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1. Introduction 

One of the stylised facts in urban economics is that the city size distribution in 

many countries can be approximated by a Pareto distribution, and it is an extensively 

studied empirical regularity that the parameter of this distribution, the Pareto exponent, 

is close to one
1
. This has given rise to theoretical developments explaining the 

fulfilment of Zipf’s Law
2
, justifying it analytically, associating it directly with an 

equilibrium situation and relating it to parallel growth (Gibrat's Law
3
). A large part of 

this literature takes as a reference the case of the United States, assuming a Pareto 

exponent equal to 1.  

Gabaix [1999] presents a model based on local random amenity shocks, 

independent and identically distributed, which through migrations between cities 

generate Zipf’s Law. The main contribution of the work is to justify the fulfilment of 

Zipf’s Law in that the cities in the upper tail of the distribution follow similar growth 

processes, that is, that the fulfilment of Gibrat’s Law involves Zipf’s Law. Córdoba 

[2008] concludes that, under certain plausible conditions, Zipf’s Law is equivalent to 

Gibrat’s Law.  

Rossi-Hansberg and Wright [2007] develop a model of urban growth which 

generates Zipf’s Law in two restrictive cases (when physical capital is not used in 

production and productivity shocks are permanent, or when production is linear in 

physical capital and human capital is not used in production), and identifies the typical 

deviation of industrial productivity shocks as the key parameter which determines 

dispersion in the city size distribution. Eeckhout [2004] presents a model which also 

relates the migration of individuals between cities with productive shocks, obtaining as 

a result a lognormal and non-Paretian distribution of cities, although satisfying Gibrat’s 

Law. Duranton [2006, 2007] offers a model of urban economy with endogenous growth 

based on knowledge spillovers which in the stationary state reproduce Zipf’s Law for 

cities in the upper tail of the distribution; it also introduces some extensions which give 

empirically observed results (for example, a concave relationship between the rank and 

population logarithms). 

To summarise, these theoretical models rest on local externalities, whether  

amenities or shocks in production or tastes, which must be randomly distributed  

independently of size, and identify deviations from Zipf’s Law with a distribution of 

these shocks which is not independent of size. Other works also show the empirical 

relevance of other variables distributed clearly heterogeneously, such as climate or 

geographical advantages (access to the sea, bridges, etc), in the growth rate of cities. 

These theoretical developments arise in response to numerous empirical works 

which explore the relationship between the growth rate and Zipf’s Law. For a dynamic 

analysis, Ioannides and Overman [2003] use data from metropolitan areas from 1900 to 

1990 and arrive at the conclusion that Gibrat’s Law is fulfilled in the urban growth 

processes and that Zipf’s Law is also fulfilled approximately well for a wide range of 

                                                 
1 However, the values of the Pareto exponent vary greatly between countries (Rosen and Resnick [1980], 

Soo [2005]). And recent works demonstrate its sensitivity to the geographical unit chosen and the sample 

size (Eeckhout [2004]). 
2 Zipf’s Law is an empirical regularity which appears when Pareto’s exponent of the distribution is equal 

to one. The term was coined after a work by Zipf [1949], which observed that the frequency of the words 

of any language is clearly defined in statistical terms by constant values. 
3 Gibrat [1931] observed that the distribution of size (measured by sales or the number of employees) of 

firms tends to be lognormal, and his explanation was that the growth process of firms can be 

multiplicative and independent of the size of the firm.  
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city sizes. However, their results suggest that local values of Zipf’s exponent can vary 

considerably with the size of cities. Nevertheless, Black and Henderson [2003] arrive at 

different conclusions for the same period (perhaps because they use different 

metropolitan areas). Zipf’s Law would be fulfilled only for cities in the upper third of 

the distribution, while Gibrat’s would be rejected for any sample size. These results 

highlight the extreme sensitivity of conclusions to the geographical unit chosen and to 

sample size. To close the debate, Eeckhout [2004] demonstrates that if we consider all 

the cities for the period 1990 to 2000 the city size distribution follows a lognormal 

rather than a Pareto distribution, so that the value of Zipf’s parameter is not one, as 

earlier works concluded, but is about 0.5, and Gibrat’s Law is also fulfilled for the 

entire sample.  

Thus, if we accept that Zipf’s Law is not fulfilled when considering the 

distribution of American cities, we can ask what factors explain this deviation from an 

empirical point of view. That is, we can analyse the distribution element by element and 

explain the deviation between the size predicted by Zipf’s Law (associated with a Pareto 

exponent equal to one) and the real size of each city, using data on per capita income, 

employment distribution among sectors, individuals by levels of education, etc; 

variables which attempt to capture the influence of local externalities. This is the 

objective of this work, and for this data from the year 2000 are used, the first census in 

which the US Census Bureau offers data on all cities (places) without size restrictions. 

This question has already been dealt with in the literature, but indirectly. On one 

hand Ioannides and Overman [2003] contrast the relationship between Zipf’s and 

Gibrat’s Laws for the United States using graphic and non-parametric methods, 

confirming the theoretical results of Gabaix [1999]: the explanation for the smaller 

cities’ having a smaller Pareto exponent is that the variance of their growth rate is larger 

(deviations from Zipf’s Law appear due to deviations in Gibrat’s Law). On the other 

hand there are also works which explore the factors influencing growth rates. For the 

US, Glaeser and Shapiro [2001] study what factors influence the growth rate of 

American cities (cities of over 100,000 inhabitants and MSAs) using a very wide range 

of explicative variables (per capita income, average age of the residents, variables in the 

education level of individuals, temperature, distribution of employment among sectors, 

public spending per capita, etc.). According to this work, the three most relevant 

variables would be human capital, climate and transport systems for individuals (public 

or private).  

The approach proposed in this work is simpler and empirically more direct. The 

only precedent would be the work of Soo [2005], insofar as it explains the differences in 

the Pareto exponent between different countries using such explicative variables as per 

capita income, area, population, transport costs, public spending, political variables, 

etc., with the important difference that as it uses Pareto’s exponent per country as a 

dependent variable, it is comparing entire distributions, while we propose studying the 

deviations of each of the elements within a single distribution.  

The next section sets out the method used to calculate deviations from Zipf’s 

Law. Section 3 presents the variables used to try to explain the deviations. Section 4 

shows the empirical model used, a Multinomial Logit Model (MNLM), and analyses the 

results obtained. The work ends with our conclusions.  

2. Calculating the deviations 
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 Let S  be the city size, distributed according to a Pareto distribution. Then, 

following Eeckhout [2004], the density function ( )Sp  and the accumulated probability 

function ( )SP  will be: 

1
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where 0>a  is the Pareto exponent, N  is the number of cities above the truncation 
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Taking logarithms we obtain the linear specification usually estimated: 

uSaKuSaSaNR +−=+−+= lnlnlnlnln , 

where u  represents a random error which we suppose to meet the standard conditions, 

( ) 0=uE  and ( ) 2σ=uVar . 

If Zipf’s Law, 1=a , is strictly fulfilled, the above expression can be formulated in 

deterministic terms: 
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although it is preferable to leave it in terms of the size of the smallest city, as the most 

populous is always bigger than predicted by Zipf’s Law, for various reasons (especially 

political). 

However, if the estimated parameter is other than 1 and the errors are not white noises, 

we would obtain an estimated size for each city: 

u
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Subtracting (2) from (1) we obtain a relationship between the size which fulfils Zipf’s 

Law ( 1=a  and Z
Sln ) with the real size of the city and the estimated value of the 

Pareto exponent ( Sln  and â ): 
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Graphically ( )SS
Zln  represents the distance between the two distributions, the 

real one ( Sln ) and the Paretian distribution corresponding to Zipf’s Law ( Z
Sln ). The 

upper part of Figure 1 represents the estimation for 2000 of both density functions 

through an adaptive kernel. The lower part shows the sample values of ( )SS
Zln . The 

calculation is done by applying (3) and using the entire distribution, 25,000 cities, from 

New York City with a population of 8,008,278 inhabitants to Paoli town with 42 

inhabitants. The estimated
4
 Pareto exponent is 534.0ˆ =a . 

As Eeckhout [2004] shows, the real city size distribution comes close to being a 

lognormal when all the sample is considered, and is found above the Pareto density 

function for almost all sample sizes. In fact, Wilcoxon’s Rank-sum test offers a p-value 

of 0.4168 when considering the entire distribution, offering evidence in favour of the 

null hypothesis of lognormality
5
. 

However, for very small cities the behaviour is the opposite. This indicates that 

in general, cities will have a larger size than would guarantee the fulfilment of Zipf’s 

Law, except for the smallest cities, whose size is much smaller than would correspond 

to a Pareto distribution. This can be seen in Table 1, showing the values of  SS
Z  for 

the largest and smallest cities. It is also notable that for larger cities, the upper-tail 

distribution, deviations are reduced until they almost
6
 disappear, agreeing with the 

general consensus that Zipf’s Law is a phenomenon which mainly appears when 

considering larger cities. Recently Eeckhout [2008] shows that in the upper tail both 

distributions, Pareto and lognormal, can be valid. 

 

Figure 1 also shows that there is a point where both density functions cross, after 

which real size is always larger than the size which would fulfil Zipf’s Law, although in 

the upper tail of the distribution both density functions again become closer. In the 

sample, this point corresponds to cities with 310 inhabitants.   

3. Data description 

We use data for all cities in the Unites States, without imposing any minimum 

population truncation point, as our proposal is to cover the entire distribution. The 

source of data is the 2000 census
7
. We identify cities as what the US Census Bureau 

calls places. This generic denomination, since the 2000 census, includes all incorporated 

and unincorporated places. 

                                                 
4 This value coincides with that obtained by Eeckhout [2004]. 
5 Wilcoxon’s test (rank-sum test) is a non-parametric test for assessing whether two samples of 

observations come from the same distribution. The null hypothesis is that the two samples are drawn from 

a single population, and therefore that their probability distributions are equal, in our case, the lognormal 

distribution. Wilcoxon’s test has the advantage of being appropriate for any sample size. 
6 The estimated Pareto exponent is close to the value 1, but does not equal to unity. For the 100 largest 

cities, 32.1ˆ =a .  
7 The US Census Bureau offers information on a wide range of variables for different geographical levels, 

available through its website: www.census.gov/main/www/cen2000.html. 
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The US Census Bureau uses the generic term incorporated place to refer to a 

type of governmental unit incorporated under state law as a city, town (except the New 

England states, New York, and Wisconsin), borough (except in Alaska and New York), 

or village and having legally prescribed limits, powers, and functions. On the other hand 

there are the unincorporated places (which were renamed Census Designated Places, 

CDPs, in 1980), which designate a statistical entity, defined for each decennial census 

according to Census Bureau guidelines, comprising a densely settled concentration of 

population that is not within an incorporated place, but is locally identified by a name. 

Evidently, the geographical boundaries of unincorporated places may change if 

settlements move, so that the same unincorporated place may have different boundaries 

in different census. They are the statistical counterpart of the incorporated places. The 

difference between them in most cases is merely political and/or administrative. Thus 

for example, due to a state law of Hawaii there are no incorporated places there; they 

are all unincorporated.  

The US Census Bureau established size restrictions for the inclusion of 

unincorporated places, with the main criterion being that they have more than 1,000 

inhabitants. The 2000 census is the first to include them all without size restrictions, and 

this is why we take only this year. However, there are no data for some of the 

explicative variables for all cities, slightly reducing the sample size to 23,519 cities. 

However, the range of city sizes is as wide as possible, from cities of 76 inhabitants to 

the largest, New York City, with a population of 8,008,278 inhabitants. 

The chosen explicative variables coincide with those of other studies on urban 

growth in the United States and city size. These are variables whose influence on city 

size has been tested empirically by other works (see Glaeser and Shapiro [2001]), 

although our endogenous variable is completely different. We can group them in three 

types of variables: local external effects variables, human capital variables and 

productive structure variables. Table 2 presents the variables and gives some descriptive 

statistics. It is notable that in general the typical deviations are fairly high, showing 

great heterogeneity among the variables chosen when considering all places. 

The variables in local external effects basically aim to gather some of the costs 

of urban congestion. In the first place we monitor the economic size of the city using 

Per capita income in 1999; it would make no sense to include the population again, as it 

was already used to calculate deviation. We also include two variables which reflect the 

age of the city: the variable “Percent housing units built 1939 or earlier” which we as a 

proxy for the physical age of cities, and the variable “Total population: median age”, 

which reflects the age of the city’s inhabitants.  

One of the most typical congestion costs is the increased cost of housing as the 

city size increases (taking into account that the supply of housing tends to be fairly rigid 

and responds slowly to increased demand). Glaeser et al. [2006] analyses the role of the 

housing supply in urban and productivity growth in the USA. We attempt to capture this 

effect through the variable “Percent owner-occupied housing units with a mortgage; 

contract to purchase; or similar debt”, as it is to be expected that as housing prices rise 

more individuals will be obliged to incur mortgages or other debts. Commuting costs 

are another characteristic congestion cost of urban growth and are explicitly included in 

some theoretical models.  That is, the idea that as the population of a city grows, so do 

the costs in terms of time for individuals to get from their homes to their places of work. 

To capture this effect we use the variable “Workers 16 years and over who did not work 

at home: Median travel time to work (in minutes)”.  
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The last two variables in this group refer to the division produced in United 

States cities depending on whether they are built around public transport or private cars. 

As Glaeser and Kahn show [2003, 2001], in the last few decades the model of United 

States cities has been characterised by being built around private cars, while public 

transport loses importance.  

Regarding the human capital variables, there are many works demonstrating the 

influence of human capital on city size, as cities with individuals with higher levels of 

human capital tend to grow more. We take two human capital variables: “Percent 

population 25 years and over: High school graduate (includes equivalency) or higher 

degree” and “Percent population 25 years and over: Some college or higher degree”. 

The former represents a wide concept of human capital, while the second centres on 

high educational levels (some college, Associate degree, Bachelor's degree, Master's 

degree, Professional school degree, and Doctorate degree).  

The third group of variables, referring to productive structure, contains the 

sectorial distribution of employment. The distribution of work among the different 

productive activities provides valuable information on other aspects of the city.  Thus, 

the level of employment in the primary sector (agriculture; forestry; fishing and 

hunting; and mining) also represents by proxy the natural physical resources of the city 

(farming land, sea, etc.). This is also a sector which, like construction, is characterised 

by constant or even decreasing returns to scale.   

Employment in manufacturing informs us of the level of local economies of 

scale in production, as this is a sector which normally presents increasing returns to 

scale. The level of pecuniary externalities also depends on the size of the industrial 

sector. Marshall put forward that (i) the concentration of companies of a single sector in 

a single place creates a joint market of qualified workers, benefiting both workers and 

firms; (ii) an industrial centre enables a larger variety at a lower cost of concrete factors 

needed for the sector which are not traded, and (iii) an industrial centre generates 

knowledge spillovers. This approach forms part of the basis of economic geography 

models, along with circular causation: workers go to cities with strong industrial 

sectors, and firms prefer to locate nearer larger cities with bigger markets.  Thus, 

industrial employment also represents a measurement of the size of the local market. 

Another proxy for the market size of the city is the employment in commerce, whether 

retail or wholesale.   

4. Empirical model and results 

4.1 Empirical model 

Unfortunately we have data for a single period only, the year 2000, as the census 

for 2000 is the first to include all places without size restrictions, and we wanted to 

consider the entire sample. This involves possible endogeneity and simultaneity 

problems for any regression we might attempt.  

Also, our endogenous variable, deviation from the size which satisfies Zipf’s 

Law, presents two clearly differentiated behaviours, so that the interpretation of the 

influence of either of the explicative variables cannot be unequivocal, as happens with 

standard regressions. We define deviations from the size of Zipf’s Law as ( )SS
Zln , 

and they are calculated applying (3). This specification implies that deviation for cities 

with a larger size than would fulfil Zipf’s Law will have a negative value. This is the 

majority case, as shown in Figure 1. Concretely, of 23,519 cities in the sample, 18,874 

present a negative deviation (80.25 %). Meanwhile, for the remaining 4,645 cities 
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(19.75 % of the sample) the value of the deviation is positive, as their size is less than 

would fulfil Zipf’s Law. 

All of this leads us to use a Multinomial Logit Model (MNLM), which solves all 

the problems described above. It consists of transforming our dependent variable into 

categories, enabling us to differentiate specifically between the two behaviours 

observed (positive and negative deviations) and at the same time solves the possible 

problems of endogeneity and simultaneity which could arise when considering a single 

period. With the consequence that the results of the estimations will give us information 

about the probability (while not causality) with which each variable affects each 

category. 

Based on the deviations, ( )SS
Zln , calculated based on (3), we construct four 

categories ( )4,3,2,1=K  applying the following criterion, taking into account that as 

shown in Figure 1, ( )SS
Zln  ranges from -2 to 2: 

( )
( )
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This criterion enables us to differentiate between the cities presenting a negative 

deviation (80.25 %), whose size is greater than that predicted by Zipf’s Law –grouped 

in categories 1, 2 and 3– and the cities (19.75 %) for which the deviation value is 

positive, as their size is less than that which would fulfil Zipf’s Law. These particular 

grouping also ensures that the groups will be as homogeneous as possible in size.  

With the MNLM we estimate a separate binary logit for each pair of categories 

of the dependent variable. Formally, the MNLM can be written as: 

( )
( ) bmbm

bK

mK
βφ x

x
x

′=
=

=
=

Pr

Pr
lnln   for  Jm  a 1= ,  (4) 

where b  is the base category (in our case this will be category 1, as it contains 

more cities), 4=J  and x is the vector of the explicative variables, reflecting the local 

external effects, human capital or productive structure
8
. We propose to study how these 

explicative variables affect the odds of a city being in one or the other category, that is, 

presenting a positive or negative deviation (greater or smaller). For example, if the 

percentage of the population with higher education increases (Percent population 25 

years and over: Some college or higher degree), does this increase the probability of the 

city size being larger than the size it would have if Zipf’s Law were fulfilled? And if so, 

                                                 
8 The MNLM makes the assumption known as the independence of irrelevant alternatives (IIA). In this 

model: 
( )
( )

( )bbx

x
x

nm
e

nK

mK ββ −′
=

=

=

Pr

Pr
ln , where the odds between each pair of alternatives do not depend 

on other available alternatives. Thus, adding or deleting alternatives does not affect the odds between the 

remaining alternatives. The assumption of independence follows from the initial assumptions that the 

disturbances are independent and homoscedastic. We have considered one of the most common tests 

developed for testing the validity of the assumption, the Small-Hsiao test [1985], and we could not reject 

the null hypothesis, that is, the odds are independent of other alternatives, indicating that the MNLM is 

appropriate. 
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will we be able to know if this is a strong, medium or weak deviation (which of the 

three categories with a negative deviation will be most likely)?   

To deal with these questions we use odds ratios (also known as factor change 

coefficients). Maintaining the other variables constant, the change in the odds of the 

outcome m  against outcome n , when ix  increases by δ , equals: 

( )
( )

δβ

φ

δφ
nmi

e
,x

,x

ibn

ibm ,=
+

x
x

.    (5) 

Thus, if 1=δ  the odds ratio can be interpreted as follows: for each unitary change of ix  

it is expected that the odds of m  versus n  change by a factor 
nmi

e
,β

 , maintaining the 

other variables constant. 

4.2 Results 

 This model includes many coefficients, making it difficult to interpret the 

effects for all pairs of categories. To simplify the analysis odds-ratio plots were 

developed, shown in Figures 2, 3 and 4 for each of the three groups of variables. To 

analyse the effect of each variable in the change in probability of a city being in one 

category or another, Table 3 shows the marginal effects for each category and the 

absolute average change in probability. 

In an odds-ratio plot, the independent variables are each represented on a 

separate row, and the horizontal axis indicates the relative magnitude of the β  

coefficients  associated with each outcome. The numbers which appear (1, 2, 3 or 4) are 

the four possible outcomes, the categories which we previously constructed.   

These graphs reveal a great deal of information (for more details see Long and 

Freese [2006]). To begin, if a category is to the right of another, it indicates that 

increases in the independent variable make the outcome to the right more likely. Also, 

the distance between each pair of numbers indicates the magnitude of the effect. And 

when a line connects a pair of categories this indicates a lack of statistical significance 

for this particular coefficient, suggesting that these two outcomes are tied together. The 

three graphs take as a base category outcome 1 (as this has most cities).  

External local effects variables 

Table 3 shows that the variable presenting the greatest absolute average change 

in probability (0.0428) is per capita income in 1999. Also, Figure 2 shows how given an 

increase of 1 unit in the logarithm of per capita income the most likely category is, 

markedly, 1 (strong negative deviation). This means that increases in the per capita 

income of the city increase the probability of a strong negative deviation, that is, that 

larger cities in economic terms will probably be cities with a much larger population 

than predicted by Zipf’s Law. 

Regarding the variable which we use to try to reflect commuting costs, “Workers 

16 years and over who did not work at home: Median travel time to work (in minutes)”, 

at first glance the effect is the opposite of what we expected. In principle, the bigger the 

size of the city, the longer the median travel time which workers must bear. However, 

Figure 2 shows category 4 as more likely, which would indicate that given an increase 

of one unit of the median travel time the most likely outcome is that the size of this city 

will be less than would correspond with a Pareto exponent equal to one. Therefore, this 

probability must be interpreted the other way around: the probability of the median 
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travel time to work increasing is greater in smaller cities, as in very big cities it is very 

possible that commuting costs are close to their maximum value.    

It should also be noted that the two variables used as proxies for the age of the 

cities present very similar behaviour. In both cases, the greater the average age of the 

total population or “Percent housing units: Built 1939 or earlier” the greater the 

probability of the city presenting a positive deviation (category 4). That is, the cities 

with the oldest individuals or which were founded before “1939 or earlier” have a 

greater probability of having a population lower than would correspond with a Pareto 

exponent equal to one. 

Neither do the two variables introduced to reflect the division produced in US 

cities depending on whether they were built around public transport or private cars show 

clearly differentiated behaviour. The signs of the marginal effects by category coincide 

in both variables, although the variable “Percent workers 16 years and over: Public 

transportation” presents a higher absolute average change in probability (0.0056 versus 

0.0016). And Figure 2 shows how for both variables the most likely outcome is a 

medium negative deviation (category 2).  

Finally, the variable “Percent owner-occupied housing units with a mortgage; 

contract to purchase; or similar debt”, which we use as a proxy for urban congestion 

costs through housing prices, presents the expected behaviour. As the price of housing 

increases, more individuals are obliged to resort to mortgages or similar debts. Figure 2 

shows category 1 (strong negative deviation) as the most likely outcome; this indicates 

that the cities with very high housing prices, and thus a high congestion cost, are a long 

way from what would be their size as predicted by Zipf’s Law. 

Human capital variables 

The results show opposing behaviour for the two human capital variables we 

introduced. Thus, the signs of the marginal effects by category (Table 3) are the 

opposite, and Figure 3 shows how the most likely outcomes are the opposite categories, 

a strong negative deviation and a positive deviation (1 and 4). Thus, increases in the 

more educated percentage of the population makes it more likely that the city size is 

much larger than the size which would fulfil Zipf’s Law, while if there is a higher 

percentage with further education in its wider human capital sense (Percent population 

25 years and over: High school graduate (includes equivalency) or higher degree) the 

most likely outcome is that the city will be smaller than would correspond with a Pareto 

exponent equal to one. 

This result must be seen in relation to that obtained for per capita income, as 

education is usually closely related to per capita income. We have seen how with 

increases in both variables the most likely outcome is that city size will be much higher 

than predicted by Zipf’s Law, in agreement with the results of other studies. Simon and 

Nardinelli [2002] analyse the period 1900-1990 for the USA and conclude that cities 

with individuals with greater levels of human capital tend to grow more, and Glaeser 

and Saiz [2003] analyse the period 1970-2000 and show that this is due to skilled cities 

being more productive economically. 

Productive structure variables 

Table 3 shows that the sector of activity presenting the greatest absolute average 

change in probability (0.0131) is the primary sector (agriculture; forestry; fishing and 

hunting; and mining). If we interpret this variable as a proxy for the natural physical 

resources available to the city (farmland, sea, etc.), Figure 4 shows category 4 (positive 
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deviation) as the most likely outcome by a large margin. That is, more natural resources 

and higher employment in the primary sector mean a higher probability of city size 

being lower than would fulfil Zipf’s Law. This result coincides with the traditional 

interpretation of employment in the agricultural sector in theoretical models as a force 

for dispersion of economic activity, since the pioneering work of Krugman [1991].  

The other employment sector usually identified as a dispersing force is 

construction. The results show that the variable “Percent employed civilian population 

16 years and over: Construction” has a similar effect. Figure 4 shows category 4 

(positive deviation) as the most likely outcome. Thus, the larger the percentage of 

labour employed in construction, the greater the probability that city size will be less 

than would correspond to a Pareto exponent equal to one. Although in Figure 4 

categories 3 and 4 are joined by a line, indicating that an increase of 1% in “Percent 

employed civilian population 16 years and over: Construction” makes outcome 4 more 

likely than categories 1 and 2, regarding category 3 (weak negative deviation) the effect 

is not significant.  

However, in the case of employment in manufacturing, a sector which usually 

presents economies of scale, Figure 4 shows category 3 as the most likely outcome, a 

weak negative deviation (although the effect on category 4 is not significant). Thus, an 

increase in industrial employment increases the probability of the city being larger than 

would correspond with a Pareto exponent equal to one, although the deviation from 

Zipf’s Law will be small. 

In services, we can see differentiated behaviour. Increases in the percentage of 

employment dedicated to finance; insurance; real estate, rental and leasing; and 

wholesale and retail trade increase the probability of the city size being much bigger 

than the size which would fulfil Zipf’s Law (strong negative deviation), while if 

employment increases in educational, health and social services or in Public 

administration the most likely outcome is a weak negative deviation (category 3). 

Again, this result must be seen in relation to that obtained for per capita income, as the 

activities finance; insurance; real estate, rental and leasing; and wholesale and retail 

trade depend directly on the size of the local market, so that the percentage of 

employment in these activities will be higher in cities with higher per capita income. In 

contrast, cities with lower per capita income will have a higher employment percentage 

in social services.  

5. Conclusions 

Eeckhout [2004] demonstrates that, considering the entire sample, in 2000 the 

distribution of size of US cities follows a lognormal, and not a Paretian, distribution. In 

this work we present a simple method for calculating deviations city by city in relation 

to their size and the size which would correspond with a Pareto exponent equal to one 

(Zipf’s Law). Our objective is to analyse the distribution element by element and 

explain the deviation from Zipf’s Law using data for each city of per capita income, 

distribution of employment among sectors, individuals by level of education, etc.; 

variables which try to capture the influence of local externalities. For this a Multinomial 

Logit Model is used, enabling us to know the influence of each of these variables in 

terms of probability. 

 The results show two differentiated behaviours. Of the 23,519 cities of the 

sample, 18,874 present a negative deviation (80.25 %), meaning they present a greater 

size than that which would fulfil Zipf’s Law. The variables increasing the probability of 

cities presenting this type of deviation are Per capita income in 1999, Percent owner-
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occupied housing units with a mortgage; contract to purchase; or similar debt (which we 

use as a proxy for the cost of urban congestion through housing cost), higher levels of 

human capital (percent population 25 years and over: Some college or higher degree), 

and employment in certain services (finance; insurance; real estate, rental and leasing 

and  Wholesale and Retail trade). 

Meanwhile, the size of the remaining 4,645 cities (19.75 % of the sample) is 

lower than would fulfil Zipf’s Law (which we define as a positive deviation). In this 

case the variables raising the probability of presenting a positive deviation are the 

variables measuring the age of the city (whether of the inhabitants, Total population: 

Median age, or the physical age of the buildings, Percent housing units: Built 1939 or 

earlier), the percentage of the population educated from a wider human capital point of 

view (Percent population 25 years and over: High school graduate (includes 

equivalency) or higher degree), and employment in productive sectors with constant or 

decreasing returns to scale (agriculture; forestry; fishing and hunting; mining, and 

construction). 
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Tables 

 

Table 1.- Deviations for the ten biggest and smallest cities 

 

Ranking City S  ( )SS
Z  

1 New York City 8,008,278 0.787 

2 Los Angeles 3,694,820 0.853 

3 Chicago 2,896,016 0.726 

4 Houston 1,953,631 0.807 

5 Philadelphia 1,517,550 0.831 

6 Phoenix 1,321,045 0.795 

7 San Diego 1,223,400 0.736 

8 Dallas 1,188,580 0.663 

9 San Antonio 1,144,646 0.612 

10 Detroit 951,270 0.663 

24,991 Stotesbury city 43 5.870 

24,992 Antelope CDP 43 5.870 

24,993 Saltaire village 43 5.870 

24,994 Braddock city 43 5.869 

24,995 Regan city 43 5.869 

24,996 Atlantic CDP 43 5.869 

24,997 Hetland city 43 5.869 

24,998 Washam CDP 43 5.868 

24,999 McCarthy CDP 42 6.008 

25,000 Montezuma city 42 6.008 

 

Note:  

S : City Population in 2000 (Source: US Census Bureau),   

Z
S : Population which would correspond with a Pareto exponent equal to 1. 
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Table 2.- Descriptive statistics 

 

Variables Average Typ. Dev. Minimum Maximum 

External local effects variables         

Per capita income in 1999 18947.70 9713.34 1539 200087 

Total population: Median age 37.32 6.60 10.80 79.20 

Percent housing units: Built 1939 or earlier 22.42 19.00 0 97.88 

Percent owner-occupied housing units with a mortgage; contract to purchase; or similar debt 47.96 17.39 0 100 

Workers 16 years and over who did not work at home: Median travel time to work (in minutes) 24,45 6,94 2,59 109,05 

Percent workers 16 years and over: Car; truck; or van; Drove alone 76.93 10.37 0 100 

Percent workers 16 years and over: Public transportation 1.36 3.25 0 57.16 

Human capital variables         

Percent population 25 years and over: Some college or higher degree 43.79 16.89 0 99.57 

Percent population 25 years and over: High school graduate (includes equivalency) or higher degree 78.30 12.32 5.11 100 

Productive structure variables         

Percent employed civilian population 16 years and over:        

   Agriculture; forestry; fishing and hunting; and mining 3.52 5.40 0 72.75 

   Construction 7.62 4.15 0 40.32 

   Manufacturing 16.31 10.32 0 70.63 

   Wholesale and Retail trade 15.27 4.69 0 67.86 

   Finance; insurance; real estate and rental and leasing 5.16 3.54 0 46.67 

   Educational; health; and social services 20.32 7.20 0 87.18 

   Public administration 5.21 4.19 0 60.71 

 

Nota: All the variables correspond to 2000, except the per capita income in 1999. Source: US Census Bureau.
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Table 3.- Marginal effects for each category and the average absolute change in the probability  

 

  Categories 

 1 2 3 4 Total average 

External local effects variables           

Log (Per capita income in 1999) 0.0856*** -0.0231*** -0.0301*** -0.0324*** 0.0428*** 

Total population: Median age -0.0070*** 0.0033*** 0.0017*** 0.0020*** 0.0035*** 

Percent housing units: Built 1939 or earlier -0.0050*** -0.0021*** 0.0028*** 0.0043*** 0.0035*** 

Percent owner-occupied housing units with a mortgage; contract to purchase; or similar debt 0.0082*** 0.0030*** -0.0047*** -0.0065*** 0.0056*** 

Workers 16 years and over who did not work at home: Median travel time to work (in minutes) -0.0104*** -0.0025*** 0.0069*** 0.0061*** 0.0065*** 

Percent workers 16 years and over: Car; truck; or van; Drove alone 0.0003 0.0028** -0.0017*** -0.0014*** 0.0016*** 

Percent workers 16 years and over: Public transportation 0.0001 0.0110*** -0.0014 -0.0097*** 0.0056*** 

Human capital variables      

Percent population 25 years and over: Some college or higher degree 0.0046*** 0.0025*** -0.0041*** -0.0030*** 0.0035*** 

Percent population 25 years and over: High school graduate (includes equivalency) or higher degree -0.0114*** -0.0046*** 0.0088*** 0.0071*** 0.0080*** 

Productive structure variables      

Percent employed civilian population 16 years and over:           

   Agriculture; forestry; fishing and hunting; and mining -0.0262*** 0.0020*** 0.0139*** 0.0103*** 0.1310*** 

   Construction -0.0197*** 0.0034*** 0.0105*** 0.0057*** 0.0098*** 

   Manufacturing -0.0078*** 0.0008*** 0.0049*** 0.0021*** 0.0039*** 

   Wholesale and Retail trade 0.0033*** -0.0006*** 0.0001** -0.0028*** 0.0017*** 

   Finance; insurance; real estate and rental and leasing 0.0060*** 0.0029** -0.0021*** -0.0068*** 0.0045*** 

   Educational; health; and social services -0.0035*** 0.0033*** 0.0031*** -0.0030* 0.0032*** 

   Public administration -0.0061*** 0.0015*** 0.0033*** 0.0013*** 0.0031*** 

***Significant at the 1% level, **Significant at the 5% level, *Significant at the 10% level      
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Figures  

 

Figure 1.- Relationship between Size (scale ln), Size fulfilling Zipf’s Law 

(scale ln) and SS
Z

 (scale ln) 

 

 

Note: The upper figure corresponds to the adaptive kernels estimated for Z
Sln  

and Sln  in the year 2000, while the lower figure represents the sample values of 

( )SS
Zln  calculated applying (3). 



 17

Figure 2.- Odds-ratio plot of external local effects variables 
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Key:  
Income: Log (Per capita income in 1999) 
Media: Total population: Median age 

Built: Percent housing units: Built 1939 or earlier 

Mortgage: Percent owner-occupied housing units with a mortgage; contract to purchase; or 

similar debt 

Travel_time: Workers 16 years and over who did not work at home: Median travel time to work 

(in minutes) 

Drove: Percent workers 16 years and over: Car; truck; or van; Drove alone 

Transport: Percent workers 16 years and over: Public transportation 

 

Figure 3.- Odds-ratio plot of human capital variables 

 

 Factor Change Scale Relative to Category 1

 Logit Coefficient Scale Relative to Category 1 

 .96 

 -.04

 .98 

 -.02

 .99 

 -.01

 1.01 

 .01

 1.03 

 .03

 1.05 

 .05

 1.07 

 .07

 1.09 

 .09

 1.11 

 .1

 2
 3

 4  1

 2
 3

 4 1

 college
 UnStd Coef

 high
 UnStd Coef

 

Key:  
College: Percent population 25 years and over: Some college or higher degree 

High: Percent population 25 years and over: High school graduate (includes equivalency) or 

higher degree 
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Figure 4.- Odds-ratio plot of productive structure variables 
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Key: 

Percent employed civilian population 16 years and over: 

   Agriculture: Agriculture; forestry; fishing and hunting; and mining 

   Construction: Construction 

   Manufacturing: Manufacturing 

   Trade: Wholesale and Retail trade 

   Finance: Finance; insurance; real estate and rental and leasing 

   Social: Educational; health; and social services 

   Public: Public administration 

 

 


