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 Abstract 

 The restructuring of Iranian electricity industry allowed electricity 
price to be determined through market forces in 2005. The main 
purpose of this paper is to present a method for modeling and 
forecasting the electricity prices based on complex features such 
as instability, nonlinear conditions, and high fluctuations in Iran 
during the spring 2013 and winter 2018. For this purpose, time- 
series data of the daily average electricity price was decomposed 
into one approximation series (low frequency) and four details 
series (high frequency) utilizing the wavelet transform technique. 
The approximation and details series are estimated and predicted 
by ARIMA and GARCH models, respectively. Then, the 
electricity price is predicted by reconstructing and composing the 
forecasted values of different frequencies as a proposed method 
(Wavelet-ARMA-GARCH). The results demonstrated that the 
proposed method has higher predictive power and can forecast 
volatility of electricity prices more accurately by taking into 
consideration different domains of the time-frequency; although, 
more errors are produced if the wavelet transform process is not 
used. The mean absolute percentage error values of the proposed 
method during spring 2017 to winter 2018 are significantly less 
than that of the alternative method, and the proposed method can 
better and more accurately capture the complex features of 
electricity prices. 
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Highlights  

• This study investigates complex features of electricity price forecasting in Iran. 
• This study proposed wavelet transform combined with ARMA-GARCH to predict the electricity 

price. 
• The proposed model has increased predictive power and can capture the complex behavior of 

electricity prices. 
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1. Introduction 

The deregulation process and novel ways of conducting transactions in the 
electricity market have led to price uncertainty for electricity producers and 
consumers. The forecast of electricity prices is considered as a means of selecting 
a strategy by market participants. It allows electricity suppliers and consumers to 
adequately manage their investments, usage, plans, and risks to compensate for 
the effects of price fluctuations (Karakatsani & Bunn, 2004). As a commodity, 
electricity has spot-price forecasting features distinguishing it from other products 
because electricity is a non-reservable commodity in which production and 
consumption are carried out simultaneously. In addition, its prices are determined 
locally, the reserving capacity for this commodity is not available on networks, 
and there is no possibility for exchanges in the form of arbitrage. However, power 
generation companies could dedicate their capacity to cooperating auxiliary 
services, besides exchanging the produced steam instead of electrical energy. 

Furthermore, electricity demand depends on unpredictable factors such as 
weather conditions, which exacerbate the impact of supply and demand shocks on 
its price. Electricity has a seasonal pattern as a commodity and responds to 
periodic fluctuations in demand (Bourbonnais & Meritet, 2007). 

In Iran's electricity market, all companies are known as net sellers because 
there are no reserve markets similar to those in other countries. In other words, 
the Iranian market is considered as a wholesale market. However, some major net 
sellers, such as Khuzestan and Tehran, have motivations for managing market 
power. Accordingly, results of this study can be applied in the Iranian electricity 
market, and wholesale markets, as well as markets in which the net sellers tend to 
control the market. However, some researchers examined the Iranian electricity 
market using the same approach as other electricity markets. For example, 
Zarezadeh et al. (2008) studied the price forecasting model using artificial neural 
networks that operate electricity price data with temperature and load criteria to 
improve results. Shayeghi and Ghasemi (2013) proposed a hybrid model that 
combined the wavelet transform, least-square support vector machine (LSSVM) 
and the gravitational search algorithm and assessed applying electricity market 
price data from Iran, Spain and Ontario. 

In this study, the Wavelet-ARMA-GARCH model is proposed to forecast 
electricity prices in the Iranian electricity market to achieve these aims. Despite 
the fact that the restructuring of Iran's electricity occurred in 2005, the need for 
more accurate forecasting models has increased. 

The structure of this paper is as follows: 
Section 2 presents the literature review, and section 3 deals with the 

methodology used in this study based on wavelet transforms and ARMA-GARCH 
models. Section 4 is the empirical results, and finally section 5 presents the 
conclusions. 
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2. Literature Review 

While much research has been conducted and various methods proposed to 
address these issues, there are generally two approaches for predicting prices 
namely artificial intelligence-based methods such as artificial neural networks, 
learning machines, genetic and fuzzy logic algorithms, and time series analysis. 

Hong et al. (2002) proposed to integrate a recurrent neural network with 
clustering through the fuzzy c-means (FCM) algorithm for predicting 
marginal prices in the PJM1 electricity market. Yang and Lai (2005) proposed a 
global and local electricity price forecasting model based on a recurrent neural 
network in order to achieve a precise short-term forecast in the New England 
market using the Lyapunov’s exponents. Contreras et al. (2003) proposed the 
ARIMA-based model for daily electricity price forecasts in Spain and California 
while González et al. (2005) described an Input-Output Hidden Markov Model 
for analyzing and forecasting electricity prices in Spain based on a series of 
dynamic models linked together by a Markov chain. 

Conejo et al. (2005) presented a new method for daily electricity prices 
forecasting based on wavelet transform and ARIMA models. Based on 2002 
electricity energy market data in Spain, the performance of the proposed method 
using the wavelet transform and ARMA model is superior to the direct use of 
ARIMA models. 

Using GARCH method for the daily prediction of electricity price in Spain 
and California, Garcia et al. (2005) concluded that this model outperformed the 
ARIMA method when price fluctuations were present. 

Catalão et al. (2007) introduced a three-layer feed-forward neural network 
approach developed by the Levenberg-Marquardt algorithm for the weekly 
prediction of electricity price in Spain and California. 

Vahidinasab et al. (2008) used fuzzy c-means (FCM) algorithm for daily load 
pattern clustering and applied artificial neural networks with a modified 
Levenberg-Marquardt algorithm for price forecasting in PJM market. 

A study by Bowden and Payne (2008) evaluating the time-series models of 
ARIMA, ARIMA-EGARCH, and ARIMA-EGARCH-M for hourly electricity 
prices at MISO hubs concluded that the predictive power of the ARIMA- 
EGARCH-M was superior to all other three models. 

Tan et al. (2010) presented a wavelet transform-based price forecasting 
method with the combination of ARIMA and GARCH models for the Spanish and 
PJM electricity markets, and found the proposed method was significantly more 
accurate than other conventional forecasting methods. 

Shrivastava et al. (2014) combined the Extreme Learning Machine method 
with wavelet transform to develop a combined model called WELM which is a 
wavelet transform-based technique. The results of experiments showed that this 
method was one of the best price forecasting techniques in Ontario, PJM, New 
York, and Italy. 

 
1 Pennsylvania, New Jersey, and Maryland. 
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Pany et al. (2015) used the local linear wavelet neural network to determine 
market clearing prices and the results revealed its good potential to accurately 
predict electricity prices. 

Razak et al. (2016) presented a multi-stage optimization for a combination 
of the Least Square Support Vector Machine model and the genetic algorithm to 
achieve accurate electricity price forecasting in the market by optimized 
parameters and input characteristics. 

Yang et al. (2017) used a combination of the wavelet transform, the Kernel 
extreme learning machine based on the self-adaptive particle swarm optimization, 
and an ARMA model for electricity price forecasting in the power markets of 
PJM, Australia, and Spain. After wavelet-transform decomposition, the stationary 
series were predicted as new input sets by ARMA model, whereas the non- 
stationary series were predicted using the SAPSO-KELM model. 

Bento et al. (2018) introduced a combined method for electricity price 
forecasting in Spain and PJM using the wavelet transform before processing 
followed by a feed-forward neural network with Bat and Scaled Conjugate 
Gradient Algorithms to improve the neural network capabilities. 

Researchers claimed that the wavelet transform could cause data 
decomposition and have a stable variance (Chang et al., 2019). They introduced a 
WT-Adam-LSTM model based on LSTM neural network, wavelet transform, and 
Adam optimization. Applied data from the French and New South of Australia 
reveals the high accuracy of the hybrid model. 

Qiao and Yang (2020) applied the wavelet transform as a data preprocessing 
algorithm in their study. They planned a crossover experiment with schemes of 
wavelet transform parameter selection. This paper estimates each scheme with 
stacked auto-encoder and long short term memory, producing a new model WT- 
SAE-LSTM. They found that this method accurately predicted electricity prices 
in the US.  Table 1 summarizes the research findings. 

 
Table 1. A summary of background studies 

Authors Methodology Key Findings 

Hong et al. 
(2002) 

Neural Network & 
Fuzzy c-mean 

The RNNs were applied in the PJM market, and 
the recommended model was able to predict LMP 
values proficiently. 

Contreras et al. 
(2003) 

 

ARIMA 
ARIMA methods were used to analyze California 
and Spain markets, and the errors were reasonable 
compared to ANN. 

Yang and Lai 
(2005) 

Recurrent Neural 
Network 

The RNN-based electricity prices forecast model 
showed that the short-term forecast is accurate in 
New England. 

González et al. 
(2005) 

Input-Output 
Hidden Markov 

The model applied using clearing prices in 
Spanish electricity market has provided dynamic 
information and accurate forecasts. 

Conejo et al. 
(2005) 

Wavelet 
Transform & 
ARIMA 

An appropriate estimation period should be 
chosen. The forecasts of electricity prices in 
mainland Spain have been satisfactory. 

4



  

 

 
 

Table 1 (Continued). A summary of background studies 

 

Garcia et al. 
(2005) 

 
GARCH 

The proposed model has been tested on the 
Californian market and has shown that the 
GARCH model gives better results than the 
ARIMA model. 

Catalão et al. 
(2007) 

Neural Network & 
Levenberg- 
Marquardt 

The result of the proposed neural network model 
revealed the accuracy of predictions in California 
and Spain. 

Vahidinasab et 
al. 
(2008) 

Artificial Neural 
Network & Fuzzy 
c-mean 

The learning algorithm and ANN were used to 
forecast prices in the PJM market, and results 
were accurate in comparison with previous 
studies. 

 

Bowden and 
Payne (2008) 

ARIMA, ARIMA- 
EGARCH & 
ARIMA- 
EGARCH-M 

The ARIMA-EGARCH-M model works better 
than ARIMA, ARIMAEGARCH. However, no 
method can clearly outperform others with 
respect to predictive performance. 

 

Zarezadeh et al. 
(2008) 

 

Artificial Neural 
Networks 

The recommended ANN models can be 
considered as an appropriate technique to predict 
the average hourly price in the Iranian electricity 
market. 

 

Tan et al. 
(2010) 

Wavelet 
Transform, 
ARIMA & 
GARCH 

The Wavelet-ARIMA-GARCH method has been 
tested for forecasting on the PJM and Spain 
markets. 

 

Shayeghi and 
Ghasemi 
(2013) 

 

Wavelet 
Transform, GSA & 
LSSVM 

A reasonable accuracy of the hybrid Wavelet 
transform in LSSVM and the CGSA technique 
was evaluated utilizing the real price dataset in 
electricity markets of Spain, Ontario, and Iran 
markets. 

 

Shrivastava et 
al. (2014) 

Wavelet 
Transform & 
Extreme Learning 
Machine 

 

The wavelet-ELM model techniques create less 
prediction errors than current approaches. 

Pany et al. 
(2015) 

Wavelet 
Transform & 
Neural Network 

The Wavelet Neural Network model could prove 
the potential of the model topredict electricity 
price. 

 

Razak et al. 
(2016) 

Least Square 
Support Vector 
Machine & 
Genetic Algorithm 

The LSSVM-GA model showed lower 
complexity with better prediction accuracy than 
current techniques. 

Yang et al. 
(2017) 

Wavelet transform, 
ARMA & kernel- 
based ELM 

The SAPSO-KELM method provided more 
accurate predictions and feasibility than unique 
methods and other hybrid techniques. 

Bento et al. 
(2018) 

Wavelet 
Transform & 
Neural Network 

The Neural Network & Wavelet approach can 
capture complex characteristics of price signals. 

 
Chang et al. 
(2019) 

Wavelet 
Transform, LSTM 
Neural Network & 
Adam 
Optimization 

 

The WT-Adam-LSTM model could improve 
forecasting and capture appropriate behaviors 
accurately for electricity prices. 
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Table 1 (Continued). A summary of background studies 

 
 

Qiao and Yang 
(2020) 

Wavelet 
Transform, stacked 
autoencoder (SAE) 
and long short- 
term memory 

       (LSTM) 

 

The best performance of the WT-SAE-LSTM 
model for the US electricity price forecast was in 
the commercial, industrial and residential sectors, 
respectively. 

 

Although many studies have highlighted challenges, the review of the 
relevant studies shows that despite the use of wavelet transform technique for 
forecasting electricity prices in other countries, no such study using that technique 
in combination methods and which can spot time-frequency domains has yet been 
conducted in Iran. The main contribution of this proposed method is to use a 
wavelet transform technique to decompose and restructure a price series, so that 
each time series can be predicted separately using a suitable ARMA and GARCH 
model in accordance with its characteristics. Finally, a prediction model can be 
reconstructed by adding together all the decomposed prediction models. This 
combined method could identify time-frequency domains, non-stationary and 
nonlinear characteristics, and high fluctuations in electricity prices. 

 
3. Methodology 

In this paper, a combination of wavelet transform with ARMA-GARCH 
model is used to predict the price of electricity as a proposed method, and then 
the predictive power of the proposed model is compared to ARMA-GARCH 
model without using wavelet transform. Thus, the distinction and the ability to 
use wavelet-transformation appear in the predictive model. The electricity price 
is a variable of the model and the data used in both models is based on the daily 
average price of electricity for 1,825 days from the spring of 2013 to the winter 
of 2018. The daily electricity price data is provided by Iran Grid Management 
Company (IGMC)2. 

 
3.1 Wavelet Transform 

Wavelet transformation is used as a mathematical transformation to detect 
latent information in a signal or a time series. Some features of a time series are 
not visible in the time domain, viewing and investigating these characteristics is 
achieved by transferring the time series to other domains though. In fact, wavelet 
transform is a useful tool in which wave-shaped functions decompose a time 
series into a series of coefficients. This group of functions is created by moving a 
basis function called "mother wavelet or analyzing wavelet" (Mallat, 1999). 

Each set derived from the wavelet coefficients represents a part of the time 
series on a different scale. The ability of wavelets to use time and their scale 
allows them to focus simultaneously on time and frequency domains. 

 
 

2 Available at: http://www.igmc.ir/ 
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The length of the basic function of the wavelet transform is long-term in the 
time domain when it detects low-frequency phenomena and thus has a good 
frequency resolution. Conversely, when it detects high-frequency phenomena, the 
length of the basic function of the wavelet transform is short-term in the time 
domain and therefore produces good time resolution for such phenomena. 

It is possible to detect and obtain all the information in a time series and link 
them to the specific time and place horizons by combining different kurtosis and 
time shifts of the mother wavelet transform. 

In short, a wavelet function  (t) is a function of the following time called 

the acceptance condition: 
 

C =  
0 

df   (1) 

Where, ( f ) is a Fourier transform. This condition ensures that when 

f → 0 , ( f ) will also approach zero immediately. In fact, to ensure that C < 

 this condition should be imposed that (0) = 0 , and it is equal to: 
+ 

 (t) dt = 0 
− 

 
 

(2) 

The second condition for the wavelet function is that its energy should be 
unit: 
+ 

  (t) 2 dt = 1 
− 

(3) 

Continuous Wavelet Transform (CWT) is a function of two variables u and 
s, and is calculated from the multiplication of the desired function in the wavelet 
function and the integration of the product (Gençay et al., 2001). Assuming that 
the desired function x(t) is a function of time, the wavelet transform is as follows: 

 

W (u, s) =  x(t) u ,s (t) dt 
− 

(4) 

Where,  (t) = 
1   t − u  is the elementary wavelet function extended 

 
 

u,s   
  

to s, and displaced with the value of u on the time axis. The resulting coefficients 
are actually a function of the two s (scale) and u (the amount of displacement in 
time) parameters, although the main function is only a function of the time 
parameter. 

By applying different parent wavelets, which are displaced on the time axis 
and extended on a function, the complex structure of the function is subdivided 
into smaller components, a process defined "functional analysis or 
decomposition". If wavelet functions used in the analysis  meet the wavelet 

( f ) 

f 
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acceptance condition, the main function can be obtained by using the following 
formula and with the inverse operations on the wavelet coefficients: 

x(t) =  
1

 
C 

   

 W (u, s) u,s (t) du 
0 − 

 
(5) 

It involves the synthesis or reconstruction of the function. The key feature of 
wavelet transforms is that they can completely reconstruct the second-order 
integrable functions. 

The approximation of each discrete function or time series uses wavelet 
functions as follows: 
f (t) =  sJ ,k J ,k (t) +  d J ,k  J ,k (t) +  d J −1,k  J −1,k (t) +… +  d1,k 1,k (t) 

k k k k 

(6) 
Where, J is the number of analysis or scales levels, and k is the amount of 

displacement per time at each level.  j,k (t) and j,k (t) are orthogonal wavelet 

functions which are expressed as follows: 
− j 

 j ,k (t) = 2 2 

− j 

t − 2 j 
( ) 

2 j 
t − 2 j 

(7) 

 j ,k (t) = 2 2  ( ) 
2 j 

(8) 

Where, 0,0 (t) = (t) is termed the "father wavelet" and0,0 (t) =  (t) 

is termed the "mother wavelet". In general, j,k (t) and  j,k (t) are respectively 

called scaling functions and wavelet functions. The wavelet coefficients can be 
calculated using the following formula: 

sJ ,k  J ,k (t) f (t) dt 

d j ,k   j,k (t) f (t) dt 

(9) 

(10) 

Where SJ,k is called Smooth of the level jth and dj,k is called Details of the 
level jth (Crowley, 2007). 

There are different wavelet functions with the most well-known being the 
Haar, Daubechies, Symmlet, and Coiflet wavelets. Haar wavelet is a special type 
of function known as the first wavelet, and is used for this study. Its advantage is 
its high processing speed which, accordingly, increases the process speed. 
The Haar wavelet's mother wavelet is defined according to Equation 11: 

1. 0 ≤ t < 
1

 
2 Ѱ(t) = {−1. 1 ≤ t < 0 

2 

0. otherwise 
The scaling function is equals to: 

(11) 

ds 

2 

 

8



  

 

 
1 0 ≤ t < 1 ϕ(t) = { 0 otherwise 

(12)
 

The Haar wavelet's mother wavelet is shown in Figure 1. 
 
 

Figure 1. Haar wavelet 
Source: Schleicher (2002) 

 

The integer j = 0,1, ..., J and m = 2j represents the wavelet's level. The J 
number represents the maximum level of experience (Lepik & Hein, 2014). 

 
3.2 Mean Equation Modeling (ARIMA Models) 

Time series models are related to Auto-Regressive Integrated Moving 
Average (ARIMA) models. For time series data such as Yt, the ARIMA model is 
considered a tool for studying and possibly predicting future values of these series. 
In the ARIMA (p, d, q) process, the p, d, and q symbols represent the lag number 
of the autoregressive term, the differential order, and the lag number of moving 
average term, respectively. The optimal lag length of the models are determined 
using the Akaike Information Criterion (AIC) or the Schwarz Information 
Criterion (SIC) (Mills, 1991). The autoregressive moving average models are 
described as follows: 
Yt = µ + ϕ1Yt−1 + ϕ2Yt−2 + ⋯ + ϕpYt−p + ut + θ1ut−1 + θ2ut−2 + ⋯ + θqϕt−q (13) 

 
3.3 Volatility or Variance Modeling (GARCH Models) 

Auto-Regressive Conditional Heteroscedasticity (ARCH) is used to model 
fluctuations or volatility. The ARCH model can explain the conditional variance 
process according to its past values and, finally, dynamic forecasting in time series 
models becomes possible based on their averages and variances (Engle, 1982). 

Although it provides a good framework for the analysis of time series 
volatility, the ARCH model has some shortcomings; one of which is related to the 
determination of lag number of error terms. Another model known as the 
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i=0 

 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) is being 
used to address these problems. In general, GARCH (p, q) is: σ2 =  α0 + α1u2 + ⋯ + αqu2 + β1σ2 + ⋯ + βqσ2 (14) 

t t−1 t−q t−1 t−p 

Based on the characteristics of the GARCH model, the conditional variance 
of Yt is estimated by an ARMA process (Bollerslev, 1986). To estimate 
uncertainty using the GARCH model, it is first necessary to determine the order 
of the ARIMA (p, d, q) model. This operation is similar to the ARMA models. 

 
3.4 The Proposed Model (Wavelet-ARIMA-GARCH Model) 

Following the selection of the Haar wavelet as the mother wavelet, the signal 
(original series) decomposes into an approximation and details signals. The 
approximate signal at each level of the decomposition can be decomposed again 
using the mother wavelet. Thus, achieving an approximate signal at a higher level, 
more detailed signals can be obtained. The approximate signal and the detail 
signal of order i are shown with the ai and di symbols, respectively. The sum of 
ai and ∑n    di    reconstructs the original signal. n determines the level of 
decomposition of the wavelet transform. This relationship is expressed in 
Equation 15. 
st = an + d1 + d2 + ⋯ + dn (15) 

 

Figure 2. Decomposition levels 

Source: Author’s elaboration based on Schleicher (2002) 

 

Wavelet transform is used to analyze data for different time horizons prior 
to estimation in this study. As shown in Figure 2, the same time series formed by 
the average daily price of electricity has been decomposed to four levels using 
Haar wavelet transform. The results of this decomposition correspond to five 
coefficients categories; a4 is an approximate series in the fourth decomposition 
and d1, d2, d3, and d4 are details with different frequencies. Five new time series 
with specific characteristics are considered as outputs of this process. Thus, the 
relation of these five times series to the original signal can be defined by Equation 
16. 
st = a4 + d4 + d3 + d2 + d1 (16) 
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Original price series 

Wavelet Decomposition 

a4 d4 d3 d2 d1 

Wavelet reconstruction 

A4 D4 D3 D2 D1 

Electricity price forecasting 

Composing results 

ARIMA ARIMA-GARCH 

 

By wavelet reconstruction, series of a4, d4, d3, d2 and d1 are called A4t, 
D4t, D3t, D2t and D1t. The relation among the approximate signals and the detail 
signals is expressed as follows with less loss: 
Pt = A4t + D4t + D3t + D2t + D1t (17) 

Each of these new time series can be modeled instead of estimating Pt, and 
an estimation model for the time series can be obtained by aggregating them. This 
is expressed in Equation 18. P̂t  =  Â4t  +  D̂1t  + D̂2t  +  D̂3t  + D̂4t (18) 

ARIMA models are used to estimate each new time series and are modeled 
using the Box-Jenkins method. Also, when examining the volatility of the models, 
GARCH models are used to estimate the variance equation for heteroscedasticity. 
Figure 3 is based on Tan et al. (2010) and shows a schematic view of the time- 
series estimation process in this study. 

Figure 3. Procedure of the proposed method 
Source: Author’s elaboration based on Tan et al. (2010) 
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4. Empirical Results 

4.1 Wavelet Transformation for Electricity Price 

Figure 4 shows the results of the data analysis using Haar wavelet transform 
and its reconstruction in the dimension of time frequency. The decomposition 
order of the original signal by the Haar wavelet is selected at the fourth level. In 
Figure 4, st and a4 represent the behavior of the original signal and an approximate 
signal. 

 

Figure 4. Time–Frequency analysis 
Source: Research findings 

 

The series st represents the daily average price of electricity (original signal) 
based on the statistics published by Iran Grid Management Company. The 
sample size is 1,825 from 01.03.2013 to 28.02.2018. Data include the average 
price of electricity purchases in the wholesale market per MWh3. 

The series a4 is an approximate signal representing the daily average price 
of electricity de-trended at the fourth levels. It is observed that the fluctuations of 
this series replicate the original series of fluctuations of the daily average price of 
electricity. The series d4, d3, d2, and d1 show the series of fluctuations or noises 
(detail signals) at levels of four, three, two, and one, respectively. 

di is the time interval of ith level, which is considered the interval (2i, 2i-1). 
Given that the original signal, the first (d1), second (d2), third (d3), and fourth 

 
 
 

3 Mega Watt per hour. 
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levels of decomposition (d4) represent the 1 to 2-day, 2 to 4-day, 4 to 8-day, and 
8 to 16-day intervals, respectively. 

 
4.2 Unit Root and Randomness Tests 

It is necessary to ensure stationary and non-randomness before estimating 
and predicting a time series model 28. Thus, the stationary test was performed for 
all time series generated by the decomposition and reconstruction of the original 
signal made by the wavelet transformation. In this study, the Augmented Dickey- 
Fuller (ADF) unit root test is used for the stationary test. The results of the unit 
root test are presented in Table 2. It is observed that A4t,D1t, D2t, D3t, and D4t 

are stationary at the 95% confidence interval. Since the daily average price of 
electricity (st) has a unit root and is non-stationary, the unit root was tested for in 
1st difference (Δst), and it is stationary at the 95% confidence interval, that is 𝑠𝑡~𝐼(1). 

The runs test is used for randomness test using a nonparametric approach. 
This test determines whether the series is set up randomly or systematically. If the 
variable is random, the series is indicated as unpredictable (Awiagah and Choi, 
2018). The null hypothesis of the run test indicates the pattern of randomness of 
the variables. The result of the test shows that all variables are non-random, and 
the series are predictable. 

 
Table 2. The result of unit root and randomness tests 

 

Variables 
Unit root test (ADF) Randomness test (run test) 

t- 
Statistica 

P- 
values Result mean 

Z- 
value 

P- 
values Conclusion 

st -2.798 0.197 
non- 

stationary 
313513 -42.64 0.000 

Non- 

randomness 

Δst -16.643 0.000 stationary 148 4.42 0.000 
Non- 

randomness 

A4t -3.731 0.020 stationary 313341 -46.15 0.000 
Non- 

randomness 

D4t -9.772 0.000 stationary 0 24.1 0.000 
Non- 

randomness 

D3t -11.449 0.000 stationary 0 -12.73 0.000 
Non- 

randomness 

D2t -14.758 0.000 stationary 0 -28.29 0.000 
Non- 

randomness 

D1t -22.006 0.000 stationary 0 -37.43 0.000 
Non- 

randomness 

a: Critical Value of ADF is -3.412 at 95% confidence interval. 
Source: Research findings 
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4.3 Estimation of Combined Model: Wavelet- ARIMA-GARCH 

4.3.1 Estimation of Approximation Signal A4t (Wavelet-ARIMA) 

As shown in Table 2, the approximation signal (A4t) is stationary and the 
ARMA (1,0) model was proposed for this signal using the lowest values of AIC, 
SIC, and the highest value of R̅2  (Table 3). 

 
Table 3. Optimal lags of ARMA (p,q) for signal A4 

ARMA(p,q)  AIC SIC 

ARMA(1,0) 0.988 19.950 19.959 

ARMA(1,1) 0.988 19.951 19.963 

ARMA(0,1) 0.706 23.193 23.202 

ARMA(1,2) 0.988 19.952 19.967 
Source: Research findings 

 

The assumptions of no serial correlation between the error terms (LM test) 
and the homoscedasticity (ARCH test) were met according to the results reported 
in Table 4. Thus, the precision of the model is confirmed. 

 
Table 4. ARCH test for A4t 

 Signal A4t : ARMA(1,0) 

A
R

C
H

 T
es

t F-statistic 0.273 
(Prob. F(3,1820)) (0.844) 

Chi-Square(N×R2) 0.822 
(Prob. Chi-Square(3)) (0.844) 

Source: Research findings 

 

As a result, the ARMA model (1,0) or AR (1) is selected and estimated as 
the final model. The results are shown in Table 5. 

 
Table 5. The result of ARMA model for A4t 

 Signal A4t : ARMA(1,0)  

 
M

ea
n 

eq
ua

ti
on

 Variable Coef. t-stat Prob. 

Constant 320970.6 14.859 0.000 

AR(1) 0.994 320.682 0.000 

SIGMASQ 26880122 163.647 0.000 

D
ia

gn
os

ti
c 

T
es

ts
 

R̅2 0.988 

AIC 19.950 

SIC 19.959 

Source: Research findings 
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4.3.2 Estimation of Detail Signals (Wavelet-ARMA-GARCH) 

The detail signals (D1t, D2t, D3t, and D4t) are stationary (Table 2), optimal 
lags of the ARMA (p,q) model for the detail signals are presented in Table 6. 

 
Table 6. Optimal lags of ARMA(p,q) for Details signals 

 ARMA(p,q)  AIC SIC  ARMA(p,q)  AIC SIC 

S
ig

na
l D

1 t
 

ARMA(4,3) 0.5137 18.8814 18.908 

S
ig

na
l D

2 t
 

ARMA(1,4) 0.7497 18.2662 18.2873 

ARMA(3,2) 0.5037 18.8986 18.919 ARMA(1,5) 0.7495 18.2672 18.2914 

ARMA(2,1) 0.5041 18.8968 18.911 ARMA(2,4) 0.74968 18.2666 18.2907 

ARMA(1,0) 0.2018 19.3676 19.376 ARMA(2,3) 0.74908 18.2684 18.2895 

ARMA(0,1) 0.4995 18.9047 18.913 ARMA(3,3) 0.74892 18.2694 18.293 

ARMA(1,1) 0.4993 18.9058 18.917 ARMA(2,2) 0.6658 18.5458 18.5639 

ARMA(2,2) 0.5038 18.8979 18.916 ARMA(1,1) 0.4991 18.9456 18.9576 

ARMA(3,3) 0.5038 18.8991 18.923 ARMA(1,0) 0.0831 19.5456 19.5547 

ARMA(4,4) 0.5134 18.882 18.912 ARMA(0,1) 0.4994 18.9445 18.9535 

S
ig

na
l D

3 t
 

ARMA(2,6) 0.8282 17.973 18.00 

S
ig

na
l D

4 t
 

ARMA(1,2) 0.6520 19.4388 19.4539 

ARMA(1,6) 0.8096 18.072 18.099 ARMA(0,2) 0.5962 19.5870 19.5991 

ARMA(0,6) 0.7561 18.313 18.337 ARMA(1,1) 0.6494 19.4459 19.4579 

ARMA(2,5) 0.786 18.181 18.208 ARMA(1,0) 0.6467 19.4540 19.4631 

ARMA(3,5) 0.7901 18.167 18.289 ARMA(0,1) 0.4983 19.8071 19.816 

ARMA(3,4) 0.789 18.170 18.197    

ARMA(3,3) 0.7477 18.34 18.370 

ARMA(2,2) 0.6679 18.617 18.635 

ARMA(1,0) 0.3674 19.252 19.261 

ARMA(0,1) 0.4968 19.027 19.036  

Source: Research findings 

 
Thus, the best estimate of the ARMA (p, q) for the time series D1t, D2t, D3t, 

and D4t are respectively obtained as ARMA (4,3), ARMA (1,4), ARMA (2,6), 
and ARMA (1,2) models. The ARCH test for these models is shown in table 7. 

 
Table 7. ARCH Test for Details Signals 

Signal F-statistic Prob. F Chi-Square(N×R2) Prob. Chi-Square Result 

D1t 66.981 0.000 181.361 0.000 Heteroscedasticity 

D2t 45.458 0.000 165.754 0.000 Heteroscedasticity 

D3t 5.176 0.000 25.602 0.000 Heteroscedasticity 

D4t 84.704 0.000 495.496 0.000 Heteroscedasticity 

Source: Research findings 
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Based on the results in Table 7, the constant variance hypothesis is rejected 
for all detail signals. Thus, it can be modeled as the variance equation. To do this, 
the coefficients of the variance equation must be positive and their sum, except 
for intercept, must be less than one. The optimal order of GARCH (p,q) process 
is determined by information criteria. 

 
Table 8. Optimal lags of GARCH (p,q)for Details Signals 

 GARCH 
(p,q) AIC SIC 

Positive 
coefficients 

Sum of coefficients 
< 1 

 
S

ig
na

l D
1 t

 

GARCH 

(1,1) 
18.75086 18.78404 Yes Yes 

GARCH 
(0,1) 18.89725 18.92716 Yes Yes 

GARCH 
(1,0) 18.75086 18.78404 No Yes 

GARCH 
(2,2) 

19.22127 19.26048 No Yes 

 
S

ig
na

l D
2 t

 

GARCH 

(1,1) 
18.19699 18.22414 Yes Yes 

GARCH 
(0,1) 18.26474 18.28887 No Yes 

GARCH 
(1,0) 

18.25357 18.2777 No Yes 

GARCH 
(2,2) 18.80238 18.83555 No Yes 

 
S

ig
na

l D
3 t

 

GARCH 

(1,1) 
17.83664 17.87284 Yes Yes 

GARCH 
(0,1) 

17.99391 18.02708 No Yes 

GARCH 
(1,0) 18.14669 18.17987 Yes No 

GARCH 
(2,2) 17.96192 18.00414 No Yes 

 
S

ig
na

l D
4 t

 

GARCH 

(1,1) 
18.93509 18.9562 Yes Yes 

GARCH 
(0,1) 19.40642 19.42451 Yes Yes 

GARCH 
(1,0) 18.84628 18.86438 Yes No 

GARCH 
(2,2) 18.85151 18.87865 No Yes 

Source: Research findings 

 
As shown in Table 8, for all D1t, D2t, D3t, and D4t time series, the GARCH 

model (1,1) satisfies the necessary conditions. Thus, by combining the ARMA 
and GARCH model, ARMA(4,3)-GARCH(1,1), ARMA(1,4)-GARCH(1,1), 
ARMA(2,6)-GARCH(1,1), ARMA(1,2)-GARCH(1,1) are estimated for the 
signals of D1t, D2t, D3t, and D4t, respectively. Tables 9 and 10 show the results 
of the models estimation for detail signals. Using the GARCH (1,1) model, it can 
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be observed that residuals of the models have a white noise and normal 
distribution. 

 
Table 9. The result of ARMA-GARCH for D1t and D2t 

 

Signal D1t : ARMA(4,3)-GARCH(1,1) D2t : ARMA(1,4)-GARCH(1,1) 

Variable Coef. t-stat Prob. Coef. t-stat Prob. 

 

M
ea

n 
eq

ua
ti

on
 

Constant 0.187 1.030 0.302 -0.044 -0.079 0.936 
AR(1) -1.500 -2.836 0.004 0.497 5.501 0.000 
AR(2) -0.557 -0.925 0.354 - - - 
AR(3) -0.040 -0.291 0.770 - - - 
AR(4) -0.012 -0.342 0.731 - - - 
MA(1) 0.504 1.177 0.239 0.472 123.877 0.000 
MA(2) -0.973 -37.86 0.000 -1.505 -134234.1 0.000 
MA(3) -0.525 -1.258 0.208 -0.470 -124.388 0.000 
MA(4) - - - 0.506 15163.05 0.000 

V
ar

ia
nc

e 
eq

ua
ti

on
 Constant 51573.33 8.432 0.000 121393.3 11.285 0.000 

RESID(-1)2 0.023 14.844 0.000 0.022 13.411 0.000 

GARCH(-1) 0.972 596.0125 0.000 0.953 284.986 0.000 

D
ia

gn
os

t 
ic

 T
es

ts
 R̅2  0.500   0.746  

AIC  18.750   18.196  

SIC  18.784   18.224  

Source: Research findings 

 

Table 10. The result of ARMA-GARCH for D3t and D4t 

 

 

Signal D3t : ARMA(2,6)-GARCH(1,1) 
D4t : ARMA(1,2)- 

GARCH(1,1) 

 

Variable Coef. t-stat Prob. Coef. t-stat Prob.  

 
M

ea
n 

eq
ua

ti
on

 

Constant 0.286 0.370 0.710 49.332 0.569 0.568  
AR(1) 0.805 24.863 0.000 0.389 3.126 0.001 
AR(2) -0.386 -13.526 0.000 - - - 
MA(1) -0.099 -50.713 0.000 0.313 1.520 0.128 
MA(2) 0.819 45.600 0.000 0.144 1.282 0.199 
MA(3) -0.003 -4.137 0.000 - - - 
MA(4) -0.995 -5627.664 0.000 - - - 
MA(5) 0.094 50.860 0.000 - - - 
MA(6) -0.815 -45.406 0.000 - - - 

 

V
ar

ia
nc

e 
eq

ua
ti

on
 Constant 76651.270 17.348 0.000 383336.1 24.703 0.000 

RESID(-1)2 0.037 15.798 0.000 0.144 9.333 0.000 

GARCH(-1) 0.943 374.612 0.000 0.846 164.799 0.000 

 

D
ia

gn
os

ti
c 

T
es

ts
 

R̅2  0.828   0.612  

AIC  17.836   18.935  

SIC 
 

17.872 
  

18.956 
 

Source: Research findings 
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Figures 5, 6, 7, and 8, respectively, show the matching of the estimated 
models of D̂1t, D̂2t,D̂3t and D̂4t against the actual detail signals 

of D1t, D2t,D3t , and D4t. 

 
 
 
 
 
 
 
 
 

Figure 5. Actual and fitted values of D1 (𝑫𝟏𝒕&𝑫̂𝟏𝒕) 
Source: Research findings 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Actual and fitted values of D2 (𝑫𝟐𝒕&𝑫̂𝟐𝒕) 

Source: Research findings 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Actual and fitted values of D3 (𝑫𝟑𝒕&𝑫̂𝟑𝒕) 

Source: Research findings 
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Figure 8. Actual and fitted values of D4 (𝑫𝟒𝒕&𝑫̂𝟒𝒕) 
Source: Research findings 

 

4.3.3 Estimation of the Proposed Model (Combined Wavelet-ARMA- 

GARCH) 

The average daily price of electricity (st) as an original signal has been 
decomposed into four levels and five new time series by Haar wavelet. Equation 
17 shows the relationship between these five times series and the original signal 
with less loss (Pt). 

Since each time series has different characteristics, diagnostic tests need to 
be defined. The time series A4twas estimated due to no autocorrelation and 
homoscedasticity in residuals term with the ARMA model. The time series D1t, 
D2t, D3t, and D4twere estimated due to no autocorrelation and the existence of 
the heteroscedasticity with the ARMA-GARCH model. Furthermore, the p and q 
orders are shown in Table 11. 

 
Table 11. Model selection of proposed models 

Signal 
Condition 

A4t D1t D2t D3t D4t 

Autocorrelation No No No No No 
ARMA(p,q) ARMA(1,0) ARMA(4,3) ARMA(1,4) ARMA(2,6) ARMA(1,2) 

Heteroscedasticity No Yes Yes Yes Yes 

GARCH (p,q) - 
GARCH 

(1,1) 
GARCH 

(1,1) 
GARCH 

(1,1) 
GARCH 

(1,1) 

Proposed model ARMA 
ARMA- 
GARCH 

ARMA- 
GARCH 

ARMA- 
GARCH 

ARMA- 
GARCH 

Source: Research findings 

 

Thus, time series of  D̂1t,D̂2t,D̂3t, and D̂4thave been estimated by ARMA- 
GARCH models. Then, the time series of the average daily price of electricity (P̂t) 
can be estimated with the aggregation of these time series (see Equation 18). 
Figure 9 shows matching the actual electricity price (st) and its estimated values 
(P̂t). 
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Figure 9. Actual and fitted values of Price (𝒔𝒕&𝑷̂𝒕) 

Source: Research findings 

 

4.4 Estimation of ARIMA-GARCH Model 

To measure the efficiency of the wavelet transform technique, the alternative 
modeling on the electricity price (st) is the ARMA-GARCH model without 
wavelet transformation. As shown in table 2, electricity price is non-stationary, 
and ∆st is used in the form of ARMA (4,5)-GARCH(1,1). Finally, we can 
compare the power prediction between the Wavelet-ARMA-GARCH and 
ARMA-GARCH models. The optimal lags of ARMA and GARCH models are 
presented in Tables 12 and 13. 

 
Table 12. Optimal lags of ARMA(p,q) and ARCH test for selected Model (∆𝒔𝒕) 

Signal ∆𝐬𝐭 

 
In

fo
 C

ri
te

ri
on

 

ARMA(p,q) R̅2 AIC SIC 

ARMA(4,5) 0.122034 20.84402 20.8772 

ARMA(5,4) 0.102908 20.86286 20.89604 

ARMA(4,4) 0.105837 20.86024 20.89041 

ARMA(3,4) 0.099901 20.86519 20.89234 

ARMA(3,3) 0.080274 20.8855 20.90963 

ARMA(2,2) 0.080215 20.88447 20.90256 

ARMA(1,1) 0.069758 20.89461 20.90668 

 
A

R
C

H
 T

es
t F-statistic 

Prob. F(3,1820) 
92.843 
(0.000) 

Chi-Square(N×R2) 
Prob. Chi-Square(3) 

242.093 
(0.000) 

Source: Research findings 
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Table 13. Optimal lags of GARCH(p,q)for Signal ∆𝒔𝒕 
GARCH (p,q) AIC SIC Positive coefficients Sum of coefficients < 1 

GARCH (1,1) 20.56427 20.60355 Yes Yes 

GARCH (0,1) 20.85929 20.89555 Yes Yes 

GARCH (1,0) 20.68233 20.71859 Yes Yes 

GARCH (2,2) 20.54442 20.58974 No No 

Source: Research findings 

 

The results of the ARMA-GARCH model concerning first difference of 
electricity price (Δst) are shown in Table 14. 

 
Table 14. The results of the ARMA-GARCH Model (without Wavelet transform) 

 Signal ∆𝐬𝐭 : ARMA(4,5)-GARCH(1,1) 

 

M
ea

n 
eq

ua
ti

on
 

Variable Coef. t-stat Prob. 

Constant 23.09666 0.235 0.814 

AR(1) -0.556109 -617.377 0.000 

AR(2) 0.246969 271.753 0.000 

AR(3) -0.554511 -693.830 0.000 
AR(4) -1.000575 -1176.395 0.000 
MA(1) 0.280356 11.293 0.000 
MA(2) -0.396895 -28.672 0.000 
MA(3) 0.619187 97.129 0.000 
MA(4) 0.841104 60.642 0.000 
MA(5) -0.272441 -11.129 0.000 

 V
ar

ia
nc

e 
eq

ua
ti

on
 

Constant 13311230 13.103 0.000 
RESID(-1)2 0.401 19.812 0.000 

GARCH(-1) 0.435 16.041 0.000 

 
D

ia
gn

os
ti

c 
T

es
ts

 R̅2 0.123617 

AIC 20.56427 

SIC 20.60355 

Source: Research findings 

 
In order to plot ∆̂st, first it converts into 𝑠′as Equation 19. The matching 𝑠′ 𝑡 𝑡 

and the original price series (s) are plotted in figure 10. ∆̂st  = s′ − s′ ⇒ s′ = s′ + ∆̂st (19) 
t t−1 t t−1 
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Figure 10. Actual and fitted values of Price(𝒔𝒕&𝒔′) 

Source: Research findings 

 
4.5 Evaluating Forecast Accuracy 

The actual (st) and predicted (P̂) values were compared using a predictive 
accuracy measure to express the predictive power between the proposed Wavelet- 
ARMA-GARCH-based model and the ARMA-GARCH-based model. This 
makes it possible to measure the prediction error value. The Mean Absolute 
Percentage Error (MAPE) is used to evaluate the predictive power that is not 
affected by units of measurement (De Myttenaere et al., 2016). By determining 
“m” as the length of the period, the time series estimation error of the electricity 
price for Wavelet-ARMA-GARCH-based model is calculated by Equation 20. 

100 ∑T+m   |
P̂t− st| 

 

MAPEP̂t   
= 

t=T+1      st
 

 

m (20) 
In order to calculate the estimation error of the electricity price with the 

ARMA-GARCH based model, ∆̂st  is first converted to 𝑠′ according to Equation 
19. Then, the MAPE is calculated using Equation 21. 

T+m 𝑠𝘍− st 
 

 

100 ∑t=T+1| 𝑡 | t 

MAPEs𝘍 = (21) 
m 

The mean absolute percentage error for the Wavelet-ARMA-GARCH-based 
model in the 4-season, including Spring of 2017 to Winter of 2018, is 1.295%, 
0.578%, 1.981%, and 1.120%, respectively. MAPE for four-season is equal to 
1.244%. MAPE for the ARMA-GARCH-based model estimation during the 
above periods are respectively 1.653%, 0.814%, 1.988%, and 1.345%, and it is 
equal to 1.446% for total seasons. Consequently, it is necessary to use a statistical 
method to determine whether the difference in predictive performance of the two 
models of Wavelet-ARMA-GARCH and ARMA-GARCH is significant. This 
study uses the Diebold-Mariano test (DM), which provides a quantitative method 
to evaluate the prediction accuracy of electricity price forecasting models. The 
null hypothesis of DM test indicates that there are no significant differences in the 

s 
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performance of two prediction models, whereas the rejection of null hypothesis 
shows that one prediction model works better than the other4. 

The result of the DM test demonstrates that the absolute value of DM statistic 
is greater than 1.96 (except Autumn season) and the null hypothesis is rejected at 
the 5% level of significance. Thus, the predictive accuracy of the Wavelet- 
ARMA-GARCH model is better than the ARMA-GARCH model. 

 
Table 15. MAPE (%) for the four season of Iran electricity market 

in spring 2017 to winter 2018 

 
Interval time 

Wavelet- 

ARMA- 

GARCH 

(WAG) 

ARMA- 

GARCH 

(AG) 

Diebold- 

Mariano 

test 

 
conclusion 

 
Spring 

 
1.295% 

 
1.653% 

-2.132 
( p-value 

= 
0.0330) 

 
WAG is the better forecast 

 
Summer 

 
0.578% 

 
0.814% 

-3.261 
(p-value 

= 
0.0011) 

 
WAG is the better forecast 

 
Autumn 

 
1.981% 

 
1.988% 

-0.228 
(p-value 

= 
0.8190) 

 
Forecast accuracy is equal 

 
Winter 

 
1.120% 

 
1.354% 

-2.029 
(p-value 

= 
0.0424) 

 
WAG is the better forecast 

 
Total (year) 

 
1.244% 

 
1.446% 

-2.409 

( p-value 

= 

0.0160) 

 
WAG is the better forecast 

Source: Research findings 

 

As shown in the Table 15 and Figure 11, the predictive power of the Wavelet- 
ARMA-GARCH-based model is better than the ARMA-GARCH model. It can 
be concluded that the proposed model performs well on a seasonal (short-term) 
and annual (long-term) basis. 

 
 
 
 
 

4 The Diebold-Mariano test define theloss differential between the two forecasts by𝑑𝑡 = 𝐿(𝑒1.𝑡) − 𝐿(𝑒2.𝑡). 
The DM test statistic is 𝐷𝑀 = 

𝑑̅        
. Where 𝑑̅ is the mean of the coefficient of 𝑑   and var(𝑑̅) is an estimate 

 √𝑣𝑎𝑟(𝑑̅) 𝑡 

of the variance of 𝑑.̅ The null hypothesis of the DM test will be rejected at the 5% level if |DM| > 1.96 
(Chen and etal., 2014). 
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Figure 11. Mean Absolute Percentage Error: 

Wavelet-ARMA-GARCH (W-A-G) & ARMA-GARCH (A-G) 
Source: Research findings 

 
Figure 12 shows the actual values of the electricity price (st) and the fitted 

values  obtained  from  the  Wavelet-ARMA-GARCH  Model  (P̂t)  and  ARIMA- 
GARCH Model (s′) in winter 2018. It is mentioned that the mean absolute 
percentage error for the Wavelet-ARMA-GARCH-based model and ARIMA- 
GARCH model estimation are 1.120% and 1.354% in winter of 2018, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Actual (𝒔𝒕) and fitted values of Price in 

Wavelet-ARMA-GARCH (𝑷̂𝒕) and ARIMA-GARCH (𝒔′ ) 
Source: Research findings 

 

5. Conclusion 

The electricity price has many complex features such as non-stationarity, 
nonlinearity, and high fluctuations. Finding the best model to capture these 
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features of the electricity price is very important. This study examines the Iranian 
electricity market and attempts to present appropriate forecasting method. In this 
way, the combination of wavelet transformation with the ARMA-GARCH models 
is investigated as a proposed method. The wavelet-transformation technique has 
multiple resolution features; it can be used to study the time series with different 
resolutions. Thus, in order to account for the fluctuations in the structure of the 
forecasting model, the electricity price were decomposed into time-frequency 
dimensions using wavelet transformation. In this study, Haar wavelet was used to 
decompose the electricity price at four levels. Finally, the decomposed signals 
were estimated using ARMA and GARCH models separately, and the Wavelet- 
ARMA-GARCH model is called by reconstructing the decomposed fitted signals. 
Moreover, the ARMA-GARCH model was presented as an alternative forecasting 
method to compare with the Wavelet-ARMA-GARCH model. 

The results show that the Wavelet-ARMA-GARCH-based model in four 
seasons from Spring of 2017 to Winter of 2018 (including MAPE 1.295%, 
0.578%, 1.981%, and 1,120%) has better performance than that of the ARMA- 
GARCH model (including MAPE 1.653%, 0.814%, 1.988%, and 1.345%) . 
Accordingly, it can be concluded that the proposed Wavelet-ARMA-GARCH 
model performs well in forecasting the price of electricity in the Iranian electricity 
market. 
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