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Abstract

This note studies the validity of bootstrapping the test of overidentifying restrictions under
many/many weak instruments and heteroskedasticity. We propose a wild bootstrap procedure and
establish this bootstrap consistently estimates the null limiting distributions of a jackknife overiden-
tification test statistic under this asymptotic framework, no matter studentized or not. Monte Carlo
simulations show that the wild bootstrap provides more reliable inference than asymptotic critical
values. In particular, the studentized wild bootstrap test has the best finite sample performance in
terms of both size and power.
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1 Introduction

Empirical applications of instrumental variables (IV) regressions often involve tests of overidentifica-

tion. For the case with many/many weak instruments, Anatolyev and Gospodinov (2011) propose

modifications of the J test of overidentifying restrictions so that the test can be robust to many in-

struments under conditional homoskedasticity. Chao, Hausman, Newey, Swanson, and Woutersen

(2014) give a jackknife version of the overidentification test, which is asymptotically valid under het-

eroskedasticity.1 In addition, the literature on bootstrap methods for the IV model includes Davidson

and MacKinnon (2008, 2010, 2015), Moreira, Porter, and Suarez (2009), Wang and Kaffo (2016), Kaffo

and Wang (2017), Finlay and Magnusson (2019), among others. They find that for IV regressions,

carefully designed bootstrap procedures typically provide finite sample improvement over asymptotic

approximations. In this note, following Davidson and MacKinnon (2008, 2010, 2015), we propose a

wild bootstrap procedure as an alternative method for implementing the overidentification test under

many/many weak instruments and heteroskedasticity.

2 Setup

Following Chao et al. (2014), we consider a standard linear IV model given by

y = Xδ + ǫ, X = Γ + U, (1)

where y and X are, respectively, an n×1 vector of observations on the outcome variable and an n×G

matrix of observations on the endogenous regressors. Γ is the n×G reduced form matrix, and ǫ and

U are, respectively, an n × 1 vector and an n × G matrix of disturbances. The estimation of δ will

be based on an n × K matrix, Z, of instrumental variable observations with rank(Z) = K, and we

treat Z as deterministic. Denote P = Z(Z ′Z)−1Z ′ and M = In − P , where In is an identity matrix

with dimension n. We consider the case where G, the dimension of δ, is small relative to n, but we

let K → ∞ as n → ∞ to model the effect of having many/many weak instruments. Also assume the

other exogenous regressors have been partialled out from the model.

To define the jackknife overidentification statistic of Chao et al. (2014), let ǫ̂i = yi −X ′
i δ̂, where δ̂

is certain IV estimator of δ, ǫ̂ = (ǫ̂1, ..., ǫ̂n)
′, and ǫ̂(2) = (ǫ̂2

1
, ..., ǫ̂2n)

′. Let Pij denote the ij-th element

of P , and let P (2) denote the n-dimensional square matrix with ij-th component equal to P 2

ij . The

test statistic takes the form

T̂ =
ǫ̂′P ǫ̂−

∑n
i=1

Piiǫ̂
2

i
√

V̂
+K =

∑

i 6=j ǫ̂iPij ǫ̂j
√

V̂
+K,

V̂ =
ǫ̂(2)′P (2)ǫ̂(2)−∑n

i=1
P 2

iiǫ̂
4

i

K
=

∑

i 6=j ǫ̂
2

iP
2

ij ǫ̂
2

j

K
, (2)

where
∑

i 6=j denotes the double sum over all i not equal to j.

1For a comprehensive review of the related literature, see Anatolyev (2019) and the references therein.
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For the choice of δ̂, Chao et al. (2014) consider the one proposed by Hausman, Newey, Woutersen,

Chao, and Swanson (2012), referred to as HFUL, and show that the jackknife overidentification test

with critical region T̂ ≥ qK−G(1−α), where qr(τ) denotes the τ -th quantile of the chi-squared distribu-

tion with r degrees of freedom, has asymptotic rejection probability equal to α under many/many weak

instruments and heteroskedasticity. For the wild bootstrap test, we also consider an unstudentized

version of T̂ , namely,

T̂u =
∑

i 6=j

ǫ̂iPij ǫ̂j . (3)

3 Wild bootstrap overidentificaiton tests

Our wild bootstrap procedure is as follows:

Step 1: The bootstrap error terms ǫ∗i and v∗i are obtained by

ǫ∗i = ǫ̂iw
∗
i , and v∗i = ṽiω

∗
i , i = 1, ..., n, (4)

where w∗
i is a random variable with mean zero, variance one, and independent from the data, while

ṽi is the residual from regressing Xi on (Zi, ǫ̂i), following the efficient bootstrap procedure proposed

by Davidson and MacKinnon (2008, 2010, 2015).

Step 2: The bootstrap analogues of Xi and yi are obtained by

X∗
i = Z ′

iΠ̃ + v∗i , y∗i = X ′
i δ̂ + ǫ∗i , i = 1, ..., n, (5)

where Π̃ is the obtained coefficient for Zi when regressing Xi on (Zi, ǫ̂i).

Step 3: For i = 1, ..., n, compute ǫ̂∗i = y∗i − X ′
i δ̂

∗, where the bootstrap analogue of HFUL δ̂∗ is

computed using (y∗, X∗, Z). Then, construct the bootstrap statistic

T̂ ∗ =

∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j

√

V̂ ∗
+K, where V̂ ∗ =

∑

i 6=j ǫ̂
∗2
i P 2

ij ǫ̂
∗2
j

K
, (6)

and its unstudentized version

T̂ ∗
u =

∑

i 6=j

ǫ̂∗iPij ǫ̂
∗
j . (7)

Step 4: Repeat Steps 1-3 B times, and compute the bootstrap P values as p̂∗T = B−1
∑B

b=1
I{T̂ ∗

b ≥
T̂} and p̂∗Tu = B−1

∑B
b=1

I{T̂ ∗
u,b ≥ T̂u}. We reject the null hypothesis of no misspecification if the

bootstrap P value is smaller than α.

The following theorem states the asymptotic validity of the wild bootstrap. We assume the same

regularity conditions as those in Chao et al. (2014), summarized by Assumption 1 in the Appendix.2

2The assumption rules out the case of weak identification, where the IV estimators becomes inconsistent. In this case,
the bootstrap will also be inconsistent; e.g., see Wang and Doko Tchatoka (2018) and Wang (2020).
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Theorem 3.1 Suppose that Assumption 1 holds. Then,

sup
x∈R

∣

∣

∣
P ∗
(

T̂ ∗ ≤ x
)

− P
(

T̂ ≤ x
) ∣

∣

∣
→p 0, and sup

x∈R

∣

∣

∣
P ∗
(

T̂ ∗
u ≤ x

)

− P
(

T̂u ≤ x
) ∣

∣

∣
→p 0,

where P ∗ denotes the probability measure induced by the wild bootstrap procedure in (4)-(7).

Theorem 3.1 gives the validity of the wild bootstrap for both T̂ and T̂u. In practice, the unstuden-

tized wild bootstrap test is easier to compute given the simple formula of T̂u. On the other hand, the

studentized wild bootstrap test may achieve better size control as the test statistic is asymptotically

pivotal under the current framework. In Section 4, we compare the finite sample performace of the

two bootstrap tests in terms of both size and power.

4 Simulations

We conduct simulations by using the following data generating process:

yi = δXi + ǫi, (8)

Xi = Z ′
iπ + Ui, (9)

for i = 1, ..., n, where Ui ∼ N(0, 1), Zi ∼ N(0, IK), π = a√
K
ιK , and ιK is a K-vector of ones. Following

Chao et al. (2014), we generate ǫi as

ǫi = ρUi +

√

1− ρ2

φ2 + (0.86)4
(φv1i + 0.86v2i) , (10)

where v1i ∼ N(0, Z2

1i), v2i ∼ N(0, (0.86)2), ρ = 0.5, φ = 0.2, and Z1i is the first element in Zi. We

set δ = 1, B = 199, α = 5%, and the number of Monte Carlo replications equals 5000. For w∗
i in

the wild bootstrap, we use a Rademacher random variable with P (w∗
i = 1) = P (w∗

i = −1) = 1/2.

We compare the size and power of two asymptotic tests, namely, Hansen’s GMM J test (denoted as

“asy.hansen.J”), Chao et al. (2014)’s jackknife J test (“asy.jack.J”), and the two wild bootstrap tests

(“boot.unstud.jack.J” and “boot.stud.jack.J”). Throughout we use HFUL as δ̂.

Figure 1 plots the size results as a function of λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, where λ = K/n, for

n = 300 and a ∈ {1, 10, 50}. Both Hansen’s J test and Chao et al. (2014)’s J test tend to be rather

conservative as λ increases, while the unstudentized bootstrap test has some slight over-rejections

when a = 1. By contrast, the studentized bootstrap test has good size control.

Then, we investigate the power by generating the structural errors for (8) using ei = ǫi + ρZZ1i.

Figure 2 plots the power curves as a function of ρZ for λ ∈ {0.5, 0.9}, a ∈ {1, 10, 50}, and n = 300. We

observe that the studentized bootstrap test has an power improvement over the other tests, especially

when the number of IVs is large relative to the sample size (λ = 0.9).
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5 Conclusion

We propose valid wild bootstrap tests for testing overidentifying restrictions under many/many weak

instruments and heteroskedasticity. The studentized wild bootstrap test has excellent finite sample

performance in terms of both size and power. We notice that Carrasco and Doukali (2022) recently

proposed a regularized overidentification test, which is valid even when K is larger than n. For future

research agenda, it may be interesting to study the bootstrap validity for this regularized test.

Figure 1: Size of asymptotic and bootstrap tests

Figure 2: Power of asymptotic and bootstrap tests
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A Appendix

The following notations are used for the bootstrap asymptotics: for any bootstrap statistic T ∗ we write

T ∗ →P ∗

0 in probability if for any δ > 0, ǫ > 0, limn→∞P [P ∗ (|T ∗| > δ) > ǫ] = 0, i.e., P ∗ (|T ∗| > δ) =

oP (1). Also, we write T ∗ = OP ∗ (nϕ) in probability if and only if for any δ > 0 there exists a

Mδ < ∞ such that limn→∞P [P ∗ (|n−ϕT ∗| > Mδ) > δ] = 0, i.e., for any δ > 0 there exists a Mδ < ∞
such that P ∗ (|n−ϕT ∗| > Mδ) = oP (1). Finally, we write T ∗ →d∗ T in probability if, conditional on

the sample, T ∗ weakly converges to T under P ∗, for all samples contained in a set with probability

converging to one. Specifically, we write T ∗ →d∗ T in probability if and only if E∗ (f(T ∗)) → E (f(T ))

in probability for any bounded and uniformly continuous function f . To be concise, we sometimes

use the short version T ∗ →P ∗

0 to say that T ∗ →P ∗

0 in probability, and use T ∗ = OP ∗ (nϕ) for

T ∗ = OP ∗ (nϕ) in probability.

Let Z ′
i, ǫi, U

′
i and Γ′

i denote the i-th row of Z, ǫ, U , and Γ, respectively. Below we give the regularity

conditions needed for Theorem 3.1.

Assumption 1

(i) Z includes among its columns a vector of ones, rank(Z) = K, and there is a constant C such that

Pii ≤ C < 1 (i = 1, ..., n), K → ∞.

(ii) Γi = Snzi/
√
n where Sn = S̃diag(µ1n, ..., µGn) and S̃ is nonsingular. Also, for each j either

µjn =
√
n or µjn/

√
n → 0, µn = min1≤j≤G µjn → ∞, and

√
K/µ2

n → 0. Also, there is C > 0

such that
∥

∥

∥

∑n
i=1

ziz
′
i/n
∥

∥

∥
≤ C and λmin (

∑n
i=1

ziz
′
i/n) ≥ 1/C, for n sufficiently large.

(iii) There is a constant C such that (ǫ1, U1), ..., (ǫn, Un) are independent, with E[ǫi] = 0, E[Ui] = 0,

E[ǫ2i ] < C, E[||Ui||2] ≤ C, V ar((ǫi, U
′
i)

′) = diag(Ω̃i, 0), and λmin

(

∑n
i=1

Ω̃i/n
)

≥ 1/C.

(iv) There is πKn
such that

∑n
i=1

∥

∥

∥
zi − πKn

Zi

∥

∥

∥

2

/n → 0.

(v) There is a constant, C > 0, such that with probability one,
∑n

i=1
||zi||4/n2 → 0, E[ǫ4i ] ≤ C and

E[||Ui||4] ≤ C.

(vi) µnS
−1
n → S0 and either (I) K/µ2

n → κ for finite κ or (II) K/µ2
n → ∞. Also, each of the fol-

lowing exists: HP = limn→∞
∑n

i=1
(1 − Pii)ziz

′
i/n, ΣP = limn→∞

∑n
i=1

(1 − Pii)
2ziz

′
iσ

2

i /n, Ψ =

limn→∞
∑

i 6=j P
2

ij

(

σ2

iE[ŨjŨ
′
j ] + E[Ũiǫi]E[ǫjŨ

′
j ]
)

/K, where σ2

i = E[ǫ2i ], γn =
∑n

i=1
E[Uiǫi]/

∑n
i=1

σ2

i ,

and Ũ = U − ǫγ′n having i-th row Ũ ′
i .

Proof of Theorem 3.1. We focus on the proof for the studentized version of the bootstrap test.
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The proof of the unstudentized version is very similar, thus omitted. First, note that
∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j√

K
=

∑

i 6=j

(

ǫ∗i −X∗′
i (δ̂∗ − δ̂)

)′
Pij

(

ǫ∗j −X∗′
j (δ̂∗ − δ̂)

)

/
√
K

=

∑

i 6=j ǫ
∗
iPijǫ

∗
j√

K
+ (δ̂∗ − δ̂)′Sn



S−1

n

∑

i 6=j

X∗
i PijX

∗′
j S−1

′

n



S′
n(δ̂

∗ − δ̂)/
√
K

+2(δ̂∗ − δ̂)′Sn



S−1

n

∑

i 6=j

X∗
i Pijǫ

∗
j



 /
√
K. (A.11)

Second, by using similar arguments as those in Wang and Kaffo (2016) and Theorem 2 of Hausman

et al. (2012), we can show that for both Case (I) (K/µ2
n → κ < ∞) and Case (II) (K/µ2

n → ∞),

S′
n(δ̂

∗ − δ̂) = OP ∗(1). More specifically, let α̃∗(δ) =
∑

i 6=j ǫ
∗
i (δ)Pijǫ

∗
j (δ)/ǫ

∗(δ)′ǫ∗(δ), where ǫ∗i (δ) =

y∗i −X∗′
i δ, and

D̂∗(δ) = −
[

ǫ∗(δ)′ǫ∗(δ)

2

]

∂

∂δ

[

∑

i 6=j ǫ
∗
i (δ)Pijǫ

∗
j (δ)

ǫ∗(δ)′ǫ∗(δ)

]

=
∑

i 6=j

X∗
i Pijǫ

∗
j (δ)− ǫ∗(δ)′ǫ∗(δ)α̃∗(δ)γ̃∗(δ), (A.12)

where γ̃∗(δ) = X∗′ǫ∗(δ)/ǫ∗(δ)′ǫ∗(δ). Note that S′
n(δ̂

∗ − δ̂) =
(

S−1
n (∂D̂∗(δ̄∗)/∂δ)S−1

′

n

)−1

S−1
n D̂∗(δ̂),

where δ̄∗ lies on the line joining δ̂∗ and δ̂. Also note that by Markov inequality and the current wild

bootstrap procedure,

ǫ∗
′

ǫ∗/n =
n
∑

i=1

E∗[ǫ∗2i ]/n+OP ∗

(

1/
√
n
)

=
n
∑

i=1

ǫ̂2i /n+OP ∗

(

1/
√
n
)

= OP ∗(1),

X∗′ǫ∗/n =
n
∑

i=1

E∗[X∗
i ǫ

∗
i ]/n+OP ∗(1/

√
n) =

n
∑

i=1

ṽiǫ̂i/n+OP ∗

(

1/
√
n
)

= OP ∗(1). (A.13)

Also, let α̃∗ and γ̃∗ denote α̃∗(δ̂) and γ̃∗(δ̂), respectively. By (A.13), γ̃∗ = OP ∗(1). Then, we obtain

that α̃∗ = oP ∗(µ2
n/n) under the same arguments as in the proof for Lemma A5 of Hausman et al.

(2012), and we have

S−1

n D̂∗(δ̂) = S−1

n

(

X∗′Pǫ∗ −
n
∑

i=1

PiiX
∗
i ǫ

∗
i + ǫ∗

′

ǫ∗α̃∗γ̃∗
)

= S−1

n

∑

i 6=j

X∗
i Pijǫ

∗
j + oP ∗(1)

= S−1

n

∑

i 6=j

Υ̃iPijǫ
∗
j + S−1

n

∑

i 6=j

v∗i Pijǫ
∗
j + oP ∗(1) = OP ∗(1), (A.14)

where Υ̃i = Z ′
iΠ̃, by using the fact that E∗[ǫ∗i ] = ǫ̂iE

∗[ω∗
i ] = 0, E∗[v∗i ] = ṽiE

∗[v∗i ] = 0, and by Markov

inequality. Similarly, by following the arguments in the proof of Lemma A7 of Hausman et al. (2012),
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we obtain

−S−1

n (∂D̂∗(δ̄∗)/∂δ)S−1
′

n = S−1

n

∑

i 6=j

X∗
i PijX

∗′
j S−1

′

n + oP ∗(1) = OP ∗(1), (A.15)

Therefore, S′
n(δ̂

∗ − δ̂) = OP ∗(1), given (A.14) and (A.15).

Then, we have for both Case (I) and Case (II),
∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j√

K
=

∑

i 6=j ǫ
∗
iPijǫ

∗
j√

K
+ oP ∗(1), (A.16)

by using (A.11), S′
n(δ̂

∗ − δ̂) = OP ∗(1), S−1
n

∑

i 6=j X
∗
i PijX

∗′
j S−1

′

n = OP ∗(1), and S−1
n

∑

i 6=j X
∗
i Pijǫ

∗
j =

OP ∗(1). In addition, let V ∗
n =

∑

i 6=j σ
∗2
i P 2

ijσ
∗2
j /K, where σ∗2

i ≡ E∗[ǫ∗2i ]. We note that E∗[ǫ∗4i ] = ǫ̂4i is

bounded in probability by Assumption 1(v), and E∗
[

∑

i 6=j(ǫ
∗
iPijǫ

∗
j )

2

]

= KV ∗
n . It follows by Lemma

A2 of Chao et al. (2012) that
∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV ∗
n

→d∗ N(0, 1) in probability. (A.17)

Now we show V̂ ∗
n − V ∗

n →P ∗

0. By δ̂∗ →P ∗

δ̂, we obtain that w.p.a.1,
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

2

≤
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥ and

|ǫ̂∗2i − ǫ∗2i | ≤ 2||Xi||
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥+ ||Xi||2
∥

∥

∥
δ̂∗ − δ̂

∥

∥

∥

2

≤ di

∥

∥

∥δ̂∗ − δ̂
∥

∥

∥, (A.18)

for di = 3(1 + ||Xi||2). Also by
∑n

i=1

∑n
j=1

P 2

ij =
∑n

i=1
Pii = K, we have E

[

∑

i 6=j P
2

ijdidj

]

/K ≤
C
∑

i 6=j P
2

ij/K ≤ C, so that by Markov inequality
∑

i 6=j P
2

ijdidj/K = OP (1), which implies that
∑

i 6=j P
2

ijdidj/K = OP ∗(1). Similarly, since ǫ̂2i is bounded in probability, we have w.p.a.1,

E∗





∑

i 6=j

P 2

ijǫ
∗2
i dj



 /K ≤ C
∑

i 6=j

P 2

ij/K ≤ C. (A.19)

Therefore, for V̂ ∗
n =

∑

i 6=j P
2

ij ǫ̂
∗2
i ǫ̂∗2j /K and Ṽ ∗

n =
∑

i 6=j P
2

ijǫ
∗2
i ǫ∗2j /K we have

∣

∣

∣V̂ ∗
n − Ṽ ∗

n

∣

∣

∣ ≤
∑

i 6=j

P 2

ij

∣

∣

∣ǫ̂∗2i ǫ̂∗2j − ǫ∗2i ǫ∗2j

∣

∣

∣/K

≤
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

2∑

i 6=j

P 2

ijdidj/K + 2
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

∑

i 6=j

P 2

ijǫ
∗2
i dj/K →P ∗

0. (A.20)

In addition, note that by the choice of w∗
i for the wild bootstrap procedure, V ∗

n =
∑

i 6=j P
2

ij ǫ̂
2

i ǫ̂
2

j/K =
∑

i 6=j P
2

ijǫ
∗2
i ǫ∗2j /K = Ṽ ∗

n . Therefore, V̂
∗
n − V ∗

n →P ∗

0.

By the Slutzky Theorem and (A.17),

∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j

√

KV̂ ∗
n

=

∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV̂ ∗
n

+
oP ∗(1)
√

V̂ ∗
n

=

√

V ∗
n

V̂ ∗
n

∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV ∗
n

+ oP ∗(1) →d∗ N(0, 1), (A.21)

in probability. In addition,
∑

i 6=j ǫ̂iPij ǫ̂j/
√

KV̂n →d N(0, 1) by Theorem 1 of Chao et al. (2014). The

result of bootstrap validity follows by Polya’s Theorem. �
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