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Abstract

When a central bank introduces a central bank digital currency, it may lead to an

erosion of deposits as the stable funding base of banks and result in challenges regarding

the asset side of the central bank. We study the resulting economy and tradeoffs in a

stylized nominal version of the Diamond-Dybvig (1983) model. The central bank is now

involved in maturity transformation, if it so chooses. We posit that the central bank

pursues three objectives: price stability, economic efficiency and financial stability. We

demonstrate that a CBDC Trilemma arises: out of these three objectives, the central

bank can achieve at most two. In particular, a commitment to price stability can cause

a run on the central bank. Implementation of the socially optimal allocation requires

a commitment to inflation.
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1 Introduction

Many central banks and policymaking institutions are openly debating the implementation

of a central bank digital currency or CBDC.1 With a CBDC account at the central bank,

households will have access to an electronic means of payment and, thus, an attractive alter-

native to traditional deposit accounts.2 The acceptance of CBDC implies that the central

bank becomes the financial intermediator in the economy and becomes involved with matu-

rity transformation. As a result, the central bank needs to be concerned about efficiency as

well as financial stability with regard to its balance sheet. Additionally, a central bank needs

to be concerned about price stability. The preservation of their currency’s purchasing power

is a main reason why central banks exist. This price stability objective is written explicitly

in many central bank’s statutes, such as the Federal Reserve’s 1977 “dual mandate” in the

U.S. and Article 127 of the “Treaty on the Functioning of the European Union” regulating

the ECB. Money as a store of value, that is, as a way to shift consumption into the future,

is widely accepted today, even though the intrinsic value of common paper money is zero.

Therefore, such monetary trust is fragile and should not be taken for granted.

Socially Optimal Allocation

Monetary Trust(No Central Bank Run)
Price Stability (Peg)

Figure 1: CBDC Trilemma: For the consolidated central bank, it is impossible to attain all
three objectives at a time. When one objective is fixed, at least one other objective has to be
sacrificed.

We posit that the central bank pursues three objectives: assure price stability, support

economic efficiency, and secure financial stability. While we mostly treat price stability as an

objective of the central bank, it can also arise as a constraint out of extreme price stickiness,

see sections 5 and 6. We study the resulting tradeoffs between these objectives in a stylized

nominal version of the Diamond-Dybvig (1983) model. Agents interact with the central

1See Barrdear and Kumhof, 2016; Bech and Garratt, 2017; Chapman et al., 2017; Lagarde, 2018; Ingves,
2018; Kahn et al., 2019; Davoodalhosseini et al., 2020; Auer and Böhme, 2020; Auer et al., 2020, Group of
Thirty, 2020 and Board of Governors of the Federal Reserve System, 2022).

2As Fernández-Villaverde et al. (2020) show that a CBDC offered by the central bank may be such an
attractive alternative to private bank deposits that the central bank becomes a deposit monopolist, further
consolidating its role as a financial intermediator.
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bank directly, abstracting from firms and other financial intermediators in the analysis. The

central bank also comprises the functionality of firm and government investment in the real

economy and the bank’s role as a financial intermediator, in addition to the functionality

of a traditional central bank.3 While our model is abstract, allowing households to interact

directly with the central bank, section 6 reintroducing private banks and firms, and discusses

why the main mechanisms of the paper continue to hold.

As the main contribution of the paper, we demonstrate that a CBDC Trilemma arises,

see figure 1: out of these three objectives, the central bank can achieve at most two. We

show this impossibility result by fixing one central bank objective and demonstrating that

at least one other objective is violated.

As Diamond and Dybvig (1983) have shown in their banking model with real demand-

deposits, maturity transformation enhances efficiency but gives rise to the possibility of bank

runs and financial instability. We show in our nominal demand-deposit model here how fi-

nancial instability in the form of a spending run4 on the goods supply can result when the

central bank is committed to keeping prices stable, see section 5.3. We call this a “run on the

central bank”: while the central bank can obviously always honor its nominal obligations,

agents may fear the erosion of real resources available for purchase against their nominal

CBDC balances. Therefore, a central bank run manifests itself as a collective spending spree

where agents who have no instantaneous consumption needs nevertheless spend their CBDC

balances on goods because they expect the real value of currency to decline. In that case,

CBDC forfeits its purpose as the store of value. In such a run, issuing additional amounts

of CBDC not only does not stop the run but it makes inflation worse; see section 9. The

aggregate spending behavior at a given goods supply impacts the price level via market clear-

ing. Therefore, a central bank run will manifest itself as a run on the price level. Likewise,

nominal interest rates on CBDC only change price levels in the future when the interest is

paid out rather than stopping the run now. Efficient maturity transformation in combination

with a strong price stability objective will thus violate the third objective, financial stability.

Financial stability can be achieved by threatening price instability in case of a run. Indeed

and as our first result, we show that the central bank can implement the efficient allocation

in dominant strategies and deter central bank runs ex ante but only via an inflation threat,

see section 4. The inflation threat violates the first of the three objectives, should a run

3In that way, we follow Velasco (1996), Calvo (1988) and Obstfeld (1996) who also consider a consolidated
central bank, however without the financial intermediation role, as modeled here.

4As a parallel, one may think about the “electronic dollars” that many universities issue to faculty and
students in their ID cards for purchases on campus. One can spend “electronic dollars” in different campus
locations, such as vending machines and food courts, but one cannot “withdraw” the “electronic dollars” or
transform them into other assets.
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occur. We argue in section 5.1, that this inflation threat is neither a credible time-consistent

nor a subgame-perfect commitment by a central bank that cares about price stability.

The conflict of interest between a central bank’s traditional role as guardian of the price

level and its new role in financial intermediation is the focus of this paper. To focus on

this tension, the starting point of our analysis is the foundational tenet of economics, that

people accept currency only because it enables future consumption and that people do not

care for money per se. Therefore, we emphasize the intertemporal consumption problem of

an agent when evaluating the acceptance of money as a store of value. The wedge between

the agents’ money balances versus expectations of the real value of currency is crucial for

realizing optimal intertemporal consumption bundles and maintenance of monetary trust.

Financial intermediators play a large role in enabling optimal consumption patterns of agents

via risk-sharing across time. This justifies our use of the Diamond-Dybvig (1983) model.

In section 8, we discuss why the issue of a central bank possibly engaging in maturity

transformation arises specifically with CBDC and would typically not arise in the current

cash-based system. Nevertheless, cash and CBDC exhibits some equivalence when it comes

to classic banks runs, that is, conversion of deposits to cash, instead of spending runs. We

discuss differences between classic bank runs and spending runs in section 7. There, we also

explain why changes in nominal quantities such as nominal deposit insurance, interest rates

or lender of last resort policies are not suited for preventing spending runs. Moreover, in this

section we discuss why a price stability objective is similar to the central bank providing real

deposit insurance in t = 1, whereas run-deterring liquidation policies can be understood as

the central bank’s goal to providing real deposit insurance in t = 2.

At its core, the tradeoff between price level stability and financial stability arises because

in a spending run, too much money is chasing too few goods, unless more goods are provided

per liquidation. One may thus wonder whether the central bank can resolve the trilemma by

reducing the money used for spending. In section 9, we show that traditional open market

operations or changing the interest rate on reserves will not accomplish this goal. Rather,

a policy of adjusting CBDC balances on the spot depending on aggregate spending will do

the trick. This is a potentially new tool available to a central bank using CBDCs which is

not available with cash. Whether it is a powerful new tool or one that will wreck havoc with

trust in the monetary system is beyond the scope of the paper.

In section A of the online appendix, we examine the proposal by Jacklin (1987) to prevent

runs by trade in equity shares. We extend Jacklin (1987) to a nominal version and show
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how trade in CBDC-denominated shares can result in the achievement of all three objectives

when carefully designing the asset and liquidation policy by the central bank. In section B of

the online appendix, we examine a fuller version of our model where the central bank com-

petes with private banks. We show that the competitiveness of the private banking system

requires the interest on CBDC to undercut the interest on reserves by private banks when

implementing the efficient outcome, see appendix C. We discuss extensions to a token-based

CBDC, synthetic CBDC and retail banking in section D.

Related literature

This paper contributes to three literature strands: the literature on financial intermedia-

tion via nominal contracts, the literature on central bank digital currency, and the macro

literature on currency runs:

Building on the seminal Diamond and Dybvig (1983) model, we contribute to the liter-

ature on financial intermediation and bank fragility by stressing the central bank’s role in

liquidity transformation when issuing a CBDC that allows depositors to share idiosyncratic

liquidity risk. Similar to Diamond and Dybvig (1983) and Ennis and Keister (2009), we

study the micro incentives of depositors to spend from the bank. But unlike them, we em-

ploy nominal instead of real demand-deposit contracts, giving “the bank” an additional tool

–the price level– to prevent runs.

Nominal demand-deposit contracts and their proneness to runs have previously been

analyzed in the literature. In a banking model with money, Diamond and Rajan (2006)

show that nominal deposit contracts and a flexible price level response protect banks from

failure due to liquidity shocks. Via a similar mechanism, Skeie (2008) shows that runs on

nominal bank deposits do not occur in the unique equilibrium because price levels adjust

flexibly and prompt competitive firms to adjust the goods supply. Unlike Diamond and

Rajan (2006), we share with Skeie (2008) the possibility of miscoordation and panic runs by

depositors. Here, withdrawals are strategic, and the run-deterrence mechanism works via the

flexible adjustment of goods prices to the demand by depositors. Unlike both Diamond and

Rajan (2006) and Skeie (2008), we show how nominal contracts and flexible prices help with

implementing socially optimal allocations. In a different type of model, Allen, Carletti, and

Gale (2014) show that the socially optimal allocation can be implemented as a competitive

equilibrium via firms and banks. We instead characterize all asset liquidation policies that

implement the socially optimal allocation in dominant strategies. As the main modeling

difference to Allen, Carletti, and Gale (2014), ‘runs’ are non-strategic there, and deposit
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withdrawals are caused by exogenous liquidity shocks. By contrast, spending behavior by

agents is strategic here because patient types can decide to consume early if they anticipate

that their nominal balances buy them more goods today rather than tomorrow. Strategic

spending allows for the occurrence of self-fulfilling spending panics and a discussion about

how to prevent them by designing central bank policy. Unlike in Skeie (2008), Diamond

and Rajan (2006) and Allen, Carletti, and Gale (2014), we characterize the set of run-

deterring liquidation policies but abstract from modeling competitive firm and bank behavior:

The reason for doing so is to model a central bank that issues a CBDC to citizens and

conducts maturity transformation directly. We, therefore, envision a strategic, consolidated

central bank that assumes the powers of a private bank, the central bank, and firms. The

strategic central bank interacts with strategic CBDC depositors directly and invests in the

real economy. Real asset liquidation acts as a central bank control variable which allows

her to steer the agent’s incentives. Most importantly, we differ from Allen and Gale (1998),

Diamond and Rajan (2006), Skeie (2008), Allen, Carletti, and Gale (2014) by discussing the

tradeoff between the three central bank objectives and the resulting trilemma, see figure 1.

One can think of Skeie (2008) as covering one of the three corners when the price stability

objective is of no concern. By contrast, much of our analysis concerns the impact of that

price stability objective on efficiency and financial stability. We consecutively fix one out of

the three central bank objectives and show that at least one other central bank objective

is violated. Jointly all three results form the main contribution of the paper, the CBDC

trilemma. In a real Diamond-Dybvig model, Ennis and Keister (2009) study the planner’s

time-inconsistency problem when a bank run is happening. They show that asset liquidation

beyond the ex ante optimal amount can be ex post efficient. We study time-consistent

liquidation in section 5.1. Apart from the fact that we employ a nominal demand-deposit

framework, an additional important modeling difference is the absence of a sequential service

constraint in our model.

Our paper contributes to a recent and fast-expanding literature on central bank digital

currencies, such as Berentsen (1998); Böser and Gersbach (2019a,b); Brunnermeier and Nie-

pelt (2019); Chiu, Davoodalhosseini, Hua Jiang, and Zhu (2019a,b); Fernández-Villaverde,

Sanches, Schilling, and Uhlig (2020); Ferrari, Mehl, and Stracca (2020); Keister and Sanches

(2019); Niepelt (2020a,b); Skeie (2019); Whited, Wu, and Xiao (2022); Williamson (2019).

Dirk Niepelt, ed. (2021) provides chapters by various authors, summarizing some of the

frontier research. Auer, Banka, Boakye-Adjei, Faragallah, Frost, Narajan, and Prenio (2022)

investigate the scope of CBDCs to enhance financial inclusion. Allen, Gu, and Jagtiani (2022)

investigate the rise of e-CNY, the Chinese CBDC. Andolfatto (2021), Piazzesi and Schneider

(2020), Gross and Shiller (2021) as well as Burlon, Montes-Galdon, Munoz, and Smets (2022)
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study the deposit base erosion in a dynamic model, when a CBDC is introduced. On the flip

side, Monnet, Petursdottir, and Rojas-Breu (2021) argue that the introduction of a CBDC

will force the banking system to become more competitive. We differ from this literature

by paying particular attention to the asset side of the central bank and its role as financial

intermediator when the deposit base at private banks has eroded and by pointing out the

central bank’s trade-off between efficiency, financial stability, and price stability. Barlevy,

Bird, Fershtman, and Weiss (2022) modify and expand our analysis here. They show that

lending of last resort is possible without creating inflation.

This article is related to the first- and second-generation literature on self-fulfilling cur-

rency crises. Similar to Krugman (1979), a currency crisis is caused due to expectations of

rationally behaving agents. Similar to Obstfeld (1984, 1988, 1996), multiple equilibria can

arise due to self-fulfilling expectations. In Obstfeld (1996), a government holds foreign re-

serves to defend an exchange rate peg. The amount of foreign reserves and domestic currency

holdings by the agents determine how resilient the government is against speculative currency

attacks. High reserves can deter attacks completely whereas lower reserve holdings give rise

to self-fulfilling currency attacks. In a different section of that paper, the government targets

output and exchange rate stability subject to exogenous output shocks. The government can

respond to shocks and maintain output high by devaluing its currency, that is, giving up the

peg. Similarly, Obstfeld (1984) features exogenous shocks to domestic credit. Here instead,

there is no exogenous randomness with output. Instead, output is endogenously set by the

central bank by liquidating real assets following the endogenous spending decision by the

agents (run on currency). Moreover, here, the central bank can deter the run on currency

by credibly committing to abandon the peg whenever output is threatened in the short-run,

see also Velasco (1996). In Calvo (1988), the government cannot commit to the real value

of public debt and can repudiate via either taxation or inflating debt. The agents anticipate

the government’s repudiation, which may cause a self-fulfilling debt crisis. Unlike there,

here, it is not the government but the spending agents who cannot commit. The central

bank takes action, using repudiation as a threat to deter patient agents from running on

the central bank, which requires currency to lose value in the short run. As the main differ-

ence to Calvo (1988), Obstfeld (1984, 1996), and Velasco (1996) our model emphasizes the

maturity transforming role of the central bank for enabling optimal allocations via CBDC

contracts , similar to Diamond and Dybvig (1983). Due to a liquidation externality, output

is an endogenous function of both the agent’s actions and the central bank’s commitment to

either price stability or the implementation of socially optimal allocations. Price stabiliza-

tion via liquidation is costly because premature liquidation increases output at the expense

of reducing output in the long-run. Due to this liquidation externality, short-term inflation
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can be socially optimal since it acts as an off-equilibrium path threat to deter speculation

against the real value of currency.

2 The basic framework

Our framework builds on the classic Diamond and Dybvig (1983) model of banking. Time is

discrete with three points in time t = 0, 1, 2, and no discounting. There is a [0, 1]-continuum

of agents, each endowed with 1 unit of a real consumption good in period t = 0. Agents are

symmetric in the initial period, but can be of two types in period 1: patient and impatient.

An agent is impatient with probability λ ∈ (0, 1) and otherwise is patient. The agent’s type

is randomly drawn at the beginning of period 1 and independently across agents. Types are

private information. Since we have a continuum of agents, there is no aggregate uncertainty

about the measure of patient and impatient types in the economy. Thus, λ also denotes the

share of impatient agents. Impatient agents value consumption only in period 1. In contrast,

patient agents value consumption in period t = 2. To make this precise, consider some agent

j ∈ [0, 1] and let ct represent goods consumed by an agent j at period t. Preferences for

agent j are then given by

U(c1, c2) =

{

u(c1), if j is impatient

u(c2), if j is patient

where u(·) ∈ R is a strictly increasing, strictly concave, and continuously differentiable

utility function over consumption c ∈ R+. We further assume a relative risk aversion,

−x · u′′(x)/u′(x) > 1, for all consumption levels x > 1.

There exists a long-term production technology in the economy. For each unit of the

good invested in t = 0, the technology yields either 1 unit at t = 1 or R > 1 units at t = 2.

Additionally, there is a goods storage technology between periods 1 and 2, yielding 1 unit

of the good in t = 2 for each unit invested in t = 1. Let x1 ≥ 0 denote the agent’s real

consumption when deciding to spend at t = 1, and let x2 ≥ 0 denote the agent’s consumption

when spending at t = 2.

2.1 Optimal risk sharing

Following Diamond and Dybvig (1983), we derive, first, the optimal allocation, when price

stability considerations are absent. The social planner collects and invests the aggregate

endowment in the long technology. Given that all agents behave according to their type, the

7



social planner maximizes ex-ante expected utility from consumption

W = λu(x1) + (1− λ)u(x2) (1)

by choosing (x1, x2), subject to the feasibility constraint λx1 ≤ 1, and the resource constraint

(1−λ)x2 ≤ R(1−λx1). We call W the allocative welfare to distinguish it from the broader

objective in equation (19), when price stability considerations are included. The interior

first-order condition for this problem implies that the optimal allocation (x∗

1, x
∗

2) satisfies:

u′(x∗

1) = Ru′(x∗

2). (2)

Given our assumptions, the resource constraint binds in the optimum

R(1− λx∗

1) = (1− λ)x∗

2. (3)

This condition, together with equation (2), uniquely pins down (x∗

1, x
∗

2) and delivers the

familiar optimal deposit contract in Diamond and Dybvig (1983). Together with R > 1 and

the concavity of u(·), equation (2) implies that the optimal consumption of patient agents is

higher than the consumption of impatient ones: x∗

1 < x∗

2.

Moreover, the depositors’ relative risk-aversion exceeding unity and the resource con-

straint yield x∗

1 > 1 and x∗

2 < R.5

Diamond and Dybvig (1983) show that a demand-deposit contract can implement the

efficient allocation. A key feature of their analysis is the use of a “real” demand deposit

contract (i.e., a contract that promises to pay out goods in future periods). Due to a maturity

mismatch between real long-term investment and real deposit liabilities, the Diamond and

Dybvig (1983) environment, however, also features a bank run equilibrium under which

the social optimum is not implemented. Our main contribution is to show that a nominal

contract can lead to the implementation of the efficient allocation in dominant strategies.

In other words, runs do not occur along the equilibrium path. The key mechanism is that

the central bank can set the price level, thereby controlling the wedge between real long-

term investment and nominal deposit liabilities. The implementation in dominant strategies

comes at a price, requiring flexibility of the price level.

5Following the proof in Diamond and Dybvig (1983),

Ru′(R) = u′(1) +

∫
R

1

∂

∂x
(x · u′(x)) dx = u′(1) +

∫
R

1

(x · u′′(x) + u′(x)) dx < u′(1) (4)

by −x · u′′(x)/u′(x) > 1 for all x.
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3 A nominal economy

Consider now an economy with a social planner that uses nominal contracts to implement

the efficient allocation.

Nominal contracts. The planner offers contracts in a unit of account for which it is

the sole issuer. Because central banks have a monopoly on currency, the planner in our

analysis can be equated with the central bank or any other monetary authority with the

ability to issue currency. In this paper, we refer to the unit of account as a central bank

digital currency (CBDC) or digital euros. For our analysis, we abstract from the existence of

competing national or digital currencies and assume full functionality of the CBDC account

and ledger system.

Agents who sign a contract with the central bank hand over their real goods endowment

and receive CBDC balances in return. The most straightforward interpretation of our en-

vironment is to think of a CBDC as an account-based electronic currency in the sense of

Barrdear and Kumhof (2016) and Bordo and Levin (2017), i.e., to think of a CBDC as being

akin to a deposit account at the central bank. In Section D, we show that the results of our

paper largely carry over to a token-based system or hybrid systems. Agents can spend their

CBDC balances by redeeming them at the central bank in exchange for goods. Spending

therefore reduces the CBDC supply. As with physical euros, we impose the constraint that

agents cannot hold negative amounts of a CBDC.

Timing. At t = 0, the central bank creates an empty account, i.e., a zero-balance CBDC

account, for each agent in the economy. In the benchmark model, we assume that in t = 0,

all agents sell their unit endowment of the good to the central bank in exchange for M > 0

units of digital euros, credited to that agent’s account. The central bank then invests all

goods in the long-term technology. Here, we assume that the central bank is as skilled in

managing assets as the private bank in section 2.6

We consider voluntary participation of the agents in central bank contracts in section B.

In t = 1, agents learn their type and decide whether to spend their CBDC balances, M ,

or to ‘roll them over’. In t = 1, agents also have access to the goods storage technology

between t = 1 and t = 2.7 The central bank contract imposes the constraint that an agent

either spends all of her balances or none at all. Because types are unobservable, the central

bank cannot discriminate between patient and impatient agents to deny a patient agent

6A large literature on CBDC is concerned with the consequences of CBDC-induced disintermediation in
banking which may be harmful because private banks are mor skillful investment managers than central
banks. Our analysis shows that even if the central bank is as skilled as private banks, the introduction of a
CBDC creates conflicts of interest between preventing runs and mantaining price stability.

7Our model is equivalent to Diamond and Dybvig (1983), where storage between t = 1 and t = 2 does
not exist, but where patient agents can also consume in t = 1.
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access to her balances. Let n ∈ [0, 1] denote the share and measure of agents who decide to

spend in t = 1. The central bank observes n and then decides on the fraction y = y(n) of

the technology to liquidate, supplying that according quantity in the goods market at the

market-clearing unit price P1. Notice that through the resource constraint, early liquidation

of the technology reduces the remaining investment and, hence, the supply of goods in t = 2.

That is, there is a real payoff externality, and the central bank’s liquidation choice in t = 1

determines the real supply of goods for both of the periods t = 1 and t = 2. There is

no free disposal, thus, all returns that accrue to the technology in t = 2 are offered in the

goods market for purchase against CBDC. Given n, the central bank also chooses a nominal

interest rate i = i(n) to be paid in period 2 on the remaining CBDC balances. Each digital

euro held at the end of t = 1 turns into 1 + i(n) digital euros at the beginning of t = 2.

Notice that i(n) ≥ −1, given that agents cannot hold negative amounts of digital euros.

In t = 2, the remaining investment in the technology matures so that the central bank

supplies R (1− y (n)) units of goods in exchange for the remaining money balances. The

measure of depositors 1 − n who rolled over each have (1 + i)M digital euros to spend on

goods at a market-clearing price P2.

Definition 1. A central bank policy is a triple (M, y(·), i(·)), where y : [0, 1] → (0, 1] is the

central bank’s liquidation policy and i : [0, 1] → [−1,∞) is the interest rate policy for every

possible spending level n ∈ [0, 1].

Notice that M is not state-contingent. The logic here is that, traditionally, 1 dollar today

is 1 dollar tomorrow. In Section 9, we discuss an extension where we allow M to be state-

contingent. We restrict attention to strictly positive liquidation policies y(·) > 0 to rule out

equilibria where impatient agents do not spend CBDC early since no goods are supplied in

the economy.

Market clearing. In periods 1 and 2, agents spend their money balances for goods in

a Walrasian market. The market-clearing conditions are:

nM
︸︷︷︸

nominal CBDC
supply in t1

= P1 · y(n)
︸︷︷︸

real goods
supply in t1

(5)

(1− n)(1 + i(n))M
︸ ︷︷ ︸

nominal CBDC
supply in t2

= P2 R(1− y(n))
︸ ︷︷ ︸

real goods
supply in t2

, (6)

which take the form of the quantity theory equation in each period. As these equations

reveal, a higher interest rate i(n) results only in a higher price level P2, when n and y(n)
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remain unchanged. This is the standard Fisher relationship between nominal interest rates

and inflation. Quantity theory then implies a higher nominal CBDC supply in t2. Given

aggregate spending n in t = 1, and the central bank’s policy, these conditions determine the

price level, P1 = P1(n) and P2 = P2(n), in each period:

P1(n) =
nM

y(n)
(7)

P2(n) =







(1−n)(1+i(n))M
R(1−y(n))

, y(n) < 1

∞, y(n) = 1, n < 1

∈ [0,∞], y(n) = 1, n = 1

(8)

The special case y(n) = 1, n < 1 denotes the incidence where the goods supply in t = 2 equals

zero while a demand for goods exists. The special case y(n) = 1, n = 1 denotes the incidence

where both the goods supply and the goods demand in t = 2 equal zero. So far, we have not

imposed price stability. Instead, the price levels flexibly adjust in aggregate spending and the

central bank’s liquidation policy. The central bank chooses the initial money supply before

learning the measure of spending in the intermediate period. The central bank, however,

controls the supply of goods, which is chosen conditional on the measure of spending. As

a result, the central bank simultaneously, and interdependently controls the price level in

period 1 and the real value of CBDC at time one versus time two.8 The nominal interest rate

allows the central bank to control the price level in period 2 independently of the price level

in period 1. Because investment is real and since the intermediary is the central bank with a

monopoly on the unit of account in which contracts are denominated, the liquidation policy

is flexible. An additional CBDC euro spent does not necessarily translate into a specific,

proportional raise in asset liquidation. Rather, liquidation is strategically directed to serve

as a monetary policy tool.

Implied real contract. Patient agents have no instantaneous consumption needs in

t = 1. Because storage of consumption goods is possible between t = 1 and t = 2, patient

agents strategically spend their CBDC early or late. The individual real allocation that a

patient agent can afford with her CBDC balances when spending early versus late is all that

matters. The real value of the CBDC balances in t = 1 equals

x1 =
M

P1

, (9)

8A private bank, in contrast, would need to take P1, P2 as given, which together with the observation n
implies a unique liquidation y(n, P1). In a more detailed model, the central bank could determine the supply
of goods by different instruments, such as calling loans to private banks or by moving the policy interest
rate (as in New Keynesian models). The details of how that happens are not central to our argument.
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while the real value of CBDC balances in t = 2 equals

x2 =

{
(1+i(n))M

P2

, P2 < ∞

0, P2 = ∞
(10)

Aggregate spending n and the liquidation policy y (n) jointly determine the allocation of

goods via the market-clearing conditions. The real allocations when spending in t = 1

versus t = 2 can therefore be rewritten via (7) and (8) as

x1(n) =

{
y(n)
n
, n > 0

∞, n = 0
(11)

x2(n) =







1−y(n)
1−n

R, n < 1

0, n = 1, y(n) = 1

∞, n = 1, y(n) < 1

(12)

That is, for given aggregate spending, via her liquidation policy, the central bank directly

sets the real value of CBDC in t = 1 and t = 2. Because all agents that spend CBDC in the

same period have the same nominal expenses, and since the goods market is centralized, the

real goods supply y(n) is equally distributed across all spending agents in period 1, and the

supply R(1− y(n)) is equally allocated to all spending agents in period 2.9

Given an aggregate spending level n ∈ [0, 1], for a patient agent j ∈ [0, 1] it is optimal

to ‘spend’ CBDC money balances M in t = 1 if x1(n) ≥ x2(n) while it is optimal to ‘not

spend’ if x1(n) ≤ x2(n). Since y(n) > 0 for all n ∈ [0, 1], and thus x1(n) > 0 for all n ∈ [0, 1]

‘spend’ is always optimal for an impatient agent. We restrict attention to pure strategy

Nash equilibria with regard to the depositors’ coordination game. Therefore, in the case

x1(n) = x2(n) and λ < n < 1, a mass n − λ of patient agents spends their CBDC money

balances in t = 1 and the remaining mass of agents 1− n does not. This is consistent with

optimal behavior. Our analysis can be extended to allow mixed strategy equilibria via the

law of large numbers applied to the continuum of agents, see (Uhlig, 1996).

To summarize: in t = 0, the central bank announces and commits to a policy (M, y(·), i(·)),

pinning down a spending-contingent real goods supply and an offer of a nominal contract

(M,M(1 + i(·))) in exchange for 1 unit of the good. All consumers accept the contract and

the policy, meaning they have the option to spend either M digital euros in period 1 or

M(1+ i(n)) digital euros in period 2, for every possible level of aggregate spending n ∈ [0, 1].

We discuss voluntary participation in contracts in Section B.

9These equations remain intuitive even if y(n) = 0 or y(n) = 1. Therefore, we assume that they continue
to hold, despite one of the price levels being potentially ill-defined or infinite.
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In t = 1, the aggregate spending level n is realized. Finally, the central bank’s pol-

icy, together with the market-clearing conditions, result in the real consumption amounts

(x1(n), x2(n)) = (M
P1

, M(1+i(n))
P2

) =
(

y(n)
n
, 1−y(n)

1−n
R
)

. Notice that the central bank is fully

committed to carry through with its policy (M, y, i), regardless of which n obtains and

independently of the implications for the price levels (P1, P2). We, therefore, define

Definition 2. An equilibrium consists of a central bank policy (M, y(·), i(·)), aggregate

spending behavior n ∈ [0, 1] and price levels (P1, P2) such that:

(i) The spending decision of each individual consumer is optimal given aggregate spending

decisions n, the announced policy (M, y(·), i(·)), and price levels (P1, P2).

(ii) Given aggregate spending n, the central bank provides y(n) goods and sets the nominal

interest rate i(n).

(iii) Given (n, y(n),M), the price level P1 clears the market in t = 1.

Given (n, y(n), i(n),M), the price level P2 clears the market in t = 2.

As a particular consequence of this equilibrium concept, the price levels (P1, P2) flexibly

adjust to the aggregate spending realization and the announced central bank policy.

4 Implementation of socially optimal allocation

Given the preferences and technology that we postulated above, only the real allocation of

goods matters to the two types of agents. If the central bank acts to enable optimal financial

intermediation as in (Diamond and Dybvig, 1983), the implementation of the optimal risk-

sharing arrangement (x∗

1, x
∗

2) is the central bank’s key objective when determining her policy.

There is, consequently, no additional motive for the monetary authority to keep prices stable.

However, focusing only on real allocations is a narrow perspective. There is a vast litera-

ture arguing in favor of central banks keeping prices stable or setting a goal of low and stable

inflation for reasons that are absent from our model.10 Having to hold cash to accomplish

transactions, such as in cash-in-advance or money-in-utility models, creates a whole range

of distortions that can be minimized by deft management of the price level (think about the

logic behind the Friedman rule). Rather than extending the model to include these consid-

erations, for simplicity, we shall proceed by discussing the tradeoffs between achieving the

optimal real allocation of consumption and the implications of such an effort for the stability

10For instance, stable prices minimize the misallocations created by nominal rigidities as in Woodford
(2003).
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of prices. We return to the price stability objective in section 5.

Runs on the central bank. A nominal contract, per se, does not rule out the possibility

of a run on the central bank. Since impatient agents only care for consumption in t = 1,

every equilibrium will exhibit aggregate spending behavior of at least λ, implying n ≥ λ.11

Patient agents, on the other hand, spend their CBDC balances strategically in t = 1 or t = 2.

They spend in t = 1 if they believe that the central bank’s policy implies a higher real value

of CBDC balances in t = 1 rather than t = 2, x1 > x2. In that case, patient agents will

use the storage technology to consume x1 in period 2. Otherwise, patient agents will find it

optimal to wait until the final period. We say,

Definition 3 (Central Bank Run). A run on the central bank occurs if not only impatient

but also patient agents spend in t = 1, n > λ.

In a bank run, the central bank is not running out of the item that it can produce freely

(i.e., it is not running out of digital money). This feature distinguishes the run equilibrium

here from the bank run equilibrium in Diamond and Dybvig (1983), in which a commercial

bank prematurely liquidates all of its assets to satisfy the demand for withdrawals in period

1, therefore, ultimately running out of resources. Yet, the real consequences of a run on

the central bank with nominal contracts can be similar to its counterpart in the model with

real contracts. Importantly, by equations (11) and (12), a patient agent’s optimal decision

whether to run on the central bank, to spend or not, depends on the central bank’s policy

choices only through the liquidation policy y(·) and not via the nominal elements M and

i(n). By our equilibrium definition, the aggregate spending behavior n has to be consistent

with optimal individual choices. These considerations imply the following lemma.

Lemma 4.1. Given the central bank policy (M, y(·), i(·)),

(i) The absence of a run, n = λ, is an equilibrium only if x1(λ) ≤ x2(λ).

(ii) A central bank run, n = 1, is an equilibrium if and only if x1(1) ≥ x2(1).

(iii) A partial run, n ∈ (λ, 1), occurs in equilibrium if and only if patient agents are indif-

ferent between either action, requiring x1(n) = x2(n).

Given this equilibrium characterization for a given policy-implied real allocation, how

can central bank policy attain the first-best allocation?

11When y(n) = 0, impatient agents are indifferent between spending and not spending. To break ties, we
assume that they spend their CBDC balances in t = 1.
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4.1 Implementation of optimal risk sharing via liquidation policy

By (x∗

1, x
∗

2) =
(

y∗

λ
, R(1−y∗)

1−λ

)

, the feasibility constraint y ∈ [0, 1], and the optimality conditions

in Section 2.1, the implementation of optimal risk sharing requires a liquidation policy to

satisfy

y∗(λ) = x∗

1λ ∈ (λ, 1]. (13)

That is, given that only impatient types spend, the central bank needs to liquidate enough

of the technology to provide the optimal x∗

1. Similarly to Diamond and Dybvig (1983), the

resource constraint y ∈ [0, 1] and x∗

1 > 1 imply that optimal risk sharing is not feasible when

all agents spend: If n = 1, then the goods provision would need to exceed one, 1 ·x∗

1 > 1 but

the central bank cannot liquidate a share larger than one of the entire investment. Combining

the previous derivation with Lemma 4.1, we arrive at the following lemma.

Lemma 4.2. The central bank policy (M, y(·), i(·)) implements optimal risk sharing (x∗

1, x
∗

2)

in dominant strategies if the central bank

(i) sets y(λ) = y∗ for any n ≤ λ.

(ii) sets a liquidation policy that implies x1(n) < x2(n) for all n > λ.

Given that only impatient agents are spending, n = λ, then a policy choice with y(λ) = y∗

implements the social optimum. That is, there is a multiplicity of monetary policies that

implement the first-best since the pair (M, i(·)) is not uniquely pinned down. While the

pair (M, i(·)) does not affect depositors’ incentives, it has an impact on prices via equations

(7) and (8). In the second part of Proposition 4.2, the central bank steers the incentives

of the patient agents. Patient agents can but do not have to spend their CBDC balances

at t = 1, and spend at t = 2 for sure only if for every possible spending level n the real

allocation at t = 2 exceeds the allocation at t = 1. The central bank internalizes her

depositors’ decision making. It observes aggregate spending behavior n before it liquidates

any asset. The central bank can, therefore, liquidate in a spending-contingent way, and is not

committed to liquidating y∗ if also patient agents are spending. Condition (ii) of this lemma

corresponds to the classic incentive-compatibility constraint in the bank run literature: since

the depositors’ and the central bank’s expectations are rational, and since the central bank

policy is announced in t = 0, the depositors correctly anticipate the real value of their CBDC

balances that would follow every aggregate spending behavior n. To deter patient agents from

spending, the central bank can threaten to implement a liquidation policy y(·) that makes

spending early sub-optimal ex-post, i.e., so that x1 (n) < x2 (n) for every n ∈ (λ, 1]. If the

monetary authority can credibly threaten patient agents by announcing such a liquidation
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policy, it deters them from spending ex-ante, and a central bank run does not occur in

equilibrium. Therefore, in the unique equilibrium, only impatient agents spend, all patient

agents roll over, and the social optimum is always attained.

The central bank implements “spending late” as the dominant equilibrium strategy for

patient agents by fine-tuning the real goods supply via its liquidation policy, i.e., by making

real asset liquidation spending-contingent.

Definition 4. We call a central bank’s liquidation policy y(·) “run-deterring” if it satisfies

y(n) < yd(n) for all n ∈ (λ, 1], where the run-deterrence boundary yd(n) is defined by

yd(n) =
nR

1 + n(R− 1)
, for all n ∈ (λ, 1]. (14)

Such a liquidation policy implies that “roll over” is ex-post optimal x1(n) < x2(n) whenever

patient agents are spending early n ∈ (λ, 1].

0 0.2 0.4 0.6 0.8 1
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0.4
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(n
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Run-deterring liquidation limit

nR/(1+n(R-1))

y

Figure 3: The upper bound of a “run-deterring” liquidation policy as a function of n is
plotted in red. The bound starts at λ (for illustration purposes, here 0.25) because “impatient
agents" will always spend. Note the social optimum, y∗, which is at λ in the n-axis and below
the upper bound in the y(n)-axis and, to make interpretation easier, the 45-degree line in
discontinuous segments.

The implementation of a run-deterring policy is only possible because the contracts be-

tween the central bank and the agents are nominal. The liquidation of investments in the real

technology is at the central bank’s discretion, thereby controlling the real goods supply and,

for a given spending level, the real allocation in either time period. A spending-contingent

liquidation policy implies a spending-contingent price level. In the case of real contracts

between a private bank and depositors such as in Diamond and Dybvig (1983), in contrast,

16



the real claims of the agents are fixed already in t = 0, thus pinning down a liquidation pol-

icy for every measure of aggregate spending n. In the case of high spending, rationing must

occur. Similarly, in the case of nominal contracts between a private bank and depositors, the

private bank has to take the price level as given, which then again pins down the liquidation

policy. Alternatively, the price level adjusts via market clearing to high aggregate nominal

spending (Skeie, 2008), while here it can serve as a strategic control variable.

As the main result of this paper,

Corollary 5 (Trilemma part I - No price stability). Every central bank policy (M, y(·), i(·)), n ∈

[0, 1] with

y(λ) = y∗ and y(n) < yd(n), for all n ∈ (λ, 1], (15)

deters central bank runs and implements the social optimum in dominant strategies. Such a

deterence policy choice requires the interim price level P1(n) to exceed the spending-dependent

bound:

P1(n) >
M

R
(1 + n(R− 1)), for all n ∈ (λ, 1]. (16)

Under a credible liquidation policy (15) all agents have a dominant strategy to spend if

and only if the agent is impatient; otherwise they wait. Thus, under rational behavior, runs

do not occur, and by y(λ) = y∗ the social optimum always obtains. That is, a strategic real

supply shock enforced by the central bank causes a demand shock to CBDC spending that

deters runs. The implementation, however, comes at a price. Feasibility of a run-deterring

policy y(·) requires sacrificing price stability. By condition (16), the more agents spend,

the larger the required price level threat to deter runs. Intuitively, to deter high levels of

early CBDC spending, a high CBDC supply must meet a low supply of goods, so that, via

market clearing, each good must have an exorbitantly high price. The threat has to be

credible to deter runs ex-ante. Agents have to believe that ex-post the central bank will give

up price stability whenever realized spending behavior is excessive. Only then do runs and

inflation not occur on the equilibrium path. In that case, inflation arises via (16) only off

the equilibrium path. It is not possible to avoid inflation as in (16) by introducing a nominal

interest rate between t = 0 and t = 1, unless the interest rate is spending-contingent and thus

random in t = 0. A random nominal interst rate brings new challenges, see the discussion

in section 9.

In Diamond and Dybvig (1983), we learned the dilemma that offering the optimal amount

of risk sharing via demand-deposit contracts requires private banks to be prone to runs. Thus,

a bad bank run equilibrium also exists. Our result brings this dilemma to the next level.

If the bank is a central bank equipped with the power to set price levels and control the

real goods supply, then optimal risk sharing can be implemented in dominant strategies such
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that a bank run never occurs, but only at the expense of price stability.

Observe that by the optimality conditions and the resource constraint, y∗ < yd(λ) holds

and that the run-deterrence boundary yd(n) is increasing in n. Therefore, the constant

liquidation policy

y(n) ≡ y∗, for all n ∈ [0, 1] (17)

implements optimal risk sharing in dominant strategies. There, however, exist infinitely

many other run-deterring liquidation policies, see Figure 3.

Besides its simplicity, policy (17) is particularly interesting, since it is equivalent to

the run-proof dividend policy in Jacklin (1987), which implements the social allocation via

interim trade in equity shares. Section A in the appendix discusses the connection of this

result to our model and argues that Jacklin (1987) features a special case of a run-deterring

policy. The policy (17) also implements the same allocation as the classic suspension-of-

convertibility option, which is known to exclude bank runs in the Diamond-Dybvig world.

There is a subtle but essential difference, though, between suspension and our liquidation

policy. Suspension of convertibility requires the bank to stop paying customers who arrive

after a fraction λ of agents have withdrawn. By contrast, in our environment, there is no

restriction on agents to spend their digital euros in period 1, and there is no suspension

of accounts. Instead, it is the supply of goods offered for trade against those digital euros

and the resulting change in the price level that generate the incentives for patient agents to

rather prefer ‘rolling over’. This reasoning also implies that, in our model, (nominal) deposit

insurance will not deter agents from running on the central bank. Only a true commitment

to a run-deterring policy is a guarantee or insurance of a positive real return on CBDC.

More concretely, low liquidation and thus a low goods supply push the price level P1

above an upper bound that is increasing in the aggregate spending.12 The low liquidation

policy, on the other hand, deters large spending ex-ante, such that the high price level (16)

is a threat that is realized only off-equilibrium. But each time we have an off-equilibrium

threat, we should worry about the possibility of time inconsistency. In comparison with the

classic treatment of time inconsistency in Kydland and Prescott (1977), the concern here is

not that the central bank will be tempted to inflate too much, but that it would be tempted

to inflate too little. The central bank can avoid suboptimal allocations by committing to let

inflation grow whenever necessary. A similar concern appears in models with a zero lower

bound on nominal interest rates. Eggertsson and Woodford (2003) have shown that a central

12Our result resembles Theorem 4 in Allen and Gale (1998) and has a similar intuition. In Allen and Gale
(1998), a central bank lends to a representative bank an interest-free line of credit to dilute the claims of
the early consumers so that they bear a share of the low returns to the risky asset. In their environment,
private bank runs are required to achieve the first-best risk allocation.
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bank then wants to commit to keeping interest rates sufficiently low for sufficiently long, even

after the economy is out of recession, to get the economy off the zero lower bound (see also

Krugman, 1998, for an early version of this idea). But once the economy is away from the

zero lower bound, there is an incentive to renege on the commitment to lower interest rates

and avoid an increase in the price level.

In our model, we assume that the central bank fully commits such that the threat is

credible. But what if the central bank is concerned with price stability and, therefore,

refuses to induce a high price level?

5 The classic policy goal: Price level targeting

There are many possible reasons why central banks view the stabilization of price levels or

low inflation rates as one of their prime objectives. This price stability objective is written

explicitly in many central bank’s statutes such as the Federal Reserve’s 1977 “dual mandate”

in the U.S., and Article 127 of the “Treaty on the Functioning of the European Union”

regulating the ECB. It also is a key objective for central banks in a substantial part of the

literature on monetary economics, arising out of concerns regarding nominal rigidities or

the opportunity costs of holding money. Price stickiness in its most extreme form results in

price stability regardless of the spending fraction of agents n. This provides for an alternative

justification for the analysis of full and partial price stability below.

In subsection 5.1, we expand the allocative objective (1) with a penalty for deviating from

a price target for period t = 1. We study the resulting subgame-perfect or time-consistent

equilibria. Subsections 5.2 and 5.3 examine impose a particular form of the price stability

objective for period t = 1 or both periods directly, and analyze the resulting conflicts with

allocative efficiency and financial stability. We discuss, how the interest rate policy achieves

stabilizing the price level in period t = 2, but is ineffective in affecting allocations or the

price level in period t = 1.

5.1 Time-Consistency

It is not plausible that central banks would commit to potentially disastrous outcomes neither

with respect to the allocation nor with respect to prices and inflation, should such runs

actually take place. More formally, let us analyze the subgame of the central bank liquidating

y, after observing the fraction n of agents who go shopping in period 1. All impatient agents

are among them. The remaining agents are patient and put their purchased goods into
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storage. Given n and as in (1), the allocative welfare resulting from liquidating y is

W (y;n) = nu
(y

n

)

+ (1− n)u

(
R(1− y)

1− n

)

(18)

where x1 = y/n are the real resources obtained by an agent spending in period 1 and

x2 = R(1− y)/(1−n) are the real resources obtained by an agent spending in period 2. Our

time-consistency analysis differs from Ennis and Keister (2009) since there the bank follows

a sequential service constraint, and is thus committed to paying x∗

1 to each withdrawing

depositor. As the bank there learns that a run is happening, that is, as she serves n >

λ agents, suspension of convertibility is imposed in an ex post efficient way taking into

account the risk that some impatient types may receive zero. Here, in contrast, CBDC

spending happens fast so that the central bank observes all agents n that go shopping, that

is, she observes the full length of the queue and knows about the occurrence of a run before

liquidating assets. The central bank is, therefore, not committed to paying x∗

1 but reoptimizes

via x1(n) = y/n, taking into account that all shopping agents receive an equal share of the

goods supply and that all impatient types must be among the observed shoppers. Second,

and more importantly, demand-deposits here are nominal, whereas Ennis and Keister (2009)

considers a real banking model. Here, additional asset liquidation has, therefore, a stabilizing

effect on the price level.

The allocative welfare (18) should be viewed as part of a larger macroeconomic envi-

ronment, where price stability is desirable. Formally and following a large monetary policy

literature, we, therefore, expand the allocative objective function (18) with a concern for

price stability, expressed here by a quadratic loss of the resulting price P1(n) = nM/y de-

viating from some target P̄ , where α ∈ [0, 1] parameterizes the importance of the allocative

objective relative to the price stability objective,

V (y;n, P̄ ) = αW (y;n)− (1− α)
(
P1(n)− P̄

)2
. (19)

The solution to the time-consistent equilibrium or subgame-perfect equilbrium is computed

by maximizing this central bank objective function, given n and the price target P̄ .

Consider first the case α = 1, neglecting a concern for price stability. The maximization

problem yields

u′

(y

n

)

= Ru′

(
R(1− y)

1− n

)

. (20)
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Suppose that u(c) is CRRA, u(c) = (c1−η − 1)/(1− η). Equation (20) then yields

y(n) =
n

n+R(1/η)−1(1− n)
(21)

which is neither constant nor proportional to n. The implied period-1 price level is

P1(n) =
Mn

y(n)
= (n+R(1/η)−1(1− n))M (22)

and thus affine-linear in n. The subgame-perfect solution is run-deterring for every n < 113,

since patient agents always receive more, if they wait until period 2. This follows directly

from (20) and the strict concavity of u(·), since R > 1 and x1 and x2 are the arguments of

the derivative u′(·).

The situation changes, when a concern for price stability is included, i.e. when α < 1.

While it is straightforward to calculate the first order conditions, the solution can only be

obtained numerically. We do so in figure 4 for a numerical example with R = 2, λ = 0.25

and picking η = 3.25 for the CRRA utility function u(c) = c1−η/(1 − η) so that x∗

1 = 1.4.

The quantity of money M = 1.4 then implies the period-1 price level P ∗

1 = 1, in case that

n = λ. The plot on the left in figure 4 shows the subgame-perfect liquidation policies yα(n)

for the three weights α = {0.1, 0.6, 1}, and the period-1 price target P̄ = P ∗

1 . They are

compared to the run-deterrence boundary yd(n), plotted in red.
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Figure 4: subgame-perfect liquidation policies and their pricing implication, with a compar-
ision to the run-deterrence boundary.

All subgame-perfect liquidation policies go through the allocative optimal solution y∗ at

13At n = 1, full liquidation y(n) = 1 takes place, and x2 = 0 < x1 per (12).
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n = λ, since the price level coincides with the target P̄ = P ∗

1 at that point14. For α = 1,

the subgame-perfect liquidation policy is below the red line and run-proof. However, as α

decreases and the weight on the price stability objective increases, the liquidation policy

eventually cuts through and exceeds the run-deterrence boundary at values below n = 1

as the left plot of figure 4 shows. This is more clearly visible in the plot on the right for

period-1 prices implied by these liquidation policies. For α = 0.1, the central bank puts a

large weight on stabilizing prices. They thus drop below the price boundary necessary to

deter runs, indicated by the red line. In sum, while α = 0.6 still yields a run-proof liquidation

strategy, this is no longer the case for α = 0.1.

A central bank may thus be concerned in period 0 about setting a price target P̄ for

period 1, which might escalate to runs. The solution is to set the price target P̄ sufficiently

high ex ante in period 0 in order to deter runs15. For each α, compute the minimal P̄ (α) ≥ P ∗

1

compatible with a subgame-perfect run-proof liquidation policy. Figure 5 plots the results16.

For α = 1 and α = 0.6, the price level P̄ = P ∗

1 works fine. However, for α = 0.1, the price

target needs to be adjusted upwards in order to assure that the run-deterrence boundary,

plotted as a red line, is no longer crossed. By design, the equilibrium prices now all lie above

the run-deterring price bound, plotted as a red line, as the right plot of figure 5 shows. This,

however, comes at a cost. As the left plot shows, the liquidation policies y(n;α) no longer

achieve the efficient outcome y∗ for n = λ, when α = 0.1. Note also, that the liquidations

yα(n) and prices P1;α(n) are no longer monotone functions of α for intermediate values of n,

in contrast to figure 4.

Figure 6 compares these run-proof liquidation policies at n = λ and the minimal price

targets P̄ (α) as a function of the weight α on the allocative objective (18). The liquida-

tion increases and the price target declines, until they eventually hit the levels y∗ and P ∗

compatible with the allocative efficient solution.

The limit α → 0 is particularly clean to analyze. In that case, the liquidation policies

become linear until they hit full liquidation. Furthermore, the precise functional form of

incorporating the price stability objective is not important as long as the same limit is

reached. We analyze these policies in the next two subsections.

14This is akin to the situation of “divine coincidence” of New Keynesian models when an output gap of
zero coincides with achieving the inflation target.

15This may, at first glance, appear to be inconsistent with a central bank concerned about price stability.
However, note that this price target is already known in period 0. Thus, if the price stability objective arises
out of costs for adjusting prices between the unmodelled market in period 0 and period 1, prices in period
0 simply need to be set high enough. Alternatively, the central bank can adjust the money supply to make
P̄ compatible with some a priori given price level: it is only P in relationship to M that matters.

16For numerical reasons, we check whether the liquidation policy violates the stability limit at some
n ≤ 0.99. Economically, one may interpret this as a restriction that the central bank is not worried about a
run if it takes more than n = 0.99 agents to spend in period 1 in the first place to make it sustainable.
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parision to the run-deterrence boundary, when P̄ is set minimally so that the liquidation is
run-proof for n < 1.
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5.2 Full price stability

Definition 6. We call a central bank policy

(i) P1-stable at level P , if it achieves P1(n) ≡ P for the price level target P , for all

spending behavior n ∈ [λ, 1].

(ii) price-stable at level P , if it is P1-stable at level P and if it achieves P2(n) ≡ P for

all spending behavior n ∈ [λ, 1).

For the definition of a price-stable policy, we exclude the total run n = 1, by absence of a
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demand for goods in t = 2, see definition 8. In our definition, price stability here is treated

as a mandate and commitment to the price level P even for off-equilibrium realizations of

n. From the definition, price stability at some level P implies P1-stability at P . Hence, the

second price stability criterion is stronger.

What constraints does the price stability objective impose on central bank policy?

Proposition 7 (Policy under Full Price Stability). A central bank policy is:

(i) P1-stable at level P , if and only if its liquidation policy satisfies:

y(n) =
M

P
n, for all n ∈ [0, 1] (23)

implying a real interim allocation:

x1(n) ≡ x1 =
M

P
≤ 1. (24)

(ii) A central bank policy is price-stable at level P , if and only if its liquidation policy

satisfies equation (23), its price level satisfies (24), and its interest policy satisfies:

i(n) =
P
M

− n

1− n
R− 1, for n < 1 (25)

A price-stable liquidation policy (23) requires asset liquidation in constant proportion

to aggregate spending for all n ∈ [0, 1]; see the green line in Figure 7a, where we plot y(n)

for partial versus full price-stable liquidation policies. As a consequence, the individual real

consumption x1, and therefore the real value of CBDC balances are constant, regardless of

aggregate spending behavior. The real allocation, however, undercuts 1 due to the resource

constraint, since the central bank cannot liquidate more than the entire investment. As a

consequence, a fully price stable policy can never implement the social optimum. By equation

(24) and again due to the resource constraint, for a given money supply M , only price levels

P̄ ≥ M can be P1- stable or price-stable. The slope of the liquidation policy is, thus, equal

to or below 1. In other words, the rationing problem shows up indirectly through an upper

bound on all possible price-stable central bank policies, imposing a low goods provision per

realized spending level.

There is a caveat here. Should agents be able to operate the production technology on

their own, then they can always assure themselves a real payoff of 1 in period t = 1 for every

good stored in period t = 0. Thus, the only CBDC contract that prevails under voluntary

participation would be a “green line” coinciding with the 45-degree line and a slope of 1, i.e.
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not run-deterring but can reach the social optimum. Run-deterring policies cannot be fully
price stable while reaching the social optimum, since all fully price stable policies must be
linear in the spending level n while having a slope below or equal to one.

P̄ = M . Slopes below 1 are agreeable, however, if the central bank is the only entity capable

of operating the real production technology or the only entity capable of intermediation with

operators of that technology. The case P̄ = M is further special since it is the only P1- stable

price level target at which the run equilibrium occurs since spending by all agents implies a

total asset liquidation y(1) = 1 = yd(1).

This previous argument provides the second part of our trilemma:

Corollary 8 (Trilemma part II - No optimal risk sharing). If the central bank commits to a

P1-stable policy, then:

(i) Optimal risk sharing is never implemented.

(ii) If P̄ > M , then the no-run equilibrium is implemented in dominant strategies. There

is a unique equilibrium in which only impatient agents spend, n∗ = λ. There are no central

bank run equilibria.

(iii) If the central bank commits to a price-stable policy, then the nominal interest rate in-

creases in n and is non-negative i(n) ≥ 0 for all n ∈ [λ, 1].

Intuitively, no runs take place under a P1-stable policy since the real allocation in t = 1

is too low, causing all patient agents to prefer spending late.
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5.3 Partial price stability

While price stability and the absence of central bank runs are desirable, the slope constraint

(24) and the consequent failure to implement optimal risk sharing allocations is not. The

implementation of the social optimum is impossible under full price stability. Recall that

optimal risk sharing at x∗

1 > 1 triggers potential bank runs in models of the Diamond-Dybvig

variety: thus, part (ii) of the proposition above should not be a surprise. Demanding price

stability for all possible spending realizations of n is thus too stringent. For attaining the

social optimum, we therefore examine a more modest goal: a central bank may still wish to

ensure price stability, but may deviate from its goal in times of crises. We capture this with

the following definition.

Definition 9. A central bank policy is

(i) partially P1-stable at level P , if for all spending behavior n ∈ [λ, 1], either the policy

attains the target P1(n) = P for some price level target P , or aggregate spending satisfies

n > P̄/M . In the latter case, we require full liquidation, y(n) = 1.

(ii) partially price-stable at level P , if for all spending behavior n ∈ [λ, 1], either the

policy achieves P1(n) = P2(n) = P for some price level target P , or aggregate spending

satisfies n > P̄/M . In the latter case, we require y(n) = 1.

The idea of this definition is, for a given spending realization the central bank tries to

attain the target price level whenever possible. When spending is, however, too high, the

price target can no longer be reached in which case the central bank liquidates all assets.

For a graphical illustration, see the blue line in Figure 7a. Obviously, P1-stable central bank

policies are also partially P1-stable, and price-stable central bank policies are also partially

price-stable.

Recall that only price levels above the money supply P ≥ M can attain full price stability.

We therefore now concentrate on lower price levels M > P , since attaining optimality requires

1 < x∗

1 = M/P̄ . We additionally encounter a (weaker) feasibility constraint for partially

price-stable policies. Since the central bank cannot liquidate more than the entire asset,

y(n) = x1n ∈ [0, 1] for all n ∈ [λ, 1], it faces the constraint λx1 ≤ 1. Feasibility, therefore,

implies a lower bound on all possible partially stable price levels, P ≥ λM . Partial price

stability restricts central bank policies the following way:

Proposition 10 (Policy under Partial Price-Stability). Suppose that M > P ≥ λM .

(i) A central bank policy is partially P1-stable at level P , if and only if its liquidation policy

satisfies:

y(n) = min

{
M

P
n, 1

}

. (26)
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(ii) For every partially P1-stable central bank policy at level P , there exists a critical aggre-

gate spending level nc ≡
P
M

∈ (0, 1) such that

(ii.a) For all n ≤ nc, the price level is stable at P1(n) = P and the real goods purchased

per agent in period t = 1 equal x1(n) = x1 = M
P

> 1 while real goods purchased

per agent in period t = 2 equal x2(n) = R(1− x1n)/(1− n).

(ii.b) For spending n > nc, the real goods purchased per agent in period t = 1 equal

x1(n) = 1/n while x2(n) = 0 and the price level P1(n) proportionally increases

with total spending n: P1(n) = Mn.

(iii) A central bank policy is partially price-stable at P , if and only if its liquidation policy

satisfies equation (26) and its interest rate policy satisfies:

i(n) =
P
M

− n

1− n
R− 1, for all n ≤ nc. (27)

For n > nc, there is no supply of real goods in t = 2. Thus, P2 = ∞ and i(n) is

irrelevant.

(iv) For a partially price-stable central bank policy at P , there exists a spending level

n0 =
R P

M
− 1

R− 1
=

Rnc − 1

R− 1
∈ [0, nc), (28)

such that the nominal interest rate turns negative for all n ∈ (n0, nc). For R < M/P ,

the nominal interest rate is negative for all n ∈ [0, nc).

Proposition 10 reflects the central bank’s capacity to keep the price level and the real

interim allocation x1 stable for spending behavior below the critical level nc. Indeed, the

partial price stability policy may arise not from a concern regarding keeping prices stable,

but rather from a commitment of the central bank to offering the optimal allocation x∗

1 to

all n agents shopping in period t = 1: the liquidation policy is then y(n) = min{1, nx∗

1}.

The stabilization of the price level requires the liquidation of real investment proportionally

to aggregate spending by factor M/P . At the critical spending level nc, the central bank

is forced to liquidate the entire asset to maintain the price level P1 at the target. Since

the central bank cannot liquidate more than its entire investment, price level stabilization

via asset liquidation becomes impossible as spending exceeds the critical level nc. For all

spending behavior n > nc, the real allocation to late spending agents is thus zero. Since

liquidation can no longer increase, rationing of real goods occurs in t = 1, meaning that the

price level has to rise in aggregate spending. Since the goods supply in t = 2 is zero, the
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price level in t = 2 explodes. One could argue here, that the price level in t = 2 can be

maintained when setting a negative nominal interest rate at i(n) = −1. That would imply

that zero CBDC balances meet zero goods in the market. But that would just be window

dressing.

The spending level n0 < nc is the level at which the real allocation to early and late

spenders is just equal

x1(n0) = x2(n0) = x̄1. (29)

Therefore, n0 is the spending level at which the red and the blue line in Figure 7b intersect,

and thus a partial run equilibrium exists. Notice that x2(n) declines in n for n ∈ [0, nc]. Thus,

if fewer than measure n0 of agents spend, then not spending early, i.e. ‘roll over’ is optimal

for patient agents. But for all spending realizations n > n0, the allocation at t = 2 undercuts

the allocation at t = 1: x2(n) < x1(n), turning the real interest rate on the CBDC negative,

and causing “spend early” to be a patient agent’s optimal response to an aggregate spending

behavior in excess of n0. Consequently, self-fulfilling runs are possible as in Diamond and

Dybvig (1983), and we obtain the following result as a corollary of Proposition 10:

Corollary 11 (Trilemma part III- Runs on the Central Bank (Fragility)). Under every

partially P1-stable central bank policy with M > P ≥ λM , there is multiplicity of equilibria:

(i) There exists a good equilibrium in which only impatient agents spend, n∗ = λ. In that

case, there is no run on the central bank, the social optimum is attained and the price

level target is attained, P1 = P .

(ii) There also exists a bad equilibrium in which a central bank run occurs, n∗ = 1, the

social optimum is not attained, and the price level target is missed.

Proposition 10 is in marked contrast to Proposition 7. One could argue that when banking

is interesting, i.e., x∗

1 > 1, then the goal of price stability induces the possibility of runs on

the central bank, the necessity for negative nominal interest rates, and the abolishment of

the price stability goal, if a run indeed occurs. In the context of banking with real contracts,

Ennis and Keister (2009) already point out that the depositors’ anticipation of too lenient

but potentially ex post efficient regulatory policies may give rise to bank runs. Here, these

runs have additional implications for the price level.

6 The financial system

Our model abstracts from many features of the financial system. In our baseline setting,

we only have households and the central bank interacting with each other, dropping the
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financial intermediary sector entirely, see Figure 8. This can appear as rather different from

the institutional framework seen in practice and the risk-sharing framework in place. The

purpose of this section is to describe a richer environment featuring firms and banks and to

demonstrate, that it boils down to the model used throughout. Put differently, describing

firms and banks is not needed.

Time0 1 2

Households:

Central 

Bank:

1 good

Cash: M 

n

1-n

invest 1 invest 1-y
Sell y

n M 

(1-n) i M 

Sell R(1-y)

(1-n) (1+i)M

Figure 8: The abstract financial system: Only households and a central bank.

Consider then the financial system containing a continuum of households, a central bank

as well as a competitive sector of a continuum of firms and banks. Firms have access to

the investment technology. Banks can intermediate between the central bank and firms.

Households are shareholders of banks and firms. They receive an exogenously set amount

ǫ > 0 of each unit produced by firms in periods t = 1 and t = 2, where ǫ is very small and will

thus be ignored in the aggregate market clearing equations and resource constraints17. This

provides shareholder households of the patient types an incentive to demand that firms avoid

liquidating goods in period t = 1 to the degree possible18. This is the only shareholder-value

maximizing objective of the firms needed for the rest of the analysis.

At the beginning of t = 0, households are endowed with one unit of a good each. Firms

seek to buy the goods from the households, but need a loan from the bank for doing so.

For making a loan, the bank requires reserves from the central bank. The central bank

provides the bank with the appropriate reserves by creating and employing M units of

CBDC to buy a one-period nominal bond from the bank, see Figure 9. Alternatively, a

2-period callable nominal bond can be employed as well. For simplicity, we assume that the

nominal interest rate from period t = 0 to t = 1 is zero.19 The bank promises to repay the

17More precisely, these equations hold at the limit ǫ → 0.
18Impatient households would like to see liquidation in period t = 1, of course. To solve that, we suppose

that there is a stock market in firm shares in period t = 0, where impatient households sell all their stocks
to patient households, so that only patient households dictate firm policy. We skip the details.

19The interest rate between period 0 and 1 plays no role, only the repayment amount in period t = 1.
Note that this interest rate is generally different from the interest rate i(n) between periods t = 1 and t = 2.
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amount20 M in period t = 1. Firms in turn obtain a loan of M units of CBDC from banks

in t = 0,21 promising to repay an amount M in period t = 1. The firm loan terms and

the bank bond terms are the same due to perfect competition. Each firm now buys goods

from the households, paying M units per household, and invests the goods in the investment

technology. To complete the description of period t = 0, we consider two versions of this

extended model.

Version 1: In the first version, prices in periods t = 1 and t = 2 are flexible. In that

version and in period t = 0, the central bank announces a weakly increasing function

α : [0, 1] → [0, 1], (30)

which maps aggregate firm liquidations y in period t = 1 into the fraction α(y) of bank

bonds to be repaid in period t = 1 without the possibility of a roll-over into period t = 2.

We call the function α(·) the repayment policy. The repayment policy should be viewed

as a stand-in for the standard tools available to central banks to influence credit markets

and loan amounts in response to economic conditions.

Version 2: For the second version of this extended model, prices in period t = 1 are

sticky, and only flexible in period t = 2. In that version, firms set the price at which they

sell goods in period t = 1, P1, in period t = 0. For both versions of the model, the central

bank also sets the interest policy i = i(n) for the nominal interest rate between periods t = 1

and t = 2, in t = 1.

In period t = 1, a fraction n ∈ [0, 1] of households decide to go shopping and spend their

CBDC balances of M . The total amount of spending is therefore given by nM . Consider

the first version, where prices are flexible. There will be a market clearing price P1, which

firms take as given. Suppose that firm j ∈ [0, 1] liquidates an amount yj. Let 0 ≤ y ≤ 1 be

the aggregate amount liquidated by all firms. The central bank demands, that banks repay

a fraction α(y) of their one-period bonds. Put differently, only the fraction 1 − α(y) of the

original period t = 0 bonds is repurchased and thus rolled over by the central bank. The

new bonds are to be repaid in period t = 2 at a nominal interest rate of i(n), set by the

central bank. Banks in turn demand repayment from firms for α(y) of their period t = 0

loans, rolling over the remainder. Recall, that firm shareholders wish the firms to liquidate

as little as possible. Given the market clearing price P1, firm j liquidates an amount yj to

20We restrict attention to symmetric equilibria.
21Alternatively, one can imagine that the central bank creates reserves instead of CBDC, and as banks

draw on their central bank reserves, they turn into CBDC. This is a version of current practice, where banks
can call upon the central bank to obtain cash for their reserves.
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Figure 9: The financial system: Introducing a central bank and open market operations.

exactly satisfy the repayment needs,

α(y)M = P1yj (31)

In the symmetric equilibrium yj = y. Thus, α(y)M = P1y. On the other hand, market

clearing demands that nM = P1y. Thus, given the policy α and the shopper fraction n, the

liquidated amount y must satisfy

α(y) = n (32)

It therefore turns out that the repayment policy α(·) is the inverse α = y−1 of the liquidation

policy y(·) considered above, i.e. n = α(y(n)) for n ∈ [λ, 1], provided that y(·) is continuous

and strictly increasing on this interval22. With this version, a central bank policy (M, y, i)

with an increasing function y(·) turns into an equivalent central bank policy (M,α, i) here,

and vice versa.

Consider next the second version, where the first-period price P1 is set by firms one

period in advance in period t = 0. Total demand by households for goods in period t = 1 is

given by

yd =
nM

P1

(33)

which can, in principle, exceed unity and thus total available goods, even if all goods are

liquidated. We consider two variants. For the first variant, we suppose that firm share-

holders have to pay a huge penalty, if they cannot meet demand. Consequently, firms will

set prices P1 ≥ M in period t = 0, so that they always have sufficient goods to sell and

22If that is not the case, appropriate care has to be taken of jumps and constant or decreasing portions of
y(·). We skip the details.
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demand yd can always be met, regardless of the value n. This variant rationalizes the full

price stability analysis above. For the second variant, if firms set prices P1 < M , assume

that prices P1 adjust, when possibilities for liquidation are exhausted in the aggregate. This

variant corresponds to the partial price stability analysis.

In period t = 2 and in both versions of the extended model, the remaining households

spend their remaining CBDC balances (1 + i(n))M , buying goods from firms, which in turn

uses these proceeds to repay their loans at the banks. Banks then use these repayments to

repay the bonds sold to the central bank.

In section 8, we explain to what extent the same mechanism goes through with cash.

7 Bank Runs versus Spending Runs

Traditionally, deposit insurance or lender of last resort policies have been proposed to address

the bank run issues raised by Diamond and Dybvig (1983). Conceptually, these policy

discussions often view the bank as small relative to a deep-pocketed government, providing

these interventions, and take a partial equilibrium perspective. Such a traditional policy does

not restrict early consumption or behavior but provides additional consumption in t = 2 to

ease roll over incentives.

By contrast, our analysis takes a general equilibrium approach. Providing insurance in

case of a system-wide bank run needs to respect aggregate resource constraints. Diamond and

Dybvig (1983) do so and propose a real tax on withdrawals in period t = 1 to finance deposit

insurance. Their tax depends on the aggregate withdrawals, reduces real asset liquidation,

and can be designed in such a way as to prevent a run. In our framework, such a tax can

be imposed either as a real tax on goods purchased, after the agents have gone shopping, or

as a nominal tax on CBDC balances, before agents get a chance to spend them. The first

case is then a particular form of our liquidation policy, rewritten as selling a gross amount

of goods to agents and reducing it with a real sales tax to the net amount delivered. The

tax-and-deposit-insure scheme of Diamond and Dybvig (1983) as well as our run-deterring

liquidation policies amount to lowering early liquidation or taxing real resources in period

t = 1 due to these general equilibrium constraints, in contrast to the traditional partial-

equilibrium perspective described above. The key insight of our analysis is that such a

run-deterring policy is at odds with the price stability objectives. The second case of a

nominal tax does not deter spending runs on its own in our model. Nominal taxes are a

version of the state-contingent money balances considered in section 9. As we show there,

state-contingent CBDC balances are insufficient on their own. Spending runs can only be
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deterred if in addition the liquidiation policy is run-deterring, independent of a nominal

tax on CBDC balances or state-contingency of CBDC balances. The same logic applies to

nominal bailouts and nominal deposit insurance at date t = 1: whether a spending run can

happen or not depends entirely on the real liquidation policy, not on nominal quantities.

Only real deposit insurance or real lender of last resort policies could prevent runs.

Because this paper takes a general equilibrium apporach, the only way to guarantee high

consumption in the future is by constraining liquidation at the interim period. The liquida-

tion constraint at the interim period can therefore be interpreted as the central bank’s early

intervention to implement a (real) lender of last resort or insurance policy in t = 2.

The provision of real deposit insurance in t = 1 while adhering to an aggregate budget

constraint requires the central bank to liquidate assets in proportion to withdrawals. These

additional liquidations stabilize the price level in t = 1. A central bank’s full price stability

commitment can therefore be understood as a commitment to real t = 1- deposit insurance

provision in a nominal world, but is inefficient, as we have pointed out in Corollary 8.

Maintaining efficiency as well as providing real deposit insurance in t = 1 is bound to fail, if

withdrawals exceed the critical treshold nc, see section 5.3.

As an alternative way of providing real insurance, Keister (2016) proposes to tax depositor

resources in period t = 0 to finance bailouts. The tax there reduces the real claims by

depositing households in t = 1. With sufficient reduction, the tax collected can then provide

real insurance in case of a run. Such a mechanism per se would not necessarily deter spending

runs in the context of our model. That holds because, with or without tax, in our framework

there are no fixed real claims in t = 1: Instead, real goods obtained in t = 1 result from

endogenous purchase decisions and market clearing, given the overall liquidation policy of

the central bank. Rather, the nominal claims remain unchanged in our model, but, as

already explained above, even a spending-contingent change in nominal claims could not

deter spending runs. Because real taxation in t = 0 does not necessarily translate into a

real claim reduction in t = 1, such taxation in t = 0 is ineffective in preventing spending

runs. Moreover, such taxation does not free up additional resources for allocation in form

of a bailout in t = 1. This holds because all resources available for bailing out or insuring

the households in t = 1 are anyways under control of the central bank as a result of its

investments in period t = 0. There are no additional resources in the economy up for grabs.

The discussion above highlights the difference between a more traditional perspective on

bank runs on the one hand and the spending run on the central bank in our analysis on the

other hand. In a traditional bank run, agents run away from deposits into cash. If that bank

is small relative to the aggregate economy, a central bank or lender of last resort can alleviate

such a run by providing emergency lending. This is still true for a system-wide bank run,
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when deposit claims are nominal and the conversion into cash can be satisfied by a central

bank, providing the appropriate quantities of cash. That kind of deposit-to-cash conversion

during a classic bank run keeps the money aggregate M1 = D + C, that is, the sum of cash

and deposits in the economy, constant. If that deposit-to-cash conversion does not result in

higher spending or liquidation by the central bank, aggregate real allocations and the price

level remain unaffected. By contrast, our focus here is a spending run where households

run away from M1 such as currency into goods on an aggregate scale. This now requires

liquidation of long-term projects on an aggregate level. Aggregate resource constraints have

to be obeyed and consequences for the aggregate price level have to be analyzed, and indeed,

we do.

8 Cash versus CBDC

Naturally, the question arises whether cash could replace CBDC in our model while main-

taining the run-deterrence mechanism. Indeed, the distinction between cash, deposits and

CBDC is important when talking about classic bank runs, because the conversion of bank

deposits into cash or CBDC matters. In the context of spending runs, however, there is an

equivalence between CBDC, cash and deposits when assuming that all of them can be used

by HH’s for shopping: all of them enter the money aggregate M1, and conversion between

them keeps M1 constant. By the argument made above, when holding the liquidation policy

and aggregate spending behavior constant, a conversion across CBDC, deposits and cash

does not impact real allocations as long as M1 is constant. Moreover, as long as real allo-

cations are constant, a change in aggregate depositor behavior would not arise. With this

regard, there is equivalence of deposits, cash and CBDC.

The only difference between cash and CBDC is that cash can be a “hidden” or “policy-

proof” part of M1 if cash holdings can neither be augmented nor reduced by a party other

than the holder of cash. As a result, the central bank could neither pay an interest rate

i(n) on cash holdings between t = 1 and t = 2, nor could the central bank adjust the

individual cash balances of the agents in a spending-contingent way. Allover, when cash is

hidden or policy-proof, cash differs from CBDC because CBDC could solve the trilemma via

a spending-contingent money balance while cash could not, see the following section 9.

Last, there exists a considerable difference between CBDC and cash when it comes to

the central bank’s involvement in maturity transformation in the current financial system.

Section 6 describes how a CBDC-issuing central bank can get involved in maturity transfor-

mation by enforcing asset liquidation even in the current intermediated financial system. But

even when disregarding the central bank’s enforcement of asset liquidation, the central bank
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is highly involved in maturity transformation once issuing a CBDC. This can best be seen

when contrasting the CBDC-based financial system with a conventional cash-and-deposits-

based system. Cash currently accounts for a minor fraction of transactions. The bulk of

payments is made with credit cards or directly drawing on bank accounts. For a stylized

version, one may initially abstract from cash entirely. Private banks extend nominal loans

to firms in period t = 0, and provide them with deposit accounts. Since firm projects are

long-term, assume the bank loans are long-term as well. Firms use these deposit accounts to

purchase goods from households and investment. Households in turn end up with demand

deposit accounts at private banks. In period t = 1, impatient households draw on these de-

posit accounts to purchase goods from firms, and firms, in return, use the proceeds to prepay

some of their loans. As explained in section 7, the traditional bank run perspective envisions

patient households to likewise draw on their deposits, but do so for the purpose of obtaining

cash and holding on to cash rather than deposits until period t = 2, motivated by a fear of

a bank default. Bank default can occur since the bank has to liquidate illiquid loans in the

market in return for cash to repay withdrawing depositors. If the required liquidations are

high, illiquidity can push the bank into default. To prevent the bank’s default, the central

bank as a lender of last resort can step in and provide this cash instead, taking the otherwise

illiquid long-term firm loans as collateral, thus, following the prescription by Bagehot. In

this role, the central bank is not involved with questions of aggregate liquidations and is only

involved with managing a portfolio of short-term and long-term loans when called upon to

provide cash. The issues arising from private loan generation and maturity transformation is

left entirely to the private banking sector. The picture does not change much, if we assume

that a small fraction of transactions are made against cash, and it would be sensible to then

introduce corresponding amounts of safe short term assets such as government bonds for the

central bank to buy.

Figure 10: The financial system with CBDC: Households, firms, banks and the central bank.

By contrast, the central bank becomes directly involved with maturity transformation in

the description of the financial system with CBDC. Now, households no longer hold deposits
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at private banks: rather, they hold CBDC accounts at the central bank. Private banks have

become disintermediated, see Figure 10. If a central bank were to continue to insist on only

investing in safe short term assets, it would generate considerable inefficiency (as in our "full

price stability" scenario). If a central bank wishes to maintain efficiency, it will have no

choice but to hold bank bonds on its asset side, which in turn finance the long-term projects

of firms. Put differently, once a CBDC is issued the central bank becomes deeply involved

with issues of maturity transformation and the ensuing challenges of potential bank runs.

They are the focus of this paper.

9 Money balance policy or suspension of spending

It is natural to ask why the central bank cannot resort to a more classic monetary policy to

resolve the trilemma and attain price stability while deterring runs: expansion or reduction

of the money supply.

Specifically and as before, suppose the central bank learns the fraction n agents planning

to go shopping at date t = 1. As before, the central bank sets the goods supply y(n) and

interest i(n) on CBDC balances. Additionally, the central seeks to reduce the amount of

money used for shopping from nM to some nM(n) with M(n) < M in order to reduce the

resulting price level P1(n). We examine, which policy tools can accomplish this.

We first show that a traditional open market operation of changing the money supply per

buying or selling bonds will not solve the trilemma: indeed, it will keep matters unchanged.

We also show that a change on the interest on reserves has no impact.

We next present a way the trilemma can be solved. The solution, however, does not take

the traditional form of selling or buying bonds in exchange for money. Rather, it takes the

highly unusual form of a random money balance adjustment or currency redenomination:

as agents are about to go shopping with what they thought to be M units of CBDC, the

central bank will adjust that balance to M(n) units on the spot. One CBDC dollar in the

account today, in t = 0, is not one CBDC dollar tomorrow. This random adjustment of

individual balances changes the total quantity of money brought to the market, and thus

affects market clearing prices. The policy employed to resolve the trilemma is, hence, more

appropriately called a money balance policy rather than a money supply policy. This is a

new policy tool available to CBDC-issuing central banks and is not available, if cash is used.

Whether this might be a powerful new addition or, instead, a tool wrecking havoc with the

trust in the monetary system is beyond the scope of the paper. We just seek to analyze its

consequences.
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9.1 Open market operations or changing the interest on reserves

do not resolve the trilemma

Consider the following additional open market operation by the central bank, given n and

its other policy choices. In period t = 1, the central bank sells one-period nominal bonds

B > 0 to be repaid in period t = 2 with interest iB. If, for example, B = M −M(n) and if

all agents buy these bonds, then shopping agents are left with the quantity M(n) of money

and only nM(n) gets spent. It might seem that this could work.

Closer examination reveals, that it does not, regardless of the quantity B and nominal

interest rate iB chosen by the central bank. When the central bank sells these bonds, types

and aggregate shopping behavior n have already revealed. Impatient agents have no desire

to buy these bonds. The bonds pay off in period t = 2, when impatient agents have no use

for monetary balances. Rather, impatient types go shopping for goods in t = 1.

For patient agents, consider first the case when iB = i(n). Non-shopping patient agents

are indifferent between holding CBDC balances or holding bonds. They might as well buy

anywhere between none of the bonds or buy as much as they can afford with their CBDC

balances M . The patient agents who plan to go shopping in t = 1 could have chosen to hold

on to their CBDC balances until period t = 2 in the first place. Doing so by purchasing

bonds makes no difference. Moreover, their shopping behavior is already determined. In

equilibrium, patient agents decide to go shopping, if the real resources x1(n) from doing

so exceed the real resources x2(n) they could obtain by waiting. Because bond purchases

do not alter real allocations, and because a bond purchase implies the deferrence of goods

purchases until t = 2, patient types that have decided to go shopping in t = 1 have no

interest in buying bonds. That is, impatient types and patient shopping agents do not buy

bonds voluntarily for sure.

If iB < i(n), then non-shopping patient agents strictly prefer to hold their CBDC balances

rather than purchase bonds, and no other agents would buy the bonds, i.e. the central bank

would not be able to sell its bonds at this promised interest rate. If iB > i(n), then all

non-shopping patient agents will seek to purchase as many bonds as possible, and up to the

amount of their CBDC balances M . If the bond supply is lower than that, the bonds are sold

pro rata or the buyers are chosen at random, to achieve bond market clearing. Impatient

as well as patient shoppers will have no reason to change their shopping behavior, again,

because bond purchases do not alter real allocations. The central bank will not be able to

sell more bonds than the CBDC balances of the non-shopping patient agents.

In all cases, because impatient types and patient shopping agents do not buy bonds, the

supply of CBDC brought to the market in t = 1 is unchanged, and the net result is only a
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higher price level in t = 2, leaving the price level in t = 1 unchanged.

The same holds true with changing the interest on reserves, which here are the CBDC

balances held by agents. By definition, interest rates are set at the start, not at the end of

a contract. The interest rate on reserves is thus simply the policy tool i(n), which we have

been considering all along. We have shown how different i(n) result in different price levels

in t = 2, but neither affect the price level in t = 1 nor the run decisions.

In sum, traditional monetary policy tools such as open market operations or changing

the interest rate on reserves do not affect the price level or run decisions in t = 1.

9.2 Resolving the trilemma

Let us then allow for the possibility that M is state-contingent, i.e., M is chosen as a function

of aggregate spending M = M(n) at t = 1. Therefore, a central bank policy consists of three

functions (M(·), y(·), i(·)).

The analysis is now straightforward and easiest to explain for the case where the liqui-

dation policy is not state-contingent, y(n) ≡ y∗. To maintain price stability at some level

P , market clearing demands

nM(n) = Py∗. (34)

As a result, the total money balances spent in t = 1 stay constant in n, implying

nM(n) ≡ λM(λ), for all n ∈ [λ, 1]. (35)

But spending per agent alters, as does the total money quantity M(n). That is, the central

bank would have to commit itself to reducing the quantity of money in circulation in

response to a random demand shock encapsulated in n: the more people go shopping, the

lower are individual money balances. With policy (34), y(n) ≡ y∗ and i(n) ≡ i∗ chosen so

that P2 = P , the central bank can now achieve full price stability, efficiency, and financial

stability. The CBDC trilemma appears to be resolved. There are several ways of thinking

about this.

State-contingent money balances. A first approach is to adjust the CBDC balances

of agents in a state-contingent manner. This is the baseline description above. Having such

CBDC accounts with random balances is an intriguing possibility: it is quite impossible

with cash but fairly straightforward with electronic forms of currency. One can think here

of instantaneous token-burning or balance augmentation. A state-contingent money balance

means that for given announced shopping behavior n nominal individual balances M(n) that

can be spent on goods are randomly reset and adjusted on the spot (before they are spent).
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The reset of balances is random because n, and therefore M(n) are not known in t = 0.

State-contingent nominal returns. A different interpretation of this approach is to

think in terms of a state-contingent nominal return paid on CBDC accounts between t = 0

and t = 1. Agents will only learn in t = 1 and in dependence on aggregate conditions by

how much their savings from period t = 0 have earned. This is akin to equity rather than

interest-earning nominal accounts because an interest rate would be agreed upon in t = 0

when applied in t = 1, whereas here, there is no agreement in t = 0 but an application in

t = 1 of a random amount, since n is not known in t = 0, see also section A in the appendix.

This instantaneous balance or return adjustment is not in line with the contractual agreement

of a nominal deposit contract which is a fixed nominal claim.

Helicopter drops. A third way to think about the state-contingent nature of M corre-

sponds to a classic monetary injection in the form of state-contingent lump-sum payments

(“helicopter drops”) M(n) − M̄ (or taxes, if negative), compared to some original baseline

M̄ . If one wishes to insist that M(n)− M̄ ≥ 0, i.e., only allowing helicopter drops, then the

central bank would choose M̄ ≤ M(1) as payment for goods in period t = 0 and thus always

distribute additional helicopter money in the “normal” case n = λ in period 1. Notice that

distributional issues would arise in richer models, where agents are not coordinating on the

same action, thereby distorting savings incentives.

Suspension of spending. With an account-based CBDC, there is an additional and

rather drastic policy tool at the disposal of the central bank: the central bank can simply

disallow agents to spend (i.e., transfer to others) more than a certain amount of their ac-

count. In other words, the bank can impose a “corralito” and suspend spending. This policy

is different from the standard suspension of liquidation, as the amount of goods made avail-

able is a policy-induced choice that still exists separately from the suspension-of-spending

policy. Notice also that “suspension of spending” should perhaps not be called “suspen-

sion of withdrawal.” Since there are only CBDC accounts and they cannot be converted

into something else, the amounts can only be transferred to another account. With the

suspension-of-spending policy, the central bank could arrange matters in such a way that

not more than the initially intended amount of money λM(λ) will be spent in period 1; see

equation (35). In practice, the central bank would then either take all spending requests at

once and, if the total spending requests exceeded the overall threshold, impose a pro-rata

spending limit. Alternatively, it could arrange and work through the spending requests in

some sequence (first-come-first-served), thereby possibly imposing different limits depending

on the position of a request in that queue.

State-contingent nominal taxes. The most conventional interpretation may simply

be that existing CBDC balances are taxed in a state-contingent manner, see also (Keister,
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2016). It is generally believed that taxes are hard to adjust very quickly in response to

economic conditions, but these matters are again beyond the scope of this paper.

9.3 Monetary neutrality: why state-contingent money balances alone

cannot solve the trilemma

Last but not least, state-contingent money balances cannot replace the central bank’s liqui-

dation policy as the active policy variable. Not only price targeting, but also the deterrence

of runs is an objective of the central bank for attaining optimal risk sharing.

A state-contingent money balances, however, does not impact the agent’s spending be-

havior: the individual agents exclusively care for their individual real allocation at t = 1,

y/n, versus t = 2, R(1−y)/(1−n). These allocations are independent of nominal quantities

(M,P1). That is, money is neutral. Given a realization of an individual real allocation y/n,

the identity
y

n
=

M(n)

P1

(36)

pins down a relationship that needs to hold between the money supply and the price level

that clears the market. The central bank can implement all money supplies and price level

pairs (M,P1) that satisfy equation (36). And as soon as the price level goal P1 is pinned

down, contingent on the realization y
n
, the money supply that solves equation (36) is unique.

But in equation (36) the classic dichotomy holds, and the choice of the right-hand side

(M,P1) cannot alter the left-hand side, i.e., cannot alter incentives to run. Consequently,

if the central bank wants to impact consumers’ behavior to run on the central bank to im-

plement the social optimum, it can only do so by altering the real goods supply y through

adjustment of its liquidation policy.

In summary. Given the previous discussion, state-contingent money balances strike us

as odd monetary policy, regardless of its specific implementation. First, the usual inclination

for central banks is to accommodate an increase in demand with a rise, rather than a decline

in the money supply. A central bank that reacts to an increase in demand by making money

scarce may undermine trust in the monetary system. In particular, and needless to say, a

spending suspension might create considerable havoc; the experience in Argentina at the end

of 2001 provides ample proof. Even if this was not the case, monetary neutrality implies

that adjusting the money supply does not affect the run decisions of agents. Therefore, we

think that this particular escape route from the CBDC trilemma needs to be treated with

considerable caution, despite the theoretical appeal in that agents in this model only care
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about the real allocation.

10 Conclusion

Diamond and Dybvig (1983) have taught us that the implementation of the social optimum

via the financial intermediation of banks comes at the cost of making these banks prone to

runs. This dilemma becomes a trilemma when the central bank acts as the intermediary

offering a CBDC because central banks are additionally concerned about price stability, and

become exposed to the possibility of spending runs. As our main result, a central bank that

wishes to simultaneously achieve a socially efficient solution, price stability, and financial

stability (i.e., absence of runs) will see its desires frustrated. We have shown that a central

bank can only realize two of these three goals at a time.

Traditional central bank policies such as open market operations or changing the interest

on reserves will fail to solve the trilemma. Classic policies to deter bank runs such as

suspension of convertibility of deposits will fail to deter spending runs. Adjusting CBDC

balances of households on the spot in response to aggregate economic conditions provide a

way out in the context of this model, but is arguably a policy tool that should be used with

great caution.
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Appendix

A Proofs

Proof. [Proposition 7] Proof (i): Via the market clearing condition (7), setting P1(n) ≡ P̄ for

all n requires y(n) = M
P
n, for all n ∈ [0, 1]. Thus, via (11), x1(n) = y(n)/n = M

P
is constant

for all n. Last, since the central bank cannot liquidate more than the entire investment in

the real technology, y(n) ∈ [0, 1] for all n, together with x1 constant requires, in particular,
M
P

= x1 = x1(1) = y(1) ≤ 1. Thus, M ≤ P̄ . Proof (ii): When additionally requiring price

stability, P1(n) = P2(n) ≡ P̄ , the market clearing condition (8) together with (23) yields

(25).

Proof. [Corollary 8] Proof (i): We know that price stability demands x1 ≤ 1 but the social

optimum satisfies x∗

1 > 1. Proof (ii): x1 ≤ 1 implies x2(n) =
1−y(n)
1−n

R = 1−nx1

1−n
R ≥ R > 1 ≥ x.

Since the real value of the allocation at t = 2 always exceeds the real value of the time one

allocation at t = 1, patient agents never spend at t = 1; thus, there are no runs. Proof (iii):

By equation (24), P
M

≥ 1, implies i(n) =
P

M
−n

1−n
R− 1 ≥ R− 1 > 0 for all n ∈ [λ, 1] by R > 1.

Further, P
M

≥ 1 implies that i(n) increases in n.

Proof. [Proposition 10] Proof (i): Equation (26) follows immediately from (7) and the con-

straint y(n) ≤ 1. Proof (ii): In n = nc, we have M
P̄
n = 1. Therefore, nc > 0. By assumption

P̄ < M , thus nc < 1, with nc ∈ (0, 1). Equation (26) implies that x1(n) = y(n)/n is constant

at the level x = M/P , as long as y(n) < 1: this is the case for n < nc. For n ≥ nc, y(n) ≡ 1.

All goods are liquidated, so x1(n) = 1/n. Equation P1(n) = Mn follows from equation

(7). Proof (iii): Equation (27) follows from (8) combined with (26). Proof (iv): This is

straightforward, when plugging in (26) into P2(n) and observing that n0 is positive only for

R > M/P .
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Online Appendix

A Nominal Jacklin (1987): CBDC balances as equity

shares

For the real banking model by Diamond and Dybvig (1983), Jacklin (1987) demonstrates

that optimal risk-sharing can be implemented in a run-proof way if banks offer shares in

equity instead of demandable deposits. For Jacklin’s mechanism to work, the bank pays

real dividends in t = 1 and t = 2 to all agents. The dividend payments are predetermined

in t = 0, and therefore imply a specific amount of asset liquidation, and thus aggregate

consumption in t = 1. To optimize intertemporal consumption, the agent’s in Jacklin can

trade claims on future dividends in return for claims on contemporaneous dividends, which,

by the design of the dividends, happens in an incentive-compatible way depending on each

agent’s type realization.

The Jacklin solution will work here, too, if the central bank provides agents with claims

to the real resources, circumventing nominal currencies altogether. In fact, the liquidation

policy discussed around equation (17), which implements the social optimum in dominant

strategies via CBDC demand deposits, equals the real allocation that is implemented in

Jacklin (1987) via his proposed dividend policy

D1 = λ c∗1 = y∗, for all n ∈ [0, 1]. (37)

That is, the dividend policy proposed in Jacklin (1987) is a special case of a run-deterring

liquidation policy.

The focus of this paper, however, is on a world where a (nominal) CBDC is a priori

necessary for acquiring goods. What if Jacklin’s dividend payments were nominal? Must

inflation arise there too for deterring runs? And what is a run on a bank under trade in

equity shares?

To answer these questions, assume the extreme case where agents hand over their real

goods endowment in t = 0 in return for nominal equity shares in the central bank.23 All

agents receive a nominal dividend payment D1 in units of CBDC at t = 1 and a dividend

D2 units of CBDC in t = 2. The central bank predetermines and thus fixes both nominal

dividends in t = 0. Call (D1, D2) the central bank’s dividend policy. We impose for now

23Recall that, historically, many central banks sold shares to the public at large that paid dividends. Even
today, one can buy shares of the central banks of Japan and Switzerland. Note that claims on fixed nominal
future payments are commonly also called bonds rather than equity. We continue with the terminology
‘equity share’ and ‘dividends’ to stay in line with Jacklin (1987).
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that D1 can only be spent in t = 1 and D2 can only be spent in t = 2, but we will relax

this restriction later. One can implicitly assume here that D1 expires and, unlike a demand-

deposit, cannot be rolled over to t = 2. As before, the central bank pools the real goods for

investment in the real technology in t = 0. In t = 1, types realize and impatient types want

to consume as much as possible in t = 1. Given their type, the agents decide whether to

consume in t = 1 or t = 2. As in Jacklin (1987), a market for trading claims on dividends is

assumed to exist. Unlike in Jacklin (1987), dividends are nominal here and therefore cannot

be consumed directly. Instead, we assume the market for claims opens prior to the goods

market. Agents who want to consume in t = 1 can can sell their claims on a late nominal

dividend D2 in return for additional early nominal dividends D1. Let 1 + q be the price of

one CBDC unit in t = 1 denominated in terms of CBDC units in t = 2. Note, q can be

interpreted as a market interest rate. Let n ∈ [0, 1] denote the measure of agents who choose

to trade their late CBDC dividends D2 for early dividends. The market interest rate q is

pinned down per the bond market-clearing condition

nD2 = (1− n)D1(1 + q). (38)

We assume that an agent can visit the goods market only once, either early in t = 1 or late

in t = 2.24 Therefore, agents that are indifferent between consuming early or late will not

spend early CBDC dividends on goods without trading their claims on late dividends for

additional early dividends. Therefore, and because D1 can only be spent in period t = 1, all

agents that trade claims on late dividends for early dividends also spend the entire balance

of early dividends on goods, that is, n is also the share of agents who spend their nominal

CBDC dividends in the goods market. The central bank observes the share n ∈ [0, 1] of

spending agents and liquidates a share y(n) ∈ [0, 1] of investment to provide goods in the

market. In the goods market, the market-clearing price P1 = P1(n) satisfies

D1 = P1(n) y(n). (39)

In contrast to the nominal demand-deposit model (7), the quantity of money spent in period

t = 1 is now fixed and does not rise in proportion with n. Likewise, in t = 2 the market-

clearing price P2 = P2(n) satisfies

D2 = P2(n)R(1− y(n)). (40)

24In the nominal demand-deposit contract model, this assumption was implicit in the assumption that an
agent can either spend CBDC deposit balances early or late, but not both.
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The t = 1 real allocations per agent equals,

x1 =
y(n)

n
=

D1

P1n
(41)

and in t = 2

x2 =
R(1− y)

1− n
=

D2

P2(1− n)
. (42)

As before, the real allocation only depends on the liquidation policy y and not on nominal

quantities. The definition of a run on the central bank is unchanged but reveals itself

differently. Define

Definition A.1 (Run on equity shares). A run on nominal equity shares is the incidence

where also patient types shop for goods early n > λ.

That is, some patient types are unwilling to trade their early nominal dividends for late

nominal dividends, meaning that trade in dividends between the patient and impatient agent

groups partially collapses. An equilibrium is now defined analogously to definition 2, but

where the central bank policy announced in t = 0 equals (D1, D2, y(·)).

Recall the run-deterrence boundary yd(n) per definition 4. Similar to proposition 5 and

as before, the following result then follows immediately.

Proposition 12 (Deterring runs on equity shares). In the nominal equity share model,

(i) A run on the central bank, n > λ, cannot be an equilibrium, if y(n) < yd(n) for all

n ∈ [0, 1].

(ii) A run on the central bank n > λ is an equilibrium, iff y(n) ≥ yd(n).

Why would a run on nominal equity shares occur here? In Jacklin (1987), dividends are

real and predetermined in t = 0. Therefore, the real value of dividends is fixed there at

one-to-one. By contrast, with nominal dividends, as in our main nominal demand-deposit

model, asset liquidation is here decoupled from the money supply, meaning that the real

value of dividends varies with the liquidation policy. Generically, predetermined nominal

dividends offer no solution for deterring runs, all that matters is the liquidation policy y(n).

The requirement on a run-proof liquidation policy in Proposition 12 (i) implies a partic-

ular design on the real value of early dividends via equation (39).

Remark A.1 (Run-deterring price-dividend pairs). A price-dividend pair (D1, P1(·)) deters

runs on equity shares if

D1

P1(n)
<

nR

1 + n(R− 1)
, for all n ∈ (λ, 1]. (43)
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Note, because the nominal dividend payments are predetermined in t = 0, they cannot

depend on the share of shoppers n. Define the constant liquidation policy

ŷ :=
λR

1 + λ(R− 1)
∈ (0, 1) (44)

as the minimum of the right-hand side of (43).

Comparing the nominal dividend model to the nominal demand-deposit model, there exist

different consequences for prices when comparing equation (39) to equation (7). Because

dividends are predetermined in t = 0 and cannot be stored, we obtain

Lemma A.1 (Price stability). Consider the central bank policy (D1, D2, y(·)) with D1, D2 >

0. Every constant (demand-insensitive) liquidation policy y(n) ≡ y ∈ (0, 1) for all n ∈ [0, 1]

implies constant price levels in t = 1 and t = 2, P1(n) = P̄1, P2(n) = P̄2 for all n ∈ [0, 1].

This result holds via market clearing (39) and (40). By contrast, if agents hold a nominal

CBDC demand-deposit contract and total liquidation is constant in CBDC spending, y(n) =

const, the price level still varies with the measure of goods shoppers because CBDC deposits

can be rolled over to t = 2; see equations (7) and (8).

In particular, the trilemma can now be avoided by fixing the extent of asset liquidation

at the socially efficient level.

Proposition A.1 (No trilemma with nominal dividends). Consider the central bank policy

(D1, D2, y(·)) with D1, D2 > 0:

(i) [run-deterrence and price-stability]: If the central bank sets a constant liquidation policy

y(n) = ỹ ∈ (0, ŷ] for all n ∈ [0, 1], she implements the stable price level P1(n) ≡
D1

ỹ
=: P̄ in

t = 1 for all n ∈ [0, 1] and simultaneously deters runs .

(ii) [run-deterrence, price-stability, and social optimality]: If the central bank sets the con-

stant liquidation policy y(n) = y∗ for all n ∈ [0, 1], not only runs are deterred but the social

optimum is implemented in dominant strategies. In addition, the price target P1 = P̄ is

attained in t = 1. The trilemma vanishes.

(iii) If the late dividend payment D2 additionally satisfies

D2 = P̄R (1− ŷ) (45)

then the price target is also implemented in t = 2.

Result (i), follows directly from Lemmata A.1, A.1, bound (44) and market clearing (39).

Part (ii) follows since y∗ < ŷ is feasible, and since y∗ = λx∗

1.
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To conclude, generically, the nominal version of Jacklin (1987) is prone to runs. Therefore,

whether agents receive CBDC via demand-deposit contracts or dividends makes no difference

as to whether runs occur: all that matters is the liquidation policy y(n). Runs are deterred,

if y(n) < yd(n), for all n ∈ [0, 1]. However, unlike in the nominal demand-deposit model, in

the nominal dividend model the amount of CBDC spent in period t = 1 no longer depends

on the spending fraction of agents. Therefore, price stability can be assured if the liquidation

policy is constant. In particular, constant liquidation y(n) ≡ y∗ now avoids the trilemma

entirely. This, however, corresponds to a very particular monetary system where CBDC

is designed such that it can only be spent in the period when it is obtained as a dividend

payment, that is, CBDC would require an expiration date.

B Voluntary participation in CBDC and competition by

private banks

The main model assumes that all consumers invest in a CBDC. It remains to clarify whether

agents may be better off using the investment technology on their own, rather than relying on

the central bank. This is an important question: if agents were to decide to stay in autarky

and invest in the investment technology directly, they might have incentives to supply goods

at the interim stage, thus, potentially undermining the central bank’s liquidation policy.

Similarly, if the outside option is not autarky but investing in deposits with a different, private

bank, then the liquidation policy of that private bank has implications for the aggregate real

goods supply at the interim stage, again impairing the effectiveness of the central bank’s

policy. We now discuss both.

B.1 Autarky and voluntary participation in a CBDC

Assume all but one agent invest in a CBDC. Assume that this single agent invests in the

real technology at t = 0, yielding storage between t = 0 and t = 1, and yielding R > 1

when held between t = 0 and t = 2. Then, at t = 1, she would learn her type. If she is

impatient, she will liquidate the technology, yielding 1 unit of the real good, and she would

consume her good. She would not sell the good against nominal CBDC deposits, since she

only cares about consumption at t = 1. In the case where she is impatient, she is worse

off in comparison to an agent who invested in CBDCs with the central bank if the central

bank offers optimal risk sharing and manages to implement a run-deterring policy. This is

so, since under the latter, an individual impatient agent gets x∗

1 > 1 real goods.

If the individual agent is patient, she will stay invested in the technology until time two.
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There, the technology yields R > 1 units of the good. The agent will, thus, be better off

than under investment in a CBDC since x∗

2 < R; see Section 2.1. But, in particular, also

in the patient case, the individual agent will not offer goods for sale in the interim period,

since liquidation and selling against a CBDC will only yield x∗

2 in t = 2. Thus, in either

case, patient or impatient, the agent who invests in autarky will not have an incentive to

undermine the central bank’s policy by increasing the goods supply in the interim period.

Does the agent prefer to remain in autarky rather than participating in the CBDC? Ex-

ante, the risk-averse agent cannot know whether she will turn out to be patient or impatient.

Diamond and Dybvig (1983) show that pooling of resources via banking can attain the social

optimum under an absence of runs, while investment under autarky cannot. That is, the

single agent is always better off investing in the CBDC account if the central bank offers

optimal risk sharing and implements a run-deterring policy. Thus, participation in the CBDC

account is individually rational.

What if the central bank runs a policy of full price stability at goal P̄? In that case,

our second main result, Corollary 8, shows that runs on the central bank do not occur but

x1 ≤ 1. Thus, for all x1 < 1, investing in a CBDC is dominated by investing in autarky.

Voluntary participation thus requires x1 = 1 or M = P̄ , implying x2 = R. The agent is

then indifferent between investing in a CBDC and staying in autarky. Yet, if she stayed in

autarky, she will not undermine the central bank’s liquidation policy for the reasons above.

In the case of a partial price-stable policy, the situation is as in Diamond and Dybvig

(1983). Ex-ante, the agent cannot know whether a run occurs or not. Conditional on the

no-run equilibrium, we implement the social optimum and the agent is better off investing

in a CBDC. But conditional on the run equilibrium, she was better off in autarky. From

within the model, it is not possible to attach likelihoods for each equilibrium.

B.2 Can private banks undermine the central bank’s policy?

The question of under what circumstances consumers prefer investing in a CBDC account

with the central bank rather than investing in demand deposits with private banks, with

implications for how both types of banks can coexist, is addressed in Fernández-Villaverde

et al. (2020). In this section, we will analyze private banks’ incentives to provide goods at

the interim stage, conditional on the coexistence of private banks with the central bank.

Goods supply. If the central bank coexists with private banks, it controls the market

of goods only partially, with the remainder of the real goods being supplied by commercial

banks. As before, the measure of agents is normalized to one, divided between a share

α ∈ (0, 1) of agents who are CBDC customers at the central bank and a share 1 − α who
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are customers at private banks. Assume that all agents invest their 1 unit endowment in

their corresponding bank and that the private banks invest in the same asset as the central

bank does. Then, at t = 1, the central bank can supply up to α goods via liquidation, while

private banks can supply up to 1− α goods.

Assume that there is one centralized goods market to which customers and banks have

access. That is, CBDC depositors can spend CBDC balances on goods supplied by private

banks and private bank customers can spend their private deposit balances on goods supplied

by the central bank. Let n denote the total measure of spending agents across both customer

groups at the central bank and private banks, given by

n = αnCB + (1− α)nP , (46)

where nCB is the total share of consumers at the central bank who spend, while nP is the

total share of consumers at the private bank who spend. Given total spending n in period

t = 1, let yP (n) be the share of assets liquidated by private banks. In contrast, let yCB(n) be

the central bank’s liquidation policy, i.e., the share of assets liquidated by the central bank.

The total goods supply y in the centralized market at the interim stage is then:

y(n) = α yCB(n) + (1− α) yP (n). (47)

Private deposit making. To collect investment in t = 0, the private banks offer a

nominal demand-deposit account in return for 1 unit of the real good. The private nominal

accounts are denominated in units of the CBDC. Due to competition with the central bank,

the private contract also offers M units of the CBDC in t = 1 or M(1 + i(n)) units in t = 2.

To service withdrawals in terms of the CBDC, private banks first observe their customers’

CBDC withdrawal needs nP , and borrow the required amount (1 − α)nPM of the CBDC

from the central bank at the beginning of period t = 1. The central bank creates the CBDC

quantity (1 − α)nPM on demand for the private banks. Private banks observe CBDC

spending at the central bank nCB, yielding aggregate spending n. During period one, the

private banks sell the share yP (n) of their real goods investment at price P1 in the centralized

market to all consumers, thus receiving proceeds of P1yP (n)(1 − α) units of the CBDC in

return, where P1 satisfies market clearing:

M
(

(1− α)nP + αnCB

)

= P1

(

yP (n)(1− α) + yCB(n)α
)

. (48)

The private banks use these CBDC proceeds to (partially) repay their loan to the central

bank at zero interest within period one. Since the central bank retains only partial control
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over the goods market, it generically no longer holds nCBM = P1yCB(n). As a consequence,

the private banks can hold positive or negative CBDC balances (1 − α)(P1yP (n) − nPM)

with the central bank between t = 1 and t = 2.

We seek to examine a range of possibilities for the private bank withdrawals nP as well

as liquidation choices yP . Thus, it is useful to impose the condition that private banks make

zero profits, regardless of the “circumstances” nP or their choice for yP . This requires some

careful calculation, which we provide in Appendix C, and only summarize here.

We assume that the central bank charges or pays the nominal interest rate z = (RP2/P1)−

1 on the excess or deficit CBDC balances of private banks, to be settled at the end of t = 2.

Note that z > i, if x1 > 1 and equals the internal nominal shadow interest rate regarding

private bank liquidation choices. Moreover, we impose a market share tax at the end of

period t = 2 in order to compensate for profits or losses due to circumstances nP .

At t = 2, the remaining private customers spend the quantity (1−α)(1−nP )M(1+i(n)) of

private CBDC accounts that the private banks borrow from the central bank at the beginning

of t = 2. The private banks sell their returns on the remaining investment R(1−yP (n))(1−α)

at price P2, where P2 satisfies market clearing

M(1 + i(n))
(

(1− α)(1− nP ) + α(1− nCB)
)

=

P2R
(

(1− yP (n))(1− α) + (1− yCB(n))α
)

. (49)

At the end of t = 2, the private banks settle their accounts with the central bank,

taking into account the remaining balances at t = 1 adjusted for interest, the end-of-period

tax compensating for circumstances nP , the loan at the beginning of t = 2, and the sales

proceeds at t = 2.

Joint liquidation policies. The actions of private banks and the central bank may not

be perfectly aligned when it comes to the liquidation of assets and the supply of goods at

the interim stage. Private banks can have various objectives depending on their ownership

structure and may be subject to regulation of their liquidation policy, both shaping yP .

Independently of whether private banks maximize depositor welfare as in Diamond and

Dybvig (1983), or pursue some other objective, the prevention of runs is key. We have seen

above that runs occur if the provision of real goods at the interim stage is high. Since the

market is centralized, for the spending incentives of bank customers it is irrelevant whether

these goods are provided by the central bank’s or the private bank’s liquidation of assets.

Hence, as before, a run-deterring liquidation policy y(·) is a function of aggregate spending
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n such that the real allocation at t = 1 undercuts the real allocation at t = 2:

y(n)

n
< R

(1− y(n))

1− n
, for all n ∈ [λ, 1]. (50)

Thus, again, a run-deterring policy satisfies

y(n) <
nR

1 + n(R− 1)
, for all n ∈ [λ, 1]. (51)

Perfect coordination. If the central bank and the private banks coordinate perfectly,

i.e., act as one entity, and have full control over the asset liquidation, then all run-deterring

policies are possible, as in the case where the central bank is a monopolist. But why would

they coordinate perfectly? By the market’s centralization, the destiny of the central bank is

intertwined with the destiny of the private banks and both types of banks have an interest

in deterring runs. In particular, the private bank will, therefore, not undermine a central

bank’s run-deterring policy by supplying additional goods when, for instance, prices are

high, since this might cause a run not only on the central bank but also on the private bank.

Coordination is therefore among the equilibrium outcomes.

Runs under imperfect coordination. The following example shows how, for general

liquidation policies yP of private banks, runs can occur. Assume that the private bank, for

some reason, follows a liquidation rule yP (n) ∈ [0, 1] where yP (nb) = 1 for all n ≥ nb where

nb ∈ (0, 1). For instance, nb = 1− α, i.e., the private bank is subject to regulation and has

to liquidate all assets if a fraction of its customers equal to its market share spends. In that

case, as we show next, the central bank’s capacity to deter runs depends on the size of the

private banking sector, i.e., its market power α. Since the central bank can only control the

liquidation of its own investment yCP , via (50) and (47), a run-deterring policy yCB needs

to satisfy:

yCB(n) <
Rn− (1− α)yP (n)(Rn+ 1− n)

α(Rn+ 1− n)
, for all n ∈ [λ, 1]. (52)

Now assume n > nb, such that yP (n) = 1. If in addition the central bank has a small

market share α → 0, then the numerator converges to −(1−n), while the denominator goes

to zero, α(1 + (R − 1)n) → 0. That is, for nb < n < 1, the right-hand side in (52) goes to

minus infinity such that (52) cannot hold. This implies that the run equilibrium exists.

A sufficient condition: Run-deterrence under imperfect coordination. The

example above makes clear that the central bank’s share in the deposit market needs to be

large enough in order to prevent runs. The following proposition provides the appropriate
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bound under which the central bank can ensure the absence of a run, regardless of the private

bank’s liquidation schedule yP : [λ, 1] → [0, 1].

Proposition 13. Suppose that the central bank’s share in the deposit market satisfies

α >
1− λ

(1− λ+Rλ)
. (53)

Then the central bank can always find a run-deterring liquidation policy yCB : [λ, 1] → [0, 1],

regardless of the private bank’s liquidation policy yP : [λ, 1] → [0, 1].

Such an α ∈ (0, 1) exists since 1−λ
(1−λ+Rλ)

∈ (0, 1). Thus, the right-hand side 1−λ
(1−λ+Rλ)

of equation (53) imposes a lower bound on the balance-sheet size of the central bank as

a percentage of the total demand deposit market, such that run-deterring policies remain

possible despite coexisting private banks that are subject to liquidation restrictions.

Proof. [Proposition 13] We need to show that for any private bank liquidation policy yP :

[λ, 1] → [0, 1], there is a central bank liquidation policy yCB : [λ, 1] → [0, 1] so that (52) is

satisfied. To derive a sufficient condition on the central bank’s market share α under which

it can nevertheless implement a run-deterring policy, note that by R > 1, the right-hand

side in (52) declines in the value yp for all α ∈ (0, 1). Thus, if a central bank policy yCP is

run-deterring for yP = 1 for all n ∈ [0, 1], then yCP is also run-deterring for a private bank

policy yP (n) ≤ 1 for all n ∈ [0, 1]. Thus, assume yP = 1 for all n ∈ [0, 1]. Then, a sufficient

condition for a run-deterring policy against all private bank policies yP is:

yCB(n) <
Rn− (1− α)(Rn+ (1− n))

α(1 + (R− 1)n)
= 1−

1− n

α(1 + (R− 1)n)
, for all n ∈ [λ, 1]. (54)

The right-hand side is increasing in n and yCB(n) cannot undercut zero. Thus, a sufficient

condition for the existence of a policy yCB ∈ [0, 1] that satisfies (54) is an α such that:

0 < 1−
1− λ

α(1 + (R− 1)λ)
. (55)

C Private bank accounting

Consider the collective of private banks with market share (1− α) ∈ (0, 1). For the sake of

brevity, we refer to the collective as “the private bank.” A fraction nP of the private bank’s

customers spend in t = 1, while a fraction nCB of the central bank’s customers do so, for a
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total fraction n of all agents n = (1 − α)nP + αnCB. Agents are promised M units of the

CBDC, when spending in t = 1, or M(1 + i) units, when spending in t = 2. The central

bank liquidates yCB goods in period t = 1, while the private bank liquidates yP , for total

liquidation y = (1−α)yP +αyCB. For accounting, we introduce some notation. The private

bank borrows CBDC L1 from the central bank to meet withdrawals at the beginning of each

period, repaying the loan at the end of the period with the sales proceed S1 from selling real

goods. No interest is charged for the within-period loan.

The difference D1 at the end of period t = 1 is kept on account at the central bank,

earning or paying the nominal interest rate z, to be settled at the end of period t = 2.

Further, the bank has to pay a tax τ(1 − α) denoted in CBDC at the end of period 2 (or

receive this as a subsidy, if τ < 0). The interest rate z and the tax τ are chosen by the

central bank (CB in the accounting below), and may depend on nP and choices yP of the

private bank. We seek to calculate x and τ so that the private bank makes zero profits, i.e.,

is left with zero CBDC balances D2 at the end of period 2, after having liquidated and sold

all its remaining goods at the end of period 2. Then:

Accounting in period t = 1:

Loan from CB: L1 = (1− α)nPM

Sales proceeds: S1 = (1− α)P1yP

Difference: D1 = S1 − L1 = (1− α)(P1yP − nPM)

Accounting in period t = 2:

Loan from CB: L2 = (1− α)(1− nP )(1 + i)M

Sales proceeds: S2 = (1− α)P2R(1− yP )

CB account: A2 = (1 + z)D1 − τ(1− α)

Difference: D2 = A2 + S2 − L2

= (1− α)
(

P2R + ((1 + z)P1 − P2R)yP − (1 + i)M − (z − i)nPM − τ
)

Market clearing:

In t = 1: P1y = nM

In t = 2: P2R(1− y) = (1− n)(1 + i)M

Sum (1+ i) times the market clearing equation for P1 with the equation for P2 to obtain
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P2R + ((1 + i)P1 − P2R)y = (1 + i)M . Use the latter equation to replace (1 + i)M in the

last expression for D2 to find

D2

P1(1− α)
= (i− s)(yP − y) + (z − i)(yP − nPx1)−

τ

P1

(56)

where, as usual, x1 =
M
P1

is the amount of real goods acquired by agents in period t = 1 and

where we introduce:

s =
P2

P1

R− 1 (57)

to denote the “shadow” nominal interest rate for private banks, equating liquidating a unit of

the good in t = 1, selling at P1 and investing at the shadow nominal return 1+ s to keeping

the unit of good and thus selling R units at price P2. Notice that y = nx1 and the market

clearing equations imply

1 + s = (1 + i)
1− n

1− x1n
x1 (58)

and, thus, s > i, whenever x1 > 1. In particular, this is the case at the efficient outcome.

We note that s = i, if and only if x1 = 1, which is the maximal full price-stable solution as

well as the market allocation, when agents engage in self-storage.

Suppose now that the private bank sells exactly as many goods as purchased by its

withdrawing customers, i.e., yP = nPx1. Absent τ , equation (56) reveals that the private

bank will make a loss or profit, if x1 6= 1 and if yP 6= y, i.e., nP 6= n. For example, if the

share of private-bank customers who go shopping in t = 1 is larger than the average share

of customers who shop economy-wide, nP > n, and if the allocation achieves x1 > 1 and

thus s > i, then the private bank incurs a loss D2 < 0, absent τ , as the opportunity costs

for servicing agents in t = 1 are high. We shall use these observations to fix the tax τ to

compensate for these losses or profits, and assume that

τ = P1(i− s)(nP − n)x1 (59)

from here onward. This τ depends on the specifics of the bank only via the “circumstances”

nP and does not depend on the choice yP . To take care of the case where yP 6= nPx1, we

use the central bank-account interest rate z. Solving for z per setting D2 = 0 in (56) and

imposing (59) yields the following result, which we formulate as a proposition.

Proposition 14. Suppose τ satisfies (59). Then, D2 ≡ 0 for all 1 ≤ nP ≤ 1 and all

yP ∈ [0, 1], iff z = s.

In sum, taxing the “circumstance” profits per (59) and paying an internal interest rate z

on central bank balances equal to the shadow nominal interest rate s achieves the objective
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that private banks make zero profits, regardless of their circumstances nP and regardless of

their liquidation choice yP .

Alternatively, one could envision some kind of regulation or other policy tool, that en-

forces yP ≡ yCB. In that case, the next proposition is useful. It shows that one can implement

the zero profit solution without a tax, provided the interest rate on reserves D1 coincides

with the nominal interest rate offered on CBDC accounts.

Proposition 15. Suppose the private bank always sets yP ≡ yCB and suppose that τ ≡ 0.

Then, final balances are zero, D2 = 0, if the interest rate on reserves satisfies z = i.

Proof. This follows directly from equation (56).

D Extensions

D.1 Token-based CBDC

With a token-based CBDC, a central bank issues anonymous electronic tokens to agents in

period 1, rather than accounts.25 These electronic tokens are more akin to traditional ban-

knotes than to deposit accounts. Trading with tokens only requires trust in the authenticity

of the token rather than knowledge of the identity of the token holder. Thus, token-based

transactions can be made without the knowledge of the central bank.

With appropriate software, digital tokens can be designed in such a way that each unit

of a token in t = 1 turns into a quantity 1 + i of tokens in t = 2, with i to be determined by

the central bank at the beginning of period t = 2: even a negative nominal interest rate is

possible.26

With that, the analysis in the previous sections still holds, since nothing of essence

depends on the identity of the spending agents other than total CBDC tokens spent in the

goods market. With a token-based CBDC, agents obtain M tokens in period t = 0, and

decide how much to spend in periods t = 1 and t = 2. Thus, the same allocations can

be implemented except for those that require the suspension of spending, as discussed in

Subsection 9.

25This can be done with or without a blockchain. In the second case, a centralized ledger to record
transactions can be kept by a third party that is separate from the central bank. That third party could also
potentially pay interest or impose a suspension of spending. For the purpose of this paper, we do not need
to worry about the operational details of such a third party or to specify which walls should exist between
it and the central bank to guarantee the anonymity of tokens.

26Historically, we have examples of banknotes bearing positive interest (for instance, during the U.S. Civil
War, the U.S. Treasury issued notes with coupons that could be clipped at regular intervals) and negative
interest (demurrage-charged currency, such as the prosperity certificates in Alberta, Canada, during 1936).
Thus, an interest-bearing electronic token is novel only in its incarnation, but not in its essence.
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For the latter, the degree of implementability depends on technical details outside the

scope of this paper. Note that even with a token-based system, the transfer of tokens usually

needs to be registered somewhere, e.g., on a blockchain. It is technically feasible to limit the

total quantity of tokens that can be transferred on-chain in any given period. A pro-rata

arrangement can be imposed by taking all the pending transactions waiting to be encoded

in the blockchain, taking the sum of all the spending requests, and accordingly dividing

each token into a portion that can be transferred and a portion that cannot. It may be that

off-chain solutions arise circumventing some of these measures, but their availability depends

on the precise technical protocol of the CBDC token-based system. In the case where the

token-based CBDC is operated by a centralized third party, such an implementation is even

easier.

D.2 Synthetic CBDC and retail banking

With a synthetic CBDC, agents do not hold the central bank’s digital money directly. Rather,

agents hold accounts at their own retail bank, which in turn holds a CBDC not much different

from current central bank reserves. This may be due to tight regulation by the monetary

authority. The retail banks undertake the real investments envisioned for the central bank

in our analysis above. A synthetic CBDC, therefore, corresponds to the model sketched in

Section B.2 with α = 0.

The key difference from the current cash-and-deposit-banking system is that cash does not

exist as a separate central bank currency or means of payment. That is, in a synthetic CBDC

system, agents can transfer amounts from one account to another, but these transactions are

always observable to the banking system and, thereby, the central bank. Likewise, agents

(and banks) cannot circumvent negative nominal interest, while they could do so in a classic

cash-and-deposit banking system by withdrawing cash and storing it.

For the purpose of our analysis, observability is key. Our analysis is relevant in the case

of a systemic bank run, i.e., if the economy-wide fraction of spending agents exceeds the

equilibrium outcome. Much then depends on the interplay between the central bank and

the system of private banks. For example, if the liquidation of long-term real projects is up

to the retail banks, and these retail banks decide to make the same quantity of real goods

available in each period, regardless of the nominal spending requests by their depositors,

then the aggregate price level will have to adjust. The central bank may seek to prevent this

either by imposing a suspension of spending at retail banks or by forcing banks into higher

liquidation of real projects: both would require considerable authority for the central bank.

Proposition 13, for instance, says that with α = 0, the central bank alone cannot implement
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a run-deterring policy when offering a synthetic CBDC. Run deterrence then requires retail

banks to control liquidation in a particular way.
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