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Abstract

This study explores the evolution of income inequality in an economy featuring

an endogenous transition from stagnation to growth. We incorporate heterogeneous

households in a Schumpeterian model of endogenous takeoff. In the pre-industrial era,

the economy is in stagnation, and income inequality is determined by the unequal

distribution of land. When the takeoff occurs, the economy experiences innovation

and economic growth, and income inequality gradually rises until the economy reaches

the steady state. We calibrate the model for a quantitative analysis and compare the

simulation results to historical data in the UK. Extending the analysis to allow for

endogenous labor supply, we find that endogenous labor supply introduces a channel

through which inequality contributes to shaping the transition path of the economy

and that households sort themselves into a leisure class that supplies zero labor and

the rest of society that supplies labor.
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1 Introduction

What is the historical relationship between growth and inequality and, if any, what drives it?

These questions have a long tradition in economics. Kuznets (1955) famously hypothesized

that industrialization causes income inequality to rise. Williamson (1980, 1985) provides

evidence for this hypothesis, showing that in Britain income inequality increases after the

Industrial Revolution and keeps rising until the mid-19th century.1 More broadly, there

is abundant evidence that periods characterized by waves of innovation in technology and

business organization (e.g., the period straddling the second half of the 19th century and

the pre-wars 20th century) display higher and rising inequality. History thus suggests that

innovation-driven growth accelerations cause rising inequality. The recent study by Madsen

et al. (2021) makes this point quite forcefully. It carries out "a long-run econometric analysis

for 21 OECD countries using annual data over the period 1860—2015" (p. 477) and shows

that "intangibles have been a contributing factor in wealth inequality since 1860 and that

the marked increase in investment in intangible assets has been a significant driver of the

increasing inequality since the 1970s" (p. 477). The takeaway of the paper is that growth

accelerations fueled by investment in intangibles cause rising inequality.

To illuminate analytically the mechanism that this evidence points to, we need to under-

stand the origins of the transition from stagnation to growth and how this transition affects

the evolution of the wealth and income distributions. In this study we develop a growth-

theoretic framework that enables us to characterize analytically the endogenous takeoff of

an economy and the evolution of the wealth and income distributions from stagnation to

growth.

The framework builds on two branches of growth economics. The first is Unified Growth

Theory (Galor and Weil 2000, Galor 2005 and 2011), developed to explain the transition

from Malthusian stagnation to modern growth. The second is the theory of endogenous

technological change (Romer 1990), developed to formalize the idea that innovation is the

key driver of economic growth. Exploiting ideas from both branches, Peretto (2015) extends

the Schumpeterian growth model to allow for endogenous takeoff. We incorporate in his

model the approach to heterogeneous households in Chu and Cozzi (2018), to obtain a

structure that allows us to characterize analytically the endogenous takeoff of the aggregate

economy and its transition dynamics from stagnation to growth. The goal is to understand

the evolution of the personal distributions of wealth and income throughout the process.

The source of heterogeneity across households is the unequal initial distribution of assets.

Accordingly, our framework builds on the literature, recently revived by Piketty (2014), that

1Lindert (2000a, b) also finds a rise in income inequality in Britain in as early as the late 18th century.
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considers wealth inequality as the root cause of income inequality. One advantage of our

analysis is that we do not impose any parametric assumption on the wealth distribution

except that it is non-degenerate and has well-defined moments. This property, in turn,

allows us to obtain analytical solutions for popular measures of inequality, in particular the

Gini coefficient.

Our first main finding is that the economy initially features a pre-industrial era, charac-

terized by stagnation with very slow economic growth, in which income inequality is deter-

mined solely by the unequal distribution of land. The distribution of land may change over

time because our heterogenous households can trade it to achieve intertemporal consumption

smoothing in anticipation of the forthcoming industrial era. The industrial era begins when

the size of the market becomes sufficiently large due to population growth, and the economy

begins to experience innovation. Accordingly, the rate of economic growth begins to rise

gradually, until it converges to its steady-state value. This growth acceleration, fueled by a

rising rate of return to innovation, causes income inequality to rise gradually, until it reaches

a constant steady-state value. Remarkably, this rise in income inequality occurs despite the

fact that the wealth distribution becomes stationary in the industrial era. The mechanisms

driving wealth and income inequality dynamics in the two eras are thus drastically different.

The evidence supporting the industrial era mechanism is strong: Madsen (2017) shows that

the rate of return to financial assets is an important determinant of income inequality and,

as stated above, Madsen et al. (2021) carries out the most comprehensive study document-

ing the central role of investment in the intangibles (e.g., R&D) that drive the asset-market

valuation of firms.

We calibrate the model to current data in the UK to perform a quantitative analysis.

Simulating the transitional paths of the output growth rate and the real interest rate, we find

that the increase in the simulated growth rate and the simulated interest rate is consistent

with historical data in the UK. Then, we simulate the transitional path of income inequality

and find that income inequality increases sharply when the takeoff occurs. When the economy

reaches the steady state, income inequality becomes almost twice as high as the level prior

to the takeoff and is in line with the Gini coefficient of income in the UK in recent time.

We obtain the result discussed above in a baseline model with inelastic labor supply.

The model has three main strengths: (i) it is analytically tractable; (ii) it identifies sharply

the role of growth accelerations as a main driver of rising income inequality; (iii) it mea-

sures inequality with a well understood and widely used summary statistic of the shape

of a non-degenerate distribution of income. Inequality, however, plays no role in shaping

the transition from stagnation to growth. When we extend the analysis allowing for labor

income inequality due to endogenous labor supply, we find that endogenous labor supply
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introduces a channel through which inequality contributes to shaping the transition path of

the economy, while it preserves the features (i)-(iii) that make the baseline model so use-

ful. Specifically, labor income inequality consists of two margins: an extensive margin along

which households sort themselves into a leisure class that supplies zero labor and the rest of

society that supplies labor; and an intensive margin along which households supply labor as

a decreasing function of their consumption share, which in turn is an increasing function of

their wealth share. The leisure class consists of households that are wealthy enough to find

optimal to forgo labor income. Our model, therefore, generates endogenously the two-class

structure–workers vs. capitalists–that is widely used in the literature on inequality that

builds on the classical theory of the distribution of income. Models in this tradition, how-

ever, are often silent about the shape of the cross-sectional distribution of income because

the imposed within-class homogeneity reduces the cross section of the whole population to

two degenerate distributions. Consequently, work that uses this approach tends to measure

inequality with grand ratios like the wealth share of GDP (see, e.g., Madsen et al. 2021 dis-

cussed above). Our structure, in contrast, allows for heterogeneity in wealth, labor supply,

and thus overall income, within each class. One of our results is that a simple summary

statistic of labor supply heterogeneity captures the channel through which inequality affects

aggregate outcomes.

This study relates to the vast literature on innovation and economic growth. The seminal

contribution by Romer (1990) features the invention of new products (i.e., horizontal innova-

tion) as the engine of growth. Aghion and Howitt (1992) develop the Schumpeterian creative-

destruction model in which economic growth is driven by the development of higher-quality

products (i.e., vertical innovation) that displace existing products.2 Subsequent studies, such

as Smulders (1994), Smulders and van de Klundert (1995), Peretto (1994, 1998, 1999) and

Dinopoulos and Thompson (1998), combine vertical in-house innovation by incumbent firms

and horizontal innovation by entrant firms to develop the class of Schumpeterian creative-

accumulation models with endogenous market structure; see Garcia-Macia et al. (2019) for

evidence that growth is mostly driven by in-house innovation of existing firms (i.e., cre-

ative accumulation).3 This study contributes to this literature by introducing heterogeneous

households to a tractable creative-accumulation model that features an endogenous takeoff.

The goal is to explore the effects of innovation on the evolution of income inequality during

the historical transition from stagnation to growth.

This study also relates to the literature on inequality and economic growth. The study

2See also Grossman and Helpman (1991) and Segerstrom et al. (1990).
3Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)

also provide supportive empirical evidence for this broad class of Schumpeterian models.
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most directly related to our work is Madsen et al. (2021) discussed above. It uses a first-

generation Schumpeterian model to set up an empirical exercise guided by theory, although

it restricts attention to the model’s steady state. We differ chiefly in that we consider a

Schumpeterian model with endogenous market structure and use our model’s non-linear

dynamics with phase transitions to go after analytical results on the historical relationship

between income growth and income inequality.

Early studies in this literature explore how inequality affects economic growth via cap-

ital accumulation; see for example, Galor and Zeira (1993) and Aghion and Bolton (1997).

Galor and Moav (2004) show that in the early (later) stage of development, in which the

accumulation of physical (human) capital is the main engine of growth, inequality stimulates

(stifles) economic growth. Subsequent studies consider how inequality affects the demand

and supply of resources for innovation in the Romer model; see for example, Chou and Tal-

main (1996), Zweimuller (2000), Foellmi and Zweimuller (2006) and Garcia-Penalosa and

Wen (2008). Recent studies by Jones and Kim (2018) and Aghion et al. (2019) focus on

the relationship between innovation and top-income inequality in the Schumpeterian model.4

This study differs from these contributions by considering a Schumpeterian model with en-

dogenous takeoff and analyzing the historical evolution of income inequality from stagnation

to growth. The recent study by Madsen and Strulik (2020) also explores the evolution of

income inequality, measured as the ratio of land rents to wages, from stagnation to growth

arising from land-biased technological change driven by education. We, instead, consider

other measures of income inequality, such as the Gini coefficient and the top income share,

in a Schumpeterian innovation-driven growth model.

Finally, this study relates to the literature on the Industrial Revolution and the transition

to modern economic growth. As mentioned, Unified Growth Theory (Galor and Weil 2000,

Galor 2005 and 2011) explores how the quality-quantity trade-off in child-rearing and the as-

sociated process of human capital accumulation allow an economy to escape the Malthusian

trap and experience economic growth.5 Galor, Moav and Vollrath (2009) explore how the

inequality of land ownership in the pre-industrial era affects the transition of an economy

to the industrial era via the emergence of human-capital promoting institutions. Although

the Schumpeterian model in Peretto (2015) features exogenous population growth and does

not feature human capital accumulation, the innovation-driven takeoff in the model captures

the Industrial Revolution, which is arguably the most important economic takeoff in human

4Other studies, such as Chu (2010), Chu and Cozzi (2018) and Chu et al. (2019, 2021), analyze the effects
of patent policy and monetary policy on innovation and income inequality.

5See also Galor and Moav (2002), Galor and Mountford (2008) and Ashraf and Galor (2011) for other
studies and empirical evidence that supports Unified Growth Theory.
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history.6 Furthermore, this tractable growth-theoretic framework allows us to study analyti-

cally how innovation affects the rate of return on assets, and thereby the evolution of income

inequality, when we incorporate heterogeneous households in the model.

The rest of this study is organized as follows. Section 2 presents the model. Section 3

analyzes the dynamics and derives the evolution of income inequality. Section 4 performs a

quantitative analysis. Section 5 considers labor income inequality due to endogenous labor

supply. Section 6 concludes.

2 A Schumpeterian growth model with heterogeneous

households and endogenous takeoff

We introduce heterogeneous households as in Chu (2010) and Chu and Cozzi (2018) to

the Schumpeterian model of endogenous takeoff in Peretto (2015). Our analysis provides a

complete closed-form solution for economic growth and income inequality from stagnation

to takeoff and eventually to the steady state.

2.1 Heterogeneous households

There is a continuum of mass one of households indexed by h ∈ [0, 1]. Household h has

preferences

U(h) =

∫
∞

0

e−ρt ln ct(h)dt, (1)

where ρ > 0 is the subjective discount rate and ct(h) is household consumption of the final

good.7 The household maximizes (1) subject to

ȧt(h) = rtat(h) + wtLt − ct(h), (2)

where at(h) is household wealth and rt is the real interest rate. The household supplies Lt

units of labor inelastically to earn wage income wtLt. The household’s labor endowment (the

mass of identical household members) grows at rate λ > 0, i.e., Lt = L (0) e
λt, L (0) = 1.

6Mokyr (2016) argues that innovations in Europe gave rise to the Industrial Revolution and sustained
economic growth that subsequently spread across the world.

7For simplicity, we assume that flow utility is a function of the household’s total consumption, rather than
the mass of identical household members multiplied by the utility of consumption per household member.
This allows us to abstract from differentiating between household-level consumption and individual-level
consumption given that the distinction is not important to our research question.
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Standard dynamic optimization yields the familiar Euler equation

ċt(h)

ct(h)
= rt − ρ,

A property of this saving rule that is quite important for our research question is that, due

to the homothetic preferences (1), the welfare-maximizing growth rate of consumption is the

same across households. Consequently, we can write

ċt(h)

ct(h)
=
Ċt
Ct
= rt − ρ. (3)

where Ct ≡
∫ 1
0
ct(h)dh is aggregate consumption.

2.2 Final good

A competitive representative firm produces a final good Gt that can be consumed, used to

produce intermediate goods, invested in the improvement of the quality of existing interme-

diate goods, or invested in the creation of new intermediate goods. The final good is the

numeraire so its price is PG ≡ 1. The production technology is

Gt =

∫ Nt

0

Xθ
t (i) [Z

α
t (i)Z

1−α
t Lγt (i)R

1−γ
t ]1−θdi, (4)

where {θ, α, γ} ∈ (0, 1). Nt is the mass of non-durable intermediate goods, whereas Lt(i)

and Rt are, respectively, services of labor and land. The index i reflects the property that

both labor Lt(i) and intermediate goods Xt (i) are rival inputs. The index i on labor also

implies that the technology features full dilution of labor across intermediate goods (i.e.,

Lt(i) = Lt/Nt in equilibrium). Land, instead is non-rival across intermediate goods and

labor. Quality is the good’s ability to raise the productivity of the other physical factors.

The contribution of good i to factor productivity downstream depends on the knowledge

stock of firm i, Zt(i), and on the average knowledge of all firms, Zt =
∫ Nt
0
[Zt(j)/Nt]dj.

Let pt (i) be the price of good i and qt be the rental price of land. Profit maximization

yields the conditional demand functions:

Rt =
(1− γ)(1− θ)

qt
Gt; (5)

Lt(i) =

{
γ(1− θ)

wt
Xθ
t (i)[Z

α
t (i)Z

1−α
t R1−γt ]1−θ

}1/[1−γ(1−θ)]
; (6)
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Xt (i) =

[
θ

pt (i)

] 1

1−θ

Zαt (i)Z
1−α
t Lγt (i)R

1−γ
t . (7)

Moreover, the final producer pays total compensation to, respectively, suppliers of interme-

diate goods, labor and land: ∫ Nt

0

pt (i)Xt (i) di = θGt; (8)

∫ Nt

0

wtLt (i) di = γ (1− θ)Gt; (9)

qtRt = (1− γ) (1− θ)Gt. (10)

2.3 Intermediate goods and in-house R&D

Monopolistic firm i produces with a technology that requires Xt (i) units of the final good

to produce Xt (i) units of good i at quality Zt (i). The firm also bears a fixed operating cost

φZαt (i)Z
1−α
t in units of the final good. The firm can allocate It (i) units of the final good to

accumulate firm-specific knowledge according to the technology

Żt (i) = It (i) . (11)

The firm’s gross profit (i.e., profit before-R&D) is

Πt (i) = [pt (i)− 1]Xt (i)− φZ
α
t (i)Z

1−α
t . (12)

The value of the firm is

Vt (i) =

∫
∞

t

exp

(
−

∫ s

t

rudu

)
[Πs (i)− Is (i)] ds. (13)

The firm maximizes (13) subject to (7) and (11). We solve this problem in Appendix A;

here we discuss only the elements needed to address the paper’s research question.

The demand curve (7) says that an unconstrained monopolist would charge pt (i) =

1/θ. However, we assume that competitive fringe firms can produce good i at the same

quality Zt(i) as the monopolist but at the higher marginal cost µ ∈ (1, 1/θ).
8 The value-

maximization problem then says that the monopolistic firm sets

pt(i) = min {µ, 1/θ} = µ (14)

8Specifically, we allow for diffusion of knowledge from monopolistic firms to fringe firms that enables the
latter to constrain the pricing behavior of the former. This characterization disentangles markups from the
technological parameter θ that in this model is a key driver of the functional distribution of income.
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to price fringe firms out of the market. The problem also delivers the firm’s rate of return

to quality innovation,

rqt (i) = α
Πt (i)

Zt (i)
= α

[
(µ− 1)

Xt (i)

Zt (i)
− φZα−1t (i)Z1−αt

]
,

which is linear in quality-adjusted firm size xt (i) ≡ Xt (i) /Zt (i). This property is at the

heart of the mechanism that we study: incentives to innovate depend on quality-adjusted

firm size, which in turn depends on the size of the market.

In models of this class, the equilibrium of the market for intermediate goods is symmet-

ric: firms start with the same initial knowledge Z0 (i) = Z0 for i ∈ [0, N0] and, facing a

symmetric environment, make identical decisions. Consequently, they grow at the same rate

and symmetry holds at any point in time. Using the limit price (14), we then have

xt =
Xt

Zt
=

(
θ

µ

)1/(1−θ)(
Lt
Nt

)γ
R1−γt . (15)

This variable compresses the three variables Lt (labor input), Rt (land input) and Nt (mass

of firms) into a single variable and thus makes the analysis of the model’s dynamics very

simple. For brevity, henceforth, we refer to xt as "firm size". With this notation, the rate of

return to quality innovation is

rqt = α
Πt
Zt
= α [(µ− 1) xt − φ] . (16)

2.4 Entrants

A new firm pays βXt, β > 0, units of the final good to develop a new intermediate good of

average quality, Zt, set up operations and enter the market.
9 This structure preserves the

symmetry of the equilibrium of the intermediate goods market at all times. The asset-pricing

equation governing the value of firms (old and new) is

rt =
Πt − It
Vt

+
V̇t
Vt
. (17)

9Peretto and Connolly (2007) discuss alternative specifications of entry costs that yield the same qualita-
tive results. They also show that the cost of entry scaling with market size prevents the cost from vanishing
in the presence of population growth. An empirical study by Bollard et al. (2016) documents that entry
costs do rise with the level of development, providing empirical support for our theoretical specification.
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Entry is positive when the free-entry condition holds, i.e., when

Vt = βXt. (18)

Substituting (7) and (14) into (12) and then using the resulting expression, (11), (15), (17)

and (18) yield the return to entry as

ret =
1

β

(
µ− 1−

φ+ zt
xt

)
+ zt +

ẋt
xt
, (19)

where zt ≡ Żt/Zt is the growth rate of average quality.

2.5 Value of land

Let vt denote the value of a unit of land. The asset-pricing equation for vt is rtvt = qt + v̇t.

This equation states that the return on land is determined by the rental price of land and

the capital gain in land value.

2.6 General equilibrium

The general equilibrium of this economy is a time path of allocations {At, Ct, Gt, Lt, Rt, Xt(i), It(i)}

and a time path of prices {rt, wt, qt, vt, pt(i), Vt (i)} such that:

• households maximize utility taking {rt, wt, qt} as given;

• final-good firms maximize profit taking {pt(i), wt, qt} as given;

• intermediate-good firms choose {pt(i), It(i)} to maximize Vt(i) taking rt as given;

• entrants make entry decisions anticipating that when in operation they will maximize

their value, i.e., they will behave as the incumbents in the previous bullet point;

• aggregate household wealth is the sum of the value of land and of the aggregate value

of monopolistic firms, At ≡
∫ 1
0
at(h)dh = vtR + VtNt;

• the market for land services clears,
∫ 1
0
Rt(h)dh = R;

• the labor market clears,
∫ Nt
0
Lt(i)di = NtLt(i) = Lt;

• the market for the final good clears.
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2.7 Aggregation

In symmetric equilibrium, (7) and (14) yield the reduced-form representation of final output

Gt = (θ/µ)
θ/(1−θ)N1−γ

t ZtL
γ
tR

1−γ, (20)

where total land endowment R is constant. The associated growth rate of output is

gt ≡
Ġt
Gt
= (1− γ)nt + zt + γλ. (21)

This growth rate has three components: (i) the growth rate of the variety of intermediate

goods, nt ≡ Ṅt/Nt; (ii) the growth rate of the average quality of intermediate goods, zt; (iii)

the growth rate of the labor force λ multiplied by the labor elasticity of final output γ.

3 Dynamics

This section analyzes the dynamics of the model. See Section 3.1 for the dynamics of the

aggregate economy. See Section 3.2 for the dynamics of the wealth distribution. See Section

3.3 for the dynamics of the income distribution. Section 3.4 provides a discussion on income

inequality.

3.1 Dynamics of the aggregate economy

The model identifies two eras: the pre-industrial era, where no innovation of any kind takes

place, and the industrial era, where variety innovation takes place because the free-entry

condition holds with equality. The industrial era consists of two phases: in phase 1, only

horizontal innovation occurs; and in phase 2, quality innovation also occurs.10

In the pre-industrial era, the demand for each intermediate product is initially so small

(i.e., x0 < φ/(µ−1)) that a would-be monopolist operating the increasing-returns technology

would earn negative profit. Thus, the existing N0 intermediate goods are produced by

competitive firms that do not innovate, make zero profit at the price pt(i) = µ, and have zero

stock-market value. Anticipating this, agents are not willing to pay the sunk entry cost and

there is no variety innovation. Initially, therefore, all technologies exhibit constant returns

to scale and the demand for each intermediate product grows only because of exogenous

10See Bouscasse et al. (2021) for recent evidence that the historical pattern consists of a secular acceleration
of economic growth that can be divided in two well-identified phases. There is some debate in the literature
about the precise timing of the key events, but there is remarkable agreement on the overall time-profile of
the process.
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population growth. Eventually, the size of the market for intermediate goods is sufficiently

large that a would-be monopolist operating the increasing-returns technology could earn a

positive profit. We assume, however, that only innovation, in this case a process innovation,

allows a new firm to monopolize an existing market. The pre-industrial era, therefore, ends

only when the present value of monopolistic firms is sufficiently large that the free-entry

condition (18) holds.

We summarize the first important result governing the model’s dynamics in the following

proposition, which states that two key grand ratios take up era-specific constant values.

Proposition 1 (Grand Ratios) Define the composite parameter

Θ ≡
ρβθ

(1− θ)µ
.

The equilibrium consumption-output ratio is

Ct
Gt
=

(
C

G

)
∗

=

{
1− θ nt = 0

(1− θ) (1 + Θ) nt > 0
,

where nt = 0 identifies the pre-industrial era (the free-entry condition does not hold) and nt >

0 identifies the industrial era (the free-entry condition holds). Similarly, the consumption-

wealth ratio is

Ct
At
=

(
C

A

)
∗

=






ρ
1−γ

nt = 0
ρ
1−γ

1+Θ
1+ Θ

1−γ

nt > 0
.

Proof. See Appendix A.

The result that the consumption-output ratio is always constant implies that at all times

consumption and output grow at the same rate, i.e.,

gt ≡
Ġt
Gt
=
Ċt
Ct
.

As the economy progresses through the three phases discussed above, the growth rate is

gt =






γλ nt = 0

γλ+ (1− γ)nt nt > 0 and zt = 0

γλ+ (1− γ)nt + zt nt > 0 and zt > 0

.

To translate this characterization of the general equilibrium of the model into a state-space

representation, in Appendix A we construct the rates of variety growth (entry) nt and of
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quality growth zt as two functions of the state variable xt that account for the non-negativity

constraints nt ≥ 0 and zt ≥ 0. The end result is

gt =






γλ 0 ≤ x ≤ xN

γλ+ (1− γ)
[
1
β

(
µ− 1− φ

xt

)
− ρ
]
xN < xt ≤ xZ

α [(µ− 1) xt − φ]− ρ xt > xZ

, (22)

where xN and xZ are the firm-size activation thresholds of, respectively, variety and quality

innovation; see Appendix A for their derivations.11 This piecewise function says that in

each phase, growth accelerates because one form of Schumpeterian innovation starts occur-

ring. Proposition 1, moreover, says that the consumption-output ratio jumps up when the

first phase transition occurs because this event entails the costly creation of a new form of

wealth–equity shares in monopolistic firms that accumulate intangible capital–that make

households richer. The individual and aggregate effects of this wealth creation event depend

on how the newly issued shares are distributed across the heterogeneous households (more

on this below).

The function n (xt) constructed in Appendix A yields the equilibrium law of motion of

the state variable xt. We summarize the property as follows.

Proposition 2 (Equilibrium Dynamics) Assume

ρ+ λ < min {(1− α)φ, (1− α)(µ− 1)/β} .

The key properties of the model’s dynamics are as follows. (i) The state variable xt obeys

the law of motion

ẋt =






γλxt 0 ≤ x ≤ xN

γ
[
φ
β
−
(
µ−1
β
− λ− ρ

)
xt

]
xN < xt ≤ xZ

γ
[
λ− [(1−α)(µ−1)−ρβ]xt−(1−α)φ+ρ+γλ

βxt−(1−γ)

]
xt xt > xZ

.

(ii) There exists a unique, scale-invariant, steady state

x∗ =
(1− α)φ− (ρ+ λ)

(1− α)(µ− 1)− β(ρ+ λ)
> xZ . (23)

(iii) Given initial condition x0 ∈ (0, xN), the dynamics are globally stable and xt converges

11The inequality xN < xZ can be ensured by a parameter restriction that imposes an upper bound on α,
which holds in our calibration.
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to the steady state x∗. (iv) The steady state exhibits the scale-invariant growth rate

g∗ = α [(µ− 1) x∗ − φ]− ρ > 0. (24)

Proof. See Appendix A.

We illustrate the dynamics described by Proposition 2 in two figures. Figure 1 shows

that firm size xt grows throughout the transition, following an S-shaped (i.e., logistic) path,

where TN and TZ are the activation dates of, respectively, variety and quality innovation.
12

As xt converges to its steady-state value x
∗, we have

Nt =

[(
θ

µ

)1/(1−θ)
R1−γ

x∗

]1/γ
Lt,

so that the mass of products/firms grows at the rate λ; see Laincz and Peretto (2006), among

many others, for empirical evidence that Nt is proportional to Lt in advanced economies.
13

Figure 1: Transition path of the firm size

Figure 2 shows the dynamics of economic growth that we obtain by feeding the path of

xt to the growth rate equation (22). In the pre-industrial era, the growth rate of output

is simply gt = γλ due to the absence of innovation. In the industrial era, the growth rate

12See Appendix A.
13Laincz and Peretto (2006) use the number of establishments as a proxy for the number of products and

provide a detailed discussion on this assumption.
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accelerates, initially fueled only by variety innovation and then also by quality innovation.

As xt converges to x
∗, the growth rate converges to the steady-state value g∗ in (24).

Figure 2: Transition path of the growth rate

This gradual acceleration of economic growth is consistent with historical data for the

UK. Figure 3 plots the log of the UK real GDP from 1700 to 2016.14 The slope of the plot is

the growth rate. According to the data, the average growth rate in the UK is 0.71% in the

first half of the 18th century, 1.24% in the second half of the 18th century, 1.86% in the first

half of the 19th century, 2.23% in the second half of the 19th century, 1.50% in the first half

of the 20th century and 2.55% from the second half of the 20th century onwards. Except

for the wartime periods in the first half of the 20th century, the UK experiences a gradually

rising growth rate as in our Schumpeterian model of endogenous takeoff. We are interested

in the implications of these dynamics for inequality.

14Data source: Federal Reserve Bank of St. Louis.
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Figure 3: Log of real GDP in the UK from 1700 to 2016

3.2 Dynamics of the wealth distribution

Let sc,t(h) ≡ ct(h)/Ct and sa,t(h) ≡ at(h)/At be, respectively, the share of consumption and

of wealth of household h at time t. Equation (3) says that households want to achieve the

same consumption growth rate, since they face the common interest rate r and they have

the same discount rate ρ. It follows that the household consumption share sc,t (h) is always

constant. In particular, it jumps at time t = 0 and remains constant during the pre-industrial

era. It then jumps again at time t = TN and remains constant thereafter. We denote these

constant values s∗c,0(h) and s
∗

c,TN
(h), respectively. This behavior of household consumption

incorporates all information about the future, including the arrival of the industrial era, and

drives the dynamics of the wealth share.

The following proposition summarizes our main formal result on the dynamics of the

household consumption and wealth shares.

Proposition 3 (Household Shares) Consider household h for h ∈ [0, 1]. Let sR,0 (h) ≥ 0 be

the household’s land share at time t = 0 and let sN,TN (h) be the household’s industrial share

at t = TN . In equilibrium, the household’s consumption and wealth shares are, respectively:

s∗c,0(h)− 1 =
1− γ

1− γ +Θe−ρTN

{
(1− γ) [sR,0 (h)− 1] + Θe

−ρTN [sN,TN (h)− 1]
}
;
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s∗c,TN (h)− 1 =
1− γ +Θ

(1 + Θ) (1− γ +Θe−ρTN )

{
(1− γ) [sR,0 (h)− 1] + Θe

−ρTN [sN,TN (h)− 1]
}
.

sa,t (h)− 1 =

{
1−γ+Θeρ(t−TN )

1−γ+Θe−ρTN
[sR,0 (h)− 1] +

e−ρTN−eρ(t−TN )

1−γ+Θe−ρTN
Θ [sN,TN (h)− 1] 0 ≤ t ≤ TN

1−γ
1−γ+Θe−ρTN

[sR,0 (h)− 1] +
Θe−ρTN

1−γ+Θe−ρTN
[sN,TN (h)− 1] t > TN

.

Proof. See Appendix A.

The proposition says that agents incorporate in their decisions all available information at

t = 0. The implication for the dynamics of the wealth shares is twofold. In the pre-industrial

era, our heterogenous households trade land to achieve intertemporal consumption smooth-

ing in anticipation of the forthcoming industrial era. This process creates the endogenous

distribution of land with which the economy begins the industrial era. Second, Proposition 1

says that the grand ratios that households face in the industrial era are constant and no fur-

ther changes are expected to occur. Therefore, households need not trade wealth to achieve

intertemporal consumption smoothing in anticipation of a future change in the economic

landscape and, consequently, the wealth distribution stabilizes. To complete the model’s

solution we need to take a stand on the distribution of industrial wealth at t = TN . Since

the model does not contain forces that relate it endogenously to fundamentals, we treat it

as an exogenous parameter that allows us to construct different scenarios.15

According to this characterization, in the pre-industrial era the distribution of wealth is

determined by the initial exogenous distribution of land and by the households trading land

to achieve intertemporal consumption smoothing in anticipation of the arrival of the indus-

trial era. When the economy enters the industrial era, a new form of wealth appears–equity

shares in industrial firms that develop and apply new technology. We find that the distrib-

ution of wealth, now consisting of both land and industrial shares, becomes stationary and

jointly determined by the endogenous distribution of land inherited from the pre-industrial

era and by the initial distribution of industrial shares at the time of the takeoff. Throughout

this process, the economy features transition dynamics determined by the evolution of firm

size. Note that in the pre-industrial era

ṡR,t (h) =
ρΘeρ(t−TN )

1− γ +Θe−ρTN
[sR,0 (h)− sN,TN (h)] .

There is thus a precise relationship between the households shares of land at t = 0 and of

industrial wealth at t = TN that determines whether the household relatively dissaves or saves

15In future work, we plan to make the initial distribution of industrial wealth endogenous by developing a
component of the model that determines how heterogenous households participate in the formation of new
firms.
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in the run-up to the industrial revolution. The derivative is positive for sR,0 (h) > sN,TN (h).

This suggests a form of wealth smoothing: relatively land rich households who expect to be

relatively industry poor acquire land to compensate and maintain their overall wealth share.

We now use our explicit solution to look at measures of wealth inequality. The model

produces any other summary statistics that we might wish to consider. The variance of the

wealth share is

σ2a,t ≡

∫ 1

0

[sa,t(h)− 1]
2dh.

With the expressions in Proposition 3, we calculate

σ2a,t =






∫ 1
0

[
1−γ+Θeρ(t−TN )

1−γ+Θe−ρTN
[sR,0 (h)− 1] +

e−ρTN−eρ(t−TN )

1−γ+Θe−ρTN
Θ [sN,TN (h)− 1]

]2
dh 0 ≤ t ≤ TN

∫ 1
0

[
1−γ

1−γ+Θe−ρTN
[sR,0 (h)− 1] +

Θe−ρTN

1−γ+Θe−ρTN
[sN,TN (h)− 1]

]2
dh t > TN

.

The first branch is time varying due to the time-varying weights attached to the two exoge-

nous shares sR,0 (h) and sN,TN (h). The second branch features a constant value, which we

denote σ2a,TN . We focus on the first branch to assess what happens to this indicator of wealth

inequality in the run up to industrialization. A standard result in statistics gives

σ2R,t =

[
1− γ +Θeρ(t−TN )

1− γ +Θe−ρTN

]2
V ar (sR,0 (h)) +

[
e−ρTN − eρ(t−TN )

1− γ +Θe−ρTN
Θ

]2
V ar (sN,TN (h))

+2
1− γ +Θeρ(t−TN )

1− γ +Θe−ρTN
e−ρTN − eρ(t−TN )

1− γ +Θe−ρTN
ΘCov (sR,0 (h) , sN,TN (h)) .

The coefficients of the two variance terms say that land inequality rises over time with initial

land inequality and falls over time with the anticipated industrial wealth inequality. The

coefficient of the covariance term is non-monotonic in t. Over time, therefore, land inequality

is subject to competing forces that depend on several factors: the exogenous distributions of

land at time 0 and of industrial wealth at time TN (the time of the takeoff), the duration of

the pre-industrial era TN , the aggregate land share 1−γ, and the fundamentals determining

industrial wealth, the factor Θ. This result follows from the fact that households with

expected industrial wealth share lower than the initial land share acquire land to engage in a

form of wealth smoothing that, to our knowledge, is not discussed in the existing literature.

To close this subsection, we sort households in ascending order of wealth and define the

Gini coefficient of wealth at time t,

σGa,t ≡ 1− 2

∫ 1

0

La,t(h)dh,
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where the Lorenz curve of wealth inside the integral is

La,t(h) ≡

∫ h
0
at(χ)dχ

∫ 1
0
at(χ)dχ

=

∫ h
0
at(χ)dχ

At
=

∫ h

0

sa,t(χ)dχ.

Similarly, we can define the share of wealth of the top ε households at time t,

Sεa,t ≡

∫ 1

1−ε

sa,t(h)dh.

We focus on the Gini coefficient because of its prominent role in the literature.

3.3 Dynamics of the income distribution

Household h earns income yt(h) ≡ rtat(h) + wtLt. Aggregating across households yields

Yt ≡

∫ 1

0

yt(h)dh = rtAt + wtLt.

Let sy,t(h) ≡ yt(h)/Yt denote the income share of household h. Proposition 3 highlights that

the economics of our model dictates that we look at variables in deviation from the mean.

We follow that insight and write the following equilibrium relation (see Appendix A for the

derivation):

sy,t(h)− 1 =
rt

rt +
wtLt
At

[sa,t(h)− 1] .

Filling in the era-specific values for the aggregate variables, we obtain:

sy,t(h)− 1 =






(
1 + ρ

ρ+γλ
γ
1−γ

)
−1

[sa,t(h)− 1] 0 ≤ xt ≤ xN
(
1 + ρ

ρ+gt

γ
1−γ+Θ

)
−1

[sa,t(h)− 1] xt > xN
. (25)

This equation says that in the pre-industrial era the household income share relative to the

mean is a constant multiple of the household wealth share relative to the mean. In the

industrial era, in contrast, the multiplier is an increasing function of growth rate gt. This

property constitutes the main transmission channel of macro events to household income

and thus to the cross-sectional distribution of income.

Equation (25) allows us to derive any summary statistic of the income distribution. The
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variance of the income share is

σ2y,t ≡

∫ 1

0

[sy,t(h)− 1]
2dh =






(
1 + ρ

ρ+γλ
γ
1−γ

)
−2

σ2a,t 0 ≤ xt ≤ xN
(
1 + ρ

ρ+gt

γ
1−γ+Θ

)
−2

σ2a,TN xt > xN
.

The Gini coefficient of income is

σGy,t =






(
1 + ρ

ρ+γλ
γ
1−γ

)
−1

σGa,t 0 ≤ xt ≤ xN
(
1 + ρ

ρ+gt

γ
1−γ+Θ

)
−1

σGa,TN xt > xN
. (26)

The income share of the top ε households is

Sεy,t ≡

∫ 1

1−ε

sy,t(h)dh =
rtAtS

ε
a,t + wtLtε

rtAt + wtLt
.

We can use (26) to rewrite Sεy,t as

Sεy,t =
σGy,t
σGa,t

(
Sεa,t − ε

)
+ ε. (27)

This expression says that the top ε income share is increasing in the ratio of the Gini indices

σGy,t/σ
G
a,t if and only if S

ε
a,t > ε. In other words, a rising Gini coefficient of income does not

necessarily yield a rising top ε income share. The condition for this to happen is that the

share of wealth of the top ε household be larger than ε. This condition clearly holds in the

data since wealth is highly concentrated.

We summarize our result on the evolution of income inequality as follows. In the pre-

industrial era, the dynamics of income inequality is driven by the dynamics of land ownership

inequality. At the beginning of the industrial era, income inequality becomes a multiple of

the constant wealth inequality, with a multiplier that is an increasing function of the growth

rate gt, whose dynamics are described by equation (22). In phase 1, the growth rate is

fueled only by variety innovation and rises gradually. Eventually, phase 2 starts and quality

innovation adds its contribution, providing a new acceleration of the growth rate with final

convergence to the steady state g∗ described in (24).

3.4 Discussion

Our model says that income inequality is initially driven only by land inequality. The wealth

distribution in the pre-industrial era evolves endogenously due to the fact that households
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trade land among each other to achieve intertemporal consumption smoothing in anticipation

of the arrival of the industrial era. This component of our mechanism is entirely expectations

driven and, to the best of our knowledge, previously unreported in the literature.

After the takeoff, in contrast, the wealth distribution stabilizes and income inequality

rises during the transition because the growth acceleration that takes place throughout the

industrial era is a manifestation of the rising rate of return to innovation, which in equilibrium

manifests itself as a rising rate of return to corporate equity. The rising rate of return

propagates through the households, continuously spreading out the distribution of their

incomes because of the heterogeneity in their assets holdings. This dynamic mechanism

emphasizes the property mentioned above that in this model wealth inequality is the root

cause of income inequality. This insight is consistent with the thrust of the recent literature

based on Piketty (2014), which sees fundamental differences across households in their sources

of income–capital vs. labor–as the root cause of income inequality. Our main mechanism

differs in that the dynamics of income inequality are driven by growth accelerations, not by

the mere fact that the interest rate is higher than the growth rate.

To summarize, in this model the income distribution is non-degenerate, endogenous and

analytically tractable. The dynamics produces a clear insight: the secular acceleration of the

growth rate in the aftermath of the Industrial Revolution produced a secular rise of income

inequality. The underlying wealth distribution is stationary because our households have

identical homothetic preferences over consumption and thus want parallel log-consumption

paths with intercepts that differ because of the unequal distribution of wealth that they

inherit from the pre-industrial era and of the exogenous distribution of industrial wealth at

the onset of the industrial era. In particular, the stationarity result is due to the fact that in

the industrial era, households expect no further future changes in the economic landscape.

3.5 A useful special case

We now consider the special case in which the industrial wealth share is identical to the

initial land share, sN,TN (h) = sR,0 (h). Our solution above says that the land share in the

pre-industrial era remains stationary (i.e., ṡR,t (h) = 0) so that sa,t (h) = sR,0 (h) for all t ≥ 0.

This means that households make initial consumption decisions that put them of paths that

preserve the initial wealth share forever. Accordingly, all our measures of wealth inequality

remain constant. The variance of the wealth share is

σ2a,t = σ
2
a,0 =

∫ 1

0

[sR,0 (h)− 1]
2 dh
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The Gini coefficient of wealth is

σGa,t = σ
G
a,0 = 1− 2

∫ 1

0

La,0(h)dh,

where the Lorenz curve of wealth inside the integral becomes

La,t(h) =

∫ h

0

sa,t(χ)dχ =

∫ h

0

sa,0(χ)dχ =

∫ h

0

sR(χ)dχ ≡ La,0(h),

which is exogenously determined at time 0. The share of wealth of the top ε households is

Sεa,t ≡

∫ 1

1−ε

sa,t(h)dh =

∫ 1

1−ε

sR(h)dh ≡ S
ε
a,0.

This result is the strongest manifestation of our expectation driven mechanism driving wealth

inequality. Households want to preserve the consumption share and when they expect their

initial share of industrial wealth at time TN to equal their initial land share, they chose

consumption paths that freeze the wealth distribution at t = 0.

With the household wealth share pinned down at t = 0, the variance of the household

income share becomes

σ2y,t ≡

∫ 1

0

[sy,t(h)− 1]
2dh =






(
1 + ρ

ρ+γλ
γ
1−γ

)
−1

σ2a,0 0 ≤ xt ≤ xN
(
1 + ρ

ρ+gt

γ
1−γ+Θ

)
−1

σ2a,0 xt > xN
.

The Gini coefficient of income simplifies to

σGy,t =






(
1 + ρ

ρ+γλ
γ
1−γ

)
−1

σGa,0 0 ≤ xt ≤ xN
(
1 + ρ

ρ+gt

γ
1−γ+Θ

)
−1

σGa,0 xt > xN
.

In other words, because wealth inequality stays constant at all time, income inequality

remains constant in the pre-industrial era. Then it jumps up at the time of the takeoff and

gradually rises in the industrial era. Figure 4 summarizes the dynamics of the Gini index

σy,t from stagnation to takeoff and eventually to the steady state.
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Figure 4: Transition path of income inequality

This special case is interesting also because it replicates the major qualitative property

of our model when we impose one of two restrictions that suppress our expectation driven

mechanism driving wealth dynamics. The first is the restriction that we used in our previous

working paper (Chu and Peretto 2021), namely, that households cannot trade land. As we

showed there, under this assumption households must preserve their initial wealth distribu-

tion, which can change only when the industrial era begins. As a consequence, the model

predicts that the wealth distribution is a step function of time, changing discretely at t = TN .

The second restriction is that households do not foresee the arrival of the industrial era and

thus take no action to smooth consumption and wealth intertemporally in the pre-industrial

era. Strictly speaking, such a restriction is inconsistent with the solution procedure for the

rest of the model, which uses rational expectations and perfect foresight, but it might appeal

to some readers. We stress that the special restrictions discussed in this subsection do not

change the model’s implications for the industrial era; they only affect the characterization

of wealth dynamics in the pre-industrial era.

4 Quantitative analysis

In this section, we calibrate the model to UK data in order to perform a quantitative analysis.

To keep things simple and firmly focused on the growth acceleration of the industrial era,

we work with the model’s solution for the special case just discussed. One reason for doing
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so is that there exists very little information on the dynamics of the wealth distribution in

the pre-industrial era. It is thus reasonable to work with the version of the model that keeps

it constant.

The model features the following parameters: {ρ, α, λ, θ, β, γ, µ, φ}. We set the discount

rate ρ to 0.04. We follow Iacopetta et al. (2019) to set the degree of technology spillovers

1 − α to 0.833. In the UK, the long-run population growth rate λ is 0.6%.16 Then, we

calibrate the remaining parameters {θ, β, γ, µ, φ} by matching the following moments for

the UK economy: 52.6% for labor income as a share of output,17 74.4% for consumption as

a share of output,18 12.3% for housing rents as a share of output,19 2.5% for the growth

rate of output,20 and 18.4% for investment as a share of output.21 Table 1 summarizes the

calibrated parameter values.22 These parameter values imply a rate of asset returns of 6.5%

and R&D as a share of output of 2.0%, which are in line with UK data.

Table 1: Calibrated parameter values

ρ α λ θ β γ µ φ

0.040 0.167 0.006 0.351 14.468 0.810 2.138 0.245

Figure 5 presents the simulated paths of the output growth rate and the real interest

rate along with the HP-filter trends of the GDP growth rate and the rate of return on non-

residential fixed capital in the UK.23 We choose an initial value x0 such that the takeoff

occurs in the late 18th century.24 This figure shows that the output growth rate increases

from about 0.5% in the late 18th century to 2.5% in recent time. This gradual increase in

the growth rate and the magnitude of the increase are in line with historical data in the UK.

Figure 5 also shows that the real interest rate increases from 4.5% in the late 18th century to

an average of 5.9% in the 19th century and reaches an average of 6.4% in the 20th century.

The average rates of return on non-residential fixed capital in the UK were 5.1% in the 18th

century, 6.0% in the 19th century, and 7.0% from the 20th century onwards.25 Therefore,

the increase in the rate of return on assets and the magnitude of the increase in asset returns

predicted by our model are also in line with historical data; see Table 2 for a summary.

16Data source: Maddison Project Database.
17Data source: Office for National Statistics.
18Data source: Office for National Statistics.
19Data source: New Economics Foundation.
20Data source: Federal Reserve Bank of St. Louis.
21Data source: Office for National Statistics. To compute this moment from the model, we add up expenses

on intermediate goods and horizontal/vertical R&D. One can think of the intermediate goods in our model
as investment in capital that depreciates rapidly.
22The calibrated value of µ seems high but implies a reasonable profit share of output of 11.5%.
23Here we use a smoothing parameter of 1000 on the annual data in order to extract a smoother trend.
24According to Ashton (1998), the Industrial Revolution started in as early as 1760.
25See Madsen (2017). The authors are grateful to Jakob Madsen for sharing this data series.
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Table 2: Real interest rates

century 18th 19th 20th

data 5.1% 6.0% 7.0%

model 4.5% 5.9% 6.4%

Figure 5: Simulated paths of the growth rate and the interest rate

The increase in the real interest rate in Figure 5 implies an increase in income inequality

in our model. Here we focus on the special case sN,TN (h) = sR,0 (h) due to the lack of data

on the industrial wealth distribution at the time of Industrial Revolution. Figure 6 presents

the simulated path of income inequality in terms of percent changes from its initial value

prior to the takeoff. This figure shows that income inequality increases sharply by about

50% when the takeoff occurs. When the economy reaches the balanced growth path, income

inequality would have almost doubled. Our model takes the degree of wealth inequality as

given. If we consider a Gini coefficient of wealth of 0.732 in recent time,26 then we can

also simulate the Gini coefficient of income. Figure 7 reports the simulated path of income

inequality along with the Gini coefficient of income in the UK from 1961 to 2017.27 It shows

that the simulated Gini coefficient of income increases from 0.15 before the takeoff to 0.29

in the steady state.

26Data source: Credit Suisse Global Wealth Databook.
27Data source: Institute for Fiscal Studies. Data available from 1961.
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Figure 6: Simulated path of income inequality (percent change)

Figure 7: Simulated path of income inequality (Gini coefficient)

Williamson (1980, 1985) and Lindert (2000a, 2000b) examine historical data in Britain

and document that income inequality, based on different measures, increases in the late

18th century/early 19th century and levels off after the mid-19th century. Then, income

inequality, measured by the top 1% income share, decreases from the early 20th century to

26



the late 1970’s.28 As for the Gini coefficient of income, it decreases from 0.27 in the early

1960’s to 0.24 in the late 1970’s before rising again to as high as 0.36 in recent time with an

average value of 0.30 from 1961 to 2017 in the UK. Therefore, the long-run level of income

inequality predicted by our model is in line with recent data in the UK. Furthermore, our

model is able to deliver the pattern of rising income inequality in the late 18th century/early

19th century and its leveling off in the late 19th century. However, our model is unable to

explain the decrease in income inequality from the early 20th century to the late 1970’s. The

reason is that this decrease in income equality is driven by a decrease in wealth inequality,29

whereas our model takes wealth inequality as given.

To address this issue, we consider historical data on the income and wealth shares owned

by the top households, which have longer time series than the Gini coefficient. Therefore,

we now use historical data on the top 10% wealth share in the UK along with the rate of

return to assets computed from our model to simulate the top 10% income share. Figure 8

presents the simulated path of the top 10% income share along with data in the UK from

1900 to 2010.30 Given the data on wealth inequality, our model now predicts that income

inequality rises in the 19th century and falls from the early 20th century to the 1970’s. After

that, income inequality becomes rising again. This pattern matches the data. Furthermore,

the average value of the top 10% income share in the UK from 1900 to 2010 is 0.37, whereas

our model predicts an average value of 0.36 in this period.

28World Inequality Database documents a decrease in the top 1% income share from 20% in the early 20th
century to 5% in the late 1970’s.
29World Inequality Database documents a decrease in the top 1% wealth share from 70% in the early 20th

century to less than 20% in the early 1980’s.
30Data source: Piketty (2014). Data on the top 10% wealth (income) share is available from 1810 (1900).
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Figure 8: Simulated path of the top 10% income share

5 Labor income inequality

Our baseline model has three main strengths: (i) it is eminently tractable; (ii) it identifies

sharply the role of growth accelerations as a main driver of rising income inequality; (iii) it

measures inequality with a well understood and widely used summary statistic of the shape

of a non-degenerate distribution of income. The baseline model, on the other hand, has

one main weakness: inequality plays no role in shaping the transition from stagnation to

growth.31 In this section, we extend the analysis allowing for labor income inequality due to

endogenous labor supply. The advantage of doing this is twofold. First, endogenous labor

supply is interesting per se, and including it makes the analysis more empirically relevant.

Second, endogenous labor supply introduces a channel through which inequality contributes

to shaping the transition path of the economy.

5.1 The model with endogenous labor supply

We generalize the utility function of household h ∈ [0, 1] to

U(h) =

∫
∞

0

e−ρt
{
ln ct(h) +

η

1− 1/ω
[1− lt(h)/Lt]

1−1/ω

}
dt, (28)

31For example, Galor, Moav and Vollrath (2009) provide evidence that inequality in landownership affected
the transition of the US economy from agriculture to industry.
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where lt(h) is the household’s labor supply and 1 − lt(h)/Lt is leisure per member of the

household. The parameter η > 0 determines the importance of leisure, whereas the para-

meter ω > 0 determines the elasticity of intertemporal substitution for leisure. The budget

constraint is

ȧt(h) = rtat(h) + wtlt(h)− ct(h). (29)

The novel element is the household’s endogenous supply of labor

lt(h)

Lt
= 1−

[
ηct(h)

wtLt

]ω
. (30)

The rest of the model is the same as before.

5.2 Special case: ω = 1

We begin our analysis with the special case ω = 1, which gives log-log utility. Aggregating

the labor supply (30) yields

lt
Lt
=

∫ 1

0

lt (h)

Lt
dh = 1−

∫ 1

0

ηct(h)

wtLt
dh = 1−

ηCt
wtLt

.

We stress that because labor supply is linear in consumption, the heterogeneity across house-

holds washes out. Next, we use the labor demand (9), note that Proposition 1 holds in this

extension as well, and rearrange terms to write

ηCt
wtLt

=
ηCt
wtlt

lt
Lt
=

ηCt
γ (1− θ)Gt

lt
Lt
=

η

γ (1− θ)

(
C

G

)
∗
lt
Lt
.

The resulting equilibrium employment ratio is

lt
Lt
=

(
l

L

)
∗

≡






(
1 + η

γ

)
−1

0 ≤ xt ≤ xN
[
1 + η

γ
(1 + Θ)

]
−1

xt > xN
. (31)

Since it depends on the consumption-output ratio, the employment ratio jumps when the

consumption ratio jumps.

The simplicity of this special case allows us to show immediately the implications of

endogenous labor supply for the model’s dynamics. To express the dynamics in terms of a

pre-determined state variable that does not jump, we note that in this extension

Xt

Zt
=

(
θ

µ

)1/(1−θ)(
lt
Lt

)γ (
Lt
Nt

)γ
R1−γ.
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We thus modify the definition of xt to

xt ≡

(
Lt
lt

)γ
Xt

Zt
=

(
θ

µ

)1/(1−θ)(
Lt
Nt

)γ
R1−γ. (32)

The interpretation of xt is no longer firm size, but the mapping to that concept is transparent.

Employment growth is l̇t/lt = λ and the growth rate of output is

gt =






γλ 0 ≤ xt ≤ xN

γλ+ (1− γ)
{
1
β

[
µ− 1−

[
1 + η

γ
(1 + Θ)

]γ
φ
xt

]
− ρ
}

xN < xt ≤ xZ

α

{
(µ− 1)

[
1 + η

γ
(1 + Θ)

]
−γ

xt − φ

}
− ρ xt > xZ

. (33)

In this extension as well, the state variable xt grows from an initial value x0 and gradually

converges to the steady-state value x∗ following an S-shaped path. The value [(l/L)∗]γx∗ is

the same as x∗ in (23) in the baseline case due to the model’s scale-invariance property. The

growth rate gt is constant in the pre-industrial era and then gradually increases throughout

the industrial era, converging to the same value g∗ in (24) as in the baseline case due to

scale-invariance. Moreover, we show in Appendix A that the dynamics of the economy are

qualitatively the same as those discussed in Propositions 2-3.

We now derive the implications of this structure for the income distribution. Since the

wealth share is constant, we rewrite the budget constraint (29) as ct(h) = (rt − gt)at(h) +

wtlt(h) since ȧt(h)/at(h) = Ȧt/At = gt. Using this result and (30), we write labor income as

wtlt(h) =
1

1 + η
[wtLt − η(rt − gt)at(h)] . (34)

This result says that, since rt > gt, wealthier households supply less labor and earn lower

labor income. Accounting for this labor income inequality, the household’s income share

obeys the relation

sy,t(h)− 1 =
(rt + ηgt)At

(rt + ηgt)At + wtLt
[sa,t(h)− 1] . (35)

Our extended result therefore is that the evolution of the household income share is deter-

mined by the evolution of rt+ηgt rather than rt. The additional term ηgt captures the effect

on labor income of standard labor supply behavior.

The Gini coefficient of income is

σGy,t =
(rt + ηgt)At

(rt + ηgt)At + wtLt
σGa,t. (36)
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In the pre-industrial era, we have

(rt + ηgt)At
wtLt

=
ρ+ (1 + η)γλ

ρ

(
1− γ

γ

)
lt
Lt
=
ρ+ (1 + η)γλ

ρ

(
1− γ

γ + η

)
.

Substituting this expression in (36) yields an expression similar to (26), except for the addi-

tion of the parameter η. Finally, in the industrial era

(rt + ηgt)At
wtLt

=
ρ+ (1 + η)gt

ρ

(
1− γ +Θ

γ

)
lt
Lt
=
ρ+ (1 + η)gt

ρ

[
1− γ +Θ

γ + η(1 + Θ)

]
.

Substituting this expression in (36) yields an expression similar to (26). In the industrial era,

income inequality, σy,t, gradually increases until growth, gt, converges to the same steady-

state value g∗ as in our baseline case.

We stress that in this structure the employment ratio lt/Lt is the only channel through

which the equilibrium of the labor market affects the economy’s dynamics. This property is

important to understand the transmission mechanism of the heterogeneity in labor income

that we discuss next.

5.3 General case: ω 6= 1

We now consider the general case ω 6= 1. With the preferences in (28) that yield labor

supply (30), we have two new properties: (i) the curvature of lt(h)/Lt with respect to the

consumption per capita-to-wage ratio, [ct (h) /Lt] /wt, yields that household heterogeneity in

labor supply, and therefore in labor income, matters for aggregate outcomes; (ii) household

behavior allows for lt(h)/Lt = 0 for some h. To make the exposition as clear as possible, we

focus first on property (i) and then discuss property (ii).

5.3.1 The role of labor income inequality

In this subsection we shut down property (ii), that is, we work with a parameters configura-

tion such that lt(h)/Lt > 0 for all h ∈ [0, 1]. Aggregating the labor supply (30) yields

lt
Lt
=

∫ 1

0

lt (h)

Lt
dh =

∫ 1

0

(

1−

[
s∗c(h)
wtLt
ηCt

]ω)

dh = 1−

∫ 1

0

[
s∗c(h)
wtLt
ηCt

]ω
dh = 1−

(
ηCt
wtLt

∆∗

c

)ω
,

where the operator

∆∗

c ≡

(∫ 1

0

[s∗c(h)]
ω dh

) 1

ω
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accounts for the heterogeneity in labor supply behavior, which in this specification does not

wash out. Proceeding as in the previous case, we obtain the labor market clearing condition

lt
Lt
= 1−

[(
C

G

)
∗

η∆∗

c

γ (1− θ)

]ω (
lt
Lt

)ω
.

This is an equation in the endogenous variable lt/Lt and two objects, ∆
∗

c and (C/G)
∗, that

are functions of the model’s parameters. The left-hand side is increasing; the right hand side

is decreasing. Therefore, we have the unique solution

(
l

L

)
∗

≡ arg solve

{
lt
Lt
= 1−

[(
C

G

)
∗

η∆∗

c

γ (1− θ)

]ω (
lt
Lt

)ω}
, (37)

with the important comparative statics property that

∂
(
l
L

)
∗

∂∆∗

c

< 0.

Substituting this result in the household labor supply yields

lt (h)

Lt
= 1−

[(
C

G

)
∗
ηs∗c(h)

γ (1− θ)

(
l

L

)
∗
]ω
> 0 with s∗c(h) <

γ (1− θ)

η
(
C
G

)
∗
(
l
L

)
∗ .

As stated, we first rule out the corner solution lt(h)/Lt = 0 so that all households work.

Since the employment ratio is always constant, in this case as well, and the case that

we study in the next subsection, the differential equation governing the dynamics of the

household wealth share yields that the wealth share is constant at all times. The formal

proof is identical to that developed in the previous subsection.

The presence of the operator ∆∗

c in the solution (37) is our property (i), namely, equilib-

rium aggregate labor supply, and therefore equilibrium employment, depends on the hetero-

geneity across household in their individual labor supply. The question then is, what is ∆∗

c ,

the term accounting for such heterogeneity? The answer is that ∆∗

c is the power mean of

the consumption shares, where, because of the unit continuum of households, the consump-

tion share is also consumption relative to mean consumption. The parameter ω drives how

the operator "penalizes" or "rewards" the dispersion of consumption relative to the mean.

Specifically, for ω = 1 we have ∆∗

c = 1 regardless of the dispersion of consumption relative

to the mean. For ω 6= 1, instead, ∆∗

c deviates from unity unless s∗c(h) = 1 for all h ∈ [0, 1]

(i.e., a completely equal society). In particular, an unequal society has ∆∗

c > 1 for ω > 1

and ∆∗

c < 1 for ω < 1. Moreover, ∆
∗

c is increasing in consumption inequality for ω > 1 and

decreasing in it for ω < 1. Finally, given that the employment ratio lt/Lt is decreasing in
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the dispersion index ∆∗

c , an unequal society features lower employment than an equal one

under ω > 1 and higher employment under ω < 1. Similarly, the employment ratio lt/Lt is

decreasing in consumption inequality under ω > 1 and increasing under ω < 1.

To understand why the value of ω determines how inequality affects employment, we plot

(31) in Figure 9. This figure shows that when ω is greater (less) than 1, the decrease in labor

supply by rich households, which have above average consumption, is greater (less) than

the increase in labor supply by poor households, which have below average consumption;

as a result, inequality that gives rise to rich and poor households reduces (raises) aggregate

employment.

Figure 9: Equation (31)

A society with more unequal land ownership has a more unequal distribution of con-

sumption and thus a more unequal distribution of labor supply. Such labor supply behavior

yields lower employment under ω > 1 and higher employment under ω < 1. This in-

tratemporal causal chain traces how wealth inequality propagates throughout the economy,

affecting its scale of operation and thereby its growth path. It also stresses the importance

of the parameter ω that regulates the responsiveness of labor supply to consumption. The

intertemporal part of the causal chain is that in our scale-invariant model the employment

ratio determines the threshold xN for our state variable, xt, and thus determines the overall

shape of the transition path via its effect on the timing of key events, even though it does

not affect steady-state growth. Specifically, the takeoff date is TN = ln(xN/x0)/λ, with

xN = φ/[(µ− 1− βρ)(l/L)
γ] being decreasing in the employment ratio l/L. Consequently, a
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more unequal society takes off later under ω > 1 and earlier under ω < 1. These differences

in the timing of takeoff never wash out, holding constant everything else. Thus, initial wealth

inequality, which in our scheme is the root of all inequality, has effects that echo for centuries

and are amplified by the growth acceleration that occurs with the takeoff.

5.3.2 Endogenous formation of the leisure class

Property (ii) occurs when the inequality

[
ηct(h)

wtLt

]ω
≥ 1⇒

ct(h)

Ct

ηCt
wtLt

≥ 1⇒ s∗c(h) ≥
wtLt
ηCt

holds for some h. We thus write household labor supply as

lt (h)

Lt
=





1−

[
s∗c(h)
wtLt
ηCt

]ω
s∗c(h) <

wtLt
ηCt

0 s∗c(h) ≥
wtLt
ηCt

.

Next, we note that if we sort households over the unit interval in ascending order of con-

sumption share, the condition s∗c(h) ≥
wtLt
ηCt

defines the cutoff value

h̄t = arg solve

{
s∗c(h) =

wtLt
ηCt

}

such that households in the set [0, h̄t) supply labor and households in the set
[
h̄t, 1

]
do not.

The model, therefore, generates endogenously a leisure class, i.e., households who do not

work and live off asset income, which consists of industrial dividends, land rents and capital

gains on the prices of industrial shares and land.

To construct the equilibrium, we need to check how the individual household decision

depends on the aggregate state of the labor market. That is, we need to derive the equilibrium

expression for the wage by aggregating across households and then check how the individual

household responds to that wage, allowing for the possibility of the corner solution.

Aggregation gives us

lt
Lt
=

∫ 1

0

lt (h)

Lt
dh =

∫ h̄t

0

(

1−

[
s∗c(h)
wtLt
ηCt

]ω)

dh+

∫ 1

h̄t

0dh = h̄t

[
1−

(
ηCt
wtLt

∆̄∗

c

)ω]
,

where

∆̄∗

c

(
h̄t
)
≡

(
1

h̄t

∫ h̄t

0

[s∗c(h)]
ω dh

) 1

ω

.
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We note that ∆̄∗

c is increasing in h̄t because the function s
∗

c(h) representing the sorted

households is convex. Proceeding as in the previous case, we obtain the labor market clearing

condition
lt
Lt
= h̄t

{

1−

[(
C

G

)
∗ η∆̄∗

c

(
h̄t
)

γ (1− θ)

lt
Lt

]ω}

.

Next, we define the new object

h̄t = h̄

(
lt
Lt

)
≡ arg solve

{

s∗c(h) =
γ (1− θ)

η
(
C
G

)
∗ lt
Lt

}

,

with h̄′ (·) < 0, and write

lt
Lt
= h̄

(
lt
Lt

){

1−

[
η
(
C
G

)
∗

γ (1− θ)

]ω [
lt
Lt
∆̄∗

c

(
h̄t

(
lt
Lt

))]ω}

.

Since (C/G)∗ is a function of the model’s parameters, this is an implicit equation in the

endogenous variable lt/Lt. The left-hand side is increasing; the right hand side is decreasing

if the term
lt
Lt
∆̄∗

c

(
h̄t

(
lt
Lt

))

is increasing because the direct effect via lt/Lt dominates the indirect effect via ∆̄
∗

c

(
h̄t (lt/Lt)

)
.

Therefore, we have the unique solution

(
l

L

)
∗

≡ arg solve

{
lt
Lt
= h̄

(
lt
Lt

)[

1−

[
η
(
C
G

)
∗

γ (1− θ)

]ω [
lt
Lt
∆̄∗

c

(
h̄t

(
lt
Lt

))]ω]}

. (38)

Substituting this result in the household labor supply yields

lt (h)

Lt
=






1−
[(

C
G

)
∗ ηs∗c(h)
γ(1−θ)

(
l
L

)
∗
]ω

s∗c(h) <
γ(1−θ)

η(CG)
∗

( lL)
∗

0 s∗c(h) ≥
γ(1−θ)

η(CG)
∗

( lL)
∗

.

This expression identifies which households want to go to the corner solution.

In this characterization, the equilibrium of the labor market is the standard intersection

of labor demand and labor supply. What differs from the standard approach is that here

labor supply is the joint solution of two equations. The first says that labor supply is the

integral over the set of households that supply labor
[
0, h̄
]
, the second determines the set

of such households. Consequently, the model allows for heterogeneity in labor supply over

two margins: the extensive margin, where the household determines whether to supply labor
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or not; the intensive margin, where the household determines the fraction of time spent

working, conditional on having determined that the fraction is positive.

The operator ∆̄∗

c plays the same role as the operator ∆
∗

c discussed in the previous case.

However, we must note that in the variable sc,t(h) = ct (h) /Ct, the Ct in the denominator is

aggregate consumption. To remove the consumption of the leisure class, we define

C lt ≡

∫ h̄

0

ct (h) dh

and for h ∈
[
0, h̄
]
we write

sc,t(h) =
ct (h)

C lt/h̄t

C lt/h̄t
Ct

⇒ s∗c (h) =

(
c (h)

C l/h̄

)
∗
(
C l

C

)∗
1

h̄

Then, we write

∆̄∗

c =

(
1

h̄

∫ h̄

0

[s∗c(h)]
ω dh

) 1

ω

=
1

h̄

(
C l

C

)∗(
1

h̄

∫ h̄

0

[(
c (h)

C l/h̄

)
∗
]ω
dh

) 1

ω

,

and note that the variable in the integral is household consumption relative to mean con-

sumption for the set of households that supply labor. We thus have the same interpretation

as before for the operator ∆̄∗

c , with the refinement that it is the power mean of the consump-

tion relative to the mean of the households that supply labor, adjusted for the endogenous

two-classes structure of society, the term 1/h̄ that pushes it up due to the extensive margin

of heterogeneity, and for the consumption share of the households that supply labor, the

term
(
C l/C

)
∗

.

6 Conclusion

This study explored the historical origins of income inequality from stagnation to growth

in a tractable Schumpeterian model with endogenous takeoff and heterogeneous households.

Our first result can be summarized as follows. In the pre-industrial era, the economy is in

stagnation and income inequality is determined solely by the unequal distribution of land

ownership. In the industrial era, the gradually rising growth rate causes income inequality

to increase over time until the economy reaches the balanced growth path. We calibrate the

model to perform a quantitative analysis and find that the simulation results are roughly in

line with historical data for the UK.

The result above obtains in a baseline model with inelastic labor supply that has three
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main strengths: (i) it is analytically tractable; (ii) it identifies sharply the role of growth

accelerations as a main driver of rising income inequality; (iii) it measures inequality with

a well understood and widely used summary statistic of the shape of a non-degenerate

distribution of income. The baseline model, however, says that inequality plays no role in

shaping the transition from stagnation to growth. To address this weakness, we extended the

analysis allowing for labor income inequality due to endogenous labor supply. The advantage

of doing this is twofold. First, the aggregate dynamics of our economy remain eminently

tractable and consist of the two-phase secular transition documented for the simple baseline

model with inelastic labor supply. Second, allowing for endogenous labor supply extends

considerably the scope of our analysis: inequality affects the employment ratio and thus,

through that standard role that scale plays in Schumpeterian models, contributes to shaping

the transition path of the aggregate economy. Specifically, inequality that results in higher

employment produces an earlier takeoff and a higher growth rate during the transition path.

However, as the equilibrium growth rate converges to the steady state, this effect disappears

due to the scale-invariance of our Schumpeterian growth model.

In this scheme, labor income inequality consists of two margins: an extensive margin

along which households sort themselves into a leisure class that supplies zero labor and

the rest of society that supplies labor; an intensive margin along which households supply

labor as a decreasing function of their consumption share, which in turn is an increasing

function of their wealth share. The leisure class consists of households that are wealthy

enough to find optimal to forgo labor income. Because of this property our model generates

endogenously the two-class structure–workers vs. capitalists–that is widely used in the

literature on inequality that builds on the classical theory of the distribution of income.

The practice there is to postulate the two classes with fixed size and with homogeneity

within each class. The resulting models are then silent about the shape of the cross-sectional

distribution of income since the imposed within-class homogeneity reduces the cross section

of the whole population to two degenerate distributions. Consequently, work that uses this

approach tends to measure inequality with grand ratios like the wealth share of GDP (see,

e.g., Madsen et al. 2021, which we discussed in detail). Our structure, in contrast, allows

for heterogeneity in wealth, labor supply, and thus overall income, within each class.
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Appendix A (online publication only)

Rate of return to quality innovation. The current-value Hamiltonian of firm i is

Ht (i) = Πt (i)− It (i) + ηt (i) Żt (i) + ξt (i) [µ− pt (i)] ,

where ηt (i) is the co-state variable on (11) and ξt (i) is the multiplier on pt (i) ≤ µ. Substi-

tuting (7), (11) and (12) into Ht (i), we have:

∂Ht (i)

∂pt (i)
= 0⇒

∂Πt (i)

∂pt (i)
= ξt (i) ; (A1)

∂Ht (i)

∂It (i)
= 0⇒ ηt (i) = 1; (A2)

∂Ht (i)

∂Zt (i)
= α

{

[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lγt (i)R

1−γ − φ

}
Z1−αt

Z1−αt (i)
= rtηt (i)− η̇t (i) . (A3)

If pt (i) < µ, then ξt (i) = 0; in this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the

constraint on pt (i) is binding, then ξt (i) > 0; in this case, pt (i) = µ. Given µ < 1/θ, we

have pt (i) = µ. We use (A2), (15) and pt (i) = µ in (A3) and impose symmetry for (16).

Proof of Proposition 1. Aggregation of the budget constraints of the heterogeneous

households yields

Ȧt = rtAt + wtLt − Ct. (39)

As a result of the market structure described above, wealth in the pre-industrial era consists

only of land, i.e., At = Rvt, and (39) reduces to

Rv̇t = (qt + v̇t)R + wtLt − Ct ⇒ Ct = qtR + wtLt,

which says that in this era consumption equals income, the sum of land income and labor

income. Using the factor payments (9)-(10), the expression yields

Ct
Gt
=

(
C

G

)
∗

= 1− θ.

Using the Euler equation (3), the factor payment (9) and this result we write (39) as

Ċt
Ct
−
Ȧt
At
=
Ct
At
− ρ−

γ (1− θ)Gt
At

=
Ct
At

[
1− γ (1− θ)

(
G

C

)
∗
]
− ρ.

This unstable differential equation says that to satisfy the households’ transversality condi-
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tion the consumption-wealth ratio, Ct/At, jumps to the steady-state value

Ct
At
=

(
C

A

)
∗

=
ρ

1− γ (1− θ)
(
G
C

)
∗ =

ρ

1− γ
.

In contrast, in the industrial era the free-entry condition (18) holds, the value of monopolistic

firms is NtVt = βθGt/µ and wealth is At = Rvt + βθGt/µ. We then write (39) as

Rv̇t +
βθ

µ
Ġt = (qt + v̇t)R + rt

βθ

µ
Gt + wtLt − Ct.

Using the factor payments (9)-(10) and the saving rule (3), we reduce this expression to

Ċt
Ct
−
Ġt
Gt
=

(
Ct
Gt
− 1 + θ

)
µ

βθ
− ρ.

This unstable differential equation says that to satisfy the households’ transversality condi-

tion, the consumption-output ratio, Ct/Gt, jumps to the steady-state value

Ct
Gt
=

(
C

G

)
∗

= 1− θ + ρβθ/µ = (1− θ) (1 + Θ) .

Proceeding as in the previous case, we obtain that the consumption-wealth ratio, Ct/At,

jumps to the steady-state value

Ct
At
=

(
C

A

)
∗

=
ρ

1− γ (1− θ)
(
G
C

)
∗ =

ρ (1− θ + ρβθ/µ)

(1− γ) (1− θ) + ρβθ/µ
=
ρ (1 + Θ)

1− γ +Θ
.

Proof of Proposition 2. Given xt = (θ/µ)
1/(1−θ) (Lt/Nt)

γ R1−γ, the growth rate of xt is

given by
ẋt
xt
= γ(λ− nt). (A4)

In the pre-industrial era, the variety growth rate nt is zero; in this case, the dynamics of xt

is simply given by ẋt = γλxt.

In the first industrial era (xt > xN), the growth rate of variety is given by

nt =
1

β

(
µ− 1−

φ+ zt
xt

)
− ρ, (A5)

which is obtained by substituting (21), (A4) and rt = ρ + gt into (19). In this era, the

quality growth rate zt is zero, so the variety growth rate nt is positive if and only if xt >
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φ/(µ − 1 − βρ) ≡ xN , where xN is a threshold for the firm size xt above which variety

innovation starts to occur at time TN = ln(xN/x0)/λ. Equation (A5) shows that when

xt > xN , variety innovation occurs (i.e., nt > 0); in this case, we substitute (A5) into (A4)

to derive the dynamics of xt in the first industrial era.

In the second industrial era (xt > xZ > xN), quality innovation also occurs (i.e., zt > 0).

Substituting (16) and (21) into rt = ρ+ gt yields

gt = (1− γ)nt + zt + γλ = α [(µ− 1) xt − φ]− ρ. (A6)

Then, we combine (A5) and (A6) to solve for n(xt):

nt =
[(1− α)(µ− 1)− ρβ]xt − (1− α)φ+ ρ+ γλ

βxt − (1− γ)
. (A7)

Substituting (A7) into (A4) yields

ẋt =
γ

β − (1− γ)/xt
(d1 − d2xt) , (A8)

where we define

d1 ≡ (1− α)φ− λ− ρ, (A9a)

d2 ≡ β

[
(1− α)(µ− 1)

β
− λ− ρ

]
. (A9b)

We approximate (1 − γ)/xt ≈ 0 in (A8). The resulting linearized dynamics of xt has a

unique steady state that is stable if d1 > 0 and d2 > 0 from which we obtain ρ + λ <

min {(1− α)φ, (1− α)(µ− 1)/β}. Then, ẋt = 0 yields x∗ = d1/d2 in (24). We impose

parameter restrictions to ensure x∗ > xZ , where

xZ ≡ arg
x
solve

{
[(µ− 1) x− φ]

(
α−

1− γ

βx

)
= γ(ρ+ λ)

}
,

which is obtained by combining (A5) and (A6) to solve for z(xt) and then setting zt = 0.

Proof of Proposition 3. We know that the household consumption share is constant but

possibly different in the two eras. We denote its era-specific values s∗c,0 (h) and s
∗

c,TN
(h). We

split wealth in its two components, land and industrial shares, and write At = vtR + VtNt.

Accordingly, the household’s wealth share is

sa,t (h) = sR,t (h)
vtR

At
+ sN,t (h)

VtNt
At

,
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where the composition of wealth in the industrial era is

vtR

At
=
qtR

ρAt
=

(
qR
G

)∗

ρ
(
A
G

)
∗ =

1− γ

1− γ +Θ
≡ Ω and

VtNt
At

= 1− Ω.

Recall that the grand ratios are all determined at the beginning of the respective periods.

Specifically, we have

(
C

A

)
∗

0

=
ρ

1− γ
and

(
C

A

)
∗

TN

=
ρ (1 + Θ)

1− γ +Θ
.

We write the differential equations driving the household’s wealth share in the pre-industrial

era and the industrial era, respectively:

ṡa,t(h) =
[
1− s∗c,0(h)

](C
A

)
∗

0

− ρ+ ρsa,t (h) ; (40)

ṡa,t(h) =
[
1− s∗c,TN (h)

](C
A

)
∗

TN

− ρ+ ρsa,t (h) ; (41)

We solve these equations for:

sa,t (h) = e
ρtsa,0 (h) +

eρt − 1

ρ

[[
1− s∗c,0(h)

](C
A

)
∗

0

− ρ

]
; (42)

sa,t−TN (h) = e
ρ(t−TN )sa,TN (h) +

eρ(t−TN ) − 1

ρ

[
[
1− s∗c,TN (h)

](C
A

)
∗

TN

− ρ

]

. (43)

The first solution holds over the period t ∈ [0, TN ], the second over the period t ∈ [TN ,∞).

Next, we let νa,t (h) denote the shadow value of at (h). The TVC associated to (43) is

lim
t→∞

e−ρ(t−TN )νa,t (h) at (h) = lim
t→∞

e−ρ(t−TN )νa,t (h) sa,t (h)At = 0.

Using the model’s dynamics of wealth, we obtain

lim
t→∞

e−ρ(t−TN )νa,TN (h) e
−(r̄−ρ)(t−TN )sa,t (h)ATN e

ḡ(t−TN ) = 0

νa,TN (h)ATN · lim
t→∞

e−ρ(t−TN )e−(r̄−ρ)(t−TN )eḡ(t−TN )sa,t (h) = 0.

Noting that

e−(r̄−ρ)(t−TN )eḡ(t−TN ) = 1,
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we obtain

sa,TN (h) + lim
t→∞

1− e−ρ(t−TN )

ρ

[
[
1− s∗c,TN (h)

](C
A

)
∗

TN

− ρ

]

= 0

sa,TN (h) +
1

ρ

[
[
1− s∗c,TN (h)

](C
A

)
∗

TN

− ρ

]

= 0.

The TVC, therefore, requires

s∗c,TN (h) = 1 +
ρ

(
C
A

)
∗

TN

[sa,TN (h)− 1] , (44)

where

sa,TN (h) = sR,TN (h)
vTNR

ATN
+ sN,TN (h)

VTNNTN
ATN

= ΩsR,TN (h) + (1− Ω) sN,TN (h) .

This relation describes the combinations of consumption share and wealth share that satisfy

the TVC in the industrial era. Note that sa,TN (h) is endogenous because sR,TN (h) is endoge-

nous. Formally, recalling that land is the only available form of wealth in the pre-industrial

era, we use (42) to obtain

sR,TN (h) = 1 + e
ρTN [sR,0 (h)− 1]−

eρTN − 1

ρ

(
C

A

)
∗

0

[
s∗c,0(h)− 1

]
. (45)

The household knows that at t = TN it starts the industrial era with wealth share

sa,TN (h) = sR,TN (h) Ω + sN,TN (h) (1− Ω)

= Ω + eρTNΩ [sR,0 (h)− 1]−
eρTN − 1

ρ
Ω

(
C

A

)
∗

0

[
s∗c,0(h)− 1

]
+ sN,TN (h) (1− Ω)

= 1 + eρTNΩ [sR,0 (h)− 1]−
eρTN − 1

ρ
Ω

(
C

A

)
∗

0

[
s∗c,0(h)− 1

]
+ (1− Ω) [sN,TN (h)− 1] ,

and must satisfy the TVC (44). Hence, we obtain the relation

s∗c,TN (h)−1 =
ρ
[
eρTNΩ [sR,0 (h)− 1]−

eρTN−1
ρ

Ω
(
C
A

)
∗

0

[
s∗c,0(h)− 1

]
+ (1− Ω) [sN,TN (h)− 1]

]

(
C
A

)
∗

TN

.

(46)

This is a relation between the two era-specific, constant consumption shares. To obtain a

solution we need another such relation.

To construct our solution, we compute the aggregate consumption jump at t = TN and
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recall that output is continuous, obtaining

CT+
N
− CT−

N
= (1− θ)

[
(1 + Θ)GT+

N
−GT−

N

]
= (1− θ)GTNΘ.

We follow a guess and verify approach. Reasoning by analogy we postulate for the individual

household

cT+
N
(h)− cT−

N
(h) = (1− θ)

[
(1 + Θk (h))GT+

N
−GT−

N

]
= (1− θ)GTNΘk (h) ,

where ∫ 1

0

k (h) dh = 1.

Our guess thus says that the individual household consumption jumps in proportion to the

aggregate consumption jump. Without this property, our solution would fail the aggregation

test. We now translate this expression into a jump of the consumption share

cT+
N
(h)

CT+
N

CT+
N
−
cT−

N
(h)

CT−
N

CT−
N
= (1− θ)GTNΘk (h)

cT+
N
(h)

CT+
N

(1− θ) (1 + Θ)GT+
N
−
cT−

N
(h)

CT−
N

(1− θ)GT−
N
= (1− θ)GTNΘk (h)

cT+
N
(h)

CT+
N

(1 + Θ)−
cT−

N
(h)

CT−
N

= Θk (h) ,

which gives us

s∗c,TN (h) (1 + Θ)− s
∗

c,0 (h) = Θk (h) .

We manipulate this expression to write

s∗c,TN (h)− 1 =
Θ [k (h)− 1] +

[
s∗c,0 (h)− 1

]

1 + Θ
.

We then substitute this result in the TVC (46) (repeated here for convenience),

s∗c,TN (h)− 1 =
eρTN (1− γ) [sR,0 (h)− 1] + Θ [sN,TN (h)− 1]−

(
eρTN − 1

) [
s∗c,0(h)− 1

]

1 + Θ
,

to obtain:

s∗c,0(h)− 1 = (1− γ) [sR,0 (h)− 1] + e
−ρTNΘ [sN,TN (h)− k (h)] ;

s∗c,TN (h)− 1 =
Θ [k (h)− 1] + (1− γ) [sR,0 (h)− 1] + e

−ρTNΘ [sN,TN (h)− k (h)]

1 + Θ
.
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Substituting this solution in the expression for the wealth share dynamics, we obtain

sR,t (h)− 1 = eρt [sR,0 (h)− 1]−
(
eρt − 1

) [
s∗c,0(h)− 1

] 1

1− γ

= sR,0 (h)− 1−
eρ(t−TN ) − e−ρTN

1− γ
Θ [sN,TN (h)− k (h)] .

Then

sR,TN (h)− 1 = sR,0 (h)− 1−
1− e−ρTN

1− γ
Θ [sN,TN (h)− k (h)] .

The next question is: what is k (h) and what determines it?

On reflection, the factor by which we scale household consumption ought to reflect the

household’s wealth share at the time of the jump. Accordingly, we use

k (h) = sR,TN (h) Ω + sN,TN (h) (1− Ω) .

The idea is that the change in household consumption is due to the arrival of the new

industrial wealth and to the endogenous accumulation/decumulation of land wealth, which

is the household’s optimal response to the arrival of the new industrial wealth .

With this specification we obtain:

s∗c,0(h)− 1 = (1− γ) [sR,0 (h)− 1] + e
−ρTNΘΩ [sN,TN (h)− sR,TN (h)] ;

s∗c,TN (h)−1 =
Θ [sN,TN (h)− 1] + (1− γ) [sR,0 (h)− 1]−

(
1− e−ρTN

)
ΘΩ [sN,TN (h)− sR,TN (h)]

1 + Θ
.

Substituting this solution in the expression for the wealth share dynamics, we obtain

sR,t (h)− 1 = eρt [sR,0 (h)− 1]−
(
eρt − 1

) [
s∗c,0(h)− 1

] 1

1− γ

= sR,0 (h)− 1−
eρ(t−TN ) − e−ρTN

1− γ
ΘΩ [sN,TN (h)− sR,TN (h)] .

This equation contains the endogenous term sR,TN (h) − 1. To solve for it we evaluate the

equation at t = TN , obtaining

sR,TN (h)− 1 =
(1− γ) [sR,0 (h)− 1]−

(
1− e−ρTN

)
ΘΩ [sN,TN (h)− 1]

1− γ − (1− e−ρTN )ΘΩ
.
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Substituting this expression in the land share dynamics equation, we get

sR,t (h)− 1 = sR,0 (h)− 1 +

(
eρ(t−TN ) − e−ρTN

)
ΘΩ

1− γ − (1− e−ρTN )ΘΩ
[sR,0 (h)− sN,TN (h)] .

To test that this solution makes sense we look at two limiting cases. The first is TN → 0⇒

t− TN → 0 (immediate takeoff) and gives

sR,t (h)− 1 = sR,0 (h)− 1 +
1− 1

1− γ
[sR,0 (h)− sN,TN (h)] = sR,0 (h)− 1.

The second is TN →∞ (no takeoff) and gives

sR,TN (h)− 1 = sR,0 (h)− 1 +
0− 0

1− γ −ΘΩ
[sR,0 (h)− sN,TN (h)] = sR,0 (h)− 1.

Finally, we calculate:

s∗c,0(h)−1 =
1− γ

1− γ − (1− e−ρTN )ΘΩ

[
(1− γ −ΘΩ) [sR,0 (h)− 1] + e

−ρTNΘΩ [sN,TN (h)− 1]
]
;

s∗c,TN (h)−1 =
(1− γ)2 [sR,0 (h)− 1] +

[
(1− γ)Θ− (1− γ +Θ)ΘΩ

(
1− e−ρTN

)]
[sN,TN (h)− 1]

(1 + Θ) [1− γ − (1− e−ρTN )ΘΩ]
.

After the takeoff the household wealth share is

sR,TN (h) Ω + sN,TN (h) (1− Ω)− 1 =
(1− γ) Ω

1− γ − (1− e−ρTN )ΘΩ
[sR,0 (h)− 1]

+
(1− γ) (1− Ω)−

(
1− e−ρTN

)
ΘΩ

1− γ − (1− e−ρTN )ΘΩ
[sN,TN (h)− 1] .

Recall that this expression accounts for the arrival of the newly created industrial wealth and

thus exhibits a discontinuity with respect to the expression sR,TN (h) derived above. Filling

in the relation Ω = 1−γ
1−γ+Θ

and rearranging terms yields the expressions shown in the main

text.

We note that our solution for the pre-industrial era is consistent with: (1) aggrega-

tion constraint due to the era-specific aggregate consumption/wealth ratio; (2) aggregation

constraint that all of the expressions for household shares give 1 when integrated across

households; (3) the special case that for sR,0 (h) = sN,TN (h) households maintain the wealth

share sR,0 (h) throughout the process; (4) the solution produces the expected results in the

special cases TN = 0 (immediate takeoff) and TN →∞ (no takeoff).
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Gini coefficient of income. The income received by household h is given by

yt(h) = rtat(h) + wtLt = rtAtsa,t(h) + wtLt.

We order households in ascending order of wealth and of income. The Lorenz curves of,

respectively, wealth and income are:

La,t(h) =

∫ h

0

sa,t(χ)dχ;

Ly,t(h) ≡

∫ h
0
yt(χ)dχ

∫ 1
0
yt(χ)dχ

=
rtAt

∫ h
0
sa,t(χ)dχ+ wtLt

∫ h
0
1dχ

Yt
.

The Gini coefficients of, respectively, wealth and income are:

σGa,t ≡ 1− 2

∫ 1

0

La,t(h)dh; (47)

σGy,t ≡ 1− 2

∫ 1

0

Ly,t(h)dh, (48)

Substituting (47) into (48), and noting that
∫ h
0
1dχ = h, yields

σGy,t = 1−
2rtAt
Yt

[∫ 1

0

La,t(h)dh+
wtLt
rtAt

∫ 1

0

hdh

]
,

where
∫ 1
0
hdh = 0.5. Substituting the Gini coefficient of wealth into this expression yields

the Gini coefficient of income in the main text.

Household wealth share with endogenous labor supply. The growth rate of the

household wealth share is

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
−
Ȧt
At
=
wtlt (h)− s

∗

c(h)Ct
at(h)

−
wtlt − Ct
At

.

Collecting the consumption-wealth ratio Ct/At, and using the factor payments and Proposi-

tion 1, we obtain

ṡa,t(h)

sa,t(h)
=

(
C

A

)
∗ wtlt(h)

Gt

(
G
C

)
∗

− s∗c(h)

at(h)/At
−
wtlt − Ct
At

=

(
C

A

)
∗
[
γ (1− θ)

(
G
C

)
∗ lt(h)

lt
− s∗c(h)

sa,t(h)
− γ (1− θ)

(
G

C

)
∗

+ 1

]

.
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The new term here is the household’s relative labor supply, lt (h) /lt, which is constant. We

thus have that the characterization of the dynamics of the wealth shares is mathematically

the same as in the baseline model with inelastic labor supply.
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