
Munich Personal RePEc Archive

A new characterization of consumer

heterogeneity in a growing economy

Maebayashi, Noritaka and Murahara, Hideki

The University of Kitakyushu

6 October 2022

Online at https://mpra.ub.uni-muenchen.de/114887/

MPRA Paper No. 114887, posted 12 Oct 2022 04:55 UTC



A new characterization of consumer heterogeneity in a

growing economy

Noritaka Maebayashi ∗ Hideki Murahara †

October 6, 2022

Abstract

Caselli and Ventura (2000) introduced various sources of consumer heterogeneity, while

studying changes in consumption, assets, income distributions, and preferences for public

services and focusing on their average values to determine the features of the representative

economic behavior. Based on this model, we propose a new approach that features the eco-

nomic behavior of heterogeneous consumers. We introduce the view of direction vectors

representing the principal components derived from the main sources of consumer hetero-

geneity rather than considering their average values. We expect that our progressive approach

will provide us with further insight into the essence of what we have been hitherto consider-

ing from an average perspective.

1 Introduction

Caselli and Ventura (2000) introduced various sources of consumer heterogeneity into a repre-

sentative consumer growth model and provided some tools for studying changes in consumption,

assets, and income distributions. Their study focused on the average values and described the

applicability of their technique to the Ramsey–Cass–Koopmans and Arrow–Romer models.

Building on their studies, we propose a new approach to consider consumer heterogeneity by

borrowing the idea of principal component analysis. We introduce directional vectors that capture

the main characteristics of the economy and the evaluation determined by these vectors based on

preferences for the main components of the economy, namely, assets, wages, consumption, and

public services. Accordingly, our approach differs from that of Caselli and Ventura (2000) and

other economists who have focused on the average values to consider the representative features

(behavior) of the economy.

Herein, we explain our new insights that characterize the economy by direction vectors and

evaluation quantities rather than by the average values. For simplicity, let us consider the case

of two heterogeneous consumers in one period. We denote assets, wages, after-tax consumption,

and public service preferences by A(a1, a2), W (ω1, ω2), C(c1, c2), and B(b1, b2), respectively.
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When considering the characteristics of each of these quantities (e.g., attributes a1 and a2), one

of the most natural approaches is to assess their average values (e.g., a1/2+a2/2). Although this

approach is somewhat reasonable, it is inadequate because it considers assets, wages, consump-

tion, and preference for public services separately.

However, in practice, these four types of quantities can be related to one another. For two

heterogeneous consumers, if we assume that these quantities are related, we should consider the

linear combination of the amounts (e.g., p1a1 + p2a2 with p1 + p2 = 1) as a generalization of the

average. In other words, it is necessary to determine the coefficients appropriately, say p1 and p2,
from the relationship between them, thereby establishing the characteristics of the economy.

Additionally, various quantities, such as assets, are usually measured (determined) based on

their origin. Measuring distances from the new origin O′ = (o′1, o
′
2) with o′j = (aj + ωj + cj +

bj)/4 (j = 1, 2) is rather tractable because point O′ can be regarded as the center of four essential

indicators of the economy (i.e., assets, wages, consumption, and preferences for public services).

From this perspective, we consider p1ã1 + p2ã2, p1ω̃1 + p2ω̃2, p1c̃1 + p2c̃2, p1b̃1 + p2b̃2 instead

of p1a1 + p2a2, p1ω1 + p2ω2, p1c1 + p2c2, p1b1 + p2b2, where ãj = aj − o′j, ω̃j = ωj − o′j, c̃j =

cj − o′j, b̃j = bj − o′j for j = 1, 2.

Thus, how should the values of p1 and p2 be determined? The method proposed herein entails

determining p1 and p2 by the straight line L(1) (or a direction vector (p1, p2)) presented as follows

and observing these four quantities (see Figure 1).

1. Let L(1) be a straight line passing through O′ and let points A(1), W (1), C(1), and B(1) be

the feet of perpendicular from the points A, W , C, and B to the line L(1), respectively.

2. We find that the distances from O′ to points A(1), W (1), C(1), and B(1) are p1ã1 + p2ã2,
p1ω̃1 + p2ω̃2, p1c̃1 + p2c̃2, and p1b̃1 + p2b̃2, respectively (see Section 3 for details).

3. We can uniquely determine the straight line L(1) such that the variance of these values is

maximal. Coefficients p1 and p2 are obtained because determining p1 and p2 is identical to

determining L(1).

The reasons for considering such a straight line are as follows (more details are provided in Sec-

tion 3):

1. Our approach determines p1 and p2 to maximize the variance of four values (p1ã1 + p2ã2,
p1ω̃1 + p2ω̃2, p1c̃1 + p2c̃2, and p1b̃1 + p2b̃2). Therefore, we can see the differences between

assets, wages, consumption, and preference for public services more clearly than for any

other pi’s.

2. Considering the straight line L(2) perpendicular to L(1) and employing the same approach

to find L(1), we can recover the original information fully.

3. We also find the contribution of p1ã1 + p2ã2, p1ω̃1 + p2ω̃2, p1c̃1 + p2c̃2, and p1b̃1 + p2b̃2
from the original information.
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Figure 1: Illustration of our new approach

Note: In Section 1, we regard pj as p
(1)
j in Figure 1 for simplicity. Other terms that are not

explained in Section 1 but are presented in Figure 1 are explained in Section 3.

2 A growing economy with heterogeneous households in Caselli

and Ventura (2000)

This section provides an overview of Caselli and Ventura’s (2000) model. We borrow the hetero-

geneous household model developed by Caselli and Ventura (2000) because it is introduced in a

familiar textbook, Barro and Sala-i-Martin (2004), in the literature on economic growth.

Consider an economy with infinitely lived heterogeneous households, indexed by j = 1, ..., J .

We assume that J is large and each household is so small that the choices of each household have

a negligible effect on aggregate quantities and prices. Let a(t) = (a1(t), . . . , aJ(t)) ∈ R
J be the

vector of the stock of financial assets of consumers, c(t) = (c1(t), . . . , cJ(t)) ∈ R
J the vector of

after-tax consumption, (β1, . . . , βJ) ∈ R
J the vector of the value attached to the average public

goods g(t), b(t) = (b1(t), . . . , bJ(t)) = (β1g(t), . . . , βJg(t)) ∈ R
J the vector of the value of the

average publicly provided goods received by the household in terms of the private consumption

good, (π1, . . . , πJ) ∈ R
J the vector of skill level of the agent, and ω(t) = (ω1(t), . . . , ωJ(t)) =

(π1w(t), . . . , πJw(t)) ∈ R
J the vector of the average after-tax wage rate, where w(t) is the wage

rate. Without loss of generality, we assume that (1/J)
∑

j βj = 1 and (1/J)
∑

j πj = 1.

The utility of household j is given byUj =
∫∞

0
uj(cj(t), bj(t))e

−ρtdt,whereuj(cj(t), bj(t)) =
(

(cj(t) + bj(t))
1−θ − 1

)

/(1− θ). Here, θ > 0 and ρ > 0 are the inter-temporal elasticity of sub-

stitution and subjective discount rate, respectively. We assume that each household j supplies
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one unit of labor inelastically. Thus, household j faces the following budget constraint:

ȧj(t) = r(t)aj(t) + ωj(t)−
cj(t)

p
, (1)

where r(t), τc ∈ (0, 1), and p = 1 − τc are the interest rate, consumption tax rate, and ratio be-

tween after-tax and before-tax consumption, respectively. Let Cj(t) be before-tax consumption.

Then, cj(t) = (1 − τc)Cj(t). We assume that both τc and p are constant over time as in Caselli

and Ventura (2000).

Household j maximize utilityUj subject to (1), by taking r(t), ωj(t), aj(0), bj(t) and constant

parameters (i.e., ρ, θ, and p) as given. The first order condition is:

ċj(t) =
r(t)− ρ

θ
(cj(t) + bj(t))− ḃj(t) (2)

and the usual transversality condition: lims→∞ aj(t) exp
(∫ s

t
−r(v)dv

)

≥ 0.1

We define the average after-tax consumption as c(t) = (1/J)
∑

j cj(t). The average public

consumption g(t) is financed by revenue from consumption tax
∑

j τcCj(t):

g(t) =
1

J

∑

j

τcCj(t) =
1− p

p

1

J

∑

j

cj(t), (3)

There are many identical competitive firms. Each firm produces a single final good y(t) using

the average stock of capital k(t) and labor l(t) according to a constant-returns-to-scale technology

y(t) = f(k(t), l(t)), (4)

which is twice differentiable in k(t) and l(t) and satisfies fk(k, l) = ∂f(k, l)/∂k > 0, fl(k, l) =
∂f(k, l)/∂l > 0, ∂2f(k, l)/∂k2 < 0, and ∂2f(k, l)/∂l2 < 0. Profit maximization yields the

interest and wage rates as r(t) = fk(k(t), l(t)) and w(t) = fl(k(t), l(t)), respectively, which

together with the definition of ωj(t) leads to ωj(t) = πjfl(k(t), l(t)).
A competitive equilibrium of this economy consists of paths of {cj(t), aj(t), bj(t), ωj(t), r(t), c(t), k(t)}

∞
t=0

such that each household j maximizes its utility given the initial asset holding aj(0), while tak-

ing the time path of prices {w(t), r(t)}∞t=0 as given. firms maximize their profits by taking

{w(t), r(t)}∞t=0 as given, and {w(t), r(t)}∞t=0 are such that all markets (labor, asset, and final

goods markets) clear as l = 1, (1/J)
∑

j aj(t) = k(t), and

k̇(t) = f(k(t), 1)−
c(t)

p
. (5)

Here, (5) is obtained by averaging (1) and using (3), (4), (1/J)
∑

j aj(t) = k(t), r(t) = fk(k(t), 1),
ωj(t) = πjfl(k(t), 1), and (1/J)

∑

j πj = 1. Averaging (2) and considering that (1/J)
∑

j bj(t) =

1Integrating (1) and (2) yields aj(t) =
∫

∞

t

(

cj(s)
p

− ωG(s)
)

exp
(

−
∫ s

t
r(v)dv

)

ds and

cj(t) + bj(t)

=

[∫

∞

t

exp(
∫ s

t

(1−θ)r(v)−ρ

θ
dv)

p
ds

]

−1[

aj(t) +

∫

∞

t

(

ωj(s) +
bj(s)

p

)

exp

(

−

∫ s

t

r(v)dv

)

ds

]

.
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g(t), (3), and r(t) = fk(k(t), l(t)) is derived as

ċ(t)

c(t)
=

fk(k(t), 1)− ρ

θ
. (6)

The uniqueness of {aj(t), cj(t), bj(t), ωj(t), r(t), k(t), c(t)} for all t is shown by Caselli and

Ventura (2000). Using this, we propose a new approach to characterize the economy with het-

erogeneous agents by the “direction vectors” and those evaluation quantities rather than by the

“average values.”

3 A new approach to characterize a (growing) economy with

heterogeneous agents

In Section 1, we discuss the importance of adequately providing the coefficients p1x1+p2x2 (xj ∈
{ãj, ω̃j, c̃j, b̃j}, j = 1, 2) instead of considering the average to understand the characteristics of

assets, wages, after-tax consumption, and public service preferences. In this section, we explain

the following in more generalized situations (J heterogeneous consumers at time t):

1. The coefficients p
(i)
1 , . . . , p

(i)
J of

∑

j p
(i)
j xj (xj ∈ {ãj, ω̃j, c̃j, b̃j}, i, j = 1, . . . , J) should be

determined by the eigenvectors of the distribution matrix S defined later.

2. We can obtain the contribution ratios, that is, what percentages of information can be

known by
∑

j p
(i)
j xj , from the eigenvalues.

Let

o′j(t) =
aj(t) + ωj(t) + cj(t) + bj(t)

4
(j = 1, . . . , J),

O′(t) = (o′1(t), . . . , o
′
J(t)).

Here, consider a straight line L(i)(t) passing through O′(t) drawn on the J-dimensional space,

and the foot of the perpendicular from the four-point

x̃(t) = x(t)−O′(t) (x ∈ {ã(t), ω̃(t), c̃(t), b̃(t)})

to L(i)(t) defined as A(i)(t), W (i)(t), C(i)(t), and B(i)(t), respectively. Let p(i) = p(i)(t) =

(p
(i)
1 (t), . . . , p

(i)
J (t)) ∈ R

J be the unit direction vector of line L(i)(t). Note that
∑

j p
(i)
j xj =

x̃ · p(i), and that p(i) depends on t. However, we often omit it for notational simplicity and the

same shall apply to other variables.

First, let us consider L(1)(t) which maximizes the variance of the distances from the origin to

points A(1)(t), C(1)(t),B(1)(t), and W (1)(t). Second, take L(2)(t) perpendicular to L(1)(t), which

maximizes the variance of the distances from the origin to points A(2)(t), W (2)(t), C(2)(t), and

B(2)(t). Third, take L(3)(t) perpendicular to L(1)(t) and L(2)(t), which maximizes the variance

of the distances from the origin to points A(3)(t), W (3)(t), C(3)(t), and B(3)(t). Similarly, we

consider the other lines L(4)(t), . . . , L(J)(t).
The position vectors of feet A(1)(t), W (1)(t), C(1)(t), and B(1)(t) become

(

x̃ · p(1)
)

p(1) (x ∈ {ã(t), ω̃(t), c̃(t), b̃(t)}).
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Note that the positions of A(1)(t), W (1)(t), C(1)(t), and B(1)(t) depend on L(1)(t). Similarly, the

position vectors of feet A(2)(t), W (2)(t), C(2)(t), and B(2)(t) become
[(

x̃−
(

x̃ · p(1)
)

p(1)
)

· p(2)
]

p(2) =
(

x̃ · p(2)
)

p(2) (x ∈ {ã(t), ω̃(t), c̃(t), b̃(t)}),

and so on. Thus, as the vectors of feet A(i)(t), W (i)(t), C(i)(t), and B(i)(t), we put

x̃(i) =
(

x̃ · p(i)
)

p(i) =
(

p(i)x̃T
)

p(i) (x ∈ {ã(t), ω̃(t), c̃(t), b̃(t)}).

Therefore, variance the V (i)(t), more precisely the variance of “p(i)ã(t)T , p(i)c̃(t)T , p(i)b̃(t)T ,

and p(i)ω̃(t)T ,” is given by

V (i)(t) =
1

4

∑

x∈{ã(t),ω̃(t),c̃(t),b̃(t)}

(

p(i)(t)xT
)2

,

where vT is the transpose of vector v. Next, we define the covariance functions

sj,j′(t) = ãj(t)ãj′(t) + c̃j(t)c̃j′(t) + b̃j(t)b̃j′(t) + ω̃j(t)ω̃j′(t)

for j, j ′ = 1, . . . , J , and put

S(t) =















s1,1(t) s1,2(t) · · · · · · s1,J(t)
s2,1(t) s2,2(t) s2,J(t)

...
. . .

...
...

. . .
...

sJ,1(t) · · · · · · · · · sJ,J(t)















.

Note that S(t) is a symmetric matrix. Additionally,
(

p(i)xT
)2

= p(i)
(

xxT
) (

p(i)
)T

for x =
(x1, . . . , xJ) and S =

∑

x∈{ã(t),c̃(t),b̃(t),ω̃(t)} xx
T as

(

p(i)xT
)2

=
(

(p
(i)
1 , . . . , p

(i)
J )(x1, . . . , xJ)

T
)2

= (p
(i)
1 , . . . , p

(i)
J )
(

(x1, . . . , xJ)
T (x1, . . . , xJ)

)

(p
(i)
1 , . . . , p

(i)
J )T

= p(i)
(

xTx
) (

p(i)
)T

and

S(t) = ã(t)T ã(t) + ω̃(t)T ω̃(t) + c̃(t)T c̃(t) + b̃(t)T b̃(t)

=
∑

x∈{ã(t),ω̃(t),c̃(t),b̃(t)}

xTx.

Then, we have

V (i)(t) =
1

4

∑

x∈{ã(t),ω̃(t),c̃(t),b̃(t)}

(

p(i)xT
)2

=
1

4

∑

x∈{ã(t),ω̃(t),c̃(t),b̃(t)}

p(i)
(

xTx
) (

p(i)
)T

=
1

4

(

p(i)(t)
)

S(t)
(

p(i)(t)
)T

.
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To find the maximal value of V (i)(t) under the constraint
∣

∣p(i)
∣

∣ =
∑J

j=1

(

p
(i)
j

)2

= 1, let

us consider the Lagrangian function. Here, we shall fix the parameter t and proceed with the

discussion, and then vary t.

L(p(i);λ(i)) =
1

4
p(i)S

(

p(i)
)T

+ λ(i)

(

1−
J
∑

j=1

(

p
(i)
j

)2
)

.

From the Leibniz rule, it follows that

∂

∂p
(i)
j

L(p(i);λ(i)) =
1

4

(

∂

∂p
(i)
j

(

p(i)S
)

)

(

p(i)
)T

+
1

4
p(i)S

(

∂

∂p
(i)
j

(

p(i)
)T

)

− 2p
(i)
j λ(i)

=
1

4
((0, . . . , 0, 1, 0, . . . , 0)S)

(

p(i)
)T

+
1

4
p(i)S(0, . . . , 0, 1, 0, . . . , 0)T − 2p

(i)
j λ(i)

=
1

4

(

(sj,1, . . . , sj,J)
(

p(i)
)T

+ p(i)(s1,j, . . . , sJ,j)
T
)

− 2p
(i)
j λ(i)

=
1

2

(

J
∑

j′=1

p
(i)
j′ sj,j′ − 4p

(i)
j λ(i)

)

.

Thus, the condition ∂L(p(i);λ(i))/∂p
(i)
j = 0 is equivalent to

∑J

j′=1 p
(i)
j′ sj,j′ = 4p

(i)
j λ(i). Consid-

ering all the situations for j = 1, . . . , J , we obtain the following equation:

S
(

p(i)
)T

= 4λ(i)
(

p(i)
)T

(i = 1, . . . , J). (7)

From (7), the eigenvalues and corresponding eigenvectors of matrix S are 4λ(i) and
(

p(i)
)T

, re-

spectively. Because matrixS is a real symmetric matrix (or a symmetric matrix with a real-valued

function represented by t), eigenvalues become real (or a real-valued function of t), and eigen-

vectors for different eigenvalues are orthogonal to each other (see, Axler (2015) for example).

By multiplying p(i) from the left to (7), we also find V (i)(t) = λ(i)(t).
In summary, we demonstrate the following essential points. First, because p(1), . . . ,p(J) sat-

isfy V (1) ≥ · · · ≥ V (J), the coefficient p(1) of
∑

j p
(1)
j xj(= x̃ ·p(1)) is the most important among

p(1), . . . ,p(J), and the importance decreases in order of p(2), p(3), and so on. Second, each p(i)

is orthogonal to one another, and therefore,
∑

j p
(i)
j xj is an economic indicator with character-

istics of various variables. Furthermore, because
∑

j p
(i)
j xj is continuous in t, it represents the

essential economic indicators in each period t. Finally, the eigenvalues λ(i)’s of S equal to V (i)’s,

indicating that if the contribution ratio of each
∑

j p
(i)
j xj is defined as V (i)/(V (1) + · · ·+ V (J)),

the ratio is also obtained by λ(i)’s.

4 Conclusion

In this study, we introduce new J quantities
∑

j p
(i)
j xj (i = 1, . . . , J) that capture the character-

istics of the economy, which differ from the averages. These J quantities represent the properties

of the economy with contributions λ(i)/(λ(1) + · · · + λ(J)). Our approach can be applied to

a growing economy in heterogeneous countries (e.g., Ventura (1997)) and growth models with

heterogeneous preferences for leisure (e.g., Garcı́a-Peñalosa and Turnovsky (2008)).
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