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1 Introduction

The burgeoning literature on contests analyzes situations where players compete with

sunk resource investments in order to win some form of prize. This successful litera-

ture has considered many applications including R+D, rent-seeking, political campaigns,

rewards in organizations, litigation, contract tendering, and conflict.1

In practice, in addition to the associated investment costs, players often face specific

costs of participating in a contest such as entry fees, set-up costs, foregone outside options

or minimum required outlays. In these cases, as we later show, the outcome of a contest

can depend upon what we term as the ‘default allocation’ - what happens to the prize

in the event that no player actively competes. As later reviewed, the existing literature

has neglected this issue - there are relatively few models of contests with participation

costs, and they implicitly assume that the prize is withheld when all players refrain from

competing. This prevents any analysis of situations where the prize must always be

allocated, or where the contest organizer cannot commit to withholding it. Important

examples include tendering processes where a contract is renewed with an incumbent

unless a bid is received from an entrant, policy decisions where an outcome will remain

unless it is contested by a lobbyist, disputes where some default legal outcome applies

unless a party starts litigation, or market settings where consumers trade with their local

firm unless a rival firm advertises to them.

To help remedy these issues, our paper makes three main contributions. First, it pro-

vides a general framework that can explicitly characterize all potential equilibria in a full

information, single prize all-pay contest while allowing for general forms of participation

costs and default allocations, under arbitrary asymmetry. Despite its complexity, we offer

a tractable characterization that rests on only two measures, which we refer to as ‘reach’

and ‘strength’.

Second, the paper uses this framework to formally connect some recent developments

in all-pay contests (e.g. Siegel 2009, 2010, 2014) to the broad family of ‘clearinghouse’

models that are commonly used within industrial economics and marketing to study

issues such as sales price competition and price comparison platforms (e.g. Baye and

Morgan 2001, Baye et al. 2004, Baye et al. 2006).2 Our framework provides a fuller

bridge between these two literatures to enable them to trade theoretical and empirical

insights in ways that can enhance future research on both sides. As examples, we show

how this connection can help resolve two long-standing problems - by using tools from

1For recent reviews, see Fu and Wu (2019), Corchón and Serena (2018), Dechenaux et al. (2015), and
Konrad (2009).

2Clearinghouse model are also used as a foundation to study consumer search, obfuscation, choice
complexity and even some macroeconomic topics including nominal rigidities, output fluctuations and
monetary policy. For reviews and recent examples, see Guimaraes and Sheedy (2011), Moraga-González
and Wildenbeest (2012), Armstrong (2015), Spiegler (2015), Kaplan and Menzio (2016), Burdett and
Menzio (2017), Bergemann et al. (2021), Armstrong and Vickers (2022) and Ronayne and Taylor (2022).
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contest theory, we solve clearinghouse models under arbitrary asymmetry for the first

time, and by using methods from the clearinghouse literature, we derive equilibrium

uniqueness in n-player symmetric all-pay contests. After completing the latter, we also

show how the combined presence of participation costs and default allocations can reverse

the direction of standard comparative statics related to the ‘competitiveness’ of a contest

(e.g. Hillman and Samet 1987, Fang et al. 2020).

Third, to further demonstrate the power and tractability of our framework, we analyze

how participation costs and default allocations can be used as practical tools in contest

design. Such tools have remained under-explored within the literature (as reviewed by

Fu and Wu 2019 and Chowdhury et al. 2019) and so our results offer some novel and

striking insights. For instance, contrary to the usual motivation for handicapping stronger

players to ‘level the playing field’ (e.g. Baye et al. 1993, Szech 2015, Franke et al. 2018), we

show how asymmetric participation costs or default allocation probabilities can optimally

stimulate competition even in an otherwise symmetric setting. Throughout, the combined

presence of participation costs and default allocations is key. Together, they can often

reverse otherwise familiar intuitions.

In more detail, Sections 2 and 3 present our main framework - a fully asymmetric, two-

player, single-prize, full-information all-pay contest with general forms of participation

costs and default allocations. Each player simultaneously selects a score or ‘offer’, ui.

A player is termed as ‘active’ if they submit an offer, ui ≥ 0, and incur the required

participation costs. Otherwise, a player is termed as ‘passive’ and their offer is denoted

by ui = φ. As standard, the prize is awarded to the player with the highest active offer.

However, the prize may also be awarded in the event where both players are passive. In

this case, player i wins with a ‘default allocation probability’, xi > 0, where x1+x2 ∈ [0, 1].

For any given offer ui, player i earns Wi(ui) if she wins and Li(ui) if she loses.

Under arbitrary asymmetry, the paper derives an equilibrium that is unique (apart

from a few knife-edge parameter cases). Although the proof is long, the resulting equi-

librium is tractable and neatly depends on only two measures, ‘strength’ and ‘reach’.

Broadly speaking, a player’s reach determines their willingness to be active when their

rival is also active, whereas a player’s strength determines their willingness to be active

when their rival is passive. In the previous literature, these measures would have been

equivalent to each other and consistent with Siegel’s (2009) definition of reach. However,

in our context with both participation costs and default allocations, the two measures

differ and prove sufficient for determining the form of equilibrium in what would other-

wise be a complex problem. For instance, in equilibrium, we find that i) neither player

actively competes if they both have low strength, ii) only one player actively competes if

one player has high strength while the other has low reach, or iii) both players actively

compete with positive probability (in a variety of possible forms) if one player has high

strength and the other has sufficient reach.
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After showing how the model can be easily expanded to also allow for ‘indirect’ par-

ticipation costs in the form of minimum required outlays, Section 4 focuses on formally

connecting the framework to the broad family of ‘clearinghouse’ sales models. As we

demonstrate, this connection is particularly valuable as there are significant potential

gains from trade between the two literatures. To get an initial understanding of the

link, recall the seminal model of sales by Varian (1980) where a number of symmetric

firms compete by simultaneously choosing their price. Each firm has a symmetric share

of ‘non-shopper’ consumers who never consider buying from any other firm, while the

remaining ‘shopper’ consumers buy from the firm with the lowest price. The resulting

equilibrium involves mixed-strategy pricing or ‘sales’. Baye et al. (1996) and Baye et al.

(2012) show how a simple version of Varian’s model is equivalent to a form of symmetric

all-pay contest. Intuitively, i) each firm’s price implies an associated surplus offer to con-

sumers, ii) the highest offer wins the ‘prize’ of the shoppers’ custom, iii) each firm’s offer

involves a sunk (opportunity) cost in the form of reduced revenues from its non-shoppers,

and iv) a firm’s value of winning is dependent upon the level of its surplus offer. Our

framework goes beyond this initial link to connect to the wider family of clearinghouse

sales models that encompass Varian (1980) (e.g. Baye and Morgan 2001, Baye et al. 2004,

Baye et al. 2006) by allowing for positive advertising costs (via participation costs) and

the possibility of winning the shoppers’ custom even when no firm actively competes (via

default allocation probabilities).

This connection offers substantial benefits by enabling the two literatures to share

insights and methods. For instance, after discussing some empirical benefits, we demon-

strate how this link can resolve two long-standing theoretical problems. First, we show

how contest theory methods can be used to solve clearinghouse models for any arbitrary

level of asymmetry for the first time. This should open up many new theoretical and

empirical research avenues within the broad clearinghouse literature. Second, in Section

5, we demonstrate how insights from the clearinghouse literature can derive equilibrium

uniqueness in n-player symmetric all-pay contests which are otherwise well-known to suf-

fer from equilibrium multiplicity (Baye et al. 1996). Within the unique equilibrium, we

then also show how the combined presence of participation costs and default allocations

can provide new insights in regard to changes in the ‘competitiveness’ of a contest (e.g.

Hillman and Samet 1987, Fang et al. 2020).3

Finally, Section 6 returns to the full two-player setting to analyze how participation

costs and default allocations can be used as novel, practical tools in contest design. In

particular, we study how a contest organizer would select the default allocation prob-

abilities, {x1, x2}, and (additive) participation costs, {A1, A2}. Throughout, we assume

3Fang et al. (2020) show the effects of a range of competitiveness measures in all-pay contests under
a different setting with multiple prizes and convex effort costs. In our context, we study the effect of
some parallel measures, including the number of players and the division of a contest into identical
sub-contests.
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the organizer has an ‘offer-based objective’ involving any combination of expected offers,

expected total offers, or expected winning offers. Despite the existing literature suggest-

ing that greater player heterogeneity typically lowers competition (e.g. Baye et al. 1993,

Szech 2015, Franke et al. 2018), our results demonstrate that an offer-orientated organizer

will often find it optimal to use asymmetric default allocation probabilities or participa-

tion costs even when the players are otherwise symmetric. Specifically, the organizer will

strictly prefer to make one player i relatively stronger by giving them a relatively lower

default allocation probability, xi < xj, or participation cost, Ai = 0 < Aj. Intuitively,

this can stimulate competition by encouraging the now stronger player i to participate

more and compete harder as she understands that she now has a higher chance of winning

with an active offer.4

Related Literature: Our focus is on full-information all-pay contests with single prizes

and potentially asymmetric players. Aside from the seminal contributions by Hillman and

Samet (1987), Hillman and Riley (1989) and Baye et al. (1996), the recent works by Siegel

(2009, 2010, 2014) are most relevant. Siegel analyzes a broad category of ‘all-pay contests’

with general payoff functions and arbitrary asymmetry, but without participation costs or

default allocation probabilities. In particular, Siegel (2009) develops a tractable approach

involving the concept of ‘reach’ to derive players’ equilibrium payoffs in n-player all-pay

contests. Building on this, Siegel (2010) then characterizes the equilibrium in a slightly

simplified version, while Siegel (2014) explores the effects of ‘headstarts’ where players’

payoffs from losing or winning need not be strictly decreasing in their bid. In contrast,

we bring some elements of these papers together within our context while allowing for

general forms of costly participation and default allocations. We explicitly characterize

all potential equilibria and show how they depend on each player’s reach, and a new

measure, which we term as ‘strength’.

The role of participation costs within all-pay contests has not received a lot of at-

tention. However, maybe confusingly, standard models without participation costs are

sometimes framed in terms of participation. For instance, following Hillman and Riley

(1989), asymmetric models often have one player selecting a zero bid with positive proba-

bility in a way that is interpreted as either non-participation or participation with a zero

bid. Our model with participation costs has no such ambiguity because it distinguishes

between non-participation, ui = φ, and zero active offers, ui = 0. This is consistent with

some of our applications including the clearinghouse setting where firms can reasonably

advertise an offer of zero consumer surplus in a way that is qualitatively distinct from

not advertising ((e.g. by advertising the monopoly price under unit demand). Aside from

4The optimality of asymmetric contest designs in symmetric situations has also been documented in a
few other papers but our setting and contest design tools are distinct. For instance, Drugov and Ryvkin
(2017) and Barbieri and Serena (2022) show how a biased contest success function can be optimal for a
general family of pure-strategy contests or dynamic contest settings respectively, while Pérez-Castrillo
and Wettstein (2016) show how asymmetric prizes can be optimal under private information.
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our paper, a small existing literature also allows players’ participation to be endogenous

by introducing participation costs (e.g. Fu et al. 2015), or indirect participation costs,

such as reserve prices or minimum outlays (e.g. Hillman and Samet 1987, Bertoletti 2016,

Chowdhury 2017). This literature considers symmetric participation costs and assumes

that i) players who do not participate cannot win, and ii) the prize is withheld if no player

participates. In contrast, we introduce a general form of participation costs and allow

the prize to be awarded even when no player participates. In addition, when analyzing

contest design, we demonstrate how asymmetric, positive participation costs can arise

endogenously.56

To our knowledge, we are the first to study default allocations. However, our modeling

approach has some connection to the research on ties in all-pay contests. There, active

winning bids are tied with positive probability in equilibrium because i) players’ efforts

are capped (e.g. Che and Gale 1998 and Szech 2015), ii) the strategy space is discrete (e.g.

Cohen and Sela 2007), or iii) outright winners must win by a sufficient margin (e.g. Gelder

et al. 2019). In such cases, a specified tie-break rule is used to allocate the prize, and

with the exception of Szech (2015), only symmetric tie-break rules are considered. While

these forms of ties in active offers never occur in our model, we specify our (potentially

asymmetric) default allocation probabilities in a related fashion for instances where no

player actively participates.

The clearinghouse sales framework (e.g. Baye and Morgan 2001, Baye et al. 2004,

Baye et al. 2006) encompasses a large range of sales models, including Varian (1980) as

a special case. However, it has only been able to allow for a limited form of asymmetries

in simplified settings (e.g. Narasimhan 1988, Baye et al. 1992, Wildenbeest 2011 and

Arnold et al. 2011). To improve this, Shelegia and Wilson (2021) derive an equilibrium

using a specific ‘equilibrium’ tie-break rule and offer new insights into sales competi-

tion. In contrast, the current paper uses contest theory to offer a general clearinghouse

characterization for any default allocation probabilities under arbitrary asymmetry. This

substantially expands upon the initial link between all-pay contests and Varian (1980), pi-

oneered by Baye et al. (1996) and Baye et al. (2012) by allowing for asymmetries, positive

advertising costs and the possibility of ‘shopper’ consumers buying in the market even

when no firm advertises. Beyond our paper, Montez and Schutz (2021) explore another

connection between all-pay contests and pricing in a very different setting where firms

simultaneously source unobservable inventories before setting prices. Their paper focuses

on inventory behavior and associated public policy, but as a side result, they show how

5As we later show, participation costs create a discontinuity in the players’ payoffs. Duvocelle and
Mourmans (2021) study some wider forms of payoff discontinuities and show how Siegel’s equilibrium
payoff results can still apply.

6In a different setting with private information, a literature on all-pay auctions considers (symmetric)
participation costs in the form of entry fees that can be used to supplement the prize fund (e.g. Hammond
et al. 2019 and Liu and Lu 2019). We exclude this possibility in order to focus solely on the role of costly
participation per se, with no connection to the prize fund.
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their equilibrium can tend to a version of the asymmetric clearinghouse equilibrium as

inventory costs become fully recoverable. However, contrary to the original clearinghouse

literature and our framework, they assume that ‘shopper’ consumers do not buy in the

market if neither firm advertises (implying that default allocation probabilities are zero).

Our results highlight the importance of this assumption and derive the equilibrium for all

default allocation probabilities in order to fully enable the literatures on all-pay contests

and clearinghouse sales price competition to exchange theoretical and empirical insights

in future research.

2 Model

2.1 Assumptions

Two risk-neutral players, i = {1, 2}, consider participating in a contest to win a sin-

gle prize. Each player i must simultaneously choose a bid or ‘offer’, ui, where ui ∈

{φ}
⋃

[0,∞]. If player i selects ui = φ, she refrains from making an explicit offer and is

termed as ‘passive’. On the other hand, player i is classed as ‘active’ if she submits an

explicit offer ui ∈ [0,∞]. Given the players’ chosen strategies, S = {u1, u2}, player i’s

probability of winning is then given by the following contest success function, Ψi(·):

Ψi(·) =































1 if ui ≥ 0 and uj ∈ {φ}
⋃

[0, ui)

yi if ui = uj with ui ≥ 0 and uj ≥ 0

xi if ui = uj = φ

0 otherwise

(1)

Intuitively, player i wins outright if she submits an active offer, ui ≥ 0, and player j

either submits a lower active offer or only participates passively. If both players submit

the same active offer, then player i wins with a tie-break probability, yi. As the exact

level of yi will prove irrelevant, we allow any yi ∈ [0, 1] such that y1 + y2 = 1. Finally,

and most importantly, we permit the possibility that the prize is still awarded even when

both players are passive. In this case, player i wins with a ‘default allocation probability’,

xi ≥ 0, where x1 + x2 ≡ X ∈ [0, 1]. The set of default allocation probabilities, {x1, x2},

will turn out to be an important primitive of the game.

For a given set of strategies, S, and contest success function, Ψi(·), player i’s expected

payoff can then be described as follows

E(Πi(S; Ψi(·))) = Ψi(·)Wi(ui) + [1−Ψi(·)]Li(ui) (2)

where Wi(ui) and Li(ui) describe player i’s (net) payoffs from winning and losing
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respectively for any given offer, including passive participation where Wi(φ) ≡ W φ
i and

Li(φ) ≡ Lφ
i . We then make the following additional assumptions about the payoff func-

tions for each player i:

A1) Wi(ui) > Li(ui) for any given ui ∈ {φ}
⋃

[0,∞].

A2) For any ui ∈ [0,∞], both Wi(ui) and Li(ui) have the same unique finite maxi-

mizer, um
i ∈ [0,∞), and are strictly decreasing in ui > um

i .

A3) c(um
i ) ≡ Lφ

i − Li(u
m
i ) > 0 and W φ

i > Wi(u
m
i ).

A1 simply assumes that the payoffs from winning are always larger than those from

losing for any given offer (including passive participation, W φ
i > Lφ

i ).

A2 assumes that player i’s payoffs from winning and losing both have a unique finite

maximizer and are strictly decreasing in the player’s offer thereafter. Moreover, although

not always required, A2 also assumes that Wi(ui) and Li(ui) have the same such maxi-

mizer, um
i . To allow for a form of non-monotonicity in player i’s payoffs (or headstarts

in the sense of Siegel 2009), this maximizer can be non-zero, um
i ∈ [0,∞). The maxi-

mizer can also differ across players um
i ̸= um

j , to reflect potentially different technologies,

preferences, or prior investments.7

A3 assumes the existence of participation costs such that Lφ
i > Li(u

m
i ) and W φ

i >

Wi(u
m
i ). To understand this, and as later formalized, note that player i will never be

willing to select an active offer lower than um
i . A3 then assumes that losing (or winning)

under passive participation to gain Lφ
i (or W φ

i ) is always strictly preferred to losing

(winning) under active participation to gain, at most, Li(u
m
i ) (or Wi(u

m
i )). Without A3,

the distinction between passive and active participation becomes blurred and the default

allocation probabilities become ill-defined.

Finally, to help exposition, we focus on deriving the equilibria under Condition X.

This ensures that both players have a strictly positive default allocation probability, as

consistent with the organizer being unable to perfectly commit to withholding the prize

from either player in the event that both players are passive.

xi ∈ (0, 1) for i = {1, 2} (Condition X)

Under A1-A3 and Condition X, we now characterize the Nash equilibria of the game

for any permitted set of default allocation probabilities, {x1, x2}, and payoff functions,

Wi(ui) and L(ui) for i = {1, 2}. To allow for mixed strategies, we define i) (1−αi) ∈ [0, 1]

as player i’s probability of passive participation (with ui = φ), ii) αi ∈ [0, 1] as player

7A2 is consistent with past research and many practical applications. We believe that all previous
contest papers (implicitly) assume that the related functions are both maximized at zero or some positive
constant, e.g. Siegel (2009). Within the clearinghouse literature, Wi(ui)/Li(ui) is effectively a constant
ratio related to the proportions of different types of consumers, and so both functions also have a common
maximizer as later detailed in Section 4.3.
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i’s probability of active participation on some support ui ∈ [ui, ūi] where 0 ≤ ui ≤ ūi,

and iii) Fi(u) as player i’s overall (unconditional) offer distribution on ui ∈ {φ}
⋃

[0,∞].8

Lastly, it will be useful to denote um = max{um
1 , u

m
2 } ≥ 0.

2.2 Definitions

Despite the potential complexity of our framework, we will show how the equilibria will

critically depend on only two measures for each player, ‘reach’ and ‘strength’. These two

measures will drive players’ participation decisions. Broadly speaking, a player’s reach

determines their willingness to be active when their rival is also active, whereas a player’s

strength determines their willingness to be active when their rival is passive. We now

formally define these measures in turn.

Definition 1. For a given contest, the reach of player i, ri, is the unique value of ui ≥ um
i

that solves

Wi(ui) = Lφ
i (3)

if such a solution exists, and ri = −∞ otherwise. When Wi(u
m
i ) ≥ Lφ

i , a unique

solution always exists with ri ≥ um
i . When Wi(u

m
i ) < Lφ

i , no solution exists.9

Intuitively, player i will never find it optimal to provide an active offer above her

‘reach’, ri, because it is defined as the active offer ui ≥ um
i at which player i’s payoff from

winning for sure,Wi(ui), equals her payoff from losing for sure under passive participation,

Lφ
i . Further, when player j ̸= i is active, player i can never win under passive participation

and can therefore only guarantee Lφ
i from being passive. Hence, when player j is active,

player i will prefer to submit an active offer ui ≥ um
i only if Wi(u

m
i ) ≥ Lφ

i or equivalently,

only if ri ≥ um
i .

Definition 2. For a given contest, the strength of player i, si, is the unique value of

ui ≥ um
i that solves

Wi(ui) = Ωi ≡ Lφ
i + xi(W

φ
i − Lφ

i )
ci(u

m
i )

bi(um
i )

(4)

if such a solution exists, and si = −∞ otherwise, where ci(u
m
i ) ≡ Lφ

i − Li(u
m
i ) > 0

and bi(u
m
i ) ≡ Wi(u

m
i ) − Li(u

m
i ) − xi(W

φ
i − Lφ

i ). When Wi(u
m
i ) ≥ Lφ

i + xi(W
φ
i − Lφ

i ) (or

8To facilitate the use of Fi(u), we abuse notation slightly and treat φ as if it were a number less than
0. Player i then sets ui = φ with probability mass (1 − αi) = Fi(φ), and submits an active offer on
ui ∈ [ui, ūi] with aggregate probability αi = 1− Fi(φ) where Fi(u) = 0 for u < φ, Fi(u) = 1 for u ≥ ūi,
and F ′

i (u) ≥ 0 for all u.
9A solution exists and is unique iff Wi(u

m
i ) ≥ Lφ

i because, for ui ≥ um
i , the LHS of (3) is i) at most

Wi(u
m
i ) and ii) strictly decreasing for ui ≥ um

i , while iii) Lφ
i is a constant unbounded above.
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equivalently when Wi(u
m
i ) ≥ Ωi or bi(u

m
i ) ≥ ci(u

m
i )), a unique solution always exists with

si ≥ um
i . When Wi(u

m
i ) < Lφ

i + xi(W
φ
i − Lφ

i ), no solution exists.10

While the definition of strength is more involved, it provides clear implications for

player i’s participation decision when player j ̸= i is passive. If player j is passive, player

i’s expected payoff from being passive equals Lφ
i +xi(W

φ
i −Lφ

i ). Hence, player i will prefer

to submit an active offer ui ≥ um
i only if Wi(u

m
i ) ≥ Lφ

i +xi(W
φ
i −Lφ

i ) or equivalently, only

if si ≥ um
i . In more detail, when si ≥ um

i , player i’s strength is the level of active offer,

ui ≥ um
i , at which her payoff from winning for sure, Wi(ui), is equal to an expression that

we denote by Ωi. Where relevant, Ωi, can be understood as player i’s expected payoff at

the point where she is indifferent between being passive and submitting an active offer of

um
i .

11

Note the following important remarks about reach and strength. First, our use of the

term ‘reach’ broadly parallels the existing literature, e.g. Siegel (2009). However, in the

previous literature, a player’s reach would always be equal to our measure of strength.

To see this, note from (3) and (4) that ri = si if player i has i) zero participation costs,

ci(u
m
i ) ≡ Lφ

i − Li(u
m
i ) = 0, and/or ii) a zero default allocation probability, xi = 0. This

highlights the important interaction between participation costs, ci(u
m
i ) > 0, and default

allocation probabilities, xi > 0, that is the focus of the current paper; when combined,

they imply that each player’s reach is strictly larger than their strength, ri > si for

i = {1, 2}. Hence, each player is strictly more willing to be active when their rival

is active relative to when their rival is passive. Second, whereas some existing papers

refer to the player with the higher reach as the ‘stronger’ player, we will only employ

this language under Definition 3. Indeed, under our definition, it is possible that the

‘stronger’ player i, with si ≥ sj, can have a lower reach, ri < rj.

Definition 3. Without loss of generality, Player 1 is assigned to be the ‘stronger’ player

(and Player 2 as the ‘weaker’ player) if i) s1 > s2, or ii) s1 = s2 and um
1 ≥ um

2 .

Finally, to help exposition, we will sometimes focus on equilibria in ‘generic’ contests as

defined by Definition 4. However, Appendix B later characterizes the full set of equilibria

for all generic and non-generic contests, and shows that the equilibria in non-generic

contests can involve some less interesting equilibrium multiplicities.

Definition 4. A ‘generic’ contest does not involve the following knife-edge cases: r2 = um
2

or si = um
i for any i = 1, 2.

10A solution exists and is unique iff Wi(u
m
i ) ≥ Ωi because, for ui ≥ um

i , the LHS of (4) is i) at most
Wi(u

m
i ) and ii) strictly decreasing for ui ≥ um

i , while iii) Ωi is a constant unbounded above.
11More precisely, note player i’s expected payoff from being passive equals Lφ

i + xi(1−αj)(W
φ
i −Lφ

i ).
If player j never selects any active offers below um

i , such that (1−αj) = Fj(u
m
i ), and there are no ties at

um
i , then player i’s expected payoff from submitting um

i is Li(u
m
i ) + (1− αj)(Wi(u

m
i )− Li(u

m
i )). These

two payoffs are equal when (1 − αj) = ci(u
m
i )/bi(u

m
i ), where (1 − αj) ∈ (0, 1] when si ≥ um

i . Hence,
after substituting (1− αj) = ci(u

m
i )/bi(u

m
i ) back in, Ωi represents the expected payoff when player i is

indifferent between φ and um
i .

10



3 Equilibrium Analysis

To derive the game equilibria, Section 3.1 first considers some preliminary steps before

Section 3.2 provides the main characterization. Any proofs are provided in Appendix A

unless stated otherwise.

3.1 Preliminaries

Lemma 1. Any active offer, ui, is strictly dominated for player i if a) ui < um
i , or b)

ui ∈ (um
i , u

m
j ).

This implies that player i will only consider an active offer equal to ui = um
i or

ui ≥ um ≡ max{um
i , u

m
j }. The proof is immediate. a) Any active offer ui ∈ [0, um

i ) is

strictly dominated by ui = um
i as it would raise player i’s payoffs from winning or losing

(via A2), and yet never reduce her probability of winning. b) Any ui ∈ (um
i , u

m
j ) is also

strictly dominated by um
i . To see this, note from above that player j will never select

any active offer uj < um
j . Hence, moving any mass in ui ∈ (um

i , u
m
j ) to ui = um

i would

raise player i’s payoffs from winning or losing, but have no effect on her probability of

winning.

Lemma 2. Suppose only one player, player i, is active with positive probability, αi > 0

and αj = 0. Then, in equilibrium, it must be that ui = ūi = um
i .

Again, the proof is immediate. In this case, player i must set ui ≥ um
i and player j

must set uj = φ such that player i wins with probability one. Given this, by reducing ui

to um
i , player i can strictly increase her payoffs via A2 and still win with certainty.

Lemma 3. In equilibrium, player i cannot put a point mass on any active offer other

than ui = um
i . Further, if u

m
1 = um

2 = um, then at most, one player can put a point mass

on um.

As detailed in the proof, this just follows standard mixed-strategy results - if not, at

least one player would have an incentive to redistribute their probability mass elsewhere.

Now denote the size of any potential point mass at um
i by βi ≥ 0. As player i’s probability

of active participation on ui ≥ um
i is denoted by αi ∈ [0, 1], then it must be that αi ≥ βi.

Lemma 4. Suppose player i selects an offer strictly above um
i with positive probability in

equilibrium such that αi > βi ≥ 0. Then, it must be that:

a) both players make offers above um with positive probability and share a common upper

bound, ū ≡ ū1 = ū2 > um,

b) any u ∈ (um, ū] is a point of increase of F1(u) and F2(u),

c) on u ∈ (um, ū] for k = 1, 2 and l ̸= k,

Fk(u) =
Wl(ū)− Ll(u)

Wl(u)− Ll(u)
. (5)

11



Intuitively, if αi > βi in equilibrium then player i makes active offers strictly above

um
i . If so, then the other player must be doing the same otherwise player i could optimally

reduce her offers towards um
i . Moreover, if um

i < um
j , then any u ∈ (um

i , u
m
j ) is dominated

for both players and so they must make offers strictly above um. As consistent with

standard results (without participation costs), the two players must then continuously

randomize up to a common upper bound, ū. By deriving the players’ expected payoffs

and equilibrium payoffs for a given ū, one can then characterize the implied distribution

in active offers for both players, (5).

3.2 Characterization

Building on Lemmas 1-4, we now characterize the full equilibria. To further aid exposi-

tion, it is convenient to denote the following two expressions:

θi(u) = 1−
Wj(u)− Lφ

j

(W φ
j − Lφ

j )xj

(6)

σi(u) = 1−
cj(u)

bj(u)
≡ 1−

Lφ
j − Lj(u)

Wj(u)− Lj(u)− xj(W
φ
j − Lφ

j )
(7)

Given the usual complexities with models of this sort, it is notable that we now

demonstrate that any generic contest has a unique, tractable equilibrium and that the

equilibrium can be reduced to five qualitatively distinct cases that only depend upon

the relative sizes of s1 and r2. The proof is lengthy and so it is provided separately in

Appendix B.

Theorem 1. Given Condition X, there exists a unique equilibrium for any generic con-

test:

i) When s1 < um
1 (and hence s2 < um

2 ), neither player is active, α1 = α2 = 0.

ii) When s1 > um
1 and r2 ≤ um, player 1 is always active at um

1 , α1 = β1 = 1, and player

2 is always passive, α2 = 0.

iii) When r2 > um
2 ≥ s1 > um

1 , player 1 selects um
1 with probability β1 = α1 = θ1(u

m
2 ) ∈

(0, 1) and player 2 selects um
2 with probability β2 = α2 = σ2(u

m
1 ) ∈ (0, 1).

iv) When r2 > s1 > um, players 1 and 2 are active with probabilities α1 = θ1(ū) ∈ (0, 1)

and α2 = 1 − F2(u
m
1 ) = σ2(u

m
1 ) ∈ (0, 1). They both randomize on (um, ū] with Fi(u) in

(5) where ū = s1, β1 = F1(u
m)− (1− α1) ≥ 0 and β2 = F2(u

m)− F2(u
m
1 ) ≥ 0.

v) When s1 ≥ r2 > um, players 1 and 2 are active with probabilities α1 = 1 and α2 =

1 − F2(u
m
1 ) ∈ (0, 1). They both randomize on (um, ū] with Fi(u) in (5) where ū = r2,

β1 = F1(u
m) ≥ 0 and β2 = F2(u

m)− F2(u
m
1 ) ≥ 0.

12



A simple example setting is later provided in Section 4.1, but to start thinking about

the intuition of Theorem 1, it is useful to initially consider the (quasi-) symmetric case

where r1 = r2 = r, s1 = s2 = s and um
1 = um

2 = um. Here, as r > s, Theorem 1

collapses to a simple form involving only case i) and iv) depending solely on s ≶ um.

First, suppose s < um such that case i) applies. From Definition 2, this implies that

Lφ+x(W φ−Lφ) > W (um). Therefore, neither player wishes to be active - given that the

other player is passive, a player earns Lφ + x(W φ −Lφ) and has no incentive to be active

in order to earn, at most, W (um). This equilibrium is unique because the remaining

possibility where both players are always active cannot be an equilibrium as one player

would always deviate due to costly participation (A3). Next suppose s > um such that

case iv) applies. From Definition 2, this implies that W (um) > Lφ + x(W φ − Lφ) such

that each player has an incentive to be active if the other is passive. However, both

players cannot be active with probability one in equilibrium due to the assumption of

costly participation. Hence, the unique equilibrium involves both players being active

with interior probability, α ∈ (0, 1), and randomizing over active offers with F (u), where

ū = s > um and β = 0.

Now consider the fuller intuition of Theorem 1 with potential player asymmetry. First,

consider case i). Here, the stronger player 1 has low strength, s1 < um
1 . Using Definitions

2 and 3, this implies that both players have low strength, s1 = s2 = −∞, such that

Lφ
i + xi(W

φ
i −Lφ

i ) > Wi(u
m
i ) for i = {1, 2}. Therefore, neither player wishes to be active

when the other is passive and this equilibrium can be shown to be unique. Each player i

earns Lφ
i + xi(W

φ
i − Lφ

i ).

Next, examine case ii) where the stronger player 1 has a relatively higher strength,

s1 > um
1 , but the weaker player 2 has a relatively low reach, r2 < um. Using Definitions 1

and 2, this implies a) W1(u
m
1 ) > Lφ

1 + x1(W
φ
1 −Lφ

1) - if player 2 is passive, player 1 has a

strict incentive to be active, and b) W2(u
m) < Lφ

2 - if player 1 is active, player 2 strictly

prefers to remain passive. Hence, this ensures a pure-strategy equilibrium where only

player 1 actively competes. Moreover, given the specified values of reach and strength,

this equilibrium is unique. Player 1 earns W1(u
m
1 ) while player 2 earns Lφ

2 .

Now temporarily defer the explanations of cases iii) and iv) and jump to case v).

Here, s1 ≥ r2 > um such that player 1 has a very high strength and the weaker player

2 has a relatively high reach. Via Definitions 1 and 2, this implies that both players

are willing to be active with αi > βi - player 1 is willing to be active if player 2 is

passive, but if player 1 is active then player 2 is also willing to be active. Specifically, by

building on Lemma 4, the unique equilibrium involves a) both players mixing over active

offers with F (u) up to ū = r2 > um, b) player 2 mixing over active participation with

interior probability, α2 ∈ (0, 1), but c) player 1 remaining strong enough to always be

active, α1 = 1. This latter feature implies that the default allocation probabilities are

never implemented within this case. As such, this form of equilibrium bears a qualitative
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resemblance to standard asymmetric equilibria without participation costs and default

allocation probabilities (e.g. Hillman and Riley 1989 or Siegel 2010). Note the fact that

α1 = 1 also implies that player 2 can only guarantee an equilibrium payoff of Lφ
2 , while

player 1 earns a payoff equal to W2(ū) > Lφ
1 .

Next, move back to case iv). Here, um < s1 < r2, such that player 1’s strength is

relatively high while player 2 has a very high reach. Like in case v), this implies that

both players are willing to be active with αi > βi. Hence, once again, in the unique

equilibrium, both players mix over active offers with F (u) up to ū > um and player 2

mixes over active participation with interior probability, α2 ∈ (0, 1). However, unlike case

v), ū = s1 and α1 ∈ (0, 1) as player 1 is not strong enough to be active with probability

one. Consequently, the default allocation probabilities are implemented with positive

probability in this case. Each player i earns payoffs higher than Lφ
i but strictly lower

than if the players both remained passive, Lφ
i + xi(W

φ
i − Lφ

i ). Hence, this case has a

Prisoner’s Dilemma feature that is not present in the previous literature - the players

would prefer everyone to remain passive, but have an individual incentive to deviate and

be active.

Finally, return to case iii). Here, player 1 has a moderate strength, s1 ∈ (um
1 , u

m
2 ] and

player 2 has a relatively high reach, r2 > um
2 . Hence, this case can only occur if um

2 > um
1 .

Using Definitions 1 and 2, these conditions imply W1(u
m
1 ) > Lφ

1 +x1(W
φ
1 −Lφ

1) > W1(u
m
2 )

and W2(u
m
2 ) > Lφ

2 . Intuitively, player 1 is strong enough to be active at um
1 when player

2 is passive, but player 2 would prefer to be active at um
2 if player 1 chooses um

1 . Further,

player 1 is not strong enough to be active at um
2 when player 2 is passive, but player 2

would be active there if player 1 is. As a result, this case produces an unusual form of

equilibrium that appears new to the literature - both players use a binary strategy to

randomize between being passive and selecting their own minimum active offer, um
i . In

equilibrium, both players earn Lφ
i + xi(W

φ
i − Lφ

i )(1 − αj) and so like case iv), the case

also has a Prisoner’s Dilemma feature where the players would prefer a commitment to

no active offers.

4 Examples and Connections

This section has several aims. To begin, it further illustrates the concepts of reach

and strength, showcases some features of Theorem 1 and forms a base for other later

parts of the paper. Specifically, Section 4.1 first offers a simple example that allows

for participation costs and default allocation probabilities within an otherwise standard

all-pay contest, while Section 4.2 expands this example to show our framework can also

allow for indirect participation costs in the form of a reservation offer or minimum outlay.

Further, Section 4.3 then goes on to provide a different example to demonstrate how

Theorem 1 can be applied to clearinghouse settings. This allows us to start illustrating
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the benefits from connecting the all-pay contest and clearinghouse literatures.

4.1 A Simple Example

Suppose player i values the contest’s prize at Vi. If player i submits an active offer of

ui ≥ 0 she must incur i) an effort cost equal to kiu
a
i (where ki > 0 and a > 0 are

parameters), and ii) a direct participation cost, Ai ∈ (0, Vi]. Player i’s default allocation

probability equals xi ∈ (0, 1).

Using our framework, we can then denote player i’s payoff functions as Wi(ui) =

Vi−kiu
a
i −Ai and Li(ui) = −kiu

a
i −Ai. This implies um

1 = um
2 = 0, W φ

i = Vi and Lφ
i = 0.

Following Definitions 1 and 2, one can compute reach and strength in (8) and (9) below.

Intuitively, player i’s reach and strength are both increasing in the prize value, Vi, but

decreasing in the costs of making a given active bid, ki, Ai and a. Further, player i’s

strength is also decreasing her default allocation probability, xi.

ri =















(

Vi−Ai

ki

)1/a

if ri ≥ um
i = 0 ⇔Vi ≥ Ai

−∞ if ri < um
i = 0 ⇔ Vi < Ai

(8)

si =















[

1
ki

(

Vi −
Ai

(1−xi)

)

]1/a

if si ≥ um
i = 0 ⇔ Vi(1− xi) ≥ Ai

−∞ if si < um
i = 0 ⇔ Vi(1− xi) < Ai

(9)

For ease of exposition, further suppose k1 = k2 = 1 and a = 1. Then, when no lower

than um
i = 0, reach and strength reduce to ri = (Vi − Ai) and si = Vi −

Ai

(1−xi)
, where

s1 ≥ s2 requires V1−
A1

(1−x1)
≥ V2−

A2

(1−x2)
. The equilibrium cases in Theorem 1 then follow

straightforwardly (albeit without case iii which cannot exist given um
1 = um

2 = 0): case

i) applies with no active participation if V1 <
A1

(1−x1)
(such that s1 < um), case ii) applies

where only player 1 is active if V1 −
A1

(1−x1)
> 0 > V2 − A2 (such that s1 > 0 > r2), case

iv) applies where both players mix over active offers with α1, α2 ∈ (0, 1) if V2 − A2 >

V1 −
A1

(1−x1)
> 0 (such that r2 > s1 > 0), and case v) applies where both players mix

over active offers with α1 = 1 and α2 ∈ (0, 1) if V1 −
A1

(1−x1)
≥ V2 − A2 > 0 (such that

s1 ≥ r2 > 0).12

12Specifically, case iv) has ū = s1 = V1 −
A1

(1−x1)
, Π∗

1 = W1(ū) = A1
x1

(1−x1)
, Π∗

2 = W2(ū) = V2 − A2 −

V1 +
A1

(1−x1)
, α1 = θ1(ū) = 1−

( Π∗

2

x2V2

)

, α2 = 1− F2(0) =
A1

(1−x1)V1

, and Fi(ui) =
Π∗

j+ui+Aj

Vj
for i = {1, 2},

and case v) has ū = r2 = V2 − A2, Π
∗

1 = W1(ū) = (V1 − V2) + (A2 − A1), Π
∗

2 = W2(ū) = 0, α1 = 1,
α2 = 1− F2(0) =

V2−A2

V1

, F1(u1) =
u1+A2

V2

and F2(u2) = 1−
(

V2−A2

V1

)

+
(

u1

V1

)

.
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4.2 An Example with Indirect Participation Costs

In contrast to direct participation costs like those in the example above, other ‘indirect’

forms of participation costs can derive from a minimum required outlay or reservation

offer. In such settings, any valid active offer must be weakly larger than a reservation offer,

uR ≥ 0. From A2 and Lemma 1, the reservation offer will have no effect on equilibrium

if uR ≤ um
i . However, if u

R > um
i , the reservation offer can create additional indirect

participation costs by prompting player i to submit an active offer at a higher level than

she might have done otherwise.

This can be easily captured within our framework by slightly modifying the game.

First, without loss, we can modify each player i’s win and loss functions to equal zero

for ui ∈ [0, uR) but to remain otherwise unchanged. Denote these as W̃i(·) and L̃i(·),

respectively. From above, we then know that player i will only consider any active offer

ui ≥ max{um
i , u

R}. Hence, player i’s new maximizer becomes ũm
i ≡ max{um

i , u
R}.

Second, we can use these to calculate a modified level of strength, s̃i, from (4), and apply

Theorem 1 to the modified game. For instance, consider the introduction of a reservation

offer, uR > um
i = 0, into our previous example with k1 = k2 = 1 and a = 1. This reduces

player i′s willingness to compete when their rival is passive by decreasing their strength,

s̃i = Vi −
(Ai+xiũ

m
i )

(1−xi)
when s̃i ≥ ũm

i = uR, and makes it less likely that the equilibrium falls

into a case involving more active participation.

4.3 Connection to Clearinghouse Models

Here, we put forward a different example to lay out the connection between our framework

and the clearinghouse sales models that are popular workhorses in IO and marketing (e.g.

Baye and Morgan 2001, Baye et al. 2004, Baye et al. 2006). We then begin to discuss some

advantages of establishing this connection, before demonstrating some specific benefits

more formally in Section 5 where we expand the framework to n > 2 symmetric players.

To start, we present a relatively general version of a duopoly clearinghouse model and

then show how this can be translated into our framework. Suppose there are two firms,

i = {1, 2}, that each sell a single (potentially differentiated) good. All consumers have the

same product preferences and so given firm i’s price, pi, each consumer has an identical

demand function for firm i’s good, Di(pi). Hence, given firm i has a constant marginal

cost, ki ≥ 0, firm i’s potential profits per-consumer equal πi(pi) = (pi − ki)Di(pi). We

assume these profits are strictly quasi-concave in pi with a unique maximizer at firm i’s

monopoly price, pmi .

Consumers are split into two types. Each firm i has a base of ‘non-shopper’ consumers

with mass λi > 0. Such consumers only consider purchasing from their associated firm.

In addition, there is a group of ‘shopper’ consumers with mass S > 0. These consumers

are initially allocated to the firms in respective proportions, x1 and x2. However, any
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shoppers allocated to firm i become aware of firm j ̸= i iff firm j advertises. Hence, if

firm j does not advertise, the shoppers allocated to firm i only consider firm i but if firm

j advertises, then the shoppers assigned to firm i trade with the firm offering the best

deal (using any tie-breaking rule in the event of a tie). Within a one-shot game, each firm

i simultaneously selects its price, pi, and whether to advertise for a fixed cost, Ai > 0.

We now translate the model into our framework. First, given firm i’s price, it is

straightforward to calculate firm i’s implied utility offer, ui, its monopoly utility offer, um
i ,

and its per-consumer profits in terms of ui, πi(ui).
13 One can then construct firm i’s payoffs

from winning and losing as follows. Suppose firm i opts to be ‘active’ by advertising. If it

has the highest offer, it wins all the shoppers to receive Wi(ui) = (S+λi)πi(ui)−Ai, but

otherwise, it earns Li(ui) = λiπi(ui)−Ai. Alternatively, if firm i opts to be passive by not

advertising, then it will optimally offer um
i . If firm j advertises, then firm i will then only

trade with its non-shoppers to obtain Lφ
i = λiπi(u

m
i ). However, if firm j is also passive,

firm i will also retain its share of shoppers to receive (xiS+λi)πi(u
m
i ). Equivalently, in the

language of the framework, when both firms are passive firm i will earn Lφ
i +xi(W

φ
i −Lφ

i )

where W φ
i = (S + λi)πi(u

m
i ). Finally, one can verify that A1-A3 and Condition X apply

given λi > 0, S > 0, xi > 0, and Ai > 0. The measures of strength and reach can then

be calculated, and Theorem 1 can be stated to fully derive the market equilibrium.

We now offer an initial discussion of how this connection between the literatures

on all-pay contests and clearinghouse sales competition can offer substantial benefits by

enabling the two literatures to trade methods and insights.

First, contest theory can help the clearinghouse literature. By importing tools from

contest theory, the above example shows how our framework is able to characterize the

full clearinghouse equilibrium under arbitrary asymmetry; allowing a tractable analysis

of asymmetries in the firms’ mass of non-shoppers, product demands, marginal costs,

advertising costs, and default allocation probabilities. Previously, this has been a long-

standing problem within the clearinghouse and associated literature where past research

has only been able to consider some limited forms of firm asymmetries in simplified or

special settings.14 Here, through the use of contest theory, our full characterization should

open up new lines of research in terms of theory, policy advice and empirical applications.

Second, in turn, with this connection established, the clearinghouse literature can also

aid the contest literature. We illustrate this in two ways. a) Unlike the contest literature,

the clearinghouse literature can offer a developed body of field evidence. Empirical evi-

dence outside the lab is less common within the contest literature due to the difficulties

13Specifically, as the consumers have identical product preferences, all consumers value firm i’s offer
with the associated consumer surplus, ui = CSi(pi) =

∫

∞

pi
Di(x)dx, where um

i = CSi(p
m
i ). To then

calculate firm i’s per-consumer profit function in terms of ui, one can denote pi(ui) = CS−1
i (ui) and

di(ui) = Di(pi(ui)) to obtain πi(ui) = di(ui)(pi(ui)− ki).
14For instance, see Narasimhan (1988), Baye et al. (1992), Wildenbeest (2011), Arnold et al. (2011),

and Shelegia and Wilson (2021).
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of observing behaviors, such as effort (see Dechenaux et al. 2015).15 However, field evi-

dence within the clearinghouse literature is better developed as firms’ pricing behaviors

can be more readily observed. As such, once viewed through the lens of our framework,

the empirical clearinghouse literature can offer all-pay contest literature some established

field results and statistical methods. These include a range of tests, and evidence, for

the use of equilibrium mixed strategies, structural estimation techniques and methods for

adjusting for player asymmetries.16 b) The clearinghouse literature can also help inform

the contest literature in regards to a long-standing problem of equilibrium selection when

there are n > 2 symmetric players. We explore this in the next section.

5 Equilibrium with n > 2 Symmetric Players

This section now extends our framework to more than two players, n > 2. It is well

known that a general analytical characterization of full information all-pay contests un-

der arbitrary asymmetry for n > 2 is inherently difficult, even without our additional

complications of participation costs and default allocations.17 Therefore, we opt to focus

on a symmetric setting instead. Here, the standard all-pay contest literature has a long-

standing problem of equilibrium multiplicity; in addition to the symmetric equilibrium,

there also exists a continuum of asymmetric equilibria (Baye et al. 1996).

In Section 5.1, we first demonstrate how the presence of participation costs and de-

fault allocation probabilities can resolve this issue to ensure that only the symmetric

equilibrium remains. To do so, we build on the clearinghouse literature where a parallel

problem exists; the symmetric clearinghouse setting with zero advertising costs (à la Var-

ian 1980) also has an infinite number of equilibria when there are more than two firms.

However, Arnold and Zhang (2014) show how the presence of positive advertising costs à

la Baye and Morgan (2001) is enough to ensure equilibrium uniqueness. We import and

generalize their approach into our contest setting, while also revealing the importance of

their implicit assumption of positive default allocation probabilities.

Given this unique equilibrium, Section 5.2 then goes on to show how participation

costs and default allocation probabilities can also have qualitatively important effects

in reversing standard comparative statics. For instance, amid the recent interest in the

‘competitiveness’ of all-pay contests (e.g. Fang et al 2020), we show i) how an individual’s

expected offer, E(u), can be increasing, rather than decreasing, in the number of players,

and ii) rather than being independent to scaling, we show how dividing the contest’s prize

and players across m > 1 symmetric sub-contests always reduces expected offers.

15Some notable exceptions include Liu et al. (2014) and Boudreau et al. (2016).
16For example, see Wildenbeest (2011), Allen et al. (2014), Lach and Moraga-González (2017), Pen-

nerstorfer et al. (2020), and Shelegia and Wilson (2021).
17For more details and the best findings in this regard, see Siegel (2009, 2010 and 2014).
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5.1 Unique Equilibrium

In their seminal paper, Baye et al. (1996) show how a standard, symmetric, single-prize

all-pay contest has an infinite number of equilibria when there are more than two players.

This has remained a long-standing problem within the literature, providing uncertainty

over players’ predicted behavior. Specifically, such multiple equilibria would have the

following features (translated into our set-up and notation). Due to the absence of par-

ticipation costs, each player is always active with probability one, α = 1. There then

exists i) a unique symmetric equilibrium where all players mix over [um, ū] with no mass

at um, and ii) a continuum of asymmetric equilibria where at least two players mix over

[um, ū], while others mix over [ui, ū] with a positive mass point at um, where ui > um is a

free individual parameter (and where the relevant player i bids um with probability one

if ui ≥ ū).

However, we now show how participation costs and default allocation probabilities

can guarantee equilibrium uniqueness. To proceed under n ≥ 2 symmetric players, we

maintain assumptions A1-A3 and an n-player version of Condition X such that xi =

(X/n) ∈ (0, 1) for all i:

Proposition 1. Suppose there are n ≥ 2 symmetric players and xi = (X/n) ∈ (0, 1) for

all i. Then the unique equilibrium of any generic or non-generic contest is symmetric:

i) When s ≤ um, all players are passive, αi = 0 ∀i.

ii) When s > um, all players are active with probability αi = α ∈ (0, 1) in (10). They all

randomize on [um, ū] with Fi(u) = F (u) in (11) where ū = s and βi = 0 ∀i.

α = 1−

(

c(um)

b(um)

)
1

n−1

(10)

F (u) =

(

W (ū)− L(u)

W (u)− L(u)

)
1

n−1

(11)

Proposition 1 shows how all asymmetric equilibria disappear and that only the sym-

metric equilibrium remains once both participation costs and default allocation probabil-

ities become positive. Provided participation is not too costly, this equilibrium involves

the players mixing between passive and active participation with interior probability,

and randomizing over [um, ū] without mass at um. This applies for both generic and

non-generic contests.

Although lengthy to prove, the intuition of Proposition 1 can be understood as follows.

All the potential asymmetric equilibria involve at least one player using mass at the lowest

possible active offer, um. Such an offer at um is relatively uncompetitive because at least

two other players always mix over [um, ū]. Hence, whenever active participation is costly,

the use of such mass points at um becomes dominated and cannot be part of equilibrium
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behavior. Thus, only symmetric equilibria can remain. Then, given positive default

allocation probabilities, one can use a logic akin to Theorem 1, to show that only a single

symmetric equilibrium exists.

5.2 Equilibrium Features

We now briefly discuss some interesting features of the unique equilibrium. Specifically,

in light of the recent interest in the ‘competitiveness’ of all-pay contests (e.g. Fang et al.

2020), we show how participation costs and default allocations can reverse some standard

results in relation to i) an increase in the number of players, and ii) ‘scaling’. To see these

features most easily, we place some more structure on our symmetric n ≥ 2 model by

focusing on the example settings from Section 4 under linear effort costs, ku, with a = 1.

As a preliminary step, one can verify the comparative statics with respect to our

key variables: participation costs, A, and the (total) default allocation probability, X.

Following an increase in A or X, passive participation becomes relatively more attractive,

lowering each player’s strength, s. Hence, as expected, in the active equilibrium (where

s > um), each player lowers their probability of being active, reduces their offers in the

sense of first-order stochastic dominance, and earns higher expected payoffs.

More substantially, now consider a change in competitiveness due to an increase in

the number of players, n. In a standard, symmetric all-pay contest (without participation

costs or default allocations), it is well-known that expected individual offers, E(u), are

decreasing in the number of players, and total expected offers, nE(u), are independent

of n (e.g. Hillman and Samet 1987). Similarly, in the parallel clearinghouse literature

with zero advertising costs à la Varian (1980), it is also well-known that expected prices,

E(p), are increasing in the number of firms (e.g. Morgan et al. 2006). Intuitively, a

higher number of players diminishes the chance of any given player winning the contest

and so discourages them from competing aggressively. In contrast, in our framework with

participation costs and default allocation probabilities, Proposition 1 suggests that E(u)

and nE(u) can both rise in response to more players. Hence, if participation costs vary

across different settings, this result could help understand the varied empirical findings

regarding how contest offers are affected by the number of players (see Dechenaux et al.

2015) or the empirical literature on how the number of firms affects market prices in

clearinghouse settings (e.g. Allen et al. 2014, Lach and Moraga-González 2017).

To see this result most easily, it is mathematically convenient to use the example

from Section 4.2 that considers participation costs in the form of a reservation offer,

uR > um = 0. By denoting passive offers as zero, φ ≡ 0, one can then show that

E(u) =
∫ ū

uR uf(u)du equals V
n
−
(

uR

(n−X)

)

T where T = X + (1−X)
(

nuR

V (n−X)

)
1

n−1 . For any

n ≥ 2 and any positive X, it then follows that total expected offers, nE(u), are strictly

increasing in n for any uR > 0, and E(u) is strictly increasing in n if uR is sufficiently
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close to the boundary for active participation, uR → s. Intuitively, once participation

costs and default allocation probabilities are positive, an increase in n now generates a

second, opposing effect that makes the players more aggressive. Under this effect, an

increase in n prompts the players to make higher offers by reducing each player’s chance

of winning when passive via their default allocation probability, x = X/n. This effect is

strongest when participation costs are relatively large. Indeed, when participation costs

are close to their largest level while still permitting active offers, our result shows how

this effect can dominate the standard effect on E(u).

Now consider a different change in competitiveness in the form of ‘scaling’ (Fang et al.

2020). In our single prize context, scaling reduces to a comparison between a grand contest

involving the full prize, V , and all n symmetric players, versus an alternative where the

contest is divided into m > 1 parallel, identical sub-contests, each with a single prize of

V̂ = V/m and n̂ = n/m ≥ 2 distinct players (where we assume the default allocation

probabilities are adjusted in each sub-contest, holdingX constant, such that x̂ = X/n̂). In

a standard, symmetric all-pay contest (without participation costs or default allocations),

one can use well-known results (e.g. Hillman and Samet 1987) to verify that scaling does

not change the level of expected offers, E(u). Intuitively, each player optimally responds

to the reduced prize and the reduced number of rivals by using an offer distribution with a

lower variance, but an equal expected offer. However, within our framework, Proposition

1 implies that a grand contest can produce strictly higher expected offers. For instance,

using the example from Section 4.2 again, a player’s expected offer within a sub-contest

will equal E(u) = V̂
n̂
−
(

uR

(n̂−X)

)

T̂ where T̂ = X + (1 − X)
(

n̂uR

V (n̂−X)

)
1

n̂−1 . (Ignoring any

integer issues), it then follows that ∂E(u)
∂m

< 0 for uR sufficiently close to the boundary for

active participation, uR → s. Hence, for high participation costs, each player’s expected

offers (and therefore total expected offers, nE(u)) are maximized at m = 1 as consistent

with using a grand contest.18

6 Contest Design

To further demonstrate the benefits of our framework, this final section takes a different

direction by returning to our full two-player setting in order to analyze how a contest

organizer would optimally design the most novel features of our contest: i) the default

allocation probabilities, and ii) the participation costs. As later detailed, these con-

test design tools have received little or no attention within the existing literature (e.g.

Chowdhury et al. 2019 and Fu and Wu 2019).

18Specifically when uR → V
(

1
m

− X
n

)

so that uR → s̃, ∂E(u)
∂m

→ − V
m(n−m) < 0. Note this result need

not depend on X > 0. Indeed, it can hold in Hillman and Samet’s (1987) model of positive participation
costs with zero default allocation probabilities - yet to our knowledge, this has not been noted within
the literature.
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We will assume that the organizer wishes to maximize offers. Specifically, a contest

design will be referred to as ‘offer-maximizing’ if it maximizes any combination of the sum

of total expected offers, E(u1) + E(u2), and the expected winning offer, E(umax). Aside

from capturing familiar contest objectives related to the associated level of effort or bids,

this objective can also correspond to consumer surplus in a clearinghouse sales context.

Throughout, whenever the players are mixing over the interval (um, ū], we refer to an

‘improvement’ (or ‘reduction’) in player i’s offers in the sense of first-order stochastic

dominance (FOSD). (Holding constant player j’s strategy), such an improvement (or

reduction) ensures both an increase (or decrease) in player i’s expected offer, E(ui), and

the contest’s expected winning offer, E(umax).
19

6.1 Default Allocation Probabilities

To begin, we consider how an organizer would optimally manipulate the default allocation

probabilities, x ≡ {x1, x2}, under the assumption that these can be credibly announced

at the start of the game. We argue that the use of x offers a practical, low-cost form of

contest design that has remained unstudied within the previous literature.

While the spirit of our results can be shown more generally, we focus on the following

setting to present our findings most cleanly. First, aside from x, we assume the players are

otherwise symmetric. Hence, from Definitions 1 and 2, both players will always have the

same reach, r1 = r2 = r, but will vary in strength whenever xi ̸= xj. Second, as consistent

with Condition X, we assume the organizer is unable to commit to an individual default

allocation probability that is lower than some x ∈ (0, 0.5) for either player. Hence, the

organizer must select xi ≥ x for i = {1, 2} such that x1 + x2 = X ∈ [2x, 1]. For all

permitted x, this implies that reach remains larger than strength, r > si, for i = {1, 2}.

Finally, we ensure the players have some basic potential to be active. Specifically, we

assume W (um) > Lφ + x(W φ + Lφ) such that si > um when xi = x for any player i.

As some preliminary comparative statics, consider the effects of a marginal increase

in xj while holding xi constant (when x1+x2 < 1). From (3)-(4), this will strictly reduce

player j’s strength (when sj > um), but leave si and r unchanged. Hence, we know that

player i will be the stronger player, with si > sj, whenever xi < xj. We can now state

the following for any generic or non-generic contest:

Proposition 2. In any contest under our assumptions, it is always strictly offer-maximizing

to set xi = x and xj = 1− x.

19Technically, it is sufficient to define a FOSD improvement (or reduction) to occur when a) the
player’s new offer distribution F̂i(u) is weakly less (greater) than their original offer distribution Fi(u)
for all active offers, u ∈ [0,∞], b) the player’s new probability of being passive, (1 − α̂i), is weakly less
(greater) than their original probability of being passive, (1− αi), and c) either i) F̂i(u) < (>)Fi(u) for
at least some u ∈ [0,∞], and/or ii) (1− α̂i) < (>)(1− αi).
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Despite the players being otherwise symmetric, Proposition 2 indicates that an offer-

maximizing organizer will never wish to select a symmetric set of default allocation prob-

abilities under our conditions. Instead, the organizer can always do strictly better by

decreasing the default allocation probability of one player and increasing the other’s until

xi = x and xj = 1 − x. In this sense, it is optimal to ‘favor’ one of the players. More-

over, in the extreme, when x is close to zero, it is optimal to make one of the players

the ‘default winner’ in the event that both players are inactive, with xj → 1. Thus, in

the context of our example settings, i) favoring a default winner in tendering contexts

may stimulate more competition for a contract, and ii) the use of more balanced default

allocation probabilities in legal/policy decisions may reduce legal/lobbying expenditures.

Much of the intuition can be gained from inspecting case iv) in Theorem 1 where

um < si < r, and where we assume i is the stronger player with si ≥ sj (such that xi ≤ xj).

First, consider a decrease in player i’s default allocation probability, xi, while holding xj

constant. This reduces i’s expected payoff from being passive, and thereby increases

her strength and prompts her to be more aggressive. In turn, via a form of strategic

complementarity, player j responds by also becoming more aggressive. Hence, expected

offers increase. Second, consider an increase in player j’s default allocation probability,

xj, while holding xi constant. This enhances j’s expected payoffs from being passive

and so reduces her strength. Ceteris paribus, this encourages j to be less aggressive.

However, player i responds by competing harder as she understands that she now has

a higher chance of winning with an active offer, and this then encourages j to be more

aggressive too. In equilibrium, these two conflicting incentives for player j cancel, leaving

only player i to be more aggressive. The results of Proposition 2 then follow by combining

the effects of decreasing xi and increasing xj.

The existing literature on all-pay auctions has suggested that when players become

more asymmetric, then both players are likely to compete less aggressively via the ‘dis-

couragement effect’ (e.g. Baye et al. 1993). More recent results on contest design build

on this to show how competition can be increased by handicapping the ex ante stronger

player and favoring of the ex ante weaker player in order to ‘level the playing field’.20

Somewhat similarly, we demonstrate how an organizer can induce more fierce compe-

tition by using asymmetric default allocation probabilities. However, our results differ

in two important ways. First, in contrast to much of the literature, we show how an

asymmetric contest design can stimulate competition even when the players are other-

wise symmetric.21 Second, and more unusually, rather than leveling the playing field, our

results suggest that offer-maximizing organizers should use default allocation probabili-

20For instance, Szech (2015) and Franke et al. (2018) show this in relation to the use of tie-break rules
or headstarts/multiplicative biases, respectively.

21As noted in the introduction, a small stream of literature has found a similar principle can also apply
but these focus on different settings and different mechanisms (e.g. Drugov and Ryvkin 2017, Barbieri
and Serena 2022, and Pérez-Castrillo and Wettstein 2016).
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ties to create or enhance any difference between the two players’ strengths. Indeed, the

weaker (stronger) player with a relatively higher (lower) default allocation probability

should optimally be made even weaker (stronger) by increasing (reducing) their value of

xi.

6.2 Participation Costs

We now move on to consider the optimal design of participation costs under the assump-

tion that the contest organizer can manipulate the players’ individual, and potentially

asymmetric, costs of being active, A1 ≥ 0 and A2 ≥ 0, at the start of the game. To

focus on the optimal design of participation costs per se, we assume that A = {A1, A2}

comprises of players’ set-up costs. This rules out the possibility that participation costs

take the form of entry fees which are used to enhance the prize fund or the value of

winning.22

While the spirit of our results can be shown more broadly, we focus on the following

setting. First, apart from, A, we assume the players are otherwise symmetric. Unlike

the previous subsection, this implies that the players will vary in both reach and strength

whenever Ai ̸= Aj. Second, for each player i and for all active offers, we re-define the

payoff functions as follows: L(u) ≡ l(u) − Ai and W (u) ≡ w(u) − Ai where w(u) and

l(u) satisfy versions of A1-A3 and where um ≥ 0 is their maximizer. In particular, to

ensure that costly participation remains in A3 even if Ai = 0, we assume some other

form of exogenous participation costs exists such that Lφ > l(um) and W φ > w(um).

Finally, we maintain some basic potential for the players to be active. Specifically, we let

w(um) > Lφ + x(W φ + Lφ) such that si > um when Ai = 0 for any player i.

As some preliminary comparative statics, consider the effects of a marginal increase

in Aj while holding Ai constant. From (3)-(4), this will strictly reduce player j’s reach

and strength (when they exceed um), but leave player i’s reach and strength unchanged.

Hence, we know that player i will have the higher strength and reach, si > sj and ri > rj,

whenever Ai < Aj. We can now state the following for any generic or non-generic contest:

Proposition 3. In any contest under our assumptions, it is always strictly offer-maximizing

to set Ai = 0 and Aj = Ā ≡ x(Wφ−Lφ)(Lφ−l(um))
w(um)−l(um)−x(Wφ−Lφ)

> 0 such that s1 = r2 > um.

One may have predicted that the offer-maximizing design would involve zero partici-

pation costs for both players. Indeed, this is easy to show if participation costs are forced

to be symmetric, A1 = A2. However, Proposition 3 demonstrates that such logic is incor-

rect if the contest designer can employ an asymmetric contest design. Indeed, like the

22In their private information setting, Hammond et al. (2019) and Liu and Lu (2019) show how positive
(symmetric) participation costs can be optimal due to their effects on i) deterring low ability entrants, and
ii) generating funds to increase the prize fund which encourages more effort from high ability entrants.
In contrast, in a setting without these effects, we consider the optimal design of potentially, asymmetric
participation costs per se.
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previous subsection, despite the players being otherwise symmetric, an offer-maximizing

organizer will optimally use an asymmetric design, with Ai = 0 and Aj = Ā > 0. Hence,

this suggests that asymmetric and positive positive participation costs may arise endoge-

nously. Thus, within our examples, this implies that i) a contest organiser may wish

to use asymmetric participation costs to stimulate higher bids in symmetric tendering

contexts, and ii) discriminatory advertising costs or platform fees can be pro-competitive

in clearinghouse contexts.

Much of the intuition can be understood within equilibrium case iv) where um < si <

rj and si ≥ sj (such that Ai ≤ Aj). First, for reasons similar to Proposition 2, a decrease

in the (weakly) stronger player’s participation cost, Ai, increases i’s strength and prompts

her and her rival to be more aggressive. This is consistent with the instinctive logic

of optimally lowering participation costs. However, an increase in the weaker player’s

participation cost, Aj, also acts to make player i more aggressive with no change in

player j’s behavior. The logic of this is also similar to that in Proposition 2; the rise

in Aj prompts player i to be more competitive because she understands that she has

an improved chance of winning. Hence, it is this effect that ensures A1 = A2 = 0 is

not optimal. Specifically, within case iv), the designer faces incentives to decrease Ai

while increasing Aj such that si rises and rj falls until si = rj. At this point, it is offer

maximizing to set the lowest values of {Ai, Aj} possible while still ensuring set si = rj,

which gives Ai = 0 and Aj = Ā > 0.

Again, the standard logic of leveling the playing field does not apply under positive

participation costs and default allocation probabilities. Indeed, the weaker (stronger)

player with the relatively higher (lower) participation costs should optimally be made

even weaker (stronger) by increasing (reducing) their participation costs.2324 Once more,

the combined presence of combined presence of participation costs and default allocations

is key as Ā would equal zero if x = 0.

7 Conclusion

Players often face direct costs of participating in contests. In such cases, the outcome

can depend upon the ‘default allocation’ - how the prize is awarded if no player actively

competes. The existing literature with participation costs has neglected this issue by

implicitly assuming that the prize is only awarded under active participation. However,

23As we later show, participation costs create a discontinuity in the players’ payoffs. Duvocelle and
Mourmans (2021) study some wider forms of payoff discontinuities and show how Siegel’s equilibrium
payoff results can still apply.

24In a different setting with private information, a literature on all-pay auctions considers (symmetric)
participation costs in the form of entry fees that can be used to supplement the prize fund (e.g. Hammond
et al. 2019 and Liu and Lu 2019). We exclude this possibility in order to focus solely on the role of costly
participation per se, with no connection to the prize fund.
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in practice, there are many important situations where this does not apply. To help

better address these issues, our paper makes three main contributions. First, it provides

a general, tractable framework that can explicitly characterize all potential equilibria in

all-pay contests while allowing for general forms of both participation costs and default

allocations, under arbitrary asymmetry. Second, the paper uses this framework to for-

mally connect some recent developments in all-pay contests (Siegel 2009, 2010, 2014) to

the broad family of ‘clearinghouse’ models on sales price competition that are popular

workhorses in IO and marketing (e.g. Baye and Morgan 2001, Baye et al. 2004, Baye et al.

2006). The documented link offers substantial benefits for future research by enabling the

two literatures to trade theoretical and empirical insights. As examples, we use this link

to resolve two long-standing problems: addressing asymmetry in clearinghouse models

and equilibrium uniqueness in symmetric n-player all-pay contests. Finally, we analyze

how participation costs and default allocations can be used as new, practical tools in con-

test design. Throughout, we show how the combined presence of participation costs and

default allocations is key. Together, they can often reverse otherwise familiar intuitions.
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Appendix A: Main Proofs

Proof of Lemma 3. By adapting well-known results in the contest or clearinghouse

literatures (e.g. Narasimhan 1988, Hillman and Riley 1989, Baye et al. 1992, Baye et al.

1996), we know that in equilibrium: i) no player will ever use a point mass at u > um,

and ii) if one player has a point mass at u, then the other player will not. Hence, when

combined with Lemma 1, player i can only possibly use a point mass at um
i or um

j . We

now prove that player i will never put a point mass at um
j ̸= um

i . First, suppose u
m
i > um

j .

A point mass at um
j cannot be optimal as ui = um

j is dominated via Lemma 1. Second,

suppose um
i < um

j . By reversing the previous argument together with Lemma 1, we know

that player j will never select uj ∈ [um
i , u

m
j ). Thus, if player i had a mass point at um

j ,

then she would optimally deviate by moving the mass from um
j to um

i in order to increase

her payoffs from winning (or losing) without affecting her probability of winning.

Proof of Lemma 4. Suppose αi > βi ≥ 0. a) From Lemma 1, we know no player will

set an active offer in the interval (min(um
i , u

m
j ), u

m). Hence, given Lemmas 2 and 3,

player i must make offers above um with positive probability. For this to be optimal,

it must be that player j also makes offers above um with positive probability, otherwise

i would deviate. Hence, ū1, ū2 > um. By adapting standard well-known results (e.g.

Narasimhan 1988, Hillman and Riley 1989, Baye et al. 1992, Baye et al. 1996), one can

then demonstrate ū1 = ū2 as well as b). For c), we know that any player l = {1, 2} has an

expected payoff from any u ∈ (um, ū] equal to Ll(u) + Fk(u)[Wl(u)− Ll(u)] given k ̸= l.

For player l to mix over u ∈ (um, ū], she must earn the same equilibrium payoffs, Π∗
l ,

over this interval. At ul = ū, she can guarantee to win (as there are no mass points at

ū). Hence, it must be that Π∗
l ≡ Wl(ū) which implies the unique active offer distribution

Fk(u) in (5).

The proof of Theorem 1 is contained separately in Appendix B.
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Proof of Proposition 1. The proof proceeds in a series of steps that build on those in

Arnold and Zhang (2014):

STEP 1: To begin, it is trivial to reproduce versions of Lemmas 1-3 for the case

of n > 2 symmetric players. Further, by following standard results in the literature, it

is also straightforward to note a few additional results (without full proof) that apply

when at least two players are active with positive probability. i) At least one player must

have a lower bound of their support, ui, equal to um. To show this, suppose one or more

players share the lowest lower bound, min{uj} > um. Then at least one such player would

optimally deviate by relocating probability mass from just above the lower bound to um

because this would strictly increase their payoffs via A2 and yet leave their probability

of winning (nearly) unchanged. ii) There can be no interval of active offers, u ∈ (u′, u′′)

with u′ < u′′, that is only in the support of one player. If so, that player’s expected

payoffs would be decreasing across the interval and so they would optimally reallocate

the probability mass in the interval to the lower end of the interval. iii) These two results

then imply that if at least two players are active with positive probability, then the lower

bound for at least two players, ui and uj, must equal um.

STEP 2: In equilibrium, no player i can have αi = 1. We prove this by contradiction

across three exhaustive cases. First, suppose there are at least two players, i and j, with

αi = αj = 1. In this case, it must be that ui = uj = um. If not, with ui < uj, then player

i would always wish to deviate. Further, from Lemma 3, we also know there can be no

ties in active offers within any equilibrium. Hence, players i and j must lose whenever

they select um and so earn an equilibrium payoff of L(um). They would then wish to

deviate to being passive to earn Lφ via A3. Hence, at most, only one player can have

αi = 1. Second, suppose αi = 1 and αj = 0 for all j ̸= i. For this to be an equilibrium, i

cannot wish to deviate to being passive, and any player j cannot wish to deviate to um+ε

for sufficiently small ε. This requires W (um) ≥ Lφ + x(W φ − Lφ) and Lφ ≥ W (um + ε)

respectively, which provides a contradiction for small enough ε given x(W φ − Lφ) > 0.

Finally, suppose only one player i has αi = 1, and at least one player j has αj ∈ (0, 1).

From Step 1, we know at least two players k and l must have uk = ul = um. This cannot

be an equilibrium if player i is neither k or l, as then players k and l will definitely lose

at um and so would prefer to deviate. Hence, suppose player i equals k. If so, then i

has to put a point mass on um or else l would lose for sure at um and so would wish to

deviate. Therefore, given αi = 1 and αh < 1 ∀h ̸= i, all players other than i must have an

equilibrium payoff Π∗
h = Lφ, while player i earns Π∗

i = Lφ+x(W φ−Lφ)Πh≠i(1−αh) > Lφ.

From Π∗
h = Lφ and αj ∈ (0, 1), it must be that ūj = r otherwise j would deviate to above

ū if ū < r. However, from Π∗
i > Lφ, it must be that ūi < ūj = r. Yet this leads to a

contradiction: at ui = ūi, i’s payoff is lower than Π∗
i . At ūi, player j who randomizes just

above ūi has an expected payoff equal to Π∗
j =L(ūi)+(W (ūi)−L(ūi))Πh≠jFh(ūi) and this

must equal Π∗
j = Lφ. However, at ūi, player i earns L(ūi) + (W (ūi) − L(ūi))Πh ̸=iFh(ūi)
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and this must be less than Lφ because Fj(ūi) < 1 and Fi(ūi) = 1.

STEP 3: In equilibrium, any player who actively participates with positive probability

has the same upper bound, ū. Suppose not. Specifically, suppose there are two active

players, i and j, with ūi ≡ ū > ūj > um. From Step 1, we know it must be that

Fi(ū) = 1 and Fi(ū− ε) < 1 for any ε > 0, such that Fi(ūj) ∈ (0, 1). As there can be no

ties, we also know that Π∗
i = W (ū). For this to be equilibrium, we require i) player i’s

expected payoff at ū to be weakly larger than her expected payoff at ūj: W (ū) ≥ L(ūj)+

(W (ūj)− L(ūj))Πh ̸=iFh(ūj), and ii) player j’s expected payoff at ūj to be weakly larger

than her expected payoff at ū: L(ūj) + (W (ūj) − L(ūj))Πh ̸=jFh(ūj) ≥ W (ū). However,

this leads to a contradiction because both inequalities cannot hold simultaneously as

Πh ̸=iFh(ūj) > Πh ̸=jFh(ūj) given Fi(ūj) ∈ (0, 1) and Fj(ūj) = 1. Therefore, all active

players must set a common upper bound, ū, and so achieve an equilibrium payoff, W (ū).

STEP 4: In equilibrium, all players must have αi = α ∈ [0, 1). From above, we

know that each player must be passive with positive probability as no player can be

active with probability one. Thus, any player i must earn equilibrium payoffs of Π∗
i =

Lφ+x(W φ−Lφ)Πh ̸=i(1−αh). If any player i is active with positive probability, αi ∈ (0, 1),

then we further know that Π∗
i = W (ū) such that W (ū) = Lφ + x(W φ −Lφ)Πh≠i(1−αh).

Clearly, it then follows that any player i with αi ∈ (0, 1) must share the same value

of αi = α ∈ (0, 1). Further it cannot be that one or more players have αi = α ∈

(0, 1) while one or more players have αk = 0 as player k would then earn strictly lower

expected payoffs than an active player i and so wish to deviate to ū, a contradiction;

Π∗
k = Lφ + x(W φ − Lφ)Πh ̸=k(1− αh) < Π∗

i = Lφ + x(W φ − Lφ)Πh ̸=i(1− αh) = W (ū).

STEP 5: If s ≤ um, then the equilibrium is unique and symmetric with α = 0. From

Step 4, we know αi = α ∈ [0, 1) for all i. Given s ≤ um, we know Lφ + x(W φ − Lφ) ≥

W (um). In this case, there is always an equilibrium at α = 0 as no player has a strict

incentive to deviate to αi > 0 as they earn Lφ+x(W φ−Lφ) by being passive and W (um)

at most from being active. Moreover, there is never an equilibrium with α ∈ (0, 1) as

this would require any individual player to be indifferent between being passive and being

active at um, such that Lφ+x(W φ−Lφ)(1−α)n−1 = L(um)+(W (um)−L(um))(1−α)n−1.

However, given s ≤ um, this can never hold for α ∈ (0, 1). Hence, the only possible

equilibrium involves α = 0.

STEP 6: If s > um, then the equilibrium is unique and symmetric with α ∈ (0, 1) and

Fi(u) = F (u) for all i and for all u ∈ [um, ū]. If s > um, then Lφ+x(W φ−Lφ) < W (um).

Hence, there can be no equilibrium with α = 0 as a player would wish to deviate to

um instead. Therefore, it must be that α ∈ (0, 1). Next, we show that for any two

players, i and j, it cannot be that Fi(u
′) > Fj(u

′) for some offer u′ > um. First, suppose

that both players select u′ with positive probability. Fi(u
′) > Fj(u

′) then implies that

player j has a higher probability of winning at u′ and so the two players cannot have

the same equilibrium payoffs, contrary to an earlier result, Π∗
i = W (ū) ∀i. Second,
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suppose u′ is only selected with positive probability by player i and not j. From Step

3, we know ūi = ūj = ū > um, and so there would have to be some û ∈ (u′, ū) in

the support of both players, with Fi(û) > Fj(û) (unless player j has a mass point at û

but this is ruled out as we know mass points can only arise at um for one player, via

a n-player version of Lemma 3). Hence, like above, this leads to a contradiction as the

two players cannot have the same equilibrium payoffs. Third, suppose u′ is only selected

with positive probability by player j and not i. At u′, we know player j must earn

L(u′) + (W (u′) − L(u′))(1 − Fi(u
′))Πk ̸=i,j(1 − Fk(u

′)) = Π∗
j , while player i would earn

Πi(u
′) = L(u′) + (W (u′) − L(u′))(1 − Fj(u

′))Πk ̸=i,j(1 − Fk(u
′)). Given Fi(u

′) > Fj(u
′),

this leads to Πi(u
′) > Π∗

j = W (ū), which again gives a contradiction. Fourth, suppose

u′ is not selected by either player with positive probability. In this case, consider the

highest offer below u′ which is selected by at least one player with positive probability,

u′′. Such an offer u′′ > um has to exist, otherwise α = 0. As there are no point masses

above um, we must have Fi(u
′′) = Fi(u

′) and Fj(u
′) = Fj(u

′′). Hence, if Fj(u
′) > Fj(u

′)

then Fj(u
′′) > Fj(u

′′) and so one can then apply the previous deductions again to show

a contradiction with u′′ instead of u′.

Lastly, for any two players, i and j, it also cannot be that Fi(u
m) > Fj(u

m). From

above, we know for all i: αi = α and Fi(u) = F (u) for u > um. Hence, it must also

be that Fi(u
m) = F (um) ∀i. Therefore, when s > um, the equilibrium is unique and

symmetric.

STEP 7: Finally, when s > um, we derive the equilibrium values of α and F (u) in

(10) and (11), together with ū = s and β = 0. First, given Fi(u
m) = F (um), all the

players could, in principle, use an identical mass point at um. However, this is ruled out

by a n-player version of Lemma 3 which says that only one player at most can use such

a mass point. Hence, β = 0. Second, given α ∈ (0, 1), each player must be indifferent

between i) being passive and selecting um, such that Π∗
i = Lφ + x(W φ −Lφ)(1−α)n−1 =

L(um) + (W (um) − L(um))(1 − α)n−1, and ii) selecting any u ∈ (um, ū], such that Π∗
i =

W (ū) = L(u) + F (u)n−1(W (u) − L(u)). By rearranging, these provide (10) and (11).

Finally by setting Π∗
i = W (ū) = Lφ + x(W φ − Lφ)(1 − α)n−1 and inserting (10) for the

value of α, one can show that ū = s. One can then verify that 1− α = F (um) such that

β = 0 as required.

Contest Design Proofs

For ease of exposition, the proofs for Propositions 2 and 3 make references to the cases

of Theorems 1 and 2 in abbreviated form, e.g. T1i refers to case i of Theorem 1, and T2a

refers to case a of Theorem 2.

Proof of Proposition 2. We proceed through a number of steps. Given our assump-

tions, it is useful to firstly summarize which equilibrium cases are relevant (across both
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generic and non-generic contests in Theorems 1 and 2). Specifically, from the text, we

know um
1 = um

2 = um and r = r1 = r2, and for any player i, we also know si > um when

xi = x and r > si for any permitted xi. Therefore, the following cases can never apply:

T1ii, T1iii, T1v, T2b, T2c and T2d. This leaves T1i) where α1 = α2 = 0 (if s1 < um < r

), T1iv) where 1 > αi > βi ≥ 0 for i = {1, 2} (if r > s1 > um), and T2a) where α2 = 0

and α1 = β1 ∈ [0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)] (if r > s1 = um).

From these, it is immediate that any x consistent with T1i can never be offer maxi-

mizing as both players would always be passive. Further, any x consistent with T2a can

never be offer maximizing either because it would be dominated by some x consistent with

T1iv. Intuitively, in T1iv, i) player 2 is active with positive, rather than zero, probability,

and ii) player 1 is active with a higher probability (as θ1(u
m) < θ1(ū) for ū > um) and

has an average active offer that is strictly higher than um. Hence, the offer-maximizing

level of x must lie within the remaining case, T1iv. To understand more, the following

lemma details the comparative statics within T1iv.

Lemma 5. Let r > s1 > um such that T1iv applies. Then a) a marginal increase in x1

reduces the offers of both players in the sense of FOSD, and b) a marginal increase in x2

improves player 1’s offers in the sense of FOSD but leaves player 2’s offers unchanged.

Proof. In T1iv, given um
1 = um

2 = um, we know ū = s1, F1(u) = F2(u) = W (s1)−L(u)
W (u)−L(u)

,

1 − α1 = W (s1)−Lφ

(Wφ−Lφ)x2

∈ (0, 1), β1 = F1(u
m) − (1 − α1), 1 − α2 = F2(u

m
1 ), β2 = 0 and

Π∗
1 = Π∗

2 = W (s1). a) From the text, we know ∂s1/∂x1 < 0. Hence, both players’

offers reduce in the sense of FOSD because F1(u), F2(u), (1 − α1) and (1 − α2) are

all strictly increasing in x1. b) From the text, also recall ∂s1/∂x2 = 0. Thus, the

only changes that occur involve a decrease in 1 − α1 and an associated increase in β1,
∂(1−α1)

∂x2

= −∂β1

∂x2

< 0. Hence, player 1’s offers improve in the sense of FOSD, but player

2’s offers remain unchanged.

To complete the proof of Proposition 2, suppose si ≥ sj (such that xi ≤ xj). Then

within T1iv where um < si < r, we know that both players offers are strictly reducing in

xi in the sense of FOSD, and an increase in xj will improve player i’s offer, while leaving

player j’s unchanged. Hence, it is offer-maximizing to decrease xi until xi = x and raise

xj until xj = 1 − x. Such a change will raise si and lower sj, maintaining si > sj. At

such a point, um < si < r still applies because we know si > um when xi = x and si < r

for all valid xi.

Proof of Proposition 3. We proceed through a number of steps. Given our assump-

tions, it is useful to firstly summarize which equilibrium cases are relevant (across both

generic and non-generic contests in Theorems 1 and 2). Specifically, from the text, we

know um
1 = um

2 = um, and for any player i we also know si > um when Ai = 0, and ri > si

for any Ai ≥ 0. Therefore, cases T1iii and T2c can never apply. However, all other cases
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remain possible. This leaves T1i and T2b where α1 = α2 = 0, T2a where α2 = 0 and

α1 = β1 ∈ [0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)], T1ii and T2d where α2 = 0 and α1 = β1 = 1,

T1iv where 1 > αi > βi ≥ 0 for i = {1, 2}, and T1v where 1 = α1 > β1 ≥ 0 and

1 > α2 > β2 ≥ 0.

From these, it is immediate that any A consistent with T1i and T2b can never be

offer maximizing as both players would always be passive. Further, any A consistent

with T1ii, T2a, or T2d (which all have α1 = β1 ∈ (0, 1] and α2 = 0) can never be

offer maximizing either because it would be dominated by some A consistent with T1v.

Intuitively, in T1v (where 1 = α1 > β1 ≥ 0 and 1 > α2 > β2 ≥ 0), we know that i) player

2 is active with positive, rather than zero, probability, and ii) player 1 is active with a

weakly higher probability and has an average active offer strictly above um. Hence, the

offer-maximizing A must lie somewhere within the remaining cases, T1iv and T1v. To

understand more, the next two lemmas detail the comparative statics within these two

cases.

Lemma 6. Let um < r2 ≤ s1 such that T1v applies. Then a) a marginal increase in

A1 leaves both players’ offers unchanged, while b) a marginal increase in A2 reduces both

players’ offers in the sense of FOSD.

Proof. In T1v, given um
1 = um

2 = um, we know ū = r2, F1(u) = F2(u) =
w(r2)−l(u)
w(u)−l(u)

, α1 = 1,

1− α2 = F2(u
m
1 ), β1 = F1(u

m), β2 = 0, Π∗
1 = w(r2)− A1 and Π∗

2 = w(r2)− A2 ≡ Lφ. a)

From the text we know ∂r2/∂A1 = 0. Hence, a marginal increase in A1 has no impact

on the players’ offers because F1(u), F2(u), (1− α1), and (1− α2) all remain unchanged.

b) From the text, also recall ∂r2
∂A2

= 1
w′(r2)

< 0. Hence, both player’s offers reduce because

F1(u), F2(u) and (1− α2) are all strictly increasing in A2 via r2, while α1 is independent

of A2.

Lemma 7. Let um < s1 < r2 such that case T1iv applies. Then a) a marginal increase

in A1 reduces both players’ offers in the sense of FOSD, and b) a marginal increase in A2

improves player 1’s offers in the sense of FOSD but leaves player 2’s offers unchanged.

Proof. In T1iv, given um
1 = um

2 = um, we know ū = s1, F1(u) = F2(u) = w(s1)−l(u)
w(u)−l(u)

,

1 − α1 = w(s1)−A2−Lφ

(Wφ−Lφ)x
∈ (0, 1), β1 = F1(u

m) − (1 − α1), 1 − α2 = F2(u
m
1 ), β2 = 0 and

Π∗
i = w(s1) − Ai for i = 1, 2. a) From the text we know ∂s1/∂A1 < 0. Hence, both

players’ offers reduce in the sense of FOSD as F1(u), F2(u), (1− α1) and (1− α2) are all

increasing in A1. b) From the text, also recall ∂s1/∂A2 = 0. Thus, in terms of offers, the

only changes that occur involve a decrease in 1 − α1 and an associated increase in β1,
∂(1−α1)

∂A2

= − ∂β1

∂A2

< 0. Hence, player 1’s offers improve in the sense of FOSD, but player

2’s offers remain unchanged.
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To complete the proof of Proposition 3, suppose Ai ≤ Aj such that si ≥ sj and

ri ≥ rj. First, consider case T1iv where um < si < rj. Here, we know that a marginal

reduction in Ai (and associated increase in si) will improve both players’ offers, and a

marginal increase in Aj (and associated reduction in rj) will improve player i’s offers, but

leave j’s unchanged. Hence, within this case, it is strictly offer maximizing to reduce Ai

and increase Aj until the boundary point where we approach si = rj. At this point, we

enter case T1v where um < rj ≤ si. In this case, we know that a marginal reduction in

Aj (and associated increase in rj) can improve both player’s offers. Therefore, we know

that reducing Aj until the point where rj = si > um must be strictly offer-maximizing.

Implementing the point rj = si > um by manipulating {Ai, Aj} is always possible

given our assumption that ri > si > um when Ai = 0. Indeed, there are an infi-

nite number of pairs of {Ai, Aj} for which rj = si > um. With use of (3) and (4),

any such pair must satisfy Ai +
x(Wφ−Lφ)(Lφ−(l(um)−Ai))
w(um)−l(um)−x(Wφ−Lφ)

= Aj or equivalently, Aj =
Ai(w(um)−l(um))+x(Wφ−Lφ)(Lφ−l(um))

w(um)−l(um)−x(Wφ−Lφ)
. From Lemma 6, the offer maximizing pair must be

the one with the lowest value of Aj. Hence, it is offer maximizing to set Ai = 0 and

Aj = x(Wφ−Lφ)(Lφ−l(um))
w(um)−l(um)−x(Wφ−Lφ)

≡ Ā where Ā > 0 due to our assumptions Lφ > l(um) and

w(um) > Lφ + x(W φ + Lφ).

Appendix B: Proof of Theorem 1

This appendix provides the proof of Theorem 1 by deriving a more general result, Theorem

2, which characterizes the set of equilibria for both generic and non-generic contests. For

convenience, it is useful to define

δi(u) = 1−
Wi(u)− Li(u

m
i )

Wi(um
i )− Li(um

i )
. (12)

Theorem 2. Given Condition X, the equilibrium in any generic or non-generic contest

follows Theorem 1 unless any of the following knife-edge cases apply. If so, the equilibrium

is potentially non-unique:

a) When s1 = um
1 , player 2 is always passive, α2 = 0, but player 1 selects um

1 with any

probability α1 = β1 ∈ [0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)].

b) When r2 = um
2 and s1 < um

1 , then neither player is active, α1 = α2 = 0.

c) When r2 = um
2 , s1 > um

1 and um
1 < um

2 , player 1 is always active with um
1 , α1 = β1 = 1,

and player 2 selects um
2 with any probability α2 = β2 ∈ [0,min{σ1(u

m
1 ), δ1(u

m
2 )}].

d) When r2 = um
2 , s1 > um

1 and um
1 ≥ um

2 , player 1 is always active with um
1 , α1 = β1 = 1,

and player is always passive, α2 = 0.

The proof of Theorem 2 proceeds as follows. Step 1 provides an exhaustive list of

possible equilibrium forms. Step 2 defines some further features for each equilibrium form,
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and characterizes some necessary parameter conditions for each form to exist. Finally,

Step 3 shows how these parameter conditions are enough to characterize the equilibria

for the entire parameter space in a way that is consistent with Theorem 2.

Step 1: Possible Equilibrium Forms

Lemmas 1-4 offer a start in thinking about possible equilibrium forms. However, to narrow

this down further, Lemma 8 shows that both players cannot be active in equilibrium with

probability one.

Lemma 8. Suppose both players are active with positive probability in equilibrium such

that αk > 0 for k = 1, 2. Then it cannot be that α1 = α2 = 1. Instead, either i)

αk = βk > 0 for k = 1, 2, in which case it must be that um
j > um

i and αj = βj ∈ (0, 1) for

some j, or ii) αk > βk ≥ 0 for k = 1, 2, in which case it must be that α2 ∈ (0, 1).

Proof of Lemma 8. Suppose both players are active with positive probability in equi-

librium such that αk > 0 for k = 1, 2. Then, we know it must be that either i) αk = βk > 0

for k = 1, 2, or ii) αk > βk ≥ 0 for k = 1, 2 because Lemma 4 rules out the possibil-

ity that αi > βi ≥ 0 but αj = βj > 0. First consider i). Here, two initial conditions

must hold. First, form Lemma 3, it must be that um
1 ̸= um

2 . Hence, without loss, let

um
j > um

i . Then it must be that αj = βj < 1. If instead, αj = βj = 1, then player i

would lose with certainty by selecting um
i , and so would deviate to αi = βi = 0 to earn

Lφ
i > Li(u

m
i ) via A3. Now consider ii). Here, it cannot be that α2 = 1. We prove this

by contradiction under two exhaustive cases. First, suppose α2 = 1 with α1 = 1 and let

um
i = um > um

j . From Lemma 4, we know both players must mix on (um, ū] and that

player i must select ui (arbitrarily close to) um with positive probability, with no ties at

such a point. Given αj = 1, i must always lose when making such an offer and so earn

an equilibrium payoff (arbitrarily close to) Li(u
m
i = um). However, i would then strictly

prefer to deviate by setting ui = φ as Lφ
i − Li(u

m
i ) > 0 via A3. Second, suppose α2 = 1

with α1 ∈ (0, 1). Given α2 = 1, player 1 will earn Lφ
1 when passive. From Lemma 4, we

know that player 1 must must mix up to ū and that player 1 will win with certainty at ū,

earning W1(ū). Hence, for player 1 to mix between φ and ū, we require Lφ
1 = W1(ū). This

implies ū = r1. For α2 = 1, we need to rule out any deviations to φ and so we require

W2(ū) ≥ Lφ
2+(1−α1)x2(W

φ
2 −Lφ

2). From the definition of strength, the RHS is equivalent

to W2(s2). Hence, we require W2(ū) ≥ W2(s2) which implies ū ≤ s2. Therefore, when

combined with ū = r1 and s1 < r1, we require s1 < r1 = ū ≤ s2. This implies s1 < s2; a

contradiction via Definition 3.

Using this with the results from Lemmas 1-4, we can now list the possible equilibrium

forms as follows.
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Lemma 9. Given Lemmas 1-4 and 8, the only possible equilibrium forms are:

1. Neither player is active, α1 = α2 = 0.

2. Player i is always active with um
i , αi = βi = 1, and player j is always passive, αj = 0.

3. Player i randomizes between being active at um
i and being passive, αi = βi ∈ (0, 1),

while player j is always passive, αj = 0.

4. Each player k randomizes between being active at um
k and being passive, αk = βk ∈

(0, 1), for k = 1, 2, where um
j > um

i .

5. Player j randomizes between being active at um
j and being passive, αj = βj ∈ (0, 1),

but player i is always active with um
i , αi = βi = 1, where um

j > um
i .

6. Both players are active above um and active with interior probability, 1 > αi > βi ≥ 0

for i = 1, 2.

7. Both players are active above um where one player, player 2, is active with interior

probability, 1 > α2 > β2 ≥ 0, and one player, Player 1, is active with probability one,

1 = α1 > β1 ≥ 0.

Proof of Lemma 9. By definition, any equilibrium must have αi ≥ βi ≥ 0 for i =

{1, 2}. Hence, the only possible outcomes can be exhaustively listed by a) α1 = β1 =

α2 = β2 = 0, b) αi = βi > 0 and αj = βj ≥ 0, and c) αi > βi ≥ 0 for at least one player

i. We now show how these possible outcomes are fully covered by equilibrium forms 1-7

in the Lemma. First, a) corresponds directly to form 1. Second, we can split b) into four

sub-cases that directly correspond to forms 2, 3, 4, and 5 respectively. Note that Lemma

8 rules out αi = βi = 1 for both players, and also ensures that um
j > um

i must hold in

forms 4 and 5. Finally, if c) applies then we know from Lemma 4 that αj > βj ≥ 0

must also apply, with both players being active above um. Hence, c) can be split into two

sub-cases that correspond directly to forms 6 and 7. In form 7, note it cannot be that

α2 = 1 due to Lemma 8.

Step 2: Further Results on each Equilibrium Form

We now detail some further features of the equilibrium forms and define some necessary

parameter conditions for the existence of each form. These results apply for both generic

and non-generic contests.

Lemma 10. Equilibrium Form 1: α1 = α2 = 0 is an equilibrium iff si ≤ um
i for i = {1, 2}.

Proof of Lemma 10. If α1 = α2 = 0, then each player i expects to earn Lφ
i +xi(W

φ
i −

Lφ
i ). For α1 = α2 = 0, we require no player i to have an incentive to deviate by submitting

an active offer, even if they were to win at um
i with probability one. This requires

Wi(u
m
i ) ≤ Lφ

i + xi(W
φ
i − Lφ

i ) for i = {1, 2}. From the definition of strength this is

equivalent to si ≤ um
i for i = {1, 2}.
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Lemma 11. Equilibrium Form 2: αi = βi = 1 and αj = 0 is an equilibrium iff i = 1,

j = 2, s1 ≥ um
1 and r2 ≤ um.

Proof of Lemma 11. If αi = βi = 1 and αj = 0 then from Lemma 2, player i earns

Wi(u
m
i ) and player j earns Lφ

j . For this to be an equilibrium, it is first necessary that

player i has no incentive to deviate to ui = φ to earn Lφ
i +xi(W

φ
i −Lφ

i ). Hence, we require

Wi(u
m
i ) ≥ Lφ

i +xi(W
φ
i −Lφ

i ), which from the definition of strength, gives si ≥ um
i . Second,

it is necessary that player j has no incentive to deviate. If j deviated, she would optimally

deviate to either i) just above um to earn slightly below Wj(u
m) if um

i = um ≥ um
j , or

ii) um to earn Wj(u
m) if um

i < um
j = um. Hence, as a necessary condition, we require

Lφ
j ≥ Wj(u

m), which by using the definition of reach requires rj ≤ um. Thus, this

equilibrium requires si ≥ um
i and rj ≤ um. As we now prove, these two conditions cannot

both hold unless i = 1 and j = 2. We proceed by contradiction. Suppose j = 1 such that

r1 ≤ um. As x1 > 0, this gives s1 < r1 ≤ um. First suppose um = um
2 . This then implies

s1 < um
2 which when combined with Definition 3, gives s2 ≤ s1 < um

2 such that s2 ≥ um
2

can never apply. Finally, suppose um = um
1 . Then s1 < r1 ≤ um gives s1 < um

1 which

implies s1 = −∞ from Definition 2. From Definition 3, this further implies s2 ≤ s1 = −∞

such that s2 ≥ um
2 ≥ 0 can also never apply. Hence, it must be that i = 1 and j = 2.

Lemma 12. Equilibrium Form 3: αi = βi ∈ (0, 1) and αj = 0 is an equilibrium iff i = 1,

j = 2, s1 = um
1 and α1 = β1 ∈ (0, 1) ∩ [σ1(u

m
2 ), θ1(u

m)].

Proof of Lemma 12. Suppose αi = βi ∈ (0, 1) and αj = 0. First, in order for player

i to be willing to mix between um
i and φ, we require Wi(u

m
i ) = Lφ

i + xi(W
φ
i − Lφ

i ) given

αj = 0. This implies si = um
i from the definition of strength. Further, as player j is

passive, she must earn Π∗
j = Lφ

j + xj(W
φ
j −Lφ

j )(1−αi). To be an equilibrium, we require

neither player to have an incentive to deviate. For i, this is trivial because she has no

other profitable deviations. For j, we proceed to consider two exhaustive situations:

um
j ≥ um

i and um
j < um

i .

Begin with the situation with um
j ≥ um

i . Here, player j could deviate from φ to um
j

(or just above um
j if um

i = um
j ). To rule this out, we need Π∗

j = Lφ
j + xj(W

φ
j − Lφ

j )(1 −

αi) ≥ Wj(u
m
j ) which is equivalent to αi ≤ θi(u

m
j ). For later, it is useful to note that

this condition binds, that is θi(u
m
j ) < 1, when Wj(u

m
j ) > Lφ

j ↔ um
j < rj. But more

immediately, note that to allow αi > 0 as required, we need θi(u
m
j ) > 0 or equivalently,

Wj(u
m) < Lφ

j + xj(W
φ
j −Lφ

j ). Via the definition of strength, this implies sj < um
j , which

in turn implies sj = −∞. Hence, as si = um
i ≥ 0, it must be that i = 1 and j = 2 from

Definition 3. Given these player identities, we require W2(u
m) < Lφ

2 +x2(W
φ
2 −Lφ

2) which

implies from (7) that σ1(u
m
2 ) < 0.

Now consider the other situation with um
j < um

i . Here, we need to consider two possible

deviations by player j to a) um
j , or b) just above um

i . First consider deviation a). This

will not be optimal if
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Π∗
j = Lφ

j + xj(W
φ
j − Lφ

j )(1− αi) ≥ Lj(u
m
j ) + (Wj(u

m
j )− Lj(u

m
j ))(1− αi) (13)

Given Lφ
j > Lj(u

m
j ) from A3, this condition holds for any αi if Wj(u

m
j ) ≤ Lj(u

m
j ) +

xj(W
φ
j − Lφ

j ). The condition also continues to hold for higher Wj(u
m
j ) if Wj(u

m
j ) ≤

Lφ
j + xj(W

φ
j − Lφ

j ) (such that sj ≤ um
j ) because there, even at αi = 0, (13) holds. For

Wj(u
m
j ) > Lφ

j +xj(W
φ
j −Lφ

j ) (such that sj > um
j ), then one can rearrange (13) to require

αi ≥ σi(u
m
j ) = 1 −

Lφ
j −Lj(u

m
j )

Wj(um
j )−Lj(um

j )−xj(W
φ
j −Lφ

j )
. Now consider deviation b) to just above

um
i > um

j . To rule this out we require Π∗
j = Lφ

j + xj(W
φ
j − Lφ

j )(1 − αi) ≥ Wj(u
m
i ) or

equivalently, αi ≤ θi(u
m
i ) = 1−

Wj(u
m
i )−Lφ

j

(Wφ
j −Lφ

j )xj

.

We now explore deviations a) and b) in three exhaustive parameter regions and

show that in each case, it must be that αi = βi ∈ (0, 1) must lie within the interval,

[σi(u
m
j ), θi(u

m)], as required. Finally, we then prove that in each case, it must be that

i = 1 and j = 2.

First, suppose sj ≤ um
j . Here, deviation a) is never profitable using earlier results,

but to rule out deviation b) we need αi ≤ θi(u
m
i ). To then allow αi > 0 as required, we

need θi(u
m
i ) > 0 or equivalently, Wj(u

m
i ) < Lφ

j + xj(W
φ
j − Lφ

j ). Given um
i > um

j , this

always holds because Wj(u
m
i ) < Wj(u

m
j ) ≤ Lφ

j + xj(W
φ
j −Lφ

j ) where the last part follows

from sj ≤ um
j . So, if sj ≤ um

j then any αi = βi ∈ (0, 1) can be an equilibrium provided

αi ≤ θi(u
m
i ).

Second, suppose sj > um
j and rj ≤ um

i . Deviation b): the latter condition on rj implies

θi(u
m
i ) ≥ 1 such that any αi = βi ∈ (0, 1) will automatically satisfy αi ≤ θi(u

m
i ). However,

to rule out deviation a), given sj > um
j , we know from earlier results that we require αi ≥

σi(u
m
j ). Hence, to allow αi = βi ∈ (0, 1) we need σi(u

m
j ) < 1. This is assured by sj > um

j

and A3: Lφ
j −Lj(u

m
j ) > 0 and (which in turn gives Wj(u

m
j )−Lj(u

m
j )−xj(W

φ
j −Lφ

j ) > 0).

So if sj > um
j and rj ≤ um

i then any αi = βi ∈ (0, 1) can be an equilibrium provided

αi ≥ σi(u
m
j ).

Third, suppose sj > um
j and rj > um

i . From earlier results we need both αi ≥ σi(u
m
j )

and αi ≤ θi(u
m
i ) to rule out deviations b) and a), respectively. Whilst sj > um

j and

rj > um
i ensure that σi(u

m
j ) < 1 and θi(u

m
i ) > 0 as required, we still need to ensure

θi(u
m
i ) ≥ σi(u

m
j ) in order for some αi = βi ∈ (0, 1) to be possible. This condition can be

rewritten as

1−
Wj(u

m
i )− Lφ

j

(W φ
j − Lφ

j )xj

≥ 1−
Lφ
j − Lj(u

m
j )

Wj(um
j )− Lj(um

j )− xj(W
φ
j − Lφ

j )

or Wj(u
m
i ) ≤ Wj(sj), which is equivalent to sj ≤ um

i . So if sj > um
j and rj > um

i ≥ sj,

then any αi = βi ∈ (0, 1) can be an equilibrium provided αi = βi ∈ [σi(u
m
j ), θi(u

m
i )].
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Finally, notice that in all three regions, it follows that i = 1 and j = 2 from Definition

3. In the first region, we require sj ≤ um
j < um

i = si and so i = 1. In the second region,

we require sj > um
j and rj ≤ um

i = si, and so si > sj follows from sj < rj for sj ≥ um
j . In

the third region, we require sj > um
j and rj > si = um

i ≥ sj, and so even if si = sj the

fact that um
i > um

j implies i = 1 from Definition 3.

To summarize, when um
i > um

j , an equilibrium with αi = βi ∈ (0, 1) and αj = 0

can arise iff i = 1, j = 2 and either i) s2 ≤ um
2 < um

1 = s1 and α1 ≤ θ1(u
m
1 ) (where

σ1(u
m
2 ) ≤ 0); ii) s2 > um

2 , r2 ≤ um
1 = s1, and α1 ≥ σ1(u

m
2 ) (where θ1(u

m
1 ) ≥ 1), or iii)

s2 > um
2 , r2 > um

1 = s1, and α1 ∈ [σ1(u
m
2 ), θ1(u

m
1 )] (where 0 < σ1(u

m
2 ) ≤ θ1(u

m
1 ) < 1).

Therefore, in all three cases i = 1, j = 2, α1 ∈ (0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)]. Furthermore,

when um
j = um ≥ um

i , we also found an equilibrium with αi = βi ∈ (0, 1) and αj = 0

can arise iff i = 1, j = 2, s1 = um
1 ≤ um

2 , s2 < um
2 , α1 ≤ θ1(u

m), and σ1(u
m
2 ) ≤ 0. Thus,

overall, an equilibrium with αi = βi ∈ (0, 1) and αj = 0 arises iff i = 1, j = 2, s1 = um
1

and α1 = β1 ∈ (0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)].

Lemma 13. Equilibrium Form 4: αi = βi ∈ (0, 1), αj = βj ∈ (0, 1) with um
j > um

i

is an equilibrium iff i = 1, j = 2, um
1 < s1 ≤ um

2 < r2, α1 = β1 = θ1(u
m
2 ), and

α2 = β2 = σ2(u
m
1 ).

Proof of Lemma 13. Suppose αi = βi ∈ (0, 1) and αj = βj ∈ (0, 1) with um
j > um

i .

Given this, for player j to mix over φ and um
j , we require Lφ

j + xj(W
φ
j − Lφ

j )(1 − αi) =

Wj(u
m
j ). This implies that player i must have αi = βi = θi(u

m
j ). For θi(u

m
j ) ∈ (0, 1) as

required, one then needs sj < um
j < rj. Given αi = βi = θi(u

m
j ) and um = um

j , there are

no possible profitable deviations for player j. Now for player i to mix with αi = βi ∈ (0, 1)

requires Lφ
i + xi(W

φ
i − Lφ

i )(1− αj) = Li(u
m
i ) + (1− αj)(Wi(u

m
i )− Li(u

m
i )). This implies

player j must have αj = σj(u
m
i ) and an associated equilibrium payoff equal to Wi(si). For

σj(u
m
i ) ∈ (0, 1), we require si > um

i . Further, to ensure player i does not wish to deviate to

just above um
j we also require Wi(si) ≥ Wi(u

m
j ) or si ≤ um

j . Thus, we need um
i < si ≤ um

j

together with sj < um
j < rj. From Definition 2, note that sj < um

j implies sj = −∞.

Hence, it must be that i = 1 and j = 2 via Definition 3 as sj = −∞ < 0 ≤ um
i < si.

Lemma 14. Equilibrium Form 5: αi = βi = 1, βj = αj ∈ (0, 1) with um
j > um

i is

an equilibrium iff i = 1, j = 2, r2 = um
2 > um

1 , s1 > um
1 , and α2 = β2 ∈ (0, 1) ∩

(0,min{δ2(u
m
2 ), σ2(u

m
1 )}].

Proof of Lemma 14. Given αi = βi = 1, player j can only earn Lφ
j when passive.

However, given um
j > um

i , player j will earn Wj(u
m
j ) when active. Hence, for player j to

mix with βj = αj ∈ (0, 1), we require Lφ
j = Wj(u

m
j ) such that um

j = rj. As xj > 0, this
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implies um
j = rj > sj and so it must be that sj = −∞. We also require player i to have

no incentive to deviate from um
i to i) φ or ii) just above um

j . To rule out i), we require

Li(u
m
i ) + (Wi(u

m
i )− Li(u

m
i ))(1− αj) ≥ Lφ

i + xi(W
φ
i − Lφ

i )(1− αj) or αj = βj ≤ σj(u
m
i ).

To rule out ii), we require Li(u
m
i ) + (Wi(u

m
i )− Li(u

m
i ))(1− αj) ≥ Wi(u

m
j ) or αj = βj ≤

1 −
Wi(u

m
j )−Li(u

m
i )

Wi(um
i )−Li(um

i )
= δj(u

m
j ). Thus, we require αj = βj ≤ min{δj(u

m
j ), σj(u

m
i )}. Hence,

to allow for αj = βj > 0, we require min{δj(u
m
j ), σj(u

m
i )} > 0. Given um

j > um
i , this is

satisfied if si > um
i . When combined with sj < um

j = rj such that sj = −∞, it must be

that i = 1 and j = 2 via Definition 3 as sj = −∞ < 0 ≤ um
i < si.

Lemma 15. Equilibrium Form 6: 1 > αi > βi ≥ 0 for i = {1, 2} is an equilibrium iff

r2 > s1 > um, ū = s1, α1 = θ1(ū), α2 = σ2(u
m
1 ), β1 = F1(u

m) − (1 − α1) ≥ 0, and

β2 = F2(u
m)− F2(u

m
1 ) ≥ 0.

Proof of Lemma 15. Suppose 1 > αi > βi ≥ 0 for i = {1, 2}. From Lemma 4, each

player k must mix over uk ∈ {φ}
⋃

(um, ū]. For this to be part of equilibrium, each

player k must earn their equilibrium payoff, Π∗
k, from any such uk. Thus, to be indifferent

between φ and ū specifically, requires Π∗
k = Lφ

k +xk(1−αl)(W
φ
k −Lφ

k) = Wk(ū) such that

αl = 1−
Wk(ū)−Lφ

k

xk(W
φ

k
−Lφ

k
)
≡ θl(ū) for any k, l ̸= k ∈ {1, 2}.

Without loss let um
i ≤ um

j . Initially consider a first possibility where βi > 0. Then,

player i must earn its equilibrium payoff, Π∗
i , from setting um

i . Hence, Π
∗
i = Li(u

m
i ) +

(Wi(u
m
i )− Li(u

m
i ))(1− αj). By setting this equal to the previous expression, Π∗

i = Lφ
i +

xi(1 − αj)(W
φ
i − Lφ

i ), one obtains an alternative expression for αj = σj(u
m
i ). Hence, by

setting αj = σj(u
m
i ) = θj(ū), we find Π∗

i = Wi(si) such that ū = si. Now consider player

j. She must earn her equilibrium profit when selecting select uj (arbitrarily close to) um.

Thus, Π∗
j = Lj(u

m)+(Wj(u
m)−Lj(u

m))(1−αi+βi). By setting this equal to Π∗
j = Wj(ū),

it gives βi =
Wj(ū)−Lj(u

m)

Wj(um)−Lj(um)
− θi(ū) ≡ Fi(u

m)− (1−αi). By rearranging the expression for

βi, we then require si > sj to ensure βi > 0 as assumed. Hence it must be that i = 1 and

j = 2. By definition it follows that β2 = F2(u
m) − (1 − α2). Then, using the definition

of strength, one can show (1− α2) = F2(u
m
1 ) such that β2 = F2(u

m)− F2(u
m
1 ) ≥ 0 given

um
1 ≤ um

2 = um. Lastly, given s1 > s2, to ensure αk ∈ (βk, 1) for k ∈ {1, 2}, we require

r2 > s1 > um.

Now continue to assume um
i ≤ um

j , but consider the remaining possibility with βi = 0.

For player j to be indifferent between setting um
j = um and being passive, we require

Lj(u
m
j ) + (Wj(u

m
j ) − Lj(u

m
j ))(1 − αi) = Lφ

j + xj(W
φ
j − Lφ

j )(1 − αi). Hence, one obtains

an alternative expression for αi = σi(u
m
j ). Then by setting αi = σi(u

m
j ) = θi(ū), we

find Π∗
j = Wj(sj) such that ū = sj. Given βi = 0, player i should not want to deviate

to um
i . Hence, we require Π∗

i = Wi(ū) ≥ Li(u
m
i ) + (Wi(u

m
i ) − Li(u

m
i ))(1 − αj). After

rearranging, this gives Wi(sj) ≤ Lφ
i +

ci(u
m
i )

bi(um
i )
(W φ

i − Lφ
i )xi = Wi(si) or si ≤ sj. Given

βj ≥ 0, player i should also earn Π∗
i by setting ui just above u

m
j such that Π∗

i = Wi(ū) =
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Li(u
m
j ) + (Wi(u

m
j ) − Li(u

m
j ))(1 − αj + βj). This confirms that βj = Fj(u

m
j ) − (1 − αj).

This equals zero if si = sj but is otherwise positive. Hence, when s1 = s2, player i can

either be 1 or 2, but when si < sj then it must be that j = 1 and i = 2 from Definition

3. Either way, this again confirms that ū = s1 and β1 = F1(u
m) − (1 − α1) ≥ 0 and

β2 = F2(u
m) − (1 − α2) = F2(u

m) − F2(u
m
1 ) = 0. Further, again, we require the same

conditions, r2 > s1 > um, to ensure αk ∈ (0, 1) and αk > βk for k ∈ {1, 2}.

Finally, we also need to verify that Fk(u) in (5) is well-behaved for both k = {1, 2}

with i) Fk(ū) = 1, and ii) F ′
k(u) > 0 for all u ∈ (um, ū]. i) is satisfied automatically. For

ii), note F ′
k(u) has the same sign as −L′

l(u)[Wl(u)−Wl(ū)]−W ′
l (u)[Wl(ū)− Ll(u)], and

that this is guaranteed to be positive for all u ∈ (um, ū] if Wl(ū) > Ll(u
m) for l = {1, 2}.

As Lφ
l > Ll(u

m), this condition would be satisfied if Wl(ū) ≥ Lφ
l . Using the definition

of reach, this requires rl ≥ ū for l = {1, 2} which follows given r2 > ū = s1 > um, and

r1 > s1.

Lemma 16. Equilibrium Form 7: 1 > α2 > β2 ≥ 0 and 1 = α1 > β1 ≥ 0 is an

equilibrium iff s1 ≥ r2 > um, ū = r2, α2 = 1 − F2(u
m
1 ), β1 = F1(u

m) > 0 and β2 =

F2(u
m)− F2(u

m
1 ) ≥ 0.

Proof of Lemma 16. Suppose 1 > α2 > β2 ≥ 0 and 1 = α1 > β1 ≥ 0. From Lemma

4, each player k must mix over uk ∈ {φ}
⋃

(um, ū]. First, it must be true that β1 > 0

in equilibrium. If not, with β1 = 0, then player 2 would always lose when choosing u2

arbitrarily close to um and so she would prefer to deviate to φ instead as Lφ
2 −L2(u

m
2 ) > 0

via A3. Second, it then follows that β2 = 0 when um
1 ≥ um

2 . To understand this, note

that given β1 > 0, β2 must equal zero if um
1 = um

2 from Lemma 3. Further, if um
1 > um

2

then player 2 will always lose at um
2 given α1 = 1. Therefore, player 2 would optimally

set β2 = 0 and instead, deviate to φ as Lφ
2 − L2(u

m
2 ) > 0 via A3. Third, for α2 ∈ (0, 1),

player 2 must earn Π∗
2 from any u2 ∈ {φ}

⋃

(um, ū]. Hence, she must be indifferent

between setting u i) equal to φ, ii) just above um, and iii) equal to ū. Given α1 = 1,

this implies Π∗
2 = Lφ

2 = L2(u
m) + (W2(u

m) − L2(u
m))β1 = W2(ū) such that ū = r2 and

β1 =
W2(ū)−L2(um)
W2(um)−L2(um)

≡ F1(u
m). Fourth, to ensure ū > um, we require r2 > um. (This also

ensures F1(u
m) > 0 given Lφ

2 > L2(u
m) via A3.) Fifth, given α1 > β1 > 0, player 1

must earn Π∗
1 from any u1 ∈ [um, ū]. Given β2 = 0 when um

1 ≥ um
2 , player 1 must earn

Π∗
1 = L1(u

m
1 )+ (1−α2)(W1(u

m
1 )−L1(u

m
1 )) by selecting u1 = um

1 . By setting this equal to

Π∗
1 = W1(ū), one obtains α2 = 1−

W1(ū)−L1(um
1
)

W1(um
1
)−L1(um

1
)
≡ 1−F2(u

m
1 ). Given ū > um, our previous

condition, r2 > um, ensures α2 ∈ (0, 1) as required. It then follows that player 2 has a mass

point at um
2 of size β2 = F2(u

m)−(1−α2) = F2(u
m)−F2(u

m
1 ). As consistent with our earlier

claim, this is positive if um
1 < um

2 , and zero if um
1 ≥ um

2 . Further, player 1 should not want

to deviate to being passive, so we require W1(ū) ≥ Lφ
1 + x1(W

φ
1 − Lφ

1)(1− α2) ≡ W1(s1).
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This implies s1 ≥ r2. So overall, we require s1 ≥ r2 > um. (Finally, we need to verify

that Fk(u) in (5) is well-behaved for both k = {1, 2} with i) Fk(ū) = 1, and ii) F ′
k(u) > 0

for all u ∈ (um, ū]. Using the details from the proof for Lemma 15, this requires rk ≥ ū

for k = {1, 2}. Here, this follows given r1 > s1 ≥ ū = r2 > um.)

Step 3: Characterizing the Parameter Space

To complete the derivation, Step 3 uses the results from Step 2 to identify the possi-

ble equilibria in each region and show how the equilibrium results are consistent with

Theorems 1 and 2.

First, by using Step 2, it is tedious but straightforward to show that the equilibria

detailed in Lemmas 10-16 cover all valid parameter cases under our assumptions and

definitions. Hence, at least one equilibrium form exists in each possible parameter con-

stellation.

Second, we need to show that Theorems 1 and 2 cover all possible equilibria, that

each equilibrium is correctly detailed within the Theorems, and that the equilibria within

Theorem 1 are unique. To proceed, we work through Lemmas 10-16 in reverse order. The

necessary and sufficient conditions regarding the levels of reach and strength in Lemma

16, s1 ≥ r2 > um, are not compatible with any other Lemma from Step 2 and are fully

captured by case v) in Theorem 1. Similarly, the necessary and sufficient conditions in

Lemma 15 are not compatible with any other Lemmas from Step 2 and are fully covered

by case iv) Theorem 1. The necessary and sufficient conditions in Lemma 14 are fully

covered by case c) of Theorem 2. However, at these conditions, Lemma 11 can also apply

and so case c) of Theorem 2 permits α2 = 0 as well as α2 ∈ (0, 1). The necessary and

sufficient conditions in Lemma 13 are not compatible with any other Lemmas from Step

2 and are fully covered by cases iii) Theorem 1. The necessary and sufficient conditions

in Lemma 12 are fully covered by case a) of Theorem 2. However, at these conditions,

the necessary and sufficient conditions for Lemmas 11 and 10 can also apply if r2 ≤ um

or s2 ≤ um
2 , respectively. Nevertheless, these equilibrium possibilities are still consistent

with Theorem 2a because θ1(u
m) ≥ 1 if r2 ≤ um, and σ1(u

m
2 ) and θ1(u

m) equal zero

if s2 ≤ um
2 . The necessary and sufficient conditions in Lemma 11 are not compatible

with any other Lemma from Step 2 and are fully covered in Theorem 1 case ii), apart

from the overlap situations that we have already covered, and apart from the situation

where s1 > um
1 and r2 = um

2 ≤ um
1 but this is covered by case d) of Theorem 2. Finally,

the necessary and sufficient conditions in Lemma 10 are not compatible with any other

Lemma from Step 2 and are fully covered in Theorem 1i) apart from the overlap situations

that we have already covered, and apart from the situation where s1 < um
1 and r2 = um

2

but this is covered by case b) of Theorem 2.
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