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Abstract

The global workforce is urged to constantly reskill, as technological change favours particular
new skills while making others redundant. But which skills are most marketable and have a
sustainable demand? We propose a model for skill evaluation that attaches a premium to a skill
based on near real-time online labour market data. The model allows us to isolate the economic
return of an individual skill measured as a premium on hourly wages. We demonstrate that the
value of a specific skill is strongly determined by complementarity - that is with how many
other high-value skills a competency can be combined. We introduce the idea of “hub skills” to
the field of human capital formation, i.e., high-return skills that can be recombined with many
valuable complements. Specifically, we show that the value of a skill is relative, as it depends
on the capacities it is combined with. For most skills, their value is highest when used in
combination with skills of the same type. In addition, we find that supply and demand and the
membership in specific skill communities, such as finance and legal or software and
development, determine the value of a skill. We illustrate that AI skills are hub skills, as they
can be combined with other high-value skills to generate beneficial complementarities. The value of
some of these in-demand skills has increased significantly over the last years. Furthermore, we
contrast our skill premia with automation probabilities and find that some skills are very
susceptible to automation despite their high economic value. The model and metrics of our work
can inform digital re-skilling to reduce labour market mismatches. In cooperation with online
platforms and education providers, researchers and policy makers should consider using this
blueprint to provide learners with personalised skill recommendations that complement their
existing capacities and fit their occupational background.

Highlights:
● We expand literature on human capital formation by quantifying the economic value of

skills.
● We demonstrate that the value of a skill depends on complementarity; by the number

and value of skills it can be combined with.
● We reveal that the value of a skill is relative; it depends on the type of skills it is

combined with.
● We showcase that AI skills are most valuable as they have high levels of skill

complementarity.
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Introduction

Technological change is not “skill-neutral”. Innovations create new jobs but these jobs are

characterised by new tasks that require new sets of skills. As a result, the landscape of skills and

occupations changes. Despite recurring fears of mass unemployment, current literature suggests

that firms are using technologies to automate specific tasks rather than entire occupations

(Autor, 2015). Some occupations will disappear but the remaining ones will change, and

entirely new jobs will emerge (Acemoglu & Autor, 2011; Brynjolfsson & Mitchell, 2017; Frey

& Osborne, 2017). The work that is eliminated has different skill requirements than the newly

created jobs, resulting in the paradoxical situation of simultaneous unemployment and labour

shortage (Autor, 2015). In other words, workers risk being pushed out of employment while

companies struggle to find suitable employees to pursue innovative activities. To stay in

employment, workers need to learn new skills and combine existing skills in new ways. To stay

competitive, employers need to invest in reskilling and talent acquisition. However, for many of

the newly emerging jobs, precise skill requirements are unclear and constantly evolving. How

can policy makers, businesses, and individuals decide which skills to invest in?

In this paper, we introduce a method to measure the economic value of skills in human capital

formation. We propose that the value of a skill is, mostly, determined by its complementarity,

that is, by how easily it can be combined with other skills of high value. The value of one and

the same skill depends on the type of its complements. We show that skills are most valuable

when applied in combination with other similar skills. We test our assumption with the use of

rich and near-real-time online labour market data. We do this against the background of

widespread uncertainty among policy-makers, employers, and workers of how to address the

growing skill mismatch and resulting labour market inefficiencies. The conventional policy

response – aligning training programmes with changing labour market demand – is becoming

increasingly ineffectual as technological and social transformation outpaces national training

systems (Collins & Halverson, 2018). Likewise, large employers struggle to keep the skills of

their workforce up to date (Illanes et al., 2018). Employers, workers and education providers

seem uncertain about which new, often digital, skill is the first step towards a successful

re-skilling trajectory. To provide reliable information on which skills are most marketable and

have a sustainable demand, we propose an evaluation of skills based on complementarity as

core features that determine a skill’s economic value.

To this end, we use data from one of the most popular online freelancing platforms. The online

labour market (short OLM) data on platform transactions (“projects” or “gigs”) contains skill

requirements and price information. Using these information and methods from network science

https://www.zotero.org/google-docs/?Fn1SuM
https://www.zotero.org/google-docs/?VlMpf7
https://www.zotero.org/google-docs/?VlMpf7
https://www.zotero.org/google-docs/?qkZEMa
https://www.zotero.org/google-docs/?ssPgnV
https://www.zotero.org/google-docs/?y8W4Zu
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we construct a network of co-occurring skills. This skill network provides us with an

endogenous categorisation of skills and illustrates the context dependency of human capital. The

monetary value of freelance projects (in USD per hour) allows us to statistically assess the

economic value of individual skills. We use various analyses to derive the monetary value of the

962 most popular skills. Moreover, we build a regression model to test our assumptions about

what drives the variance in skill premia. To illustrate our approach we visualise and explain the

value of skills that are frequently used in the domain of AI work. Using this example, we show

how the value of a specific skill depends on supply and demand, skill community, and - most

importantly - complementarity. We show why “AI skills” are particularly valuable, as they are

frequently combined with other high-value skills. We contrast our skill premia with automation

probabilities and show that some skills are very susceptible to automation despite their high

economic value.

Our paper adds to four related streams of literature. Firstly, we contribute to an established

debate on how to measure human capital. We attach an interpretable economic price to

individual skills and we highlight the relevance of complementarity for a skill’s value. Secondly,

our work relates to scholarly work on how technological change and automation change the

demand for skills. Here, our work suggests a pragmatic approach to near real-time monitoring

the demand and value of individual skills on fast-changing labour markets. Thirdly, we

contribute to the growing body of research that uses digital trace data to study labour market

developments. In contrast to recently suggested data sources that examine either the market’s

supply or demand side exclusively, our approach takes both demand and supply into account

and, crucially, allows us to attach price tags to individual skills. Lastly, we build on existing

attempts to model the complex relationship between skills using network science. We show that

a skill’s network centrality captures its complementarity which is strongly predictive of its

economic value. To guide our empirical analysis, we synthesise these scholarly debates into

three hypotheses about what determines the value of a skill.

Our findings are applicable in several ways. They allow us to identify what skills and what

combination of skills are in demand and successful (as hourly wage premium). Conceptualising

the relationship between skills as a network, enables us to identify the most valuable

complement to an existing skill bundle. Thereby, we could support workers in building

individual, data-driven reskilling trajectories. We illustrate our method to skill evaluation with

online freelancing data. However, the method can be extended to other data sources, such as

online job ads or profiles from career building webpages, that cover larger parts of the

traditional labour market.



3

Background

Human Capital Formation

The conceptualisation of human capital is one of the most prominently discussed topics in

economic sociology and labour economics for the last decades, as novel concepts and metrics

have emerged constantly (Angrist et al., 2019). Conventional measures of human capital often

rely on the count of years of experience, training, or education or divide workers into categories,

e.g., of labourers and management (Willis, 1986). However, a growing body of literature

suggests that years of training and broad worker categories fail to address the importance of

skill specialisation, diversity, and recombination in knowledge generation (Aggarwal &

Woolley, 2013; Hong & Page, 2004; Lazear, 2004; Ren & Argote, 2011; Woolley et al., 2010).

In addition, the rise of the knowledge economy (Powell & Snellman, 2004) has sparked new

interest in a more nuanced measure of skill composition. In this context, several papers have

taken skill diversity and individual cognitive abilities into account to estimate their effect on

wages (Altonji, 2010; Autor & Handel, 2013; Borghans et al., 2008; Bowles et al., 2001;

Heckman et al., 2006; Ingram & Neumann, 2006).

A central conclusion of past contributions on skill diversity is that the relationship between

wages and skills does not only depend on a worker’s individual skills but also, on how they are

combined. The question of skill complementarities arises (Allinson & Hayes, 1996). For some

skills (e.g., programming in JavaScript and visualisation techniques) it can be argued that skill

complementarities emerge. The bundle of skills is more valuable than the sum of its parts.

Oftentimes, skill complementarities are likely to be limited to one occupational domain, e.g.,

programming in python and translating Russian should have little complementarities. Certainly,

the value of additional skills depends on the skill portfolio that the worker already possesses

(Altonji, 2010). Although the existing literature recognizes the importance of skill

complementarities, there have been little attempts to model it formally at the level of skills. One

notable exception is Neffke (2019) who investigates the value of complementary co-workers.

Modelling skill complementarities between workers shows that the value of what a person

knows depends on the skillsets of whom they work with (Neffke, 2019).

Instead, our work focuses on the complementarity between individual skills. We model this

complex relationship using network science. We observe that skills of similar economic value

cluster together. Our results underline the importance of complementarity. Skills that are

frequently combined with a specific set of other skills tend to be of higher economic value.

Moreover, skills that match the overall skill background of workers are of higher value to them

https://www.zotero.org/google-docs/?haJs2G
https://www.zotero.org/google-docs/?XCt7oq
https://www.zotero.org/google-docs/?3J8sto
https://www.zotero.org/google-docs/?3J8sto
https://www.zotero.org/google-docs/?BWETcd
https://www.zotero.org/google-docs/?9R5jnr
https://www.zotero.org/google-docs/?9R5jnr
https://www.zotero.org/google-docs/?srXo4t
https://www.zotero.org/google-docs/?VaOwTF
https://www.zotero.org/google-docs/?ZGaINu
https://www.zotero.org/google-docs/?ee9efb
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then skills that are distant to their skill domain. This illustrates that the economic value of a skill

is relative as it depends on a worker’s existing skill bundle.

Automation and Technological Change

Modelling human capital at the levels of skills represents a promising avenue to analyse the

impact of technological change on labour markets. The periodic warning that automation and

new technologies are going to replace large numbers of jobs is a recurring theme in economic

literature (Acemoglu & Autor, 2011; Brynjolfsson & McAfee, 2014; Frey & Osborne, 2017).

However, measuring the effects of new technologies on the future of work is not trivial.

Looking at education and wages at the aggregate level has proven to be insufficient (Acemoglu

& Restrepo, 2018; Beaudry et al., 2016; Brynjolfsson & McAfee, 2014). Treating occupations

as homogenous entities with a certain automation probability risks being overly simplistic and

could even lead to false conclusions (Frank et al., 2019). Skill requirements of occupations are

dynamic because technological innovations change the demand for specific skills and thereby

the skill composition of occupations. Aggregating skills into occupations therefore obfuscates

the differential impact of new technologies (Frank et al., 2019). Acemoglu & Autor (2011)

propose a task-based model in which occupations are classified into routine or nonroutine and

physical or cognitive based on their task content. This approach proved to be powerful in

explaining the hollowing out of middle-class jobs.

Yet, even this level of aggregation might still be too coarse. Disaggregating to the level of

specific skills might be necessary to understand technology’s complex impact on labour

markets. If we conceptualise occupations as dynamic containers of skills and machines as

replacing individual elements within these containers, then we need to move the analysis to the

level of skills to fully grasp how technology is redefining the demand for human skills.

However, reliable data on workplace skills is not widely available. In fact, Frank et al. (2019)

identify sparse skills data as the number one barrier to forecasting the future of work. Recent

studies (e.g. Acemoglu & Autor, 2011; Alabdulkareem et al., 2018; Frey & Osborne, 2017) rely

on survey-based data such as O*NET for the US (or PIAAC for the OECD). While valuable in

many ways, O*NET data is relatively static and therefore not ideal to study a fast changing

economy (Frank et al., 2019). The skills included in O*NET and the corresponding skill

taxonomy tend to be outpaced by the dynamic frontier of technological innovation time and

again.

We propose a data source and methodology to help overcome the roadblock of sparse skills

data. Using project-level skill information from online labour platforms, we study skills at their

https://www.zotero.org/google-docs/?KAVKbN
https://www.zotero.org/google-docs/?3I2s5g
https://www.zotero.org/google-docs/?3I2s5g
https://www.zotero.org/google-docs/?alqhcU
https://www.zotero.org/google-docs/?7NH79c
https://www.zotero.org/google-docs/?prVCvs
https://www.zotero.org/google-docs/?TzMnop
https://www.zotero.org/google-docs/?f3zftD
https://www.zotero.org/google-docs/?vXM9i7
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most granular level and at almost real-time. The actuality of our data allows us to monitor

ongoing changes in the demand for and the value of skills. Together with our historical time

series data, we are able to determine whether the value of a skill is on the rise or in decline.

Moreover, applying tools from network science, we build a dynamic, bottom-up and data

generated classification of skills based on how they are used. Thereby, we can observe how the

relationship between skills changes as they are being recombined in new ways. Lastly, we break

down the occupation-level automation probability by Frey & Osborne (2017) to the level of

specific skills and illustrate how automation risk relates to the economic value of skills. Taken

together, these elements could help policy makers, education providers and workers identify

skills that are worth investing in during times of fast-changing labour market.

Understanding Labour Markets with Digital Trace Data

With the rise of digital platforms as economic intermediaries more and more data about labour

market processes has become available online. As automated retrieval of large amounts of this

economic transaction data has become more feasible in recent years, the study of labour markets

with digital trace data is gaining momentum. Besides relying on traditional survey data,

researchers have started to investigate skill developments with the new digital data sources.

While the proposed idea of using online labour market data for skill monitoring is novel, several

scholars have explored alternative sources of online generated data to investigate skill

formation. De Mauro et al. (2018), for example, examined the skill complexity of the new

profession of data science with data retrieved from various job boards. Similarly, both Börner et

al. (2018) and Calanca et al. (2019) demonstrate the increasing relevance of soft skills based on

online job vacancy data. Bastian et al. (2014), on the other hand, make use of data from

LinkedIn, the world’s most popular professional online social network, to compare the relevance

of certain “hard skills” across industry domains. The methodology that we propose in this paper

is applicable beyond OLM data. Our method could be used to analyse data from online job

vacancy portals, such as Indeed or Glassdoor, or data from professional social network sites,

like LinkedIn, in order to study skill development and detect the emergence of novel

occupational domains. However, the different data sources have particular advantages and

shortcomings, as summarised in Table 1.

https://www.zotero.org/google-docs/?gO3nyx
https://www.zotero.org/google-docs/?XGysmA
https://www.zotero.org/google-docs/?ofPfwB
https://www.zotero.org/google-docs/?ofPfwB
https://www.zotero.org/google-docs/?3Wkclo
https://www.zotero.org/google-docs/?d44FoC
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Data Source Demand Side Supply Side Price Information Broad Coverage

Online Job
Vacancies

Networking
Sites

Online Labour
Platforms

Table 1 Compared to data from online job vacancy sites and career portals, online labour market data allow for the
study of both the demand and supply side of work, including relevant information on prices. Source: Stephany &
Luckin (2022).

While online job vacancies cover a large segment of the labour market, including many industry

sectors and also potentially non-digital and manual work, they seldom include information on

price levels and give no indication on the possible supply in the targeted population. Data from

professional social media sites, like LinkedIn, on the other hand, allow for an in-depth analysis

of skill compositions in the population. However, no price or income information is revealed,

and matching efficiencies cannot be evaluated in the absence of demand side data. OLM data,

e.g. from platforms like UpWork or Fiverr, only cover a small segment of the labour market,

namely digitised tasks from jobs in the professional service sector. However, OLM data have

the major advantage of containing information on both the demand and supply side of skills. In

addition, it is possible to observe the matching process and price, e.g., hourly rate, for each job

with a particular skill bundle attached to it.

The Network Value of Skills

The availability of novel data sources representing manifold aspects of interconnectedness have

enabled complexity scientists to capture some of the network-related value of skills. Waters &

Shutters (2022) examine an U.S. skill network, focusing on the relationship between network

centrality and economic performance. They find that occupations with higher skill centrality are

associated with greater annual salaries, and metropolitan areas with higher skill centrality have

higher productivity rates. Overall, these results suggest that the application of traditional

network metrics to this view of cities as complex systems can offer new insights into the

dynamics of regional economies. When it comes to the complementary value of a skill, Dave et

al. (2018) show that the relative positioning of a skill in a skill network contains information on

how likely it is for a capacity to be acquired. In their simulation of skill acquisition they show

that it is most likely for learners to acquire a skill that is close to the bundle of their already

existing capacities.

https://www.zotero.org/google-docs/?4D5LXT
https://www.zotero.org/google-docs/?4D5LXT
https://www.zotero.org/google-docs/?cZhRlM
https://www.zotero.org/google-docs/?cZhRlM
https://www.zotero.org/google-docs/?WB1AHG
https://www.zotero.org/google-docs/?WB1AHG
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Similarly, del Rio-Chanona et al. (2021) use network metrics to track worker transitions

between occupations due to automation shocks. They show that transitions between occupations

are more likely if skill similarities are high. This leads to the assumption that certain “bridging”

skills are particularly valuable, as they enable for a transition from one (less profitable)

occupation to the next. This complementary aspect of skills is again outlined by Alabdulkareem

et al. (2018) who argue that much of the polarisation across industries and occupations can be

explained by skill polarisation, e.g., groups of workers that are “stuck” in a low value segment

of the skill network with little proximity to central skills that would allow them to shift into

more profitable occupations.

While all of the above mentioned novel contributions highlight the importance of understanding

the complexity of skills via network methods, they do not explicitly seek to measure and explain

the economic value of a skill. Our contribution is to return to the assumption that a skill’s

network centrality matters, as it captures its complementarity, which should be reflected by its

economic value. Moreover, modelling the relationship between skills as a network allows us to

map skills by their similarity (with skills being close-by in the network being more similar). Via

the network structure, we can categorise skills and workers (based on their skill profile) into

communities (also referred to as domains). This can be used to approximate how close or distant

a given skill is to the skill bunde of a particular worker.

What Determines the Value of a Skill?

As a theoretical contribution, our work aims to explain the economic value of a skill. Based on

the theoretical considerations outlined in the previous sections, we argue that three aspects

mainly influence the economic value of a skill:

1) Supply and demand. Our assumption rests on an intuitive understanding of market

dynamics. We perceive the value of a skill as a price, which is conventionally

determined by forces of supply and demand. We expect a skill that is often requested

and seldom offered by workers to be of high value.

2) Community. Past literature has pointed towards a premium on belonging to a specific

community of skills (Weeden, 2002). The community membership is an approximation

for signalling various aspects of human capital, e.g., software or legal skills are

prestigious and difficult to learn. This should lead to systematic level differences in skill

values across communities of skills.

https://www.zotero.org/google-docs/?hBTNwU
https://www.zotero.org/google-docs/?ngB9bE
https://www.zotero.org/google-docs/?ngB9bE
https://www.zotero.org/google-docs/?SgQbpO
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3) Complementarity. Lastly, reviewing the network science literature on skills, we

assume that a skill’s economic value is determined by its complementarity. In other

words, how likely it is for a certain skill to be combined with other (high value)

competencies. Using a network-based approach (Anderson, 2017; Dave et al., 2018;

Waters & Shutters, 2022), we measure a skill’s complementarity by measuring its

(weighted) centrality in the network of skills.

However, the literature also shows that the value of skills (e.g. Anderson, 2017 or Neffke, 2019)

is relative as it depends on how they are being combined. So, does a skill not have the same

value for all workers? We hypothesise that the value of each skill indeed depends on its

complements, as proposed by Stephany (2021): One and the skill can have a different economic

value depending on the skills it is combined with. To test this assumption, we compare the

economic value of individual skills in combination with different skill bundles.

https://www.zotero.org/google-docs/?jiXbc6
https://www.zotero.org/google-docs/?jiXbc6
https://www.zotero.org/google-docs/?txhHAT
https://www.zotero.org/google-docs/?T3nbmQ
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Method
Online Labour Platform Data

The data for this analysis stems from one of the most popular online freelancing platforms, also

referred to as online labour markets - short OLM - as introduced by Horton (2010). These

platforms are websites that mediate between buyers and sellers of remotely deliverable

cognitive work (Horton, 2010). The sellers of work on OLMs are either people in regular

employment earning additional income by moonlighting via the Internet as freelancers or they

are self-employed independent contractors (Stephany et al., 2020). The buyers of work range

from individuals and early-stage startups to Fortune 500 companies (Lehdonvirta & Corporaal,

2017). OLMs can be subdivided into microtask platforms, e.g, Amazon Mechanical Turk, where

payment is on a piece rate basis and freelancing platforms, such as Fiverr, where payment is on

an hourly or milestone basis. Between 2017 and 2020, the global market for online labour has

grown approximately 50% (Stephany et al., 2021). OLM data allow us to monitor skills in a

global workforce on a granular level and in near real-time. The data includes worker and

employer location, project wages, previous income, and project-level skill requirements.

Building a Network of Skills
This work conceptualises the relationship between skills using a network approach. The data

consists of a sample of 49,884 freelance projects posted between 2014 and 2021 with

multidimensional skill requirements completed by U.S. based workers. Using the skill

information, we construct a network in which 4,583 skills are represented as nodes that are

connected by a link if a worker applies both in a freelance project. The links are weighted

according to how often two skills co-occur, as illustrated in Figure 1.

https://www.zotero.org/google-docs/?lo2ieV
https://www.zotero.org/google-docs/?mMbqJZ
https://www.zotero.org/google-docs/?tN1BmN
https://www.zotero.org/google-docs/?7tcO1I
https://www.zotero.org/google-docs/?7tcO1I
https://www.zotero.org/google-docs/?eTP7IH
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Figure 1: From the bipartite network connecting freelancers and skills (B), we derive a unipartite
network of skills (C) where two skills are connected if a worker applies both in a freelance project.

Firstly, this skill network provides us with an endogenous categorisation of skills and illustrates

the context dependency of human capital. Secondly, the value of each project, measured in USD

per hour, allows us to statistically assess the value of individual skills.

Measuring the Value of Skills
The “premium” of each skill is calculated by comparing the mean rate of projects that require

the respective skill with the mean of those projects that do not require it:

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 =  𝑖=1
𝑛∑ 𝑤𝑎𝑔𝑒/𝑛

𝑗=1
𝑚∑ 𝑤𝑎𝑔𝑒/𝑚 − 1

By calculating this premium, we derive the economic value of the 962 most popular skills, that

is skills that occur in at least 20 projects1. Alternatively, we could derive the value of a skill via

a regression model where the “price” of a skill is represented by the coefficient of a respective

skill dummy. Both metrics of price and premium are highly correlated with a pearson

correlation coefficient of 0.68. While the price metric allows us to control for differences in

worker experiences and time effects, it is less intuitive to interpret compared to the skill

premium. We use the price metric in our regression model for additional robustness checks.

1 This popularity threshold has been determined empirically, as illustrated in Figure A1 in the Appendix.
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Lastly, with our metric of skill value at hand, we investigate how the variance in values can be

explained by the features proposed in our hypotheses. We build a regression model that allows

us to test our assumptions about what drives skill prices. We include the following features:

1. Supply (Number of workers commanding respective skill)

2. Demand (Number of projects requesting respective skill)

3. Community (Dummy for the seven skill communities)

4. Complementarity (Weighted pagerank centrality)

𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑗 =  β0 + β1 * 𝑠𝑢𝑝𝑝𝑙𝑦𝑗 +  β2 * 𝑑𝑒𝑚𝑎𝑛𝑑𝑗 +  β3 * 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑗 + β4 * 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦𝑗 +  𝑒𝑗,𝑗 ϵ 1,..., 962
We use a weighted pagerank centrality measure as our proxy for a skill’s complementarity. We

borrow this concept from various network science applications. For the example of aviation

markets (Chung et al., 2020) or citation networks (Ding, 2011) it has been shown that the

complementarity of nodes, such as relevant airport hubs or popular scholars, can be described

by a weighted form of eigenvector (often pagerank) centrality. In our scenario of estimating the

complementarity of skills, we assume that both the eigenvector centrality and the respective

economic value of adjacent skills that can be reached from a specific skill node matter for our

complementarity. We modify the pagerank centrality formula:

𝑃𝑅𝑖 = 1−𝑑𝑛 + 𝑑 𝑗=1
𝑛∑ 𝑃𝑅𝑗𝑐𝑗

by adding a normalised weight (the economic value of each skill):𝑣
𝑃𝑅𝑖 = 1−𝑑𝑛 + 𝑑 𝑗=1

𝑛∑ 𝑃𝑅𝑗*𝑣𝑗𝑐𝑗

Measuring the Complementary Value of Skills
For the representation of skill complementarities, we employ a network structure of how skills

are combined with each other. This structure also tells us something about the relationship

between skills and workers. Skills that are very distant to each other in the network are not

frequently applied by the same worker. This representation should give us some indication

about the costs and benefits of complementarity. Accordingly, we assume that it is most

beneficial and least costly, in terms of economic value, to combine skills that are close-by in the

https://www.zotero.org/google-docs/?X7xwDW
https://www.zotero.org/google-docs/?BaMhnL
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skill space. To test this hypothesis, we represent skills and workers in a simplified fashion. Just

as we attribute skills to specific communities, we use the same structure to group workers by

their most frequent type of skill. We then calculate the value of each skill for the respective

group of workers. This allows us to compare the value of one and the same skill in context with

different other skills, e.g., the value of Python for workers (and skill bundles) from the domain

of Design with the value of Python for workers from the domain of Admin.



13

Results

Creating a Network of Skills

We begin modelling the complex relationship of skills by creating a network, as described in the

Method section. Figure 2A illustrates the resulting network of skills (“skill space”). We use the

Louvain method for community detection (Blondel et al., 2008). Skills cluster into seven

communities according to their field of application. We label the clusters based on the type of

most prevalent skills in each of the communities: “Finance & Legal, “Software & Tech”,

“Marketing”, “Design”, “Audio & Video”, “Writing”, and “Admin”. In addition to the

community labels, Figure 2A also highlights three of the most prevalent skills for each of the

communities. The most prevalent skills highlighted here reveal that the network is based on skill

similarity. For example, it is worth noticing that the skill Creative Writing is adjacent to the

Design community while it has a very high distance from the writing skill French Translation.

Another example of this type is the Audio & Video skill Motion Graphics, which is much closer

to the Design skill Drafting then to the same cluster skill Music Composition.

To a certain extent these skill communities overlap with the occupation taxonomy provided by

the freelance platform (see Figure A2), i.e., the majority of skills in the Design community also

fall into the occupation category Design & Creative. However, other communities, such as

Admin distribute more broadly across occupations of Writing, Admin & Support, and Legal.

This is in line with findings by Anderson (2017) and matches the categorisation of online labour

market skills by Kässi & Lehdonvirta (2018).

https://www.zotero.org/google-docs/?ew4cP1
https://www.zotero.org/google-docs/?xAxdws
https://www.zotero.org/google-docs/?ZUUuQ7
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Figure 2 (A) Skills cluster into seven groups according to their field of application. We label the clusters based on the

type of most prevalent skills in each of the communities: “Finance & Legal, “Software & Tech”, “Marketing”,

“Design”, “Audio & Video”, “Writing”, and “Admin”. (B) Valuable skills - the node size represents the premium of

each skill -  are not distributed at random across the skill space.
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In contrast to the official occupation taxonomy, our clustering allows us to fully group all skills

into communities based on their actual application. In the next stage of the analysis this helps us

to evaluate the contribution of community membership to a skill’s economic value.

Explaining the Value of a Skill

In a second step, we estimate the individual value of the 962 most popular skills as outlined in

the Method Section. We apply both the price and premium evaluation of each of the 962 skills

(Table A1 shows the top 20 and bottom 20 skills by premium). Skill price and premium are

strongly correlated across application clusters (with a pearson correlation of 0.69), indicating

that they both consistently measure a similar concept. However, in contrast to the skill price, the

premium does not take into account other factors that could explain a project wage, such as

worker experience or time components. Nevertheless, the strong correlation between the two

metrics encourages us to continue working with the price premium as our preferred measure, as

it is easy to interpret.

The premia attached to each skill in Table A1 are derived from actual market demand. While the

exact monetary values are specific to one online labour platform in the U.S. they allow us to

make quantitative comparisons between skills. We also observe that price and premium are

strongly correlated across skill domains. We see skills from the domain of Admin work with

relatively low skill premia and prices, while skills from Software & Tech. or Finance & Legal

show higher values. It is worth noticing that the correlation between the two metrics is lowest

for skills from Finance & Legal work. Our assumption here is that other factors than the

presence of a specific skill determine project wages, such as the experience of the worker.

Figure 1A reveals that valuable skills - the node size represents the premium of each skill - are

not distributed at random across the skill space. Instead, they seem to have distinct

characteristics and a distinct positioning in the skill space. Valuable skills are also not equally

distributed across skill communities, as Figure 1B shows. Skills in the domain of Finance &

Legal have, on average, a significantly higher premium that skills in Marketing, which have in

return a higher premium than skills in Admin. This finding points towards a confirmation of our

second hypothesis.

To further test our hypotheses, we run multiple regression models explaining the skill premium

(and price), as described in the Method Section. In a stepwise fashion, our models include
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supply (number of projects), demand (number of workers), skill communities, and centrality

measures (degree and weighted pagerank centrality) of the respective skill. The results of the

regression analysis are shown in Table 3.

Table 2 (A) The value of a skill, measured by skill premia in models 1-5 is determined by supply, demand, community,

and complementarity. (B) The out of sample R-Squared of each model increases consistently when adding new

controls.
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Model 1 and 2 show the effect of supply and demand on the value of skills. Here, we see, in

alignment with our hypothesis that a skill with lower supply and higher demand have higher

values on average. In model 3 we add dummies for the seven skill communities, while

excluding the domain “Software & Tech.” as a reference group. We see that the value of a skill

clearly depends on the community it belongs to, as only skills from “Finance & Legal” work

have a higher premium than our reference group while skills from all other domains are worth

less. Skills from “Admin” work have the lowest values on average. In model 4 and 5 we add

various network metrics. First, in model 4 we add the degree centrality (logged) of the skill to

the model, which reveals that more centrally connected skills have higher premia on average. It

is worth noticing that this effect is not driven by the overall occurrence of a skill, which is

controlled for by introducing the number of projects. Finally, in model 5, we add the weighted

pagerank centrality of the skill. This significantly improves the model performance. The

complementarity of a skill plays a crucial role for its value, as proposed in our hypothesis of the

complementarity. Model 6 repeats this full model setting for skill prices (and complementarity

based on price information). It shows that our assumptions hold regardless of the skill

evaluation metric. The lower panel of Table 2 shows that the out of sample R-Squared of each

model increases consistently when adding new controls.

Interestingly, when introducing the pagerank centrality the coefficients for the skill communities

change noticeably. Now skills from all domains, but for Admin, appear to have higher values

than skills from Software & Tech. work. We think that this finding is driven by the fact that

much of the value of skills in Software & Tech. is determined by their complementarity. This

assumption is confirmed when turning to Figure 3, which plots the 962 skills across their

complementarity and premia.
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Figure 3 (A) The most valuable skills are “hub skills” - We clearly see that skills from specific domains, such as

“Software & Tech” or “Finance & Legal”, exhibit significantly higher complementarity and higher skill premia

accordingly. (B) The relationship between a skill’s value and its complementarity is different across skill

communities. For Finance and Legal or Marketing skills, a better complementarity translates much more strongly

into higher skill values than in other skill communities.
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Here, we clearly see that the most valuable skills are skills with a strong complementarity

(hubs). They are connected to many other skills of high values and centrality. These skills are

not necessarily the most demanded skills, which is represented by the size of the bubbles.

However, we clearly observe that skills from specific communities, such as Software & Tech or

Finance & Legal, exhibit significantly stronger complementarity and higher skill premia

accordingly.

At the same time, the results of our regression analysis confirm our assumption that the value of

a skill is, besides market forces of supply and demand, influenced by both the membership to

specific skill communities and the complementarity of the skill. However, the analysis also

indicates that the benefits of a strong complementarity of a skill are not the same across skill

communities, as illustrated in Figure 3B, which depicts the relationship between skills’ premia

and their complementarity for each of the seven skill communities separately. We see that both

the baseline of skill values in each community (intercepts) and the benefit of a stronger

complementarity (slope) are different across skill communities. In particular, the community of

Finance & Legal and Marketing skills seems to be different to the other groups, as we see that

the additional benefit of a stronger complementarity is significantly higher than in the other five

communities. In Finance & Legal, furthermore, we observe a high initial level of skill values,

which might indicate the strong signalling value of this community of skills.

Revealing the Complementary Value of Skills

Our analysis indicates that the degree of complementarity, in general, influences the value of a

skill. The more likely it is for a skill to be combined with high-value complements, the higher

its value. In addition to this general component of complementarity, we proposed that there is a

specific aspect of complementarity that requires further investigation; similarity. As postulated

by Stephany (2021), skills have specific synergies that arise from complementarity. The skill

network that we created already captures these synergies in action, as it shows us which skills

are most frequently combined with each other. One could use the structure of the network as a

piece of evidence suggesting that there is no single best, most valuable, skill for everyone to

learn, as we observe local hubs and clusters of skills rather than a centralised structure in which

the entire network evolves around one “superstar” skill or a group of very central and valuable

skills.

To further elaborate on this assumption, that the value of each skill depends on its complements,

we examine skill-worker combinations and the value of one and the same type of skill in

different combinations. Therefore, we have grouped workers, just like skills, into seven

https://www.zotero.org/google-docs/?Hp94jO
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domains, which share the same labels as the skill communities. Workers are attributed to the

domain from which they have their largest share of skills. This attribution quite clearly

distinguishes workers, as for 78% percent of them at least half of their skills stem from one

specific community. We then measure the premium of each of our 962 skills depending on the

domain of the worker applying them2. The findings of this analysis are summarised in Figure 4.

2 Here again, we decide to use a sample threshold of twenty observations of skill applications per worker
domain. This leads to no observations for some of the worker-skill combinations, e.g., there is no
significant application of Finance & Legal skills in the worker domain of Audio & Video.
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  Figure 4 (A) The premium of a skill depends on the skill background of the worker. In general, the skill premium is

highest for workers that have mostly skills from the same domain. (B) One exception are Software and Tech skills,

which seem to be more profitable for workers with skills from other domains. (C) The premium of a skill depends on

the skill background of the worker (Worker Domain). Skills from the worker’s domain are usually profitable, as the

diagonal in the heatmap shows. Software and Tech skills are yet an exception, as they are profitable for workers from

all domains with an average premium of 26%, and most profitable for workers from Admin with a premium average

of 34%.
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The general finding is that skills are more valuable, when combined with other skills of the

same type, as shown in panel A of Figure 4. Likewise, the diagonal of the matrix Figure 4C

shows the premium of skills from all seven communities, when applied by workers who

predominantly have skills from the same domain. However, for some skills this logic does not

apply. For example, for skills from the community of Software & Tech., we observe that they

are not only profitable throughout all worker domains (with the exception of Audio & Video)

but that they are also most profitable for workers who are not active in the domain of Software

& Tech. In comparison to tech workers, Software & Tech skills are twice as valuable for

workers in Marketing and more than three times as valuable for Admin workers. This could

indicate the high general purpose value of many skills from Software & Tech., in particular

programming languages, which are beneficial in various combinations outside their original

domain.

Working with Skill Values: The Case of AI-Skills

How could our metric of skill pricing be put into action? Here, we illustrate how the evaluation

of skills could be applied to examples of AI skills. AI is widely considered to be a major

breakthrough technology that is transforming the economy and society (OECD, 2021a). Hence,

we assume that skills, which are required to work with AI technologies, should be of high

economic value. We hand-labelled 43 skills3 as AI skill4, since we believe that they either

describe an AI technology, such as Machine Learning, or a prerequisite for working with an AI

technology, such as Python. Only 17 AI skills remain in our analysis, as many of them only

occur in a few projects (see Table A2 in the Appendix). Our network-based clustering locates all

AI skills in the cluster of Software & Tech work with the exception of Image Recognition,

which is labelled as Design work.

As complements to breakthrough technologies, AI skills are thought to have high resilience

towards automation, in general, which is a central aspect in discussions about the sustainability

of work. Ideally, newly learned skills should have a low level of susceptibility towards

automation. However, besides automation resilience, economic profitability is certainly another

relevant aspect under which the “future readiness” of skill could be evaluated. A skill that is

4 With the majority consensus among all authors.

3 'advanced-analytics', 'ai', 'algorithm-development', 'algorithms', 'analytics', 'apache-spark',
'artificial-intelligence', 'artificial-neural-networks', 'automation', 'automation-software-release', 'big-data',
'bot-development', 'c++', 'chatbot-development', 'cloud-computing', 'clustering', 'computer-vision',
'data-analysis', 'data-analytics', 'data-engineering', 'data-science', 'database-architecture', 'deep-learning',
'deep-neural-networks', 'ibm-watson', 'image-processing', 'imageobject-recognition', 'java', 'keras',
'machine-learning', 'machine-learning-model', 'natural-language-processing',
'natural-language-toolkit-nltk', 'neural-networks', 'pattern-recognition', 'python', 'python-script',
'robotic-process-automation', 'robotics', 'supervised-learning', 'tensorflow'.

https://www.zotero.org/google-docs/?nb8S0Q
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highly valuable but most likely to be automated by machines or algorithms in the near future

might not be an optimal destination for reskilling interests. However, a skill with low likelihood

of automation but little economic reward might be similarly unappealing. For a comparison of

our proposed skill evaluation metric, we calculate the automation probabilities of various skills

using the automation probabilities developed by Frey & Osborne (2017). Frey & Osborne

(2017) use four-digit SOC codes to identify occupations. We use the matching table developed

by Braesemann et al. (2021) to map the four-digit SOC codes to the 98 platform occupations.

After the matching, we calculate the automation probability for each skill via the following

formula: 𝑝𝑟𝑜𝑏(𝑠𝑘𝑖𝑙𝑙 𝑥) = 𝑗=1
𝑚∑ 𝑝𝑟𝑜𝑏(𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑗)/𝑛𝑗

Here the automation probability of is given by the average of the automation𝑠𝑘𝑖𝑙𝑙 𝑥
probabilities of all occupations that contain weighted by my the share of𝑗 = 1,..., 𝑚 𝑠𝑘𝑖𝑙𝑙 𝑥
projects that are listed under the respective occupation. Our new metric allows us to compare𝑛
both premium and automation probability for each skill, as illustrated in Figure 5.

Figure 5 (A) How does a skill’s value relate to its risk of automation? We can compare the two metrics, which are

relevant for assessing a skill’s sustainability.. AI skills, like many other Software and Tech skills are mostly located in

the top-left quadrant of the plot. (B) As the t-tests confirm: they are valuable and have below average automation

probabilities, while having high complementarity.

Our comparison shows that skills do not group randomly in the space of profitability and

automation risk. Broadly speaking, we can see that profitability and automation risk are

negatively related. In Figure 5A, we dissect the space into four quadrants: high value and low

https://www.zotero.org/google-docs/?VjwoXz
https://www.zotero.org/google-docs/?dZ0ljk
https://www.zotero.org/google-docs/?dZ0ljk
https://www.zotero.org/google-docs/?SX9L34
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risk (top left), high value and high risk (top right), low value and low risk (bottom left), and low

value and high risk (bottom right). Skill domains are distinctly distributed across this space.

Many skills from the domain of Software & Tech. are in the top left quadrant, including most of

the AI skills. Writing and Design skills are of low economic value but also show low risks of

automation. Skills from Admin on the other hand have low economic value and high risks of

automation. A group of skills that does not follow the negative relationship between premium

and automation risk are certain Finance & Legal skills, which are scattered across different

premium levels but all with high susceptibility to automation. Our group of AI skills are clearly

different from the rest of all other skills, as they have above average premia and

complementarity, and below average automation probabilities (Figure 5B).

Lastly, we compare the development of skill values over time. We use the example of AI skills

to illustrate that the premia of skills are not stable over time, as they are influenced by changes

in supply, demand, or complementarity. Figure 6 illustrates this change by comparing the premia

of selected skills between 2014-2017 and 2018-2021.

Figure 6 For a set of AI and non-AI skills we observe that changes in the value of a skill are closely aligned with

changing supply and demand. As demand (relative to supply) for Python (A), Deep Learning (B), and TensorFlow

(C) has increased (lower panel), the premium for these skills rose (upper panel).

In Figure 6A, we contrast the change in skill premia for two popular programming languages,

Python and Java. While both languages start with more or less the same premia in the timespan

of 2014-2018, they develop differently over time. While Java loses its premia significantly,

Python gains in economic value. A driver of this trend could be a change in popularity, as

Python has been rising to become THE data science super skill over the last decade (Grus,

https://www.zotero.org/google-docs/?sto4N4
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2019). This was not the case for Java, as the comparison of demand (number of projects) versus

supply (number of workers) indicates in the lower panel.

A similar logic applies to AI skills in the field of deep learning. In panels B and C, we show the

changes in premia of Deep Learning and TensorFlow, one of the most commonly used software

environments to programme deep learning applications. In contrast, we selected the skill

Statistics and A/B Testing, one of the most frequently used conventional applications of

statistics. Here, we see how the premium for deep learning and tensorflow increased

significantly over the last 10 years, while the value of Statistics and A/B Testing stagnated.

Similarly to the programming languages, this can be explained by a significant rise in the

demand relative to supply for Deep Learning and TensorFlow compared to the skills of

Statistics and A/B Testing.

https://www.zotero.org/google-docs/?sto4N4
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Discussion

Conclusion

Technological change does not affect all tasks and occupations alike. New technologies require

new skills while making others redundant. Technological change is not “skill-neutral”. As a

result, the skill composition of occupations changes. To respond effectively, workers need to

reskill. However, the precise skill requirements of newly emerging jobs and economic benefits

of learning a new skill are often uncertain and constantly evolving. It is therefore difficult for

workers, employers, and policy-makers alike to build profitable and sustainable reskilling

pathways. To address this uncertainty, we propose a method that attaches an economic value to

skills based on market demand and supply as well as their relationship with other skills.

Thereby, expanding the understanding of human capital formation in at least two ways. First, we

reveal the economic value of individual skills and track their demand for and price over time.

Moreover, we investigate what drives the value of individual skills. We find that the value of a

skill depends on market forces of supply and demand. Secondly, we shot that a skill’s premia is

largely determined by the relationship to its complements. Skills that are frequently combined

with many other valuable skills (high network centrality) tend to be of high value - they are skill

hubs. We also show that the value of a skill is relative to its complements. Often skills are most

valuable if they are applied together with a similar type of skill bundle.

For a set of 42 AI skills we illustrate how to apply our evaluation metric. We show that skills

associated with AI, which is widely considered to be a major breakthrough technology, have a

significantly stronger complementarity in the skill space and, hence, higher skill premia. In

addition, we are able to contrast skill premia with automation probabilities - another relevant

metric when assessing the sustainability of skills. This two-fold categorisation adds relevant

nuance to debates about the future-readiness of learning a new skill. Ideally, reskilling efforts

should focus on teaching skills that are both economically profitable and less exposed to risks of

computerisation. AI skills fall into this category. Lastly, we track the development of skill

values over time. We see that AI skills, such as Deep Learning or Python have been gaining in

value significantly over the past years. Our model allows us to ascribe these changes to an

increase in demand relative to supply.

This study has limitations. Firstly, we measure the economic value of skills relative to each

other in a specific setting. This allows for comparisons between skills but statements on the

absolute value of skills are not possible. In other words, the exact numerical value of a skill’s

value is not very meaningful in itself and might not be easily transferred to a different context.



27

While a statement such as “learning deep-learning will increase my hourly wage by 1,31 USD

per hour” (see Table A2) would be problematic, stating that deep-learning might be a more

valuable skill to learn than for instance data-analytics is in line with our approach. Secondly, we

empirically find that the economic value of a skill is relative as it depends on how it is

combined with other skills. While this makes intuitive sense and is highly relevant for reskilling

purposes, it was outside the scope of this paper to develop a theoretical framework and

empirical strategy to explain the how and why of these mechanisms. Lastly, this work is based

on data from online freelancing which comes with several advantages but also pitfalls (see

Background section for details). Most notably, online freelancing is limited to fully digital

professional services. Therefore, several (often manual) occupations are missing entirely.

Moreover, relative to the size of the overall workforce, rather few people work via online

freelancing platforms. However, with adequate data access, our methodology could be extended

to other data sources, such as online job advertisements or online career platforms, covering

large parts of the traditional labour market.

Policy Implications

Our work on categorising and evaluating skills allow for multiple advances in understanding

labour market developments. It can help to establish a taxonomy of skills, understand their

application and individual complementarity, and enable automated, individual, and far-sighted

suggestions on the value of learning a new skill in a future of technological disruption. Hence,

policy recommendations are manifold.

First, reskilling institutions, like the European Centre for the Development of Vocational

Training, could be the main beneficiaries of this highly individualised data. The high granularity

of online generated data allows us to describe skill profiles of individual workers and track their

development over time. It also enables reskilling institutions to assess the individual

complementarities of learning a new skill. Via online generated labour market data, workers

with the need to reskill could insert their current skill profile, be located in the landscape of

skills, and receive targeted reskilling advice. This allows them to switch to more sustainable

occupations that are closely related to their existing skill set with minimal reskilling effort. Via

these individualised reskilling recommendations education providers and vocational training

organisations could address the urgent need for individualised solutions in adult reskilling.

Furthermore, the continuous “pricing” of skills over time allows reskilling practitioners to

monitor the development of skill values and advise workers on which reskilling to “invest” in.
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Secondly, official occupational and skill taxonomies could be improved with near real-time

online generated data. As technology creates the demand for novel skills, new occupational

clusters can emerge quickly and official taxonomies, such as the European Skills, Competences,

and Occupations (ESCO) begin lagging behind. This is bad news for both firms and workers, as

professional training providers find it hard to “speak” with the same language as market

demand. Online generated data, on the other hand, stems from most recent market development

and allows an identification of new occupational clusters including in-demand skills.

Data-driven and near-real time taxonomies could complement conventional classifications. An

immediate contribution to current policy efforts would be the continuous (re-)classification of

AI and “green” skills or jobs, as the “twin-transition” has been identified as a catalyst for active

labour market policies (OECD, 2021b).

Outlook

This work uses data from online labour markets. The major advantage of this data source is the

availability of granular information on demand, supply, and wages, hence the value of skills. On

the other hand, this data covers only one segment of the labour market. However, the

methodology presented here, could be easily adapted to analyse other data sources covering

larger parts of the labour market such as for example job vacancy platforms (e.g. Indeed) or

social career platforms (e.g. LinkedIn). Our results have implications for the debate on

successful reskilling strategies in times of dynamic technological change. We find that

in-demand skills pay off and that they can be identified. This suggests that individualised

skill-centred reskilling pathways could represent a promising avenue to mitigate skill

mismatches. Yet, the quality of individualised skill recommendations would depend heavily on

access to timely and granular data.

The European Commission has recognised the need and potential of a data-driven approach to

closing the skill gap by bringing forward various legislative and policy proposals. The Pact for

Skills (European Commission, 2020), launched in 2020, for example, aims to maximise the

impact and effectiveness of skills investment, with a particular focus on upskilling and reskilling

in the vocational training sector. For a successful implementation of the Pact, two aspects are

crucial. Firstly, industry needs for specific skills must be made explicit, and secondly, the unique

training history of workers needs to be acknowledged. Online generated data of worker profiles

presents a promising approach to monitoring occupation taxonomies and skill requirements via

online labour platform data. This is very much aligned with Europe’s interest in further building

out their skill foresight (French Presidency of the & Council of the European Union, 2022) via

skill anticipation and the support for career transitions. It can offer targeted and near-real time

https://www.zotero.org/google-docs/?Znfkim
https://www.zotero.org/google-docs/?q8V0V3
https://www.zotero.org/google-docs/?oCAxOK
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reskilling advice to workers, regarding both industry needs and the worker skills required to

fulfil them. This action could support the Commission’s proposals (European Commission,

2021) for recommendations on individual learning accounts and on micro-credentials fostering

skill-by-skill learning of professionals instead of traditional certification.

Similarly, the Commission’s 2022 Data Act (European Commission, 2022) has identified the

importance as well as the complications of accessing business (and platform) data in the interest

of the public, while acknowledging the protection of businesses’ interests. However, the

retrieval and usage of private sector data, such as online labour market or job vacancy data, by

public body institutions, is not necessarily enabled under the new legislation. Enforced sharing

of private sector data requires the ex-ante proof of a “public emergency”, and the current modes

of automated data retrieval, such as web-scraping, could be prohibited by the Data Act if they

were to be interpreted as coercive or deceptive according to Article 11. In light of this

well-intended but potentially contradictory proposal to current EU data legislation, future

amendments need to seek an agreement that gives public bodies acting in the interest of the

public the right to access data (including via modes of web-scraping).

Our investigations on the complex ecosystem of skill formation show that online data can be a

valuable tool for designing sustainable reskilling policies. To leverage the full potential of this

resource the legislation needs to make public interest its focal point, allowing data access via

web-scraping, while enabling strategic public–private partnerships to release the full potential of

online generated data for the benefit of society.
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Appendix

Figure A1 (A) The minority of workers (4%) has had more than 10 projects and more than half of the workers had

only two projects or less. (B) For skills, we see that the largest share of skills only occurred in a few projects, only

22% of all skills were applied to 20 projects or more.

Table A1 The top and bottom 20 skills are ranked by their premium. Many of the top ranked skills stem from Finance

& Legal while bottom ranked skills are from Admin work.

Rank Skill Premium (%) Price (USD/h) Complementarity Automation
Probability

1 intellectual-property-law 197,59 1,62 43,70 90,96

2 patent-law 163,35 1,52 38,63 87,66

3 international-tax-law 151,77 1,56 71,58 91,49

4 corporate-law 146,99 1,55 42,38 92,10

5 non-disclosure-agreements 146,41 1,11 56,25 92,45

6 international-law 144,14 1,21 47,74 91,68

7 financial-projection 135,29 1,58 38,38 23,58

8 contract-law 128,49 1,34 34,38 92,62

9 trademark-consulting 127,98 1,32 41,40 92,13

10 financial-forecasts 124,19 1,54 31,20 26,70

11 financial-modelling 122,69 1,62 45,13 23,42

12 branding-strategy 122,23 1,82 16,59 43,78

13 cloud-computing 121,75 1,44 25,85 38,43

14 docker 119,86 1,39 44,49 35,20
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15 financial-plans 119,72 1,56 41,26 22,03

16 venture-capital-consulting 115,95 1,96 40,05 35,99

17 deep-learning 113,73 1,31 32,67 29,16

18 business-coaching 110,33 2,10 23,81 50,80

19 employment-law 108,16 1,31 52,30 90,47

20 legal-consulting 107,64 1,14 40,85 93,15

… … … … … …

943 teaching-english -49,60 0,75 -19,85 64,30

944 administrative-support -51,10 0,87 6,46 78,50

945 article-spinning -51,32 0,78 -13,10 46,31

946 email-handling -51,78 0,86 1,06 72,43

947 video-upload -51,87 0,58 -14,24 51,39

948 virtual-assistant -51,99 0,84 3,65 77,30

949 customer-service -52,21 0,83 1,32 67,83

950 chat-support -52,38 0,91 -15,61 56,81

951 customer-support -52,41 0,89 -0,83 63,19

952 translation-spanish-english -52,48 0,75 -19,75 44,12

953 news-writing-style -52,50 0,70 -14,58 45,17

954 active-listening -52,78 0,83 -26,38 72,98

955 data-entry -54,26 0,65 8,14 78,18

956 call-handling -54,71 0,79 -5,16 68,87

957 telephone-skills -55,02 0,80 0,49 73,51

958 phone-support -55,14 0,87 -2,40 65,98

959 forum-posting -55,51 0,67 -13,06 53,08

960 online-help -55,58 0,92 -22,58 72,29

961 english-tutoring -56,53 0,69 -18,25 60,05

962 order-processing -56,92 0,72 -25,20 62,88
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Table A2 Of the 42 initially identified AI skills 17 remain after filtering for a minimum of 20 occurrences. They are

ordered by their premium..

Rank Skill Premium (%) Price (USD/h) Complementarity
Automation

Probability

1 cloud-computing 121,75 1,44 25,85 0,38

2 deep-learning 113,73 1,31 32,67 0,29

3 tensorflow 107,10 1,46 49,71 0,33

4 natural-language-processing 101,52 1,21 28,80 0,34

5 machine-learning 101,45 1,50 24,37 0,33

6 database-architecture 97,77 1,17 40,92 0,27

7 artificial-neural-networks 96,66 1,21 37,04 0,30

8 artificial-intelligence 74,57 1,17 23,80 0,39

9 algorithms 72,21 1,36 24,70 0,42

10 data-science 65,51 1,19 24,91 0,43

11 automation 51,01 1,36 21,28 0,38

12 python 48,84 1,08 28,04 0,36

13 data-analysis 39,91 1,15 18,11 0,47

14 analytics 38,18 1,28 21,54 0,47

15 java 28,94 1,05 29,71 0,34

16 image-processing 9,16 0,95 7,00 0,40

17 c++ 3,74 1,06 27,19 0,43

Calculating the price of a skill

The 962 linear regression models - one for each skill - explain a project’s rate with

1. the year the project has been carried out in (measure by yearly dummies, 2014 - 2020),

2. the occupational category the project falls into (measured by twelve categories5),

3. the experience of the worker (measured in number past projects),

4. the occurrence of a specific skill (measured by a skill dummy).

5 "Sales & Marketing", "Web, Mobile & Software Dev", "Writing”, "Design & Creative", "Translation",
"IT & Networking", "Data Science & Analytics", "Admin Support", "Customer Service", "Legal"
"Accounting & Consulting", "Engineering & Architecture".
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Each of the 962 most popular skills is considered individually as an explanatory feature in the

linear regression. The beta coefficients of each of the 962 skill regressions allow us to determine

the added value of an individual skill according to the following formula:

𝑙𝑜𝑔(𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑤𝑎𝑔𝑒𝑘) =  β0 + β1 * 𝑦𝑒𝑎𝑟𝑘 +  β2 * 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑘 + β3 * 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑘 +  β4 * 𝑠𝑘𝑖𝑙𝑙𝑗 +  𝑒𝑘,𝑘 ϵ 1,..., 𝑛 𝑎𝑛𝑑 𝑗 ϵ 1,..., 962
As the dependent variable, the project wage in USD per hour, is log-transformed, we need to

perform an exponential transformation on the coefficient of the skill dummy to calculate theβ4
added value of the individual skill in USD per hour. Performing this model 962 times for each

skill provides us with added values in USD per hour for each skill.
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Figure A2 Skill application clusters largely overlap with the occupation taxonomy provided by the freelance

platform, i.e., the majority of skills in the application cluster of “Design” also fall into the occupation category

“Design & Creative”.


