time horizons, offsetting each 

other at the aggregate level and leading to the empirical results presented here. 

Finally, it also remains to be seen if possible positive demand shocks due to the energy transition 

will trigger strong increases in global copper mining over the next two decades, more than 

offsetting the slowly moderating long-term trend. 
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