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Abstract

We study friendship networks under the assumption that people are constrained to
build the qualities of their relations. We investigate the connection between (ex-
ogenous) assortative interests and (endogenous) homophilic patterns, and its welfare
implications. Under a simple link formation technology, capacity constraints bolster
an interesting mechanism that leads to asymmetric investments in the formation of
links and, furthermore, makes relatively good-quality heterophilic relations neces-
sary for extreme forms of homophilic patterns to be stable. For intermediate assor-
tative interests, extreme forms of either homophilic (or heterophilic) patterns may
coexist with more moderate forms. We present empirical evidence on the identified
features of stable patterns. Efficiency requires common aggregate qualities of rela-
tions across all agents within each different population group. Although efficiency
of stable patterns needs not follow in general, we identify particular forms of ex-
treme stable homophilic and heterophilic patterns that are efficient. Additionally,
we identify a class of patterns that feature intermediate levels of homophily, and for
which stability and efficiency are compatible. Such particular constructions provide
insightful guidance on the role of population sizes to facilitate efficiency of stable
patterns.
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1 Introduction

Friendship relationships are central for individuals both to socialize and to collaborate.
The available literature suggests that people prefer being friends with similar individuals
in environments where the socialization motivation clearly prevails.1

We develop a model where people build jointly the qualities of their bilateral rela-
tions, forming in this way friendship networks. A simple assumption plays a fundamental
role in the obtained features of friendship patterns: although we want to build as many
good-quality relations as possible, we are capacity constrained in our resources (e.g.,
time, information-load limits).3 In the vein of the classical consumer theory, our model
assumes fairly general preferences with minimum requirements (smoothness, monotonic-
ity, and convexity). Following the well-documented diversity of assortative motivations,
mentioned earlier, we allow for the (exogenous) assortative interests embedded in prefer-
ences to vary generally. We then study how such interests lead to certain (endogenous)
homophilic patterns. We are particularly interested in understanding if and why some
heterophilic features could arise even when individuals have highly assortative prefer-
ences. Additionally, we investigate the efficiency properties of networks when people are
constrained in making friends. Agents are distinguished according to a certain (extrin-
sic) characteristic and must invest quantities of a limited resource to build the qualities

of their friendship links. The linkage technology is monotone and, crucially, it features
strategic independence between investments. A key observation is that if one were to
consider instead strategic complementarities (either in preferences or in the linkage tech-

1 Numerous arguments (e.g., self-identity concerns, risk-sharing measures, conflict prevention, and evo-
lutionary selection) have been used to justify tastes that could lead to documented relations between people
with similar characteristics (Lazarsfeld and Merton, 1954; Felmlee et al., 1990; Mehra et al., 1998; Chris-
takis and Fowler, 2014; McPherson et al., 2001; Heaton, 2002). Nonetheless, a number of studies also
suggest that, as the collaboration motivation gains relative importance, people grow more interested in hav-
ing friends dissimilar to themselves.2. Lazarsfeld and Merton (1954) coined the term homophily to refer
to situations where we observe people leaning towards others with similar characteristics, and the term
heterophily for observed relations between individuals that differ in a certain characteristic.

In this paper, we investigate how observed homophilic friendship patterns relate to preferential moti-
vations to make friends. To fix notions, we will use the term assortative (resp., disassortative) interest

to capture an exogenous taste according to which agents prefer to connect with similar (resp., dissimilar)
individuals. We will then say “more or less homophilic” (resp., heterophilic) to describe how friendship
relations among similar (resp., dissimilar) agents arise (endogenously) as stable in our model.

3 For instance, using data of neocortex volume of primates, Dunbar (1992a) suggests that our available
neocortical neurons limit our information-processing capacities so as to restrict the number of relationships
that we can monitor simultaneously. Also, using data from wild populations of baboons, Dunbar (1992b)
argues that time constraints condition crucially the ability of individuals to form friendship connections.
Social anthropologists commonly accept these type of empirical findings as the basis of the famous Dunbar

number proposal, which places limits on the observed sizes of social groups and networks. For further
evidence of the role played by time constraints see, e.g., Johnson and Leslie (1982), Milardo et al. (1983),
and Roberts et al. (2009). Capacity constraints have also recently received special attention by more theo-
retical approaches in social and economic networks, e.g., Bloch and Dutta (2009), König et al. (2010), and
Boucher (2015).
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nology), then agents would naturally benefit from having dissimilar friends. Therefore,
this would by construction facilitate that heterophilic patterns arise even in the presence
of strong assortative preferences. Since we want to understand how heterophilic features
may coexist with strong assortative interests, we intentionally disregard strategic comple-
mentarities in the analysis. Our assumption of strategic independence is then central to
avoid relaying upon relatively obvious mechanisms to pursue our research questions. In
particular, good-quality heterophilic relations in highly homophilic patterns, as well as
the coexistence of heterophilic and homophilic behaviors, do not arise in our model from
preference or technology choices. The mechanisms underlying such implications orig-
inate simply from monotonicy of preferences, a naturally required robustness of stable
patterns to bilateral deviations, and, crucially, from the presence of capacity constraints.

Since building a friendship relation naturally requires mutual consent of the two in-
volved parties, we rely upon the sort of considerations behind the pairwise stability notion
(Jackson and Wolinsky, 1996) to assume that a stable friendship network must be robust
both against unilateral and bilateral deviations. In general, a notion of stability based on
pairwise stability can lead to a profound multiplicity of stable networks. On the other
hand, considering populations of agents with different sizes and common capacity con-
straints, as our model does, could also have critical non-existence implications. Most
notably, the application of the chosen stability notion to our model guarantees the exis-
tence of a stable network for most values of the primitives and, furthermore, it simplifies
dramatically the multiplicity of stable networks.

Our first set of contributions rely on a key property of the bilateral incentives of agents
to sustain friendship links, which we term as “premium of mutual efforts.” In our model,
this premium of mutual efforts emerges simply from the monotonicity in preferences,
combined with the central assumption of capacity constraints. Under a simple mono-
tone additive-linear linkage technology, both agents in any given pair can benefit strictly
by redirecting simultaneously into each other efforts devoted to other different friends.
While this is perhaps an overlooked implication, it seems intuitive if we think that people
benefit in a synergic manner from mutually enhancing a common relation. Of course, in
environments with limited resources and capacity constraints, such reinvestments can be
made only at the expense of damaging other relations, which would then be mostly sup-
ported by the other third parties. Given such incentives, in an unrealistic scenario where
the effort that any agent could make in some other agent were unbounded, no pattern
would be stable.4 However, since the amount of investments that can be made (and re-
ceived) in each particular relation are naturally bounded, the premium of mutual efforts
ceases to have effect if one friend is already saturating what she can invest in the other.
As a consequence, any stable friendship network requires in our model that, for each pair
of different agents, at least one of them invests with full intensity into the other.

4 In this unrealistic scenario, Anne and Bob could always diminish their efforts with respect to some
other friends and gain by using the so saved resources in improving jointly their own relationship. But then
Bob and Charles could do the same, and so on, endlessly.
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Our first main result that stems from the premium of mutual efforts sheds light on the
question of whether efforts to support a relation are shared in similar proportions by the
two friends. Asymmetrical efforts to support relations have been widely documented in
the United States (Antonucci et al., 1990).

Ages 27–39 40–49 50–64 65–74 75–97

Whites

Receive Less 291 (35%) 319 (62%) 278 (57%) 126 (38%) 58 (27%)
Receive Equal 311 (37%) 133 (26%) 172 (35%) 154(46%) 105 (48%)
Receive More 293 (28%) 63 (12%) 43 (9%) 51 (15%) 54 (25%)

Blacks

Receive Less 36 (34%) 42 (63%) 42 (55%) 15 (47%) 7 (37%)
Receive Equal 37 (35%) 15 (23%) 21 (28%) 12 (36%) 8 (37%)
Receive More 33 (31%) 9 (13%) 13 (17%) 5 (15%) 5 (26%)

Table 1 – Perceived reciprocity

Table 1 shows survey data collected by the 1988 Americans’ Changing Lives study (using
90-minute face-to-face interviews) where respondents were asked whether they received
less, equal, or more support from their close connections in their networks. The study
was conducted differentiating between white and black Americans. Notably, regardless
of their race, way above 50% of respondents in the age range 40-64, and above 60% of the
middle-age (40-49) respondents, reported that they were putting more effort in their rela-
tions than their counterparts. In our model, the premium of mutual efforts implies that, in
stable patterns, individuals in the society coordinate in ways such that one friend in each

relationship acts as main sponsor whereas the other reciprocates less. We will follow up
the descriptive statistics shown by Table 1 and provide more systematic evidence on this
particular point in Section 2, where we argue that capacity constraints seem to play an
important role in non-reciprocity.

Additionally, the premium of mutual efforts generates more general properties of
friendship connections in stable patterns that feature extreme forms of homophily (or
heterophily). Building on the premium of mutual efforts, our second main result is that,
for a network to feature high homophily, the relations between agents with different char-
acteristics must be relatively intense as well. In short, relatively good-quality heterophilic

relations must be present in extreme forms of homophilic patterns.5 Survey evidence sup-
ports the insight that, even in highly homophilic patterns (e.g., segregated communities),
people want to build good-quality relations with agents of different characteristics (Hal-
linan and Williams, 1989). While we do not deny that some real-world patterns may not
feature our first two main implications, the evidence that we discuss in Section 2 suggests
that our framework could be useful to explain the logic behind the efforts to build relations

5 The analog message follows for populations that feature extreme forms of heterophilic patterns.
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in some environments.

Our third main insight is that multiple networks, with very different homophily levels

and characteristics, may arise as stable for fixed assortative interests that are not too ex-

treme. Notably, such multiple patterns arise as stable for a given intermediate assortative
interest despite the fact that the stability notion that we use does refine most concepts
commonly proposed in the literature, such as Nash stability, Pairwise stability, and Pair-
wise Nash stability. While survey evidence reveals that environments similar in terms of
assortative incentives may feature very different levels of homophily with varying charac-
teristics, and a number of existing models do account for varying degrees of homophily,
we believe that our paper provides a framework capable of rationalizing in a systematic
way such a diversity of homophily patterns.

The natural consideration of treating individuals symmetrically ex ante (in terms of
preferences for each population group and capacity constraints), combined with the con-
vexity of preferences, leads to our main welfare result: any efficient friendship network
must feature a particular form of uniform aggregate qualities within the agents that have a
common characteristic. This implication highlights a source for inefficiency of stable net-
works, which is based on two requirements. First, stability requires that each agent obeys
individually her incentives according to the given level of assortative interests (under
the restriction of her capacity constraint). Secondly, proposing particular stable patterns
requires the construction of minimal sets of full-intensity investments between pairs of

agents in order to avoid the effects of the premium of mutual efforts. We are able to con-
struct minimal sets of full-intensity investments between agents of a common character-
istic that guarantee efficiency of some extreme forms of heterophilic patterns. Similarly,
we propose full-intensity investments between agents of different characteristics that en-
sure efficiency of some extreme forms of homophilic patterns, under the condition that
the sizes of the two groups coincide. Additionally, for intermediate levels of assortative
interests, we identify stable patterns that feature intermediate levels of homophily and, for
an intuitive class of such networks, we propose full-intensity investments that guarantee
the efficiency of such patterns. Interestingly, our construction of particular stable and ef-
ficient networks suggests that the compatibility of stability and efficiency is dramatically
challenged when the sizes of populations with different characteristics differ substantially.

We view our paper’s contributions as offering complementary perspectives to the
growing literature on homophilic features of friendship relations. Although a number of
papers have already explored network formation in the presence of assortative interests,
the level of generality of preferences in our setup allows for a comprehensive exploration
of stability and efficiency properties. Unlike much of the existing literature, our analy-
sis pays attention to preferences under which people prefer being friends with dissimilar
agents. In particular, our results show that a causal connection from assortative interests
to homophily levels is not an obvious one and must be viewed with caution. Most notably,
our prediction that heterophily features arise endogenously to sustain highly homophilic
patterns contrasts sharply the literature that either takes as given forms of highly assorta-
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tive interests (Galeotti et al., 2006) or shows how certain forms of homophily may arise
endogenously (Currarini et al., 2009; Boucher, 2015; De Marti and Zenou, 2017). To the
best of our knowledge, the originality of our framework lies in addressing general assorta-
tive motivations in the presence of capacity constraints. These two ingredients combined
generate novel insights, testable and congruent with available empirical evidence, which
distinguish it from existing theories.

Finally, while our choice of the stability notion seems consistent with the nature of
friendship relations, it also offers the analytical advantage of limiting the multiplicity
of stable network to the point of allowing for neat bounds on assortative interests that
guarantee uniqueness of stable networks. Multiplicity of stable networks is a common
feature in the literature on social networks. Therefore, the bounds that we provide—
which ensure both existence and uniqueness—can have useful implications for statistical
work. Given that extreme forms of homophilic behavior are extensively documented by
the empirical literature, and the pertinent data can be easily obtained, an econometrician
can use our results on the uniqueness of patterns to infer properties about underlying
assortative interests in many practical scenarios.

The article is organized as follows. In Section 2, we discuss systematic evidence sup-
porting the paper’s insights of non-reciprocity in efforts and the presence of good-quality
heterophilic connections in highly homophilic patterns. Section 3 outlines the baseline
model. Section 4 analyzes the properties of stability of friendship networks and Section 5
focuses on their efficiency properties. Section 6 discusses possible extensions of the base-
line model. Section 7 comments on literature connections and Section 8 concludes. The
Appendix contains the technical proofs.

2 Empirical Evidence on Friendship Patterns

In this section, we present evidence supporting two of our main findings on stable pat-
terns: non-reciprocal efforts to build relations and the presence of good-quality het-
erophilic relations in highly homophilic patterns.

2.1 Non-Reciprocity in Efforts

On our first finding, we now complement the data provided earlier in Table 1 on perceived
reciprocity with systematic findings on plausible determinants of such asymmetric efforts.
Table 2 shows part of the logit regression analyses conducted by Antonucci et al. (1990)
to predict determinants of the reciprocity in the set of relations reported in Table 1. This
empirical treatment is particularly suitable to explore dichotomous dependent variables.
In this case, the dichotomous dependent variables are (1) “receives less support than pro-
vides” versus “reciprocal support” and (2) “receives more support than provides” versus
“reciprocal support.”
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Whites (all ages) Blacks (all ages)

(1) Rec. Less (2) Rec. More (1) Rec. Less (2) Rec. More

Age -0.01 -0.02∗∗ 0.01 -0.02
Education 0.03∗∗ -0.02 0.09 0.02
Urban/Region -0.10 0.00 -0.13 0.03
Functional Limitations 0.03 0.4∗∗ -0.10 0.44∗∗

Married 0.51∗∗ -0.08 0.69∗∗ -0.46
Gender -0.02 0.07 -0.15 -0.55
χ2 37.13∗∗ 42.37∗∗ 11.95 10.67

Table 2 – Logic regressions predicting reciprocity

At first glance, we notice that suffering from functional limitations is significantly
related to receiving more support (than reciprocal), which seems a natural implication.
More related to our model, though, we observe that among the rest of plausible socio
demographic determinants, only being married accounts quite significantly for receiving
less effort (than reciprocal) in relations. In fact, this is the case for both racial groups in
the 1988 Americans’ Changing Lives survey. This basic finding suggests that the percep-
tion of non-reciprocal efforts in friendship relations would in particular be bolstered in
environments with high proportions of married people, thus more likely to have family
burdens. This suggested logic, in which time constraints would play a key role, is consis-
tent with our findings of asymmetric efforts based on capacity constraints, which is at the
heart of our model. From the selected plausible determinants, only being married seems
to make a drastic difference in terms of capacity constraints to build friendship relations.

In related empirical research in sociology, equity theorists have also found evidence
of asymmetric efforts in the investments that support friendship relations. For example,
based on survey data, Roberto (1989) discusses the idea of people feeling under-benefitted
and not receiving what they feel it is “due” in their relations. In addition, although most
of the sociological empirical work on efforts and reciprocity in relations considers per-
ceived reciprocity, some papers have also used measures of reciprocity based on actual
exchanges within the surveyed populations. Applying particular measures of equity in
efforts to samples of married subjects, Van-Yperen and Buunk (1990) argue that actual
non-reciprocity tends to exceed the self-reported magnitudes. In a longitudinal study on
romantic relationships, Sprecher (2004) also argues that perceptions of non-reciprocity in
efforts seem substantially lower than indicators of the actual patterns of exchange.

Finally, our model predicts also the stability of non-reciprocal relations. On this point,
Wang et al. (2013) propose an index of reciprocity for networks formed from repeated
interactions. The authors apply their index to large-scale social networks built from cell-
phone communications, finding evidence that some connections that persist in the long
run do exhibit high levels of non-reciprocity. This is a striking finding not explained by
behavioral theories that predict the long run instability of non-reciprocal relationships
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(Hallinan, 1978; Newcomb, 1979). Our model provides a rationale for such a stable be-
havior that draws on the presence of capacity constraints.

2.2 Heterophily within Highly Homophilic Patterns

On our second main result, a large body of sociological research documents that adoles-
cent friendship patterns feature high levels of homophily. According to social psycholog-
ical theories of interpersonal attraction (George, 1950; Hallinan, 1974; Schofield, 1978),
adolescents tend to conform largely to the socialization motivation. Therefore, as com-
mented in the Introduction, we could consider that adolescents would have relatively high
assortative interests in terms of our model. In a classical study on interracial friendship
choices, Hallinan and Williams (1989) use data from the High School and Beyond survey
to conclude that students are only one-sixth as likely to choose cross-race friends than
same-race friends. Table 3 shows some of the data presented in their paper.

Types
Sophomores Seniors

Dyads Friendship Friends/Dyads Dyads Friendship Friends/Dyads

White-White 29,291 7,912 27 % 29,160 8,267 28 %
Black-Black 2,231 748 34 % 2,483 891 36 %
White-Black 1,410 88 6 % 1,293 78 6 %
Black-White 1,387 86 6 % 1,269 94 7 %
Same-Race 31,522 8,660 (98 %) 27 % 31,643 9,158 (98 %) 29 %
Cross-Race 2,797 174 (2 %) 6 % 2,562 172 (2 %) 7 %
Total 34,319 8,834 26 % 34,205 9,330 27 %

Table 3 – Relation choices, by race

In Table 3, we have complemented the data reported by Hallinan and Williams (1989)
with a proxy of the qualities of the cross-race and same-race links. Specifically, the pro-
portion of friends over dyads within each group could be used as an indicator of the
average qualities of such relations. Using such a proxy we observe that, in an environ-
ment in which 98% of the friendship relations take place between same-race individuals,
a proportion of 6 out of 100 dyads are considered as friends in cross-race relations. This
proportion can then be compared with the proportion of 27 friends out of 100 dyads in
same-race relations. We can interpret that the proxied qualities (6%) of such a small
percentage (2%) of friendship relations between cross-race individuals are not far below
the proxied qualities (27%) of the much higher percentage (98%) of same-race connec-
tions. These pieces of evidence are consistent with our findings of maximally homophilic
networks (Proposition 1 in Subsection 4.4) in which individuals build full-quality links
with all other same-type agents and yet relatively good-quality links arise between some
different-type agents.
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Evidence of relatively good-quality heterophilic relations within highly segregated
ethnic communities has also been found in the United Kingdom. Using 2011-2019 data
from the United Kingdom Household Longitudinal Study, Wang and Morav (2021) in-
vestigate the role of participation in civil society organizations into inter-ethnic relations
(IER). From their study, we find the evidence reported in Table 4 particularly relevant in
connection to our model’s implications.

Pooled Indians Pakistanis Bangladish B. Caribeans B. Africans

Have IER 77.05% 77.55% 71.12% 67.44% 87.77% 83.81%

Proportion of IER

None 22.95% 22.45% 28.88% 32.56% 12.23% 16.19%
Less than Half 37.15% 34.97% 38.99% 37.98% 36.26% 38.28%
About Half 23.29% 23.03% 21.17% 18.78% 28.52% 26.20%

More than Half 16.60% 19.56% 10.96% 10.68% 23.00% 19.33%

Membership Civil Organization

No Memb. 74.09% 73.61% 83.16% 83.42% 62.88% 63.43%
One Memb. 15.53% 15.88% 11.4% 10.67% 21.61% 19.88%

Two or More Memb. 10.39% 10.51% 5.44% 5.91% 15.51% 16.69%

Table 4 – Long term inter-ethnic relations (IER).

According a large body of empirical evidence in sociology, the particular ethnic groups
considered in Table 4 feature high levels of homophilic relations. For instance, Muttarak
(2014) reports that around 44% of ethnic minorities in the United Kingdom have only
same-ethnic friends. Then, from the Pooled category in Table 4, we observe that for such
highly segregated ethnic groups, almost 17% of the subjects report relatively good-quality
inter-ethnic relations. The percentages of subjects reporting that more than half of their
relations are inter-ethnic ones vary across groups, but all of them are above 10%. Addi-
tionally, we observe that the groups with higher participation in civil organizations (black
Caribeans and Africans) are also the groups with higher proportions of more than half
inter-ethnic ties (around 20%). Participation in civil society organizations conceivably
enhances the sort of collaboration motivations that our model associates with higher (ex-
ogenous) assortative levels. This logic seems in consonance with the sign of the relations
between assortative interests and homophilic behaviors investigated in this paper. Lastly,
we also observe that participation in more than one organization does lower substantially
the intensity of heterophilic relations for all ethnic groups. Conceivably, active partici-
pation in several organizations is time-consuming and being member6 of more than one
organization can be interpreted as having tighter capacity constrains to make friends in
general. Interestingly, our model suggests (Proposition 1) that tighter capacity constrains

6 The study conducted by Wang and Morav (2021) uses data both on organization participation and on
organization membership. The latter sort of involvement, which naturally requires more dedication to the
tasks of the organization, is the one reported in Table 4.
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lower the (endogenous) intensities of heterophilic relations in the presence of highly as-
sortative interests. This implication seems in clear consonance with the evidence reported
in Table 4.

Finally, on more evidence on this kind of insights, using data from highly segregated
High schools (thus, highly homophilic) in the United States, Schofield (1978) also found
evidence of a significant presence of relatively good-quality cross-race friendships rela-
tions.

3 A Model of Friendship Relationships

In this section we present a model in which people form friendship networks by investing
in the qualities of their bilateral relations. There is a population N ≡ {1, . . . ,n} of agents
that can be distinguished according to a certain (extrinsic) characteristic—e.g., ethnicity,
education, profession, or age. Each agent has a type θ ∈ Θ ≡ {A,B} that captures the
characteristic. The total population N is divided in two groups of people, NA and NB,
according to the characteristic θ . Let nθ ≡ |Nθ | be the size of group Nθ . Therefore,
N = NA ∪NB and n = nA +nB.7 We assume that nθ ≥ 3 for each θ ∈Θ and, without loss
of generality, set nA ≥ nB throughout. When considering a given a type θ ∈ Θ , we will
typically use θ ′ to refer to the alternative type θ ′ 6= θ . Also, for agent i of type θ , we
will use the short-hand notation Ni

θ ≡ Nθ \{i} to indicate the group of agents, other than
herself, that have her own characteristic.

3.1 Friendship Networks

People make investment decisions to build the qualities of their links, or bilateral relations,
forming in this way friendship networks. A friendship network g is a collection g ≡
{gi j ∈ [0,1] | i, j ∈ N} of linkage qualities gi j ∈ [0,1] for each pair of agents i, j ∈ N. A
linkage quality gi j captures the quality of the link that goes from agent i to agent j under
network g. We consider undirected networks in which links are bidirectional so that, by
construction, gi j = g ji for each pair of agents i, j ∈ N. We consider that each agent is
linked to herself with full quality, i.e., gii = 1. Let G be the set of all possible friendship
networks.

3.2 Linking Decisions

Individuals make their decisions on link investments in a (simultaneous-move) network
formation game. Each agent i makes simultaneously an investment effort xi j ∈ [0,1] to

7 Although the model considers two population groups, the main qualitative implications continue to
follow under an arbitrary number of groups.
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build the quality of a link with each other agent j ∈ N \{i}.8 An investment strategy for
an agent i is a vector xi ≡ (xi j) j 6=i ∈ [0,1]n−1. Let x ≡ (xi)i∈N ∈ [0,1]n(n−1) be a strategy

profile. As usual, x−i will denote a combination of strategies for all individuals other
than agent i. Similarly, let x−i− j denote a combination of strategies for all individuals
excluding the pair of (different) individuals i and j. Thus, we can express a strategy
profile x either as x = (xi,x−i) or as x = (xi,x j,x−i− j), for j 6= i.

Investments in a friendship relation determine the quality of the link according to a
simple additive-linear technology.

ASSUMPTION 1. For a strategy profile x, the linkage quality gi j(x) = g ji(x) of the con-
nection between agents i and j is given by

gi j(x)≡ (1/2)
[

xi j + x ji

]

. (1)

In particular, the formation of a friendship relation does not necessarily require a
positive effort by both agents, though its quality is enhanced when both contribute. Anal-
ogous additive-separability assumptions in link formation technology are made by Bloch
and Dutta (2009) and, in particular, a linear technology is considered by Rubí-Barceló
(2012).

Let g(x) denote the friendship network induced by the profile x according to the tech-
nology described by Eq. (1) above. Given a strategy profile x and an agent i ∈ N, let
Ni(x)≡ { j ∈ N \{i} | xi j = 1} be the set of agents that receive full-intensity investments
from agent i under profile x. For agent i of type θ , the number si(x) ≡ ∑ j∈Ni

θ
gi j(x)

describes the aggregate quality of the links that connect agent i to all other same-type
agents, and, analogously, di(x)≡ ∑ j∈Nθ ′

gi j(x) describes the total quality of the links that
connect agent i to all different-type agents. When no reference need be made to the un-
derlying strategy profile x, we will drop the x argument and simply write si and di. Let
then Si ≡ [0,nθ − 1] and Di ≡ [0,nθ ′ ] be the sets of possible total qualities, respectively,
of same-type and different-type links for agent i of type θ . Allowing for xi j ∈ [0,1] leads
to that the variables si ∈ Si and di ∈ Di are non-negative real numbers.

3.3 Preferences

The preferences of an individual i over networks are described by a function πi : G →R+.
We assume that each agent i cares only about the total qualities (si,di) associated to her
friendship links.9 Specifically, we consider that the function πi has the form πi(g(x)) =

8 The assumption that xi j ∈ [0,1] allows for “infinitesimal” investment efforts.
9 We are thus not considering other plausible ways in which people could in principle care about the

architecture of the resulting friendship network g(x). In particular, agents do not care about the identity of
the agents they are linked to, neither about the features of their indirect connections (i.e., features along the
paths of friends of own friends).
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u(si(x),di(x)), where u : Si×Di →R captures the utility u(si,di) that any agent i receives
from the aggregate qualities (si,di) of her same-type and different-type friendship links.
The function u is common across agents. Assuming that agents do not care about the
entire architecture of the network is relatively common in the literature on friendship
connections—e.g., Currarini et al. (2009); Boucher (2015); Currarini et al. (2017), among
others. Under the above considerations, we assume

ASSUMPTION 2. For each agent i ∈ N, the utility function u is smooth and satisfies:

(1) u(0,0) = 0 and u(si,di)≥ 0 for each (si,di) 6= (0,0).

(2) u(si,di) is strictly increasing in (si,di).

(3) u(si,di) is strictly concave in (si,di).

(4) There is a given cutoff proportion β ∈ (0,+∞) of qualities of different-type (relative
to same-type) friendship links such that

(a) ∂u(si,di)/∂ si = ∂u(si,di)/∂di for each (si,di) such that di/si = β ;

(b) ∂u(si,di)/∂ si > ∂u(si,di)/∂di for each (si,di) such that di/si > β ;

(c) ∂u(si,di)/∂ si < ∂u(si,di)/∂di for each (si,di) such that di/si < β .

Assumption 2−(1) is just for normalization. Assumption 2−(2) imposes monotonicity
on the utility that each agent receives from the qualities of her friendship links. Geomet-
rically, in the (si,di) space, the utility from any investments in friendship links increases
in any ray that departs from the origin. Assumption 2−(3) imposes convexity on each
agent’s preferences over the (si,di) space of total friendship qualities.

Assumption 2−(4) is key to describe the way in which agents could either be (rela-
tively) more interested in mating either same-type or different-type individuals. In short,
the condition describes whether agents have either assortative or disassortative interests,
as well as the degree of such interests. In particular, Assumption 2−(4) establishes that (a)
there is a (exogenously given) fixed fraction β = di/si—which geometrically corresponds
to the slope of a ray going out of the origin in the space (si,di)—for which the marginal
utilities from linking with either type of agents coincide. Given this cutoff value β , then
(b) if the proportion of qualities of different-type links (relative to same-type links) lies
above the fixed fraction β , then the marginal utility from additional qualities of different-
type links becomes lower than the marginal utility from same-type links. The converse
condition is described by condition (c).10

10 This assumption can be equivalently interpreted in terms of the marginal rate of substitution of the
utility function u between the aggregate qualities si and di. Geometrically, the conditions put structure on
the slopes of the agent’s indifference curves in the (si,di) space.
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In short, parameter β describes completely the (common) level of assortative interests
in the population. Values of β in the interval (0,1) correspond to situations where peo-
ple lean relatively more towards assortativity, whereas values of β in the interval (1,+∞)
describe situations where disassortative interests prevail. Importantly, the reading of pa-
rameter β requires some caution: lower values of β ∈ (0,1) describe higher levels of
assortative interests, while higher values of β ∈ (1,+∞) describe higher levels of disas-
sortative interests.11 As already mentioned in the Introduction, from the extensively doc-
umented underlying motivations, we can interpret that higher assortative interests stem
from socialization motivations while higher disassortative interests are mostly based on
the sort of collaboration motivations.

3.4 Capacity Constraints

A central assumption of the model is the presence of capacity constraints over the total in-
vestments in friendship qualities. Each agent has a total resource (e.g., time, information-
load limits) R > 0 (captured by a positive integer) to invest in friendship links with others.
We assume

ASSUMPTION 3. Each individual i ∈ N is constrained over her friendship investments xi j

according to the restriction ∑ j 6=i xi j ≤ R, for a certain bound R ∈ {nA +1, . . . ,n−1}.

Since R ≥ nA + 1 > nA, each agent is able to invest with full intensity in links to all
other agents from either group, NA or NB, separately. Also, since R < n− 1, no agent is
able to invest with full intensity in links to all the remaining agents in the population. To
make the analysis interesting, we need to focus on environments where any agent could
link with full intensity either with the rest agents in her own group or all the agents in
the other group. This assumption will allow us to explore both highly homophilic and
heterophilic patterns in our model. Also, we need to avoid trivial environments in which
agents would be able to link with full intensity with everyone else.12 We consider that
the possible values of the total resource R are integer numbers only for technical (and
expositive) reasons.13

Let Xi ≡ {xi ∈ [0,1]n−1 | ∑ j 6=i xi j ≤ R} ⊂ [0,1]n−1 be the set of agent i’s investment

strategies under capacity constraints and let X ≡ ×i∈NXi ⊂ [0,1]n(n−1) be the set of all

possible investment profiles under capacity constraints.

11 An example of a preference specification u that satisfies all the conditions required by Assumption 2
is that given by a Cobb-Douglas function u(si,di) = sa

i db
i such that a > 0, b > 0, and a+b < 1. In this case,

the level of assortative interests β described in Assumption 2−(4) is equal to β = b/a.
12 This is of course an obvious requirement to keep the model interesting under strictly monotone pref-

erences.
13 Such a discrete set of possible values for R allows us to have a clear description of how investment in

friendship links can be allocated in the presence of monotone preferences and capacity constraints.
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3.5 Stability Notion

Let Γ ≡< N,Θ ,X ,(πi)
n
i=1)> denote the network formation game that we have described.

To analyze stable friendship networks, we follow a group formation approach based on
robustness against bilateral deviations, pretty much in the vein of the pairwise stability
idea (Jackson and Wolinsky, 1996). In particular, we use the weak bilateral equilibrium

(wBE) stability concept that Boucher (2015) proposed by weakening the notion of bilat-
eral equilibrium suggested by Goyal and Vega-Redondo (2007).

DEFINITION 1. A weak bilateral equilibrium (wBE) of the network formation game Γ is
a strategy profile x∗ that satisfies:

1. robustness against unilateral deviations: for each individual i ∈ N, we have

πi(g(x
∗))≥ πi(g(xi,x

∗
−i)) for each xi ∈ Xi;

2. robustness against bilateral deviations: for each pair of (different) individuals i, j ∈
N, we have

πi(g(xi,x j,x
∗
−i− j))> πi(g(x

∗)) ⇒ π j(g(xi,x j,x
∗
−i− j))≤ π j(g(x

∗)) for each xi ∈ Xi

and x j ∈ X j.

A network g is a stable friendship network if there is a weak bilateral equilibrium x∗ of
the network formation game Γ such that g = g(x∗).

Condition 1. of Definition 1 is the best-response requirement of the Nash stability
notion. Condition 2. adds then the requirement that a wBE be immune also against any
possible bilateral deviation that be strictly beneficial to both agents in the pair.

The notion of wBE is obviously quite suitable to investigate the formation of relations
in which the consent by the two involved parties is required, as it is naturally the case in
socialization or romantic relations, and in professional collaborations as well. Further-
more, from a technical viewpoint, our choice is particularly adequate to address existence
and multiplicity issues that could arise in our framework. First, while wBE weakens
the concept of bilateral equilibrium due to Goyal and Vega-Redondo (2007), it also re-
fines most stability notions commonly used in the literature on network formation. In
particular, wBE refines Nash stability (proposed by Myerson (1991)), Pairwise stability
(proposed by Jackson and Wolinsky (1996)), and Pairwise Nash stability (which com-
bines both the Nash and the Pairwise stability requirements). Most notably, tightening
even slightly the requirements imposed in the notion of wBE (as, for instance, would be
the case by considering the bilateral equilibrium notion) would lead to that no stable net-
work exists in our setup. This is due to the key incentive features of bilateral deviations
(i.e., the premium of mutual efforts described in Subsection 4.2), which originate from
the presence of capacity constraints. In other words, our approach to stability manages to
avoid critical non-existence problems while reducing any plausible multiplicity of stable
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networks to the minimum, relative to other commonly used stability notions. In conse-
quence, our wBE stability choice, combined with the particulars of the model, allows for
meaningful predictions and comparative statics exercises.14

4 Stability of Friendship Networks

We follow a two-step strategy to explore stability features of friendship networks. In the
first step, we characterize (in Lemma 1) the optimal investment strategy of any given
agent as a best-response to the investments strategies chosen by the rest of individuals.
By considering networks where all agents best-reply to the rest of agents, we derive Nash
stable networks, as required by condition 1. of our stability notion (Definition 1). In the
second step, we identify (in Lemma 2) —and thereby rule out—plausible profitable bilat-
eral deviations from any given network that is already robust against unilateral deviations.
Accordingly, these two steps provide conditions to identify stable networks according to
both 1. and 2. of Definition 1.

4.1 Step I–Unilateral Optimal Decisions

We present the decision problem that each agent faces when she cares only about her
unilateral incentives. Given our assumptions on preferences, it is useful to work with a
given agent i’s (unilateral) problem directly in terms of the variables si and di. For agent i

of type θ , let Is
i (x−i)≡ (1/2)∑ j∈Ni

θ
x ji and Id

i (x−i)≡ (1/2)∑ j∈Nθ ′
x ji be the (normalized)

total incoming intensities that agent i receives, respectively, from same-type and different-
type people under the combination x−i.15 Then, for a fixed x−i, each agent i wishes
to choose xi so as to maximize u(si,di) in a way such that the induced total qualities
si = si(xi,x−i) and di = di(xi,x−i) satisfy the following restrictions: (i) the sum of induced
total qualities si and di does not exceed the available resource R plus the investments made
by the rest of agents, Is

i and Id
i , (ii) si lies in the interval [Is

i ,(nθ − 1)/2+ Is
i ]. Here, the

lower bound corresponds to the situation in which agent i does not invest in forming
same-type links and the upper bound corresponds to the situation in which agent i invests
as much as she can to form same-type links and (iii), di lies in the interval [Id

i ,nθ ′/2+ Id
i ].

The lower and the upper bounds of this interval have analogous interpretations than those

14 To the best of our knowledge, for our framework, any other stability notion commonly used in the
literature of group or network formation would be either inadequate to capture the mutual-consent nature
of friendship relations or would run into severe non-existence and/or multiplicity problems, compromising
critically any meaningful analysis.

15 We will drop the x−i argument when no reference need be made to the underlying strategy combina-
tion. Note that si = (1/2)∑ j∈Ni

θ
xi j + Is

i and di = (1/2)∑ j∈Nθ ′
xi j + Id

i for each strategy profile x ∈ X .
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for case (ii). Formally, each agent i solves the problem:

max
{si,di}

u(si,di)

s.t.: Is
i ≤ si ≤ (nθ −1)/2+ Is

i ;

Id
i ≤ di ≤ nθ ′/2+ Id

i ;

si +di ≤ R/2+ Is
i + Id

i











Di(x−i).
(2)

In the expression Eq. (2) above, Di(x−i) specifies the set of same-type and different-type
qualities (si,di) feasible for agent i, given a profile of investment strategies x−i.

We illustrate geometrically this problem in Fig. 1, in which we observe that:

(i) the green dotted line gives us the constraint that the sum of induced total qualities
si and di does not exceed the available resource R plus the investments made by the rest
of agents, Is

i and Id
i ;

(ii) the horizontal black line gives us the restriction that si must lie in the interval
[Is

i ,(nθ −1)/2+ Is
i ].

(iii) the vertical black line gives us the restriction that di must lie in the interval
[Id

i ,nθ ′/2+ Id
i ].

The rays in red correspond to three possible levels of assortative interests β > 1 > β ′ >
β ′′, as described by Assumption 2-(4). In the figure, β describes disassortative interests,
whereas β ′ and β ′′ describe two different levels of assortative interests. In particular,
since β ′ > β ′′, it follows that assortative interests are higher for β ′′ than for β ′.

Analyzing agent i’s (unilateral) problem boils down to studying how the linear con-
straints that describe the feasible set Di of the problem bind in plausible solutions. The
monotonicity condition of Assumption 2−(2), ensures that agent i wishes to choose xi so
as to induce the highest possible qualities si and di. Thus, the solution lies on the green
dotted line, where agent i exhausts her resource R. Hence, we have that

si +di = R/2+ Is
i + Id

i . (3)

For a fixed x∗−i ∈ Xi, the optimal choice (s∗i ,d
∗
i ) of agent i is described by the point

where the highest indifference curve along the corresponding ray β intersects the feasi-
ble set Di. Since u is smooth and concave, the solutions to this problem can always be
obtained as captured by [a], [b], and [c] in Fig. 1. Such solutions describe the three key
qualitative cases that can take agent i’s (unilaterally optimal) investment. Notice that [a]
and [c] are corner solutions where agent i invests with full intensity in same-type and
different-type individuals, respectively, whereas [b] is an interior solution.

The optimal choice of agent i is summarized Lemma 1 below. This optimal choice
depends on how the level of assortative interests, described by β , compares to two dif-
ferent bounds on such a parameter β , which we denote by β (θ ;x−i) and by β (θ ;x−i).
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di

si(nθ −1)/2+ Is
i

Is
i R/2+ Is

i + Id
i

nθ ′/2+ Id
i

Id
i

di = si

•
[c]

•
[b]

•[a]

si = (R−nθ ′)/2+ Is
i

di = [R− (nθ −1)]/2+ Id
i

Di

β

β ′

β ′′

Figure 1 – Optimal choices of (si,di) for a given x∗−i.

More specifically, for a given x−i, β (θ ;x−i) corresponds to the value of the ratio di/si that
results when agent i of type θ invests with full intensity in all others of her same-type,
and then invests the remaining resources in different-type agents. Analogously, β (θ ;x−i)
is the value of the ratio di/si that results when agent i of type θ invests with full intensity
in all different-type agents, and then invests the remaining resources in others of her same
type.16

LEMMA 1. Assume Assumption 1—Assumption 3, and consider a preference specifica-
tion u. Take a given agent i ∈ N, and take a given strategy combination x∗−i chosen by the
agents other than i. Consider the unilateral problem of agent i specified in Eq. (2). Then,
the solutions to such a linear problem are described by:

s∗i =
(nθ −1)

2
+ Is

i , d∗
i =

R− (nθ −1)
2

+ Id
i if 0 < β ≤ β (θ ;x∗−i). [a]

s∗i =

(

1
1+β

)(

R

2
+ Is

i + Id
i

)

, d∗
i = β s∗i if β (θ ;x∗−i)≤ β ≤ β (θ ;x∗−i); [b]

and

s∗i =
R−nθ ′

2
+ Is

i , d∗
i =

nθ ′

2
+ Id

i if β ≥ β (θ ;x∗−i); [c]

16 Their particular values are β (θ ;x−i)≡
R−(nθ−1)+2Id

i (x−i)

(nθ−1)+2Is
i (x−i)

and β (θ ;x−i)≡
nθ ′+2Id

i (x−i)

R−nθ ′+2Is
i (x−i)

.
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Lemma 1 describes how each agent i ∈ N chooses her optimal aggregate qualities
(s∗i ,d

∗
i ) depending on others’ investments x∗−i and on the level of assortative interests

β . In particular: the corner solution [c] arises if (taken x∗−i as given), regardless of the
investments already made over same-type agents, additional investments by i on same-
type agents are marginally more beneficial to i than any investments that she could made
over different-type agents. In this case, we interpret that the value of β is “relatively low.”
The corner solution [a] appears if (again, taken x∗−i as given), additional investments over
different-type others are marginally the most beneficial ones to agent i. In this case, we
interpret that the value of β is “relatively high.” Finally, taken x∗−i as given, if exists
a proportion of same-type investments over different-type investments such that these
efforts imply a marginal rate of substitution to i equal to β , then the interior solution [b]
arises. In this case, we can consider that the value of β is “intermediate.” Notice that,
in the particular case of the interior solution [b], the investment efforts made by agent
i crucially depend on other agents’ investments, as the ratio of different to same-type
aggregate qualities must be equal to β .

If each agent i ∈ N chooses her investment strategy x∗i ∈ Xi as described in Lemma 1,
for each given x∗−i ∈ X−i, then the resulting network g = g((x∗i ,x

∗
−i)) is Nash stable. Let us

denote by NS(u)⊂ G the set of Nash stable networks for a preference specification given
by u. Existence of Nash stable networks in the proposed network formation game Γ , for
any given u, follows directly from the following modeling choices: (1) xi ∈ [0,1] for each
agent i, (2) the presence of capacity constraints, and (3) the assumption that u is smooth
and concave.17

4.2 Step II–Bilateral Optimal Decisions

Upon ruling out unilateral deviations, stable networks follow by preventing bilateral de-
viations as well, as required by condition 2. of Definition 1. Lemma 2 provides the key
necessary and sufficient condition for a Nash stable network g(x) ∈ NS(u) to be immune
against bilateral deviations.

LEMMA 2. Assume Assumption 1—Assumption 3, and consider a preference specifica-
tion u. Consider a strategy profile x ∈ X that induces a Nash stable friendship network
g = g(x) ∈ NS(u). Then, any given pair of two (different) agents i, j ∈ N does not have

17 Formally, let φi : X−i → Xi denote the best-response of agent i, specified as φi(x−i) ≡ {xi ∈ Xi |
u(si(xi,x−i),di(xi,x−i)) ≥ u(si(x

′
i,x−i),di(x

′
i,x−i)) ∀x′i ∈ Xi}. Accordingly, let Φ : X → X , where Φ =

(φ1, . . . ,φn), be the best-response correspondence of all agents in the society. Then, the Nash stability con-
dition, imposed by 1. of Definition 1 above, can be equivalently expressed as requiring that x∗ that satisfies
the classical fixed point condition x∗ ∈ Φ(x∗). Since u is smooth and concave, and X ⊂ R

n(n−1) is a com-
pact real set, the best-response correspondence Φ of the agents in the population is upper hemi-continuous.
Furthermore the correspondence Φ satisfies that Φ(x) is non-empty, closed, and convex for each profile
x ∈ X . By Kakutani’s fixed point theorem, it then holds that, under the capacity constraints in Assump-
tion 3, a Nash stable network always exists for any preference specification u that satisfies Assumption 2 in
our network formation game Γ .
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incentives to bilaterally deviate from the profile x, as described by condition 2. of Defini-
tion 1, that is,

πi(g(x
′
i,x

′
j,x−i− j))> πi(g(x)) ⇒ π j(g(x

′
i,x

′
j,x−i− j))≤ π j(g(x))

for each x′i ∈ Xi and x′j ∈ X j if and only if j /∈ Ni(x)⇒ i ∈ N j(x).

The logic behind the condition derived in Lemma 2 is as follows. Under the main-
tained assumptions, if we start from a strategy profile that induces a Nash stable network,
then there exists a unique class of bilateral deviations that could be strictly beneficial to
each agent from any given pair of agents in the society. This class of (potentially) prof-
itable deviations is based on each of the two agents from a fixed pair being able to decrease
her investments made over some other agents by some arbitrary amounts. Then, this class
of deviations requires that they could invest the so saved amounts into each other. Be-
cause of the simple additive-linear technology for generating linkage quality considered
in Eq. (1), this class of deviations would clearly be strictly profitable for both agents.

At a more intuitive level, the suggested (potential) deviations capture natural situations
where two friends benefit in a synergic way by mutually increasing the efforts they devote
to their own relationship. We term the incentives behind this class of (potential) deviations
as “premium of mutual efforts” because both agents in a given pair benefit strictly by
mutually redirecting third-party investments into each other.

Furthermore, under our monotonicity assumptions in the presence of capacity con-
straints, the only class of bilateral deviations that—starting from a Nash stable network—
could result strictly beneficial to both agents in a given pair is the one described above.
More specifically, the only way of in which the two members of a given pair can benefit
strictly is by redirecting third-party investments. It is straightforward to see that all that
any other type of bilateral deviations could at most achieve is to keep indifferent each of
the two agents in the pair.

To ensure then that a Nash stable network is immune against this class of deviations,
we need to restrict attention to strategy profiles in which at least one agent in each possible
pair cannot increase any further her investment in the other agent, as stated in Lemma 2.
As a consequence, in order to propose a stable friendship pattern, we need to construct a
minimal set of full-intensity investments across all agents. An intuitive insight that stems
from such minimal sets, in the presence of (common) capacity constraints, is then that (in
stable networks x) each particular friendship relationship gi j(x) is mainly sponsored by
only one of the two friends, say i, while the recipient j of the full-intensity investment
sponsors in turn other relationships. As the capacity constraints tighten, the recipient j

of the full-intensity effort in each particular relationship reciprocates less with her friend
i. Only by doing so, the recipient j is able to save amounts of the resource R to meet the
required full-intensity investments in other agents k 6= i. Through this mechanism, our
model provides a rationale for the sort of non-reciprocal relations documented, mainly in
the social psychology literature, some of which we discussed in Section 2.
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The description that we give of the premium of mutual efforts, and the role that it
plays in stability, is also robust to alternative linkage technology specifications, so long as
such alternative technologies be linear with uniform slopes across the investments of all
agents in the population. Under such technologies, for situations where no agent from a
given pair invests fully in the other agent, both agents would benefit strictly by redirecting
third-party investments. More specifically, consider a technology given by

gi j(x) = A+B(xi j + x ji),

where A ≥ 0, B > 0. Suppose, without loss of generality, that agents i and j have the
same type. Consider now situations where xi j < 1 and x ji < 1. Then, suppose that agent
i decreases her investment in some other agent k /∈ {i, j} of her same type, by an amount
εi > 0 and that j decreases her investment in some other agent l /∈ {i, j} of her same type,
by an amount ε j > 0, where it may well be that k = l. This is enabled by the assumption
that nθ ≥ 3 for each type θ ∈ Θ . Consider that the two agents i and j invest the saved
amounts εi and ε j into each other. Notice then that for agent i, si increases by a net
amount of Bε j and for agent j, s j increases by a net amount of Bεi. Also, di and d j

remain unchanged. Thus this deviation is strictly profitable to both agents i and j. Similar
arguments can be provided for the case where i and j have different types.

Our description of the premium of mutual efforts, however, does not go through un-
der more general specifications of linkage quality technology. For instance, the identified
class of (potentially) beneficial bilateral deviations does not work as considered in this pa-
per if either gi j(x) were linear in xi j and x ji with different slopes, or if gi j(x) were strictly
concave or convex in the agents’ investments. Nevertheless, our particular assumption of
linear technology (with the form given by Eq. (1)) gives us a reasonable and simple for-
mulation of how investments produce linkage quality for a continuous investment choice.
Given the degree of generality that we consider on the utility function u, more complex
technology specifications would render intractable the analysis of general properties of
stable friendship patterns18

Finally, let us comment on the existence of stable networks in the proposed model.19

In some parts of the analysis, we deal with the fact that the sizes of the population groups
NA and NB can be either odd or even. It is then useful to specify the number

α(r)≡

{

r/2 if r is even;

(r−1)/2 if r is odd

for any given integer r > 1. The number α(r) accounts for either half of r or half of r−1,
depending on whether r is an even or an odd integer, respectively. A necessary condition
for the investment requirements in Lemma 2 to be satisfied is that the size of the resource

18 We discuss this issue further in Section 8.
19 As argued earlier (in Subsection 4.1), existence of Nash stable patterns is in fact ensured in our setting

for each possible tuple (β ,R,nA,nB).
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available to the agents be sufficiently large, in particular, it must be that R ≥ α(n). Then
each agent can take on the burden of full-intensity investments for (approximately) half
of the population. Notice that condition R ≥ α(n) is guaranteed by Assumption 3 since
nA+1 > α(n). Then, note that Assumption 3 intentionally requires that R be high enough
precisely to guarantee that there exist profiles x that can meet the requirement in Lemma 2.
Given that the stability notion that we use (wBE) requires robustness against bilateral
deviations, this requirement stands as a central one for our analysis.20 This, however,
does not directly ensure the existence of a stable friendship network for each possible
tuple (β ,R,nA,nB). The presence of (homogeneous) capacity constraints, combined with
discrepancies between the sizes of the groups, may conflict crucially with the incentives
described by the level of assortative interests β .

We guarantee existence (and uniqueness in some cases) of stable friendship networks,
for each possible tuple (β ,R,nA,nB), for relatively high or low (dis)assortative interests
β . We make no claims regarding existence of stable patterns for “intermediate” levels of
the assortative interest β . To illustrate the difficulties that may arise regarding existence
for intermediate levels of assortative interests, consider a population in which the sizes of
the two groups are very different and suppose that the capacity constraints are relatively
tight. Suppose that the level of assortative interests is intermediate and, accordingly, con-
sider a resulting Nash stable network g(x) ∈ NS(u) such that some agents have unilateral
incentives to invest mainly in same-type fellows (as in [a] of Fig. 1) while other agents
have unilateral incentives to invest both in same-type and different-type agents (as in [b]
of Fig. 1). When the capacity constraints are as tight as possible (according to Assump-
tion 3), each agent is able to invest with full intensity in only α(n) other agents. We
can intuitively observe then that some agents may not be able to simultaneously comply
with their individual assortative interests and, at the same time, meet their shares of full-
intensity contributions, which are required to prevent bilateral deviations. For instance, if
agents of the smaller group want to behave unilaterally as in [b] of Fig. 1, then they wish
to invest large amounts in relations with members of a much larger group. Then, they may
end up not having enough resource so as to comply with the overall minimal full-intensity
requirements. As a consequence, it might well be the case a network g(x) ∈ NS(u) be not
immune against beneficial bilateral deviations.

Let us use S(u) ⊂ NS(u) to denote the set of stable friendship networks for a given
preference specification u. We will be more specific as to when we can guarantee exis-
tence of stable patterns in Subsection 4.5.

4.3 Classifying Networks in Terms of their Friendship Patterns

On one extreme, we consider networks in which all agents invest with full intensity in
links to all others of their same type. Given this, each agent devotes the remaining of her

20 We provide a detailed discussion in Section 6 on how the level of the resource R might affect the
existence of stable networks in our model.
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resource R to different-type agents. We refer to such networks as maximally homophilic

networks. On the other extreme, we consider networks in which all agents invest with full
intensity in different-type agents. Then, the agents devote the remaining of their resources
to links to agents of their same type. We refer to such networks as minimally homophilic

networks.

DEFINITION 2. Consider a strategy profile x that induces a friendship network g = g(x).
Then,

(a) the network g is said to be maximally homophilic if for each agent i ∈ N of type θ ,
and for each type θ ∈Θ , we have Ni

θ ⊆ Ni(x), and

(b) the network g is said to be minimally homophilic if for each agent i ∈ N of type θ ,
for each type θ ∈Θ and for the alternative type θ ′ 6= θ , we have Nθ ′ ⊆ Ni(x).

We take the simple approach to regard a friendship network as partially homophilic

whenever it is neither maximally nor minimally homophilic.

DEFINITION 3. Consider a strategy profile x that induces a friendship network g = g(x).
The network g is said to be partially homophilic if for some type θ ∈Θ , we have that

(a) there is some agent i of type θ such that Ni(x)⊂ Ni
θ , with Ni(x) 6= Ni

θ , and

(b) there is some agent j of type θ such that N j(x)⊂ Nθ ′ , with N j(x) 6= Nθ ′ .21

4.4 Stable Friendship Networks

The previous insights about unilateral and bilateral optimal choices allow us to explore
stable friendship networks. It will be useful to consider the following relevant values of
the cutoff level β of assortative interests, which depend on the primitives of the model.

βL ≡
R− (nA −1)

2(nA −1)
, βl ≡

nR−nA(nA −1)−nB(nB −1)
2nA(nA −1)

,

βh ≡
nA

R−nA

, and βH ≡ 2βh.
(4)

The conditions provided by Proposition 1 below characterize strategy profiles that in-
duce stable maximally homophilic networks. Given a strategy profile x ∈ X , the following
upper bound

β̂ (x)≡ inf
i∈Nθ ,θ∈Θ

R− (nθ −1)+∑ j∈Nθ ′
x ji

2(nθ −1)

on the level of assortative interests of the population will be useful to understand how
assortative interests lead to maximally homophilic networks.

21 Note that the agents i of (a) and j of (b) in Definition 3 are not required to be different agents.
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PROPOSITION 1. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Let x a strategy profile that induces a maximally homophilic friendship net-
work g = g(x). Then, the network g is stable, i.e., g ∈ S(u), if and only if:

1. Robustness against unilateral deviations: the level of assortative interests of the
population—which is described by β—is sufficiently high, with the particular form given
by β ≤ β̂ (x).

2. Robustness against bilateral deviations: for each pair of agents from different
groups, i ∈ Nθ and j ∈ Nθ ′ , for each type θ ∈ Θ and θ 6= θ ′, we have j /∈ Ni(x) ⇒ i ∈
N j(x). This condition can hold if and only if the resource R is sufficiently large, with the
particular form given by R ≥ (n−1)−nAnB/n.

Proposition 1 characterizes investment profiles that lead to maximally homophilic net-
works, in terms of the primitives nA,nB,β ,R. Interestingly, provided that the resource R

is relatively large, even in the presence of high assortative interests, patterns of extreme
homophily features can be sustained as stable ones only if links of a certain (relatively
high) quality between agents of different types arise as well. In particular, there must
exist a link between each pair (i, j) of different-type agents with quality gi j no less than
1/2. In short, a certain degree of qualities of heterophilic relations is necessary to sus-
tain maximally homophilic stable networks. This result is a direct consequence of the
requirements in Lemma 2, combined with the additively-separable linear linkage technol-
ogy assumed in Assumption 1. As commented earlier, the implications that we provide
on the premium of mutual efforts need not go through under a more general specification
of linkage qualities, such as under non-linear technologies.

In a natural manner, maximally homophilic networks require that the level of assorta-
tive interests of the agents be sufficiently high. Nonetheless, multiple networks, not all of
them necessarily being maximally homophilic, may arise as stable ones for the levels of
assortative interests captured by Proposition 1. Corollary 1 gives us a bound on the level
of assortative interests that guarantees that only maximally homophilic networks can be
stable.

COROLLARY 1. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then, if the level of assortative interests in the population is sufficiently high,
with the particular form given by β < βL, where βL is the bound on β specified in Eq. (4),
only the class consisting entirely of maximally homophilic networks can be stable.

The proof of Corollary 1 is straightfoward and therefore we provide it right away. In a
network which is not maximally homophilic, there must some agent i of type θ ∈Θ who
is not investing with full intensity in same-type others. Hence for her, si < nθ − 1 and
di > [R− (nθ − 1)]/2, so that di/si > βL. Thus, for such an agent i same-type relations
are marginally the most valuable and she unilaterally deviates to invest with full intensity
in same-type others.
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We now use the insights from Proposition 1 to explore further certain features of max-
imally homophilic stable networks. Motivated by the consideration that all agents in the
society face a common available resource R, we pay special attention to stable networks
in which the burden of full-intensity investments between the agents that belong to dif-
ferent groups is distributed across the agents in a relatively uniform way. Specifically,
Corollary 2 gives us conditions under which a class of maximally homophilic networks,
with certain symmetries in the amounts invested by the agents, arise as stable ones. To
this end, it is convenient to introduce first the details of a certain partition of any of the
two population groups Nθ , for θ ∈Θ .

OBSERVATION 1. Upon relabelling the names of the agents (say, switching indexes from
i to ik and jk), let us partition each of two groups Nθ , for θ ∈ Θ , into two sets, NL

θ and
NH

θ , according to: (a) NA is partitioned into NL
A = {i1, . . . , iα(nA)} and NH

A = {iα(nA) +

1, . . . , inA
}, whereas (b) NB is partitioned into NL

B = { j1, . . . , jα(nB)} and NH
B = { jα(nB)+

1, . . . , jnB
}.

The partition specified in Observation 1 separates each group Nθ into two subgroups,
NL

θ and NH
θ , of the same size if the number of agents nθ in the group is even. If the

number of agents in the group Nθ is odd, then the set NH
θ contains just one more agent

than the set NL
θ . Thus, the sizes of NL

θ and NH
θ are as similar as possible. Provided

that the level of assortative interests and the size of the resource are sufficiently large,
Corollary 2 describes a class of maximally homophilic networks in which each agent
from each group Nθ takes on the burden of full-intensity investments across different-type
agents for (roughly) half of the agents from Nθ ′ , for θ ′ 6= θ . In particular, we construct a
minimal set of full-intensity investments across different-type agents which are distributed
across the agents in a relatively uniform way.

COROLLARY 2. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then, provided that the capacity constraint is sufficiently loose, with the par-
ticular form R ≥ nA +(nB −1)/2, if the level of assortative interests is sufficiently high,
with the particular form β ≤ [R+(nB −nA)]/2(nA −1), then there exists a class of strat-
egy profiles x ∈ X , invariant to any relabelling of the names of the agents, which induces
maximally homophilic stable networks g = g(x) ∈ S(u).

Given the partitions of groups in Observation 1, such a class of strategy profiles x can
be described as: (1) each agent i ∈ NL

A invests with full intensity xi j = 1 in each agent
j ∈ NL

B , and each agent i ∈ NH
A invests with full intensity xi j = 1 in each agent j ∈ NH

B ,
whereas (2) each agent j ∈ NL

B invests with full intensity x ji = 1 in each agent i ∈ NH
A , and

each agent j ∈ NH
B invests with full intensity x ji = 1 in each agent i ∈ NL

A .22

22 Given the partitions of groups in Observation 1, conditions (1) and (2) of Corollary 2 above lead to
that each agent i ∈ Nθ must invest with full intensity in links to either (nθ −1)+α(nθ ′) or (nθ −1)+[nθ ′ −
α(nθ ′)] other agents in the population, depending on whether i ∈ NL

θ or i ∈ NH
θ . This captures a relatively

uniform distribution of efforts by the agents to contribute to the formation of links.
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Throughout the paper, we present several examples (Example 1–Example 3) to illus-
trate our main results on stability.

EXAMPLE 1. —A Maximally Homophilic Network.

Consider a population N = {1, . . . ,7} such that NA = {1,2,3,4} and NB = {5,6,7}.
Notice then that α(nA) = α(4) = 2 and α(nB) = α(3) = 1. Therefore, R = 5 by Assump-
tion 3.

Following Observation 1, consider that the group NA is divided into two subgroups,
NL

A = {1,2} and NH
A = {3,4}. Similarly, the group NB is separated into two subgroups,

NL
B = {5} and NH

B = {6,7}. Let us consider a maximally homophilic network where each
agent from group NA makes full-intensity investments in each of the other three agents in
her same subgroup, whereas each agent from group NB makes full-intensity investments in
each of the other two agents in her same subgroup. Using Corollary 2, consider that each
agent from the subgroup NL

A = {1,2} makes a full-intensity investment in the (unique)
agent from the group NL

B = {5}, whereas each agent from the subgroup NH
A = {3,4}

makes full-intensity investments in each agent from the subgroup NH
B = {6,7}. On the

other hand, consider that agent 5 (the unique member of the subgroup NL
B) makes full-

intensity investments in each agent from the subgroup NH
A = {3,4}, while each agent

from the subgroup NH
B = {6,7} makes full-intensity investments into each agent from the

subgroup NL
A = {1,2}. Then, it can be easily verified that, for each of the twelve possible

pairs (i, j) ∈ Nθ ×Nθ ′ of different-type agents, we have that one agent, either i ∈ Nθ or
j ∈ Nθ ′ , invests with full intensity in the other agent. Thus, as required by Lemma 2, for
each of the n(n− 1) = 7× 6 = 42 possible pairs of agents in the society, at least one of
the two agents makes a full-intensity investment in the other agent. Therefore, no pair of
agents have incentives to deviate, complying with condition 2. of Definition 1.

Given the description provided thus far, notice that while agents 3 and 4, belonging
to subgroup NH

A , are exhausting their 5 units of resource, the rest of agents in the NL
A ,

NL
B , and NH

B , are only investing 4 units of resource. Thus they still wish to allocate their
remaining 1 unit. We complete the description of the strategy profile by considering that
(i) each agent i ∈ NL

A = {1,2} invests 1/2 units in each agent j ∈ NH
B = {6,7}, (ii) agent

5 invests 1/2 units in each agent i ∈ NL
A = {1,2}, and (iii) each agent j ∈ NH

B = {6,7}
invests 1/2 units in each agent i ∈ NH

A = {3,4}. As a result, each link between each pair
of agents (i, j) ∈ NA ×NB features (uniform) quality gi j = 3/4. We can now derive the
ratio di(x)/si(x) for each agent i ∈ N as follows:

di/si = (1+5/4)/3 = 3/4 for i ∈ NL
A ; di/si = (1+1)/3 = 2/3 for i ∈ NH

A ;

d j/s j = (3/2+1)/2 = 5/4 for j ∈ NL
B ; d j/s j = (3/2+3/2)/2 = 3/2 for j ∈ NH

B .

Therefore, for β ∈ (0,2/3] all agents behave individually as described by the solution [a]
in Fig. 1. We can thus guarantee that the proposed strategy profile, which induces a max-
imally homophilic network, is immune both against unilateral and bilateral deviations.
Indeed, for the particulars of this example, notice the condition on assortative interests
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stated in Corollary 2 requires that

β ≤
R+(nB −nA)

2(nA −1)
=

5+(3−4)
2(4−1)

=
2
3
.

We turn now to explore extreme forms of heterophilic patterns. Proposition 2 provides
conditions that characterize when minimally homophilic networks arise as stable ones.
Given a strategy profile x ∈ X , the following lower bound

β̃ (x)≡ sup
i∈Nθ ,θ∈Θ

2nθ ′

(R−nθ ′)+∑ j∈Ni
θ

x ji

on the level of assortative interests of the population will be useful to grasp how assortative
interests lead to minimally homophilic networks.

PROPOSITION 2. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Let x a strategy profile that induces a minimally homophilic friendship net-
work g = g(x). Then, the network g is stable, i.e., g ∈ S(u), if and only if:

1. Robustness against unilateral deviations: the level of assortative interests of the
population—which is described by β—is sufficiently low, with the particular form given
by β ≥ β̃ (x).

2. Robustness against bilateral deviations: for each pair of agents from a common
group, i, j ∈ Nθ , with i 6= j, for each type θ ∈ Θ , we have j /∈ Ni(x) ⇒ i ∈ N j(x). This
condition can hold if and only if the resource R is sufficiently large, with the particular
form given by R ≥ nA +(nB −1)/2.

Similarly to Proposition 1, Proposition 2 characterizes investment profiles that lead
to minimally homophilic networks, in terms of the primitives nA,nB,β ,R. We obtain
a converse insight to the one provided by Proposition 1. Even in the presence of low
assortative interests, a certain degree of quality of the homophilic relations is necessary
to sustain minimally homophilic stable networks. In particular, the connection between
same-type agents i, j must feature a linkage quality gi j ≥ 1/2.

Corollary 3 provides a bound on the level of assortative interests that guarantees that
only minimally homophilic networks can be stable.23

COROLLARY 3. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then, if the level of assortative interests in the population is sufficiently low,
with the particular form given by β > βH , where βH is the bound on β specified in Eq. (4),
only the class consisting entirely of minimally homophilic networks can be stable.

23 The reasoning for the statement of Corollary 3 relies on analogous arguments than the ones used
in Corollary 1. We briefly provide these arguments right away: under the bound βH any agent’s optimal
unilateral choice is to invest with full intensity in different-type others.
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Corollary 4 provides conditions that ensure the existence of stable minimally ho-
mophilic networks where the distribution of full-intensity investments across agents is
relatively uniform, conditional on their characteristics. It will be useful to set the (type-
dependent) integer lθ ≡ max{nθ −nθ ′ ,0}.

COROLLARY 4. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then, provided that the total resource R available to the agents is sufficiently
large, under the particular requirement that R ∈ {nA +α(nB), . . . ,n− 2}, if the level of
assortative interests β satisfies β ≥ βh, where βh is the bound on β specified in Eq. (4),
then there exists a class of strategy profiles x ∈ X , invariant to any relabelling of the names
of the agents, which induces minimally homophilic stable networks g = g(x).

In particular, such a class of strategy profiles x can be constructed as follows: for each
type θ ∈Θ , (1) upon relabelling the names of the agents in Nθ , set Nθ ≡ {i1, i2, . . . , inθ

},
(2) for each agent ik ∈ Nθ , let then Ni1(x) = Nθ ′ ∪{i2, . . . , i1+(R−nA+lθ )}, Ni2(x) = Nθ ′ ∪

{i3, . . . , i2+(R−nA+lθ )}, and so on iteratively, up to Ninθ
(x) = Nθ ′ ∪{i1, . . . , iR−nA+lθ }.24

Notice that any profile from the class described in Corollary 4 satisfies the key condi-
tion (required by Lemma 2) that j /∈ Ni(x) must imply i ∈ N j(x), for each pair of different
agents i, j ∈ N. Also, the proposed family of profiles entails that each agent i ∈ NA in-
vests with full intensity in each of the nB different-type agents and in R− nB same-type
agents—since, in this case, we have lA = max{nA −nB,0}= nA −nB. On the other hand,
each agent i ∈ NB invests with full intensity in each of the nA different-type agents and
in R− nA same-type agents—since lB = max{nB − nA,0} = 0. Also, it follows that the
agents who belong to the largest group can spare more of their resource to fully invest
in same-type agents after investing (with full intensity) in all different-type agents. With
this construction for the required minimal set of full-intensity investments the burden of
investments across same-type agents is distributed uniformly.

EXAMPLE 2. —A Minimally Homophilic Network.

As in Example 1, consider a population N = {1, . . . ,7} such that NA = {1,2,3,4} and
NB = {5,6,7}. Recall that α(nA) = α(4) = 2 and α(nB) = α(3) = 1, and that R = 5

Note first that lA = 1 and lB = 0. Then, using the construction proposed by Corollary 4,
we consider a strategy profile x such that: N1(x) = NB ∪ {2,3}, N2(x) = NB ∪ {3,4},
N3(x) = NB ∪ {4,1}, N4(x) = NB ∪ {1,2}, N5(x) = NA ∪ {6}, N6(x) = NA ∪ {7}, and
N7(x) = NA ∪ {5}. Notice that all agents in the society are exhausting their 5 units of
resource. Moreover, it can be easily verified that, for each of the twelve possible pairs
(i, j) ∈ NA ×NA, i 6= j, exactly one agent invests with full intensity in the other agent.

24 To appreciate better the set of agents who receive full investments by each agent of each subgroup in
the corollary, consider that the agents from each set Nθ ≡ {i1, i2, . . . , inθ

} are arranged in a circular fashion.
Then each agent ik invests with full intensity in each of the following ik+1, . . . , ik+(R−nA+lθ ) agents. We
continue in this way until each of the last agents from list {i1, i2, . . . , inθ

} invests fully in the subsequent
agents until completing full investments in R−nA + lθ agents.
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Similarly, for each of the six possible pairs (i, j) ∈ NB ×NB, i 6= j, exactly one agent in-
vests with full intensity in the other agent. As required by Lemma 2, for each of the 42
possible pairs of agents in the society, at least one of the two agents makes a full-intensity
investment in the other agent. Therefore, no pair of agents have incentives to deviate,
complying with condition 2. of Definition 1. We consider a uniform distribution of in-
vestments across same-type agents. As a result each link between each pair of different
agents (i, j) ∈ Nθ ×Nθ from a common subgroup Nθ features quality gi j = 1/2. The ratio
di(x)/si(x) for each agent i ∈ NA is di/si = 3/2, whereas for each agent j ∈ NB, we have
d j/s j = 4/1. Thus for β ≥ 4 each agent behaves individually as described by solution
[c] in Fig. 1. The proposed strategy profile is therefore immune both against unilateral
and bilateral deviations. For the particulars of this example, the condition on assortative
interests stated in Corollary 4 requires that β ≥ βh = nA/(R−nA) = 4.

The results provided by Proposition 3 are quite useful to complement our picture of
stable friendship networks. If dissasortative interests prevail, then maximally homophilic
networks are not stable. Conversely, societies in which assortative interests prevail do not
feature stable minimally homophilic networks.

PROPOSITION 3. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then,

(i) if the interests for making friends β of the society lean towards disassortativity,
with the particular form β ∈ (1,+∞), then there is no stable maximally homophilic net-
work;

(ii) if the interests for making friends β of the society lean towards assortativity, with
the particular form β ∈ (0,1], then there is no stable minimally homophilic network.

Intuitively, under the presence of capacity constraints, (i) if the level of assortative
interests is low—so that agents value marginal investments in different-type agents more
than in same-type individuals—, then agents choose not to devote the scarce resource to
invest with full intensity in all other same-type agents. When group sizes are asymmetric,
members of the larger group will be relatively more constrained in this respect because
they are required to invest in a relatively higher number of agents under the description
of a maximally homophilic network. Similarly, (ii) if the level of assortative interests is
high, then agents prefer not to devote the scarce resource to invest with full intensity in all
other different-type agents. Members of the smaller group will in this case be relatively
more constrained in this respect.

Finally, the insights of Corollary 5 allow us to give a full description of stable friend-
ship networks. In particular, with a flavor similar to that of the results in Corollary 1 and
Corollary 3, Corollary 5 provides an interval for the level of assortative interests for which
only the partially homophilic networks can be stable.

COROLLARY 5. Assume Assumption 1—Assumption 3, and consider a preference spec-
ification u. Then, if the level of assortative interests in the population β is intermediate,
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with the particular form given by βl < β < βh, only the class consisting entirely of par-
tially homophilic networks can be stable.

4.5 Main Takeaways on Stable Patterns

We combine the results of Proposition 1—Proposition 3 and those of Corollary 1—
Corollary 5 to establish the key bounds that describe how homophily levels in stable
networks depend on the level of assortative interests in the society. Fig. 2 summarizes our
main findings on the various types of stable networks, as a function of the level of assor-
tative interests in the population. The labels in red indicate that, though we cannot ensure
the existence of such stable patterns, only networks with the there described homophily
features could arise as stable. On the other hand, the labels in blue indicate that we in
fact guarantee the existence of networks with the described homophily features. Notably,
labels in blue correspond also to extreme forms of homophilic behaviors.

Our results convey the natural message that (endogenous) homophily levels in friend-
ship networks are positively related with the (exogenous) assortative interests in the soci-
ety. However, our insights on (potentially) beneficial bilateral deviations (Lemma 2)—via
the premium of mutual efforts—also show that links between each pair of agents with
different characteristics must also be sponsored with full intensity by (at least) one of
the two friends in order to sustain extreme forms of homophilic patterns. This insight that
homophily does not arise in a way fully isolated (from heterophilic links of a certain qual-
ity) is also consistent with the non-trivial results that, for assortative levels β ∈ [βL,βl],
maximally homophilic networks coexist with partially homophilic ones. Such messages
also extend to our investigation of extreme forms of stable heterophilic patterns. We ob-
serve that strong forms of heterophilic patterns cannot arise unless certain quality levels
of homophilic connections are also present. In consonance with such messages, note also
that, for assortative levels β ∈ [βh,βH ], both minimally and partially homophilic networks
coexist. Note that our model delivers the insight that extreme forms of homophilic and
heterophilic patterns cannot coexist simultaneously under a common level of assortative
interests.

0 βL
1

βl βh βH

β

Only Max. H. Max. H. & Part. H.
Part. H.

Part. & Min. H. Only Min H.

Figure 2 – Stable networks as a function of the level β of assortative interests.
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We are also specific about when existence and uniqueness of classes of stable networks
can be guaranteed in our setting. Corollary 2 showed that if the level of assortative inter-
ests is relatively high, with the particular form β ≤ [R+(nB −nA)]/2(nA −1), then there
exists a strategy profile x that induces a class of stable maximally homophilic networks
g = g(x). Since βL can be written as [R+(1− nA)]/2(nA − 1), it can be directly noted
that βL < [R+(nB −nA)]/2(nA −1) in our setting. Therefore, existence of stable patterns
are guaranteed for assortative interests β ≤ βL. In addition, Corollary 4 granted that if the
level of assortative interests is relatively low, with the particular form β ≥ βh, then there
exists a strategy profile x that induces a class of stable minimally homophilic networks
g = g(x). The implications on existence and uniqueness follow them by combining the
implications of Corollary 1 and Corollary 2 (on the side of extreme homophilic patterns),
and of and Corollary 3 and Corollary 4 (on the side of extreme heterophilic patterns).

Using the details of Example 1 and Example 2, the bounds on the level of assortative
interests are represented below in Fig. 3.

0 βL = 1/3
1βl = 17/24 βh = 4 βH = 8

β

Only Max. H. Max. H. & Part. H.
Part. H.

Part. & Min. H. Only Min H.

Exa 1 Exa 2

Figure 3 – Bounds on the level of assortative interests: Example 1 and Example 2.

Recall that we have described a maximally homophilic network for β ∈ (0,2/3] (Exam-
ple 1), and a minimally homophilic network for β ∈ [4,+∞) (Example 2). In Fig. 3, the
blue bullet identifies the upper bound of 2/3 for maximally homophilic stable networks
to arise as stable in Example 1, while the green bullet, placed exactly at the value βh,
identifies the lower bound of 4 for minimally homophilic networks to arise a stable in
Example 2.

As to the role played by the relative sizes of the two population groups, NA and NB,
it can be shown that βl decreases as nA increases, when keeping nB and R fixed. In this
case, βL decreases, while the difference nA − nB of the two population sizes rises. As a
consequence, when the size of the larger group leads to high discrepancies between group
sizes, it becomes harder to sustain maximally homophilic networks as stable ones. This
insight contrasts the cases of societies that feature similar sizes for their groups, for which
it is easer to sustain maximally homophilic networks as stable ones. Such messages are
quite consistent with some results of the empirical analysis conducted by Currarini et al.
(2009). In their data, it is precisely the presence of large discrepancies between group
sizes what makes friendship relations not to adjust to extreme homophily patterns in the
entire student population. This empirically obtained message is quite consonant with our
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insights on stability of maximally homophilic patterns when groups are very different in
their sizes.

We turn now to explore a particular class of partially homophilic networks that can be
stable for “intermediate” assortative levels β ∈ [βL,βH ].

4.6 A Class of Partially Homophilic Networks

An interesting special case of partially homophilic networks is that in which all agents
behave unilaterally as described by the interior solution [b] in Fig. 1. Thus, no agent
invests with full intensity neither in all their same-type fellows nor in all the different-type
agents. In general, though, it turns out difficult to guarantee the existence of such partially
homophilic networks as stable ones. For the particular case where both population groups
have a common even size, we provide a method, in Observation 2 below, to construct a
family of strategy profiles that induce stable partially homophilic networks with the above
mentioned feature. In addition, our proposal seeks to distribute as uniformly as possible
the burden of full-intensity investments across the agents in the population.

OBSERVATION 2. We restrict attention to those populations such that nA = nB = n/2 for
n/2 even. Upon relabelling the names of the agents in the population, let us set NA ≡
{i1, i2, . . . inA

} and NB ≡{ j1, j2, . . . jnB
}. Consider that the agents from each of the two lists

{i1, i2, . . . inA
} and { j1, j2, . . . jnB

} are arranged in a circular fashion. In addition, exactly
as proposed in Observation 1, let us consider a partition of each of the two population
groups Nθ , for θ ∈ Θ , into two sets, NL

θ and NH
θ , according to: (a) NA is partitioned into

NL
A = {i1, . . . , iα(nA)} and NH

A = {iα(nA)+ 1, . . . , inA
}, whereas (b) NB is partitioned into

NL
B = { j1, . . . , jα(nB)} and NH

B = { jα(nB)+1, . . . , jnB
}.

Given those ingredients, the suggested method consists of two steps. In the first step,
we describe the minimal set of full-intensity investments which guarantees that no pair
of agents have bilateral incentives to deviate (as required by Lemma 2). The second step
describes how agents invest in the remaining agents. The underlying logic of this step is
that the remaining investments are such that each agent exhausts her available resource
while, at the same time, the induced profile is such that each agent behaves unilaterally as
the aforementioned solution [b] in Lemma 1.

First Step.— In regard to same-type fellows, consider that, for each type θ ∈Θ , each agent
i ∈ Nθ invests with full intensity in the subsequent α(nθ ) agents from the same-type list
following the suggested circular arrangement. As to how agents invest with full intensity
in different-type agents, consider that (a) each agent i ∈ NL

A invests xi j = 1 in each agent
j ∈ NL

B ; (b) each agent i ∈ NH
A invests xi j = 1 in each agent j ∈ NH

B ; (c) each agent j ∈ NL
B

invests with full intensity x ji = 1 in each agent i ∈ NH
A , and (d) each agent j ∈ NH

B invests
with full intensity x ji = 1 in each agent i ∈ NL

A .

The description provided in this first step already guarantees the condition required
by Lemma 2 to prevent profitable bilateral deviations from the profile x. In particular, all
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agents invest with full intensity in α(nA)+α(nB) = α(n) other agents. The described
full-intensity investments in the subsequent α(nθ ) same-type agents (along the circular
arrangement) ensure that, for each pair of same-type agents, at least one of them is in-
vesting with full intensity in the other agent. In addition, the crossed-investments among
different-type agents suggested simply replicate the description proposed in Observation 1
to guarantee the robustness against bilateral deviations of the class of profiles described
in Corollary 2. Corollary 2 showed that such cross-investments involving the four popu-
lation subgroups ensured that, for each pair of different-type agents, at least one of them
invests with fully intensity into the other.

Note that our description thus far entails that each agent behaves unilaterally as de-
scribed by the interior solution [b] in Fig. 1. We still need to describe the pending in-
vestments so that each agent exhausts her resource. Let N̂i(x) be the minimal set of full-
investments of agent i constructed as suggested above. In general, we have N̂i(x)⊆ Ni(x),
though it could that such an inclusion relationship holds strictly in some particular cases.

Second Step.—Let us reconsider the condition over total qualities di/si = β , which is
required for agent i to makes the optimal (unilateral) investment choice described by [b]
in Fig. 1. Given our description of the first step, such a condition can be rewritten as

|N̂i(x)∩Nθ ′ |+ |{ j ∈ Nθ ′ | i ∈ N̂ j(x)}|+∑ j∈Nθ ′\N̂i(x)
xi j +∑{ j∈Nθ ′ | i/∈N̂ j(x)}

x ji

|N̂i(x)∩Ni
θ |+ |{ j ∈ Ni

θ | i ∈ N̂ j(x)}|+∑ j∈Ni
θ\N̂i(x)

xi j +∑{ j∈Ni
θ | i/∈N̂ j(x)}

x ji

= β . (5)

In addition to the requirements in Eq. (5), we must also ensure that that each agent i ∈ N

exhausts her available resource, that is

∑
j/∈N̂i(x)

xi j = R−|N̂i(x)|. (6)

In Example 3 we construct partially homophilic network by using the method in Ob-
servation 2.

EXAMPLE 3. —A Partially Homophilic Network. Consider a population consisting of
eight agents such that half of them have one characteristic or the other. Thus, we have N =
{1,2,3,4}∪ {5,6,7,8}, with NA = {1,2,3,4} and NB = {5,6,7,8}. Let R = 5. Notice
that α(n) = α(8) = 8/2 = 4, and α(nA) = α(nB) = α(4) = 4/2 = 2.

By resorting to the partitions of each population group described in the first step of
Observation 2, consider that the group NA is divided into two subgroups, NL

A = {1,2}
and NH

A = {3,4}. Similarly, the group NB is separated into two subgroups, NL
B = {5,6}

and NH
B = {7,8}. Then, the class of investment profiles described in Observation 2 re-

quires that we set N̂1(x) = {2,3}∪{5,6}, N̂2(x) = {3,4}∪{5,6}, N̂3(x) = {4,1}∪{7,8},
N̂4(x) = {1,2}∪{7,8}, N̂5(x) = {6,7}∪{3,4}, N̂6(x) = {7,8}∪{3,4}, N̂7(x) = {8,5}∪
{1,2}, and N̂8(x) = {5,6}∪ {1,2}. Up to here no agent is investing with full intensity
neither in all of the remaining same-type agents, nor in all of the different-type agents,
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as required in the class of partially homophilic networks that we are considering. Now,
using the condition in Eq. (5) of the second step of Observation 2 for a level of assortative
interest β , we need to consider

β =
4+ x17 + x18 + x51 + x61

4+ x14 + x21
=

4+ x27 + x28 + x52 + x62

4+ x21 + x32

=
4+ x35 + x36 + x73 + x83

4+ x32 + x43
=

4+ x45 + x46 + x74 + x84

4+ x43 + x14

=
4+ x51 + x52 + x35 + x45

4+ x58 + x65
=

4+ x61 + x62 + x36 + x46

4+ x65 + x76

=
4+ x73 + x74 + x17 + x27

4+ x76 + x87
=

4+ x83 + x84 + x18 + x28

4+ x87 + x58
.

In addition, Eq. (6) requires that we add the constraints

x14 + x17 + x18 = 1,x21 + x27 + x28 = 1,x32 + x35 + x36 = 1,x43 + x45 + x46 = 1,

x58 + x51 + x52 = 1,x65 + x61 + x62 = 1,x76 + x73 + x74 = 1,x87 + x83 + x84 = 1.

Given the main takeaways of the model in Subsection 4.5 for values β ∈ [βL,βH ] =
[1/3,8] we ensure that the so derived network g = g(x) is robust against unilateral devia-
tions. For the particular value β = 8/7, we can then propose symmetric non full-intensity
investments so that for each agent i ∈ N, we have xi j = 1/3 for each j /∈ N̂i(x).

5 Efficiency of Friendship Networks

Our analysis of efficiency properties relies on a classical utilitarian approach where the
social planner gives all agents the same importance, regardless of their identities and
characteristics.25 In particular, we assume that the (social) value of friendship networks

is described by a function v : G → R+, specified as

v(g(x))≡ ∑
i∈N

πi(g(x)). (7)

The notion of efficiency that we use follows closely Jackson and Wolinsky (1996). In
addition, we naturally require the social planner to face the same capacity constraints that
restrict the agents’ choices. Formally,

DEFINITION 4. A friendship network ĝ = g(x̂) induced by an investment profile x̂ is ef-
ficient if, conditional on considering investment profiles that satisfy the capacity con-

25 Utilitarian approaches have been commonly pursued in literature that explores the relationship be-
tween stable and efficient networks. See, among others, Jackson and Wolinsky (1996), Calvó-Armengol
(2003), Goyal and Vega-Redondo (2007), Bloch and Jackson (2007), and, Bloch and Dutta (2009).
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straints, the investment profile x̂ maximizes the sum of the utilities of all the agents in the
population, that is, if v(ĝ(x̂))≥ v(g(x)) for x̂ ∈ X and for each x ∈ X .

Since the social planner seeks to maximize the sum of the agents’ utilities, we consider
the class of friendship networks where all the agents exhaust the available resource R.

Proposition 4 shows that any efficient pattern must necessarily have common result-
ing qualities of both same-type and different-type friendship links across all individuals
within each of the two population groups. The key insight provided by Proposition 4
exploits the assumptions that preferences are common across agents and that they are
(strictly) convex in the (si,di) space (Assumption 2–(3)). The logic of the result in Propo-
sition 4 relies on the implication that for each feasible investment profile x ∈ X , we can
find another feasible profile x̂ ∈ X—which can be related to x in a precise way—such
that: (i) the same-type si(x̂) and different-type di(x̂) qualities are constant across all agents
within each population group NA and NB, and (ii) the social value derived from x̂ is no
less than the one derived from x. Importantly, it also follows that v(g(x̂))> v(g(x)) unless
the profile x features also common qualities si(x) and di(x) across all agents within each
population group.

PROPOSITION 4. Assume Assumption 2 and Assumption 3, and consider a preference
specification u. Let x̂ be an investment profile that induces an efficient network ĝ = g(x̂).
Then, the total qualities (si(x̂),di(x̂)) must be common across all agents in each of the two
population groups, that is, si(x̂) = sθ (x̂) and di(x̂) = dθ (x̂) for each agent i ∈ Nθ and each
type θ ∈Θ .

Proposition 4 enables us to restrict attention to a particular family of investment pro-
files x̂ that are the only candidates to induce an efficient network. Heuristically, as can be
noted from the proof of Proposition 4, such a family of profiles x̂ is characterized by the
following proposal of aggregate investments. For each agent i ∈ Nθ and each type θ ∈Θ ,
let

(a) ∑ j∈Ni
θ

xi j = ∑ j∈Ni
θ

x ji = yθθ , and

(b) ∑ j∈Nθ ′
xi j = yθθ ′ and ∑ j∈Nθ ′

x ji = zθθ ′ .

The family of profiles x̂ specified above is the unique family able to induce qualities
(si(x̂),di(x̂)) that be constant across all agents within each population group. It follows
that si(x̂) = yθθ and di(x̂) = (1/2)[yθθ ′ + zθθ ′ ] for each i ∈ Nθ and each θ ∈Θ . For such
a family of profiles, we must consider the capacity constraints imposed on the agents
(Assumption 3) with equality, so that yθθ +yθθ ′ = R for each type θ ∈Θ and for the type
θ ′ 6= θ . Finally, as also indicated in the proof of Proposition 4, such aggregate investments
must also satisfy nAzAB = nByBA and, similarly, nBzBA = nAyAB.26 By putting together all

26 This is obtained by equalizing the aggregate investments that all agents from a group Nθ make in
all agents from the other group Nθ ′ to the aggregate investments that the agents from Nθ ′ receive from all
agents from Nθ . Also notice that these requirements imply that zθθ ′ = ∑ j∈Nθ ′

x ji = (nθ ′/nθ )[R− yθ ′θ ′ ].
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the considerations above, we are left with a tractable description of the problem that faces
the social planner, namely, choosing profiles x̂ in order to maximize the expression

v(g(x̂)) =nAu
(

yAA,(1/2nA)(nR−nAyAA −nByBB)
)

+nBu
(

yBB,(1/2nB)(nR−nAyAA −nByBB)
)

.
(8)

Given all the ingredients above, we derive sufficient conditions, in Proposition 5, that
characterize unique classes of investment profiles that induce efficient networks. Each
class is described by the above mentioned aggregate outgoing/incoming investments yθθ ,
for each θ ∈ Θ . Nevertheless, note that each class includes multiple profiles x̂ because
the derived conditions do not depend on the particular investments x̂i j from each agent i

to another agent j in her same group.

PROPOSITION 5. Assume Assumption 2 and Assumption 3, and consider a preference
specification u. Let x̂ be an investment strategy profile that satisfies the necessary condi-
tion given by Proposition 4. Then,

(i) if the level of assortative interests in the population is sufficiently high, with the
particular form given by β < βl , then the investment profile x̂ that induces a unique class
of efficient networks g = g(x̂) satisfies

for i ∈ Nθ , ∑
j∈Ni

θ

xi j = ∑
j∈Ni

θ

x ji = nθ −1, ∑
j∈Nθ ′

xi j = R− (nθ −1), and

for i ∈ NA, ∑
j∈NB

x ji = (nB/nA)[R− (nA −1)+(nA −nB)];

for i ∈ NB, ∑
j∈NA

x ji = (nA/nB)(R− (nA −1)).

(ii) if the level of assortative interests in the population is sufficiently low, with the
particular form given by β > βh, then the investment profile x̂ that induces a unique class
of efficient networks g = g(x̂) satisfies, for each i ∈ Nθ and each θ ∈ Θ , ∑ j∈Ni

θ
xi j =

∑ j∈Ni
θ

x ji = R−nθ ′ , ∑ j∈Nθ ′
xi j = nθ ′ , and ∑ j∈Nθ ′

x ji = nθ ′ .

The class of investment profiles x̂ identified in (i) of Proposition 5 corresponds to
maximally homophilic networks and for agents i ∈ Nθ give us common qualities

si(x̂) = nθ −1 and di(x̂) =
n(R− (nA −1))+nB(nA −nB)

2nθ
.

The profiles identified in (ii) of Proposition 5 correspond to minimally homophilic
network and deliver common qualities si(x̂) = R − nθ ′ and di(x̂) = nθ ′ for all i ∈ Nθ .
Thus, only maximally homophilic networks are efficient for assortative levels β < βl ,
whereas only minimally homophilic networks are efficient for values β > βh.
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A few insights emerge from Proposition 4 and Proposition 5. We observe first a cer-
tain discrepancy between stability and efficiency of partially homophilic networks. In
particular, although partially homophilic networks may be stable for assortative interests
β ∈ [βL,βl]∪ [βh,βH ], such networks are not efficient. Secondly, notice that the maxi-
mally homophilic network constructed in Example 1 does not satisfy the necessary con-
dition that the resulting aggregate qualities (si,di) be common across all agents within
each population group. In that example, we indeed derived

di = 9/4 for i ∈ NL
A whereas di = 2 for i ∈ NH

A , and

d j = 5/2 for j ∈ NL
B whereas d j = 3 for j ∈ NH

B .

Note that by (i) in Proposition 5, in maximally homophilic efficient networks each
agent i ∈ NB receives an aggregate investment ∑ j∈NA

x ji = (nA/nB)(R− (nA − 1)) ≥ 2,
with strict inequality if nA > nB, from the agents from the group NA. Therefore, we obtain
the property that for a maximally homophilic network to be efficient if populations sizes
are not equal, at least three agents from the larger group NA must invest a positive amount
into each agent from the smaller group NB. This property is not satisfied in Example 1
since agent 5∈NB is receiving investments from only two agents from the group NA—i.e.,
those agents in NL

A = {1,2}.

The inefficiency of the maximally homophilic network of Example 1 highlights a more
general feature of maximally homophilic networks when the population groups differ in
their sizes. Conditional on the agents of each group having invested with full intensity in
all their same-type fellows, stability requires that at least one agent within each pair of
different-type agents invest with full intensity in the other agent. Attaining such minimum
full-intensity investments naturally entails asymmetries in investments between the two
different groups when their sizes are different. Then, when the two groups differ in their
sizes, the efficiency requirement that the aggregate qualities di be common across all
agents from each group become harder to achieve. When the two groups have the same
size, however, there are no asymmetries between the investments between different groups
required to attain stability of a maximally homophilic network. Observation 3 gives a
method to construct maximally homophilic networks that are simultaneously stable and
efficient, provided that the two groups of agents have the same size.

OBSERVATION 3. Consider a situation where nA = nB. Suppose that the level of assorta-
tive interests is sufficiently high, with the particular form β < (R− (nA −1))/(nA −1) =
βl .

Upon relabelling the names of the agents in the two population groups, let us set
NA ≡ {i1, i2, . . . , inA

} and NB ≡ { j1, j2, . . . , jnB
}. Consider a class of strategy profiles x

described as follows. For each agent ik ∈ NA, let

Ni1(x) = N
i1
A ∪{ j2, . . . , j1+(R−(nA−1))},

Ni2(x) = N
i2
A ∪{ j3, . . . , j2+(R−(nA−1))},
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and so on iteratively, until reaching

NinA
(x) = N

inA

A ∪{ j1, . . . , jR−(nA−1)}.

Analogously, for each agent jk ∈ NB, let

N j1(x) = N
j1

B ∪{i1, . . . , iR−(nA−1)},

N j2(x) = N
j2

B ∪{i2, . . . , i1+(R−(nA−1))},

and so on iteratively, until reaching

N jnB
(x) = N

jnB
B ∪{inA

, . . . , iR}.

Under this proposal, each agent of type θ = A invests with full intensity in exactly
R− (nA −1) agents of type θ = B and receives R− (nA −1) units from the agents of type
θ = B. Notice that the available resource R ∈ {nA+α(nA), . . . ,n−2}, is sufficiently large
to allow for each pair of different-type agents to have at least one of them investing with
full intensity into the other agent. Thus, the class of described strategy profiles x satis-
fies the key condition in Lemma 2. Therefore any induced network g = g(x) is robust to
bilateral deviations. Under the considered condition on the level of assortative interests
β ≤ βl , the networks in the induced class are also robust against unilateral deviations.
Furthermore, we obtain the resulting qualities si(x) = nθ −1 and di(x) = R− (nθ −1) for
each agent of type i ∈ Nθ , for each type θ ∈ Θ . Any network constructed in this way
satisfies the necessary condition for efficiency required by Proposition 4 of common re-
sulting qualities (si,di) within each population group. For β < βl the class of constructed
networks satisfies also the sufficient condition for efficiency in (i) of Proposition 5.

For the case of minimally homophilic networks, the stability condition that at least
one agent of possible each pair invests fully in the other agent needs to be satisfied within

each group. This requirement contrasts sharply with what is needed for the case of max-
imally homophilic networks. In particular, this requirement entails no asymmetries in
investments within each group, even when the groups differ greatly in their sizes. In such
cases, finding a minimally homophilic network that be simultaneously stable and efficient
is always guaranteed, as detailed in Observation 4. In fact, the class of minimally ho-
mophilic networks constructed in Example 2 satisfies the necessary condition required by
Proposition 4. Furthermore, using the details of this example, we can verify that βh = 4.
Those minimally homophilic networks suggested in the example were stable for values
of the assortative interests β ≥ 4. Thus, the sufficient condition given by Proposition 5
guarantees that the class of minimally homophilic networks constructed in Example 2 are
efficient. Furthermore, for β > 4, the investment profile used to construct the network in
the example belongs to the unique class of profiles that induce efficient networks.

OBSERVATION 4. Suppose that the level of assortative interests in the population is suf-
ficiently low, with the particular form β ≥ nA/(R− nA) = βh. Let us resort to the class
of minimally homophilic networks constructed in Corollary 4. First, upon relabelling

36



the names of the agents in Nθ , for each type θ ∈ Θ and the type θ ′ 6= θ , let us set Nθ ≡
{i1, i2, . . . , inθ

}. Then, for each agent ik ∈Nθ , let us consider Ni1(x)=Nθ ′∪{i2, . . . , iR−(nA−1)},
Ni2(x) = Nθ ′ ∪ {i3, . . . , iR−(nA−2)}, and so on iteratively, until reaching Ninθ

(x) = Nθ ′ ∪

{i1, . . . , iR−nA
}.

Regarding stability, note that the available resource R ∈ {nA +α(nB), . . . ,n− 2}, is
sufficiently large to allow for each pair of same-type agents to enjoy a full-investment
made by (at least) one of the two agents in the pair. Any network in the suggested class
is therefore robust to bilateral deviations. Moreover, while each agent i ∈ Nθ is investing
exactly R−nθ ′ units in her same-type fellows, she is also receiving exactly R−nθ ′ units of
investment from the agents in her own population group. Thus, for the proposed level of
assortative interest β ≥ βh, the suggested networks are also robust to unilateral deviations.

Regarding efficiency, notice that for each agent i ∈ Nθ and each type θ ∈Θ , it follows
that the quality of her different-type links is di(x) = nθ ′ , for θ ′ 6= θ , while the quality
of her same-type links is si = R− nθ ′ . The networks in this class satisfy then the neces-
sary condition for efficiency in Proposition 4 that the qualities (si,di) be common across
all agents within each population group. Furthermore, for β ≥ βh, the suggested class
of satisfies also the sufficient condition in (ii) of Proposition 5. The proposed class of
mimimally homophilic networks are thus stable and efficient.

For the particular case where the sizes of both population groups are the same, the
following corollary to Proposition 5 characterizes efficient networks in terms of the as-
sortative interests of the population.

COROLLARY 6. Assume Assumption 2 and Assumption 3, and consider a preference
specification u. Then,

(i) the investment profile x̂ that induces a unique class of efficient networks g = g(x̂)
satisfies, for each i ∈ Nθ and each θ ∈Θ ,

∑
j∈Ni

θ

xi j = ∑
j∈Ni

θ

x ji = n/2−1, ∑
j∈Nθ ′

xi j = R− (n/2−1), and ∑
j∈Nθ

x ji = R− (nA −1)

if and only if level of assortative interests in the population is sufficiently high, with the
particular form given by β < βl;

(ii) the investment profile x̂ that induces a unique class of efficient networks g =
g(x̂) satisfies, for each i ∈ Nθ and each θ ∈ Θ , ∑ j∈Ni

θ
xi j = ∑ j∈Ni

θ
x ji = R− n/2, and

∑ j∈Nθ ′
xi j = ∑ j∈Nθ ′

x ji = n/2 if and only if the level of assortative interests in the popula-
tion is sufficiently low, with the particular form given by β > βh;

(iii) if the level of assortative interests in the population is intermediate, with the par-
ticular form given by β ∈ (βl,βh), then the investment profile x̂ that induces a unique
class of efficient networks g = g(x̂) satisfies ŷ = yAA = yBB with β = (R− ŷ)/ŷ = (n+
2m)/2ŷ−1 and, therefore, ŷ = R/(1+β ) = (n+2(R− (nA−1)))/2(1+β ) for an aggre-
gate investment choice ŷ ∈ (R−n/2,n/2−1).
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Going back to our examples, recall that the stable partially homophilic network con-
structed in Example 3 required that β = 8/7. Now, it can be also verified that the network
obtained in the example features ŷ = ∑ j∈Ni

θ
xi j = ∑ j∈Ni

θ
x ji = 7/3 for each agent i ∈ Nθ

and each type θ ∈ Θ . We observe from the implication in (iii) of Corollary 6 that ef-
ficiency requires in this case that ŷ = R/(1+ β ) = 5(1+ 8/7) = 7/3. Hence, such a
partially homophilic network is both stable and efficient.

6 On Possible Extensions of the Benchmark Model

In this section we comment on plausible ways of meaningfully extending our model.
Our main points of discussion are heterogeneous assortative interests and heterogeneous
capacity constraints. Additionally, we comment as well on the implications of reducing
the size of the resource R, and of modifying the technology of linkage quality.

6.1 Heterogeneous Assortative Interests

An interesting modification to our analysis could allow for heterogeneity in the level
of the assortative interests of the agents. This would have strong implications for the
emergence of specific stable structures. In particular, the resulting new setting would be
incapable of deriving stable structures in which all individuals behave as in solution [b]
in Fig. 1. Stable partially homophilic networks would instead require that some indi-
viduals behave as in solutions [c] or [a] in Fig. 1—due to that condition β si = di would
no longer be required for all agents for a common β . Interestingly, even under hetero-
geneous assortative interests, our results in Proposition 1 and Proposition 2 continue to
hold with minor modifications. Specifically, consider without loss of generality a situa-
tion in which β1 > β2 > · · · > βn. Then, the result in Proposition 1 would continue to
hold if β1 ≤ β̂ (x)—i.e., if the individual with the lowest assortative interests values rela-
tively more same-type links than different-type ones. Similarly, the result of Proposition 2
would continue to hold if βn ≥ β̃ (x)—i.e., if the individual with the highest assortative
interests values relatively more different-type links than same-type ones.

In this vein, another interesting situation could arise when the level of assortative
interests differs between the two groups. Specifically, consider that the agents from the
larger group NA have assortative interests, βA ≤ 1, while the agents from the smaller group
NB have disassortative interests, βB > 1. Observe that in this case, neither maximally nor
minimally homophilic networks can be stable.27 In a maximally homophilic network
at least one agent from group NB prefers to unilaterally deviate to invest in others of
different type. Analogously, in a minimally homophilic network at least one agent from

27 More generally, only partially homophilic networks may arise as stable if there are two subgroups,
one of them having assortative interests and the other one having disassortative interests.
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group NA prefers to unilaterally deviate to invest in same-type others. This observation
relies crucially on the results in Proposition 3.

Stability of a partially homophilic network in which agents from group NA invest with
full intensity among themselves and agents from group NB invest with full intensity in
agents from group NA requires first that agents obey their unilateral incentives. Then,
for the agents in group NA we must have βA ≤ β̂ (x), as described in condition 1. of
Proposition 1. In addition, for the agents in group NB we must have28

βB ≥ β̆ (x)≡ sup
i∈NB

nA +2Id
i

R−nA +2Is
i

.

In addition, stability requires robustness against bilateral deviations. Therefore, we
need agents in group NB to invest among themselves using the mechanism specified in
Corollary 4. Importantly, because such agents j ∈ NB already invest with full intensity
in agents i ∈ NA, the possibility of bilateral profitable deviations among different-type
agents, is already ruled out. As a consequence, there is no restriction on how agents from
group NA should distribute their investments in agents of group NB.

On some interpretations that can emerge from this plausible extension, in the above
described class of partially homophilic networks, some agents from group NB behave
unilaterally as in [a] of Fig. 1, while agents from group NA behave unilaterally as in [c] of
Fig. 1. Such behaviors can not be part of a stable network in our benchmark model. Now,
we can interpret this class of networks as one in which individuals of the smaller group
NB get assimilated to the larger group NA. The formal study of assimilation processes
has become relevant in economics, sociology, and social psychology.29 This extension
of our model seems capable of suggesting a logic for social assimilation processes in
multi-characteristic populations with groups of substantially different sizes.

6.2 Heterogeneous Capacity Constraints

Undoubtedly, appealing situations arise when agents are heterogeneous in the resources
they have to invest in social relations. To comment on this possibility, we could consider

28 The lower bound β̆ (x) on the value of β differs from the one in Proposition 2 (β̃ (x)). The reason
behind this discrepancy is that, in the proposed network, agents in group NB do not necessarily receive full
intensity investments from agents in group NA. Furthermore, as a more intricate plausible twist, note that
the group-specific values βA and βB could in principle be even different across agents within each group. In
that case, however, we could write β i

A and β
j

B for arbitrary agents i ∈ NA and j ∈ NB. Then, the described
bounds on β could then be easily accommodated so as to sustain the described partially homophilic network
as stable.

29 Using a model that focuses on the labor market outcomes of disadvantaged groups, Battu et al. (2007)
investigate mechanisms that could explain how agents from smaller (or minority) groups get assimilated to
larger (or majority) groups. Within the social psychology literature, Berry (1997) also explains assimilation
behaviors in immigrant populations that would be in consonance with the implications of this extension.
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without loss of generality that R1 ≥ R2 ≥ ·· · ≥ Rn.30 Under this relevant twist, our results
in Proposition 1 and Proposition 2 would continue to hold with minor modifications.

Let us first describe how the functioning of model is affected for the case of maxi-
mally homophilic networks. From the conditions required by Proposition 1 on the lower
bound β̃ (x) (condition 1), we only have to carefully take into account that now the avail-
able resources are agent-specific. As to the requirements of condition 2 of Proposition 1,
an interesting way to accommodate for the proposed twist would be to require that the
smallest resource, Rn, be sufficiently high. By doing so, it would possible to comply with
the condition that, for each link, at least one of the agents invests one unit into the other.
Interestingly, this strategy would allow for the construction the maximally homophilic
network which was prescribed by Corollary 2, provided that Rn ≥ nA +(nB − 1)/2. The
modified procedure would then simple. Notice that all agents would have, at least, an
amount of resource of Rn, (i.e., the amount of resource in the hands of most constrained
agent). The adjusted procedure would then prescribe to use, for each agent in the pop-
ulation, the common minimum available resource Rn, and then to allocate investments
among agents of different-type exactly as prescribed earlier by Corollary 2. In this case,
there would remain available non-invested resources, which would naturally correspond
to the less constrained agents. Under our monotonicity assumption, such resources could
then be allocated in any arbitrary manner, once we have guaranteed that the proposed
network already satisfies the conditions in Proposition 1.

Now, we could apply a totally analogous approach to see how the construction of min-
imally homophilic networks is affected. First, with respect to condition 1 of Proposition 2,
we should take into account that the available resources are now agent-specific. Secondly,
with respect to condition 2 of Proposition 2, we could follow the approach of assuming
that the most constrained agent have a sufficiently large amount of resource. Then, in
order to construct a minimally homophilic network following the logic of Corollary 4, we
would now use the common minimal resource Rn, which is available to all the agents. The
remaining resources, which the less constrained agents still own, can again be allocated
in any arbitrary fashion. In contrast to the case in which the resource R is common to all
agents, however, one cannot hope now for general results of efficiency of the sort of min-
imally homophilic network proposed in Corollary 4. This is due to the fact that, unless
we restrict attention to very specific situations, we would have si = Ri−nθ ′ 6= R j −nθ ′ for
i, j ∈ Nθ for each type θ ∈Θ and θ ′ 6= θ .

A final comment on tractability is in order. Under the presence of asymmetries, either
in group sizes (i.e., nA > nB) or in preferences (discussed in Subsection 6.1), it is in gen-
eral hard to guarantee the existence of partially homophilic networks in which all agents
behave as in [b] of Fig. 1. The same implication follows when the available resources
differ across agents. Notice however that the partially homophilic network described in
Subsection 6.1, in which agents from group NA have assortative interests while agents

30 Note that this consideration is sufficiently general to account for situations in which there is a subgroup
of the society which has more resources that the rest of of agents.
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from group NB have disassortative interests, arises as stable even when agents have dif-
ferent resources. In this class of networks, some agents would unilaterally behave as in
[a] of Fig. 1 and some other agents would behave as in [c] of Fig. 1. With heterogeneous
resources, we only have to incorporate now the fact that, in the expressions of the values
for β̂ (x) and β̆ (x) discussed in Subsection 6.1, now the resources are agent-specific. If the
resource of the most constrained agent, Rn, is sufficiently large so as to comply with the
lower bound in Corollary 4, then agents from group NB, exhibiting disassortative interests,
could still invest with full intensity in agents from group NA. In addition, they could also
invest among themselves in ways such that, in each link, at least one of the two agents
invests one unit. Since, in this case, agents from group NB would be investing in agents
from group NA with full intensity, the requirement that each link must contain at least
one agent investing one unit, would be automatically satisfied. Therefore, we would need
no further requirement on how agents of group NA should distribute their investments in
agents of group NB.

6.3 The Particular Size of the Resource R

As argued earlier, to address our research questions, we find convenient to restrict atten-
tion to environments in which R ≥ nA + 1. We turn now to discuss on the sort of stable
networks that might arise when R ≤ nA. First, notice that, if R ≤ nA, then there would not
exist minimally homophilic stable networks because the requirement on the size of the
resource in condition 2 in Proposition 2 would not be satisfied. Secondly, for the class of
maximally homophilic networks to be stable, the requirement on the size of the resource
R in condition 2 of Proposition 1 must be satisfied. Direct algebra shows that if R ≤ nB,
then the condition of the minimum size of the resource cannot be satisfied.31 That would
in turn imply that, even for the case nA = nB, maximally homophilic networks are not
stable. For nA > nB, direct algebra shows that, for the requirement on the size of R de-
scribed in condition 2 of Proposition 1 to be satisfied when R ≤ nA, it must be the case
that [nB]

2 ≤ n. Then, for R ∈ (nB,nA] and provided that R ≥ α(n), maximally homophilic
networks are stable and characterized by Proposition 1. As above, for R ≤ nB, maximally
homophilic networks are not stable.

To guarantee the stability of partially homophilic networks, restrictions on the size
of the available resource should in general be such that R ≥ α(n) holds, as previously
discussed. In this case, the algorithm proposed in Subsection 4.6 still works. As an
illustration, let us go back to Example 3 and consider instead that R = 4 < nA +1 (rather
than R = 5). In this case, each agent i would invest with full intensity in four agents and
di = 4 = si. Furthermore, there would be no remaining resources for non full-intensity
investments. This partially homophilic network would stable for β = 1.

Finally, we should emphasize that, if we restrict attention to networks that are only
Nash stable, such networks could exist even in situations in which R is very small. This

31 In particular, it would imply that nA ≤ 2, which contradicts the basic assumptions of the model.
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would be the case because the premium of mutual effort ceases to have effect. In conse-
quence, it would no longer be required that, in each pair, at least one of the agents invest
one unit. The only obvious requirement that we would need to care for would be that in
the resulting network, for each agent i ∈ N, the ratio di/si is a strictly positive number.
For instance, if we considered R = nA and nA > nB, then a minimally homophilic network
would arise as Nash stable under condition 1 of Proposition 2, provided that each agent
from group NB receives a positive investment effort, which could in fact be arbitrarily
small, from agents in group NA.

6.4 Linkage Quality Technology

Another possible modification refers to the linear technology for linkage quality assumed
in Eq. (1). One could envision the presence of complementaries between individuals of
different characteristics as being aptly captured by a technology that explicitly features
complementarities between the mutual investments xi j and x ji made by agents i and j

of different characteristics. Considering complementarities in the linkage quality tech-
nology, however, would affect drastically the tractability of the analysis in the current
setting. Notice that our linear technology assumption enables us to work with a “manage-
able” mapping from the set of possible profiles X to the (si,di) space of aggregate link
qualities for each agent i. Recall that our general class of preferences u are precisely de-
fined over the (si,di) space. Under a non-linear technology involving complementarities,
the described maximization problem described in Eq. (2) and Fig. 1 will become highly
intractable. Crucially, adding complementaries to the assumed linkage quality production
(when individuals belongs to different groups) would naturally enhance heterophilic be-
havior in stable patterns. We already obtain that type of qualitative insights using instead
a simple linear technology with no such complementarities. In this regard, our proposal
seeks precisely to avoid this sort of (technology-driven) counter-effects to enhance het-
erophilic behaviors when assortative interests prevail. In a way, our setting essentially
captures the presence of complementaries by embedding them directly in our preference
specification. High values of β give us precisely a preference for complementary in-
vestments even though such complementary investments do not enhance the “physical”
quality of the link.

7 Literature Connections

To capture relations where mutual consent is required to form links, our stability notion
builds closely upon the weak bilateral equilibrium (wBE) stability concept proposed by
Boucher (2015). In turn, such a wBE notion weakens the concept of bilateral equilibrium
due to Goyal and Vega-Redondo (2007). Our approach to analyze efficient friendship
networks follows the canonical framework proposed by Jackson and Wolinsky (1996).
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On the instrumental side, our proposal where agents make continuous-investment
choices to build up link qualities can also be found in Bloch and Dutta (2009). Another
similarity with Bloch and Dutta (2009) lies in considering a fixed amount of a resource
that the agents can allocate in their link formation efforts. Their model is quite different,
though, in the sort of questions studied. In particular, they do not consider agents with
different characteristics and, accordingly, they do not explore questions of homophily
homophily.32 Another paper in which the agents are exogenously constrained in their
capacities to form links is Staudigl and Weidenholzer (2014). Their research questions
and approach are quite different from ours as their analysis in not concerned with ques-
tions of homophily in populations with agents of different characteristics. Following an
evolutionary approach, their investigation focuses on constrained link formation under
the stability notion proposed by Bala and Goyal (2000), which considers robustness only
against unilateral deviations.

Models where agents have different characteristics abound in the social and economic
networks literature. Most efforts have traditionally focused on the question of how as-
sortative interests influence the outcomes of relevant network-based phenomena, such as
decisions in labor markets (Montgomery, 1991), opinion formation (Golub and Jackson,
2012; Jimenez-Martinez, 2015; Melguizo-Lopez, 2019), friendship formation via match-
ing (Currarini et al., 2009), formation of random networks (Bramoullé et al., 2012), or
strategic network formation (De Marti and Zenou, 2017; Iijima and Kamada, 2017).

Perhaps the closest paper to ours in terms of the type of questions asked is Currarini
et al. (2009) which proposes a search model of endogenous matching to explore friendship
connections. As in our model, in their setting agents care ultimately only about same-type
and different-type links. Their exercise is quite different from ours as their goal is to match
(and rationalize) certain empirical regularities regarding only homophilic tendencies. We
attempt to provide a theoretical framework, in which any plausible assortative interests are
taken as a primitive, that helps us understand properties of patterns with either homophilic
or heterophilic features in the presence of capacity constraints. At the modeling level, we
use a simultaneous-move network formation game, while their model is one of dynamic
matching. In addition to proposing the stability notion (wBE) that we use in our paper,
Boucher (2015) assumes as well capacity constraints to investigate friendship links in
societies where individuals have different characteristics. Unlike our model, his goal is to
explore a particular form of homophily, known as structural homophily,33 which is based
on very different considerations from the homophilic features that we analyze. Boucher
(2015) proposes a game-theoretical model to rationalize the phenomenon of structural
homophily and then conducts a thorough empirical exercise that allows him to adjust data

32 The pioneering contributions on strategic link formation within the economic and social networks
literature for the case where agents are not distinguished according to (extrinsic) characteristics are Jackson
and Wolinsky (1996) and Bala and Goyal (2000). Other contemporary efforts include Goyal and Vega-
Redondo (2007), Hagenbach and Koessler (2010), Galeotti et al. (2013), and Baumann (2021).

33 Intuitively, structural homophily occurs when, for each pair of individuals, if their characteristics are
not very far from each other (according to a metric), then the individuals are connected.

43



on structural homophily to the theoretical model.

Another paper related to ours is De Marti and Zenou (2017), which adapts the sym-
metric connections model by Jackson and Wolinsky (1996) to a setting in which indi-
viduals may have two types and linking costs are endogenous. Unlike our setup, link
formation is done through a discrete choice in their model. This choice precludes the
critical analysis that our model provides about effort intensities in link quality formation.
In particular, our key insights about the presence of heterophilic features in highly ho-
mophilic patterns depend crucially on modeling link formation by means of a continuous
choice.34 Regarding efficiency, the results in De Marti and Zenou (2017) are restricted
to the comparison of two particular network structures, while our aim is to offer a more
general message regarding general properties that the networks must satisfy to be effi-
cient. Another recent paper, quite different from ours in terms of the questions asked and
the setup proposed, in which agents differ ex ante in their characteristics is Galeotti et al.
(2006).

Baccara and Yariv (2013) consider a model in which homophily arises endogenously
as a consequence of a (binary) project choice. Similarly to our model, a given param-
eter determines the (exogenous) inclination of the agents for one project or another. In
their model, stability requires that agents connect sufficiently with (relatively) similar
individuals. Baccara and Yariv (2013) provide conditions under which connections be-
tween dissimilar agents arise in stable patterns. In addition, for an application in which
the projects allow for information sharing, their analysis conveys the message that seg-
regation is easier to maintain when the preferences of the individuals between the two
projects are sufficiently opposed. Although their model is quite different from ours, their
perspective of studying endogenous homophily levels that may arise from quite general
(exogenous) tastes resembles our approach to the topic.

Using a model of dynamic network formation (which incorporates random matching
as well), König et al. (2010) consider that agents are restricted by capacity constraints. In
their model, the inclusion of capacity constraints is crucial to switch from disassortative
to more assortative networks. Their notion of assortativity, however, is quite different
from the one considered in our paper (which follows the prevalent notion in the sociology
literature). In particular, their approach does not consider relations between individuals
with different (extrinsic) characteristics. Instead, their notion of assortativity refers to
individuals being prone to connect with others that have similar degrees. In this sense,
individuals have a certain (endogenous) characteristic, defined as the number of their
(direct) neighbors, and assortativity is interpreted as individuals being relatively more
inclined to link with others that have similar numbers of neighbors. Also, within the
empirical literature, Mele (2017) proposes a model of network formation in which, as in
our setting, agents are divided into two different categories. For the case of sufficiently
large networks, his analysis provides useful identification and estimation techniques.

34 Also, De Marti and Zenou (2017) consider the stability notion of pairwise stability, which would lead
to a profound multiplicity of stable patterns if applied to our setting.
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Some of our messages on the stability of heterophilic friendship patterns are remi-
niscent of the insights provided by Galenianos (2021). His model is quite different from
ours as he does not consider general friendship connections but focuses on the formation
of referral networks in job markets. As a consequence, the motivations of the agents to
form links are very specific to job market situations. In particular, workers form links
in order to refer to and be refereed by according to the demands of firms. Interestingly,
referral networks in his setup feature high levels of heterophily, with the particular form
of being hierarchical.35 Finally, clear reminiscences to our insight that links are spon-
sored by just one friend while the other free rides can also be found in Galeotti and Goyal
(2010). While such an insight depends crucially on the presence of capacity constraints
in our model, in their analysis it is the assumption that agents can invest both in acquiring
information and in forming links what leads to the implication. Under certain conditions,
Galeotti and Goyal (2010) obtain that just a few agents invest in acquiring information,
while most agents take advantage of this and invest in linking to the former individuals.
Their insight is quite relevant in the formation of friendship links and points towards a key
implication that we put forward in the current paper. The underlying mechanisms behind
the two qualitatively similar implications are quite different though.

8 Concluding Remarks

This paper has developed a framework to explore stability and efficiency properties of
friendship networks in populations of agents with different characteristics. We have taken
any plausible underlying level of assortative interests as a primitive of the model. Addi-
tionally, we have assumed that investments in each single relationship are bounded and
that the agents are capacity-constrained in the amounts of investments they can make rela-
tive to the rest of the population. The proposed setting has the flavor of traditional (static)
consumption/production choice models. The decision choice that faces each agent when
assessing her unilateral incentives resembles a classical utility-maximization problem,
though the feasibility constraint has different fundamentals and form. The presence of
capacity constraints stands out as crucial consideration. In those elements, our proposal
is, to the best of our knowledge, quite different from most available models in the litera-
ture on social networks. While complementing some views offered by recent papers on
homophily and segregation in groups, our model allows for novel and testable insights
about (i) the prevalence of good-quality heterophilic relations in highly homophilic so-
cieties and (ii) the coexistence of heterophilic and homophilic relations when the sort
of collaborative motivations are important. Our results do not depend on the parametric
specifications of preferences (other than the level of assortative interest), but on the role
of available resource via capacity constraints, and on the sizes of the groups. Our model
enables us to draw conclusions on how these simple ingredients determine the emergence

35 Recent empirical work on labor markets (Hensvik and Skans, 2016; Beaman et al., 2018) offers find-
ings very consistent with such results of hierarchical networks of referrals.
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of stable and efficient networks for a broad class of preferences.

We close our conclusions by commenting on a couple of points in which our insights
stand in consonance with key implications of other quite different theoretical papers,
which are yet quite different from ours in terms of the questions asked, and in their mod-
els and main assumptions. First, on welfare analysis, Currarini et al. (2009) invoke more
particular forms for the agents’ utilities than we propose. Under such forms, they ob-
tain that, provided that (i) same-type and different-type links are substitutes, and (ii) the
marginal benefits of same-type links are the highest possible, a pattern of complete seg-
regation maximizes welfare. This insight is clearly in consonance with our result that,
for high enough assortative interests, maximally homophilic networks are efficient. Sec-
ondly, Baccara and Yariv (2013) consider a setting in which an agent’s type captures her
inclination towards either of two public projects. Then, in stable situations, agents that are
exogenously similar end up endogenously in a common group. In this respect, their model
delivers a certain degree of (endogenous) homophily. In addition, for an application of
theirs, in which connections allow for information sharing, fully segregated groups com-
posed by agents of the same type can emerge only when types are sufficiently different.
Although our modeling choice is very different, such an implication is in consonance with
our result that maximally homophilic networks arise as stable only if interests for mak-
ing friends lean strongly towards assortativity—i.e., β ∈ (0,βl]. The analysis of Baccara
and Yariv (2013) also obtains that stable groups may be heterogeneous with the particular
form that such patterns must not contain only one type of individual. In this vein, our
result that stable maximally homophilic networks are characterized by a certain degree of
quality of heterophilic connections is also in consonance.
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Appendix

Omitted Proofs.—

PROOF OF Lemma 2. Consider a strategy profile x that induces a Nash stable friendship
network g = g(x). For an arbitrary agent i, let (si(x),di(x)) be the aggregate same and
different-type qualities induced by x. By Assumption 3, for agent i ∈ Nθ , R−nθ ′ ≥ 1 if i

invests with full intensity in all others of different type and R− (nθ − 1) > 1 if i invests
with full intensity in all others of her same type. Since nθ ≥ 3 for each type θ ∈Θ , we can
consider a deviation by a pair of agents i, j ∈ N of different type, θ and θ ′, respectively,
described as follows:

(i) Consider that neither agent i nor agent j invest one unit into each other, that is,
xi j ∈ [0,1) and x ji ∈ [0,1). Consider that agent i decreases the sum of her investments
in agents from Nθ ′ \ { j} by an amount εi > 0 and, at the same time, agent j decreases
the sum of her investments in agents from Nθ \ {i} by an amount ε j > 0. Notice that
agent i can always decrease investments in this way as R− (nθ −1)> 1 or, alternatively,
∑k∈Nθ ′\{ j} xik > 0. The argument is analogous for agent j.

(ii) Agent i invests the saved amount εi in agent j and, at the same time, agent j

invests the saved amount ε j in agent i. With this class of deviations we obtain new values
d′

i = di + ε j and d′
j = d j + εi for the total qualities of different-type links, while the total

qualities of same-type links si and s j remain unchanged.

By the monotonicity of preferences, i and j strictly benefit form this class of joint
deviations. Such deviations are avoided if the strategy profile x does not allow for the re-
investments described in (ii). Notice that the only way to avoid such re-investments is to
require that for each pair of different agents, at least one of the agents is already investing
with full intensity in the other agent.

We now show that if the aforementioned class of deviations is avoided, there is no
other joint deviation from profile x such that both agents from a given pair strictly benefit.
In particular, any other type of deviation leaves at least one of the agents indifferent or
worse off than before the deviation. Specifically, consider a pair of agents i and j of
different type, θ and θ ′, respectively:

1. Let i and j be such that x ji = 1 and xi j ∈ [0,1). Notice that as xi j is part of i′s

(unilateral) optimal strategy, it must be that either: (i) β = di(x)/si(x), that is, i

behaves as in [b] of Fig. 1 or (ii) β < di(x)/si(x), that is, i behaves as in [a] of
Fig. 1. Consider that i and j jointly deviate. Denote the new strategies of i and
j, by x′i and x′j, respectively and the new strategy profile by x′. Consider that the
new strategy of agent j in particular satisfies, x′ji = x ji with x′ 6= x. That is, j does
not alter her investment in i. Notice that for i, given her new strategy x′i, there are
three possible scenarios: (a) if x′i is such that she does not change her investment
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in same-type and different-type agents, she is as well off as before the deviation,
(b) if x′i is such that i increases her investment in different-type others and hence
decreases her investment in same-type others, it then follows that di(x

′) > di(x)
and si(x

′) < si(x). Then there are two options according to the above cases: (i)
β = di(x)/si(x)< di(x

′)/si(x
′) and thus same-type relationships become marginally

more valuable than different-type ones or (ii) β < di(x)/si(x) < di(x
′)/si(x

′) and
thus same-type relationships are marginally more valuable than different-type ones.
Then, in either case i is worse off than before the deviation. Finally, (c) x′i is such
that i reduces her investment in different-type others and increases her investment
in same-type others. Then, in the above scenario (i) di(x

′)/si(x
′)< β = di(x)/si(x)

and thus different-type relationships are marginally more valuable than same-type
ones. Thus again, i is worse off than before the deviation.36

2. Let i and j be such that xi j = 1 and x ji = 1. Notice that in this case i may be
behaving unilaterally as in: (i) [b], (ii) [a] or (iii) [c] of Fig. 1. Consider that i

and j deviate to the new strategies x′i and x′j. For agent j, let x′ji = x ji with x′ 6= x

as in case 1 above. There are three possible scenarios: (a) if x′i is such that she
does not change her investment in same-type and different-type agents, she is as
well off as before the deviation, (b) if x′i is such that i increases her investment in
different-type agents and hence decreases her investment in same-type others, then
there are two options according to the scenarios (i) and (ii) above, and the reasoning
is exactly analogous as in case 1. (b), thus, i is worse off than before the deviation.
Finally, (c) x′i is such that i reduces her investment in different-type others and
increases her investment in same-type others. It then follows that di(x

′) < di(x)
and si(x

′) > si(x). Then there are two options according to the above scenarios:
(iii) di(x

′)/si(x
′) < di(x)/si(x) < β or (i) di(x

′)/si(x
′) < β = di(x)/si(x). In both

scenarios different-type relationships are marginally more valuable than same-type
ones. Thus, i is worse off than before the deviation.

The case in which j reduces her investment in i, so that x′j particularly entails that
x′ji = x ji − ε j, ε j > 0, is analogous. Moreover, in (a) of cases 1 and 2 above, agent i

becomes even worse off than before the deviation as she loses different-type investments.

The case in which i and j are of the same type θ is also analogous and therefore, we
omit the details.

PROOF OF Proposition 1. Consider a strategy profile x that induces a maximally ho-
mophilic network g = g(x). Hence, for each agent i ∈ N of type θ , we have xi j = 1 for
each j ∈ Ni

θ and ∑ j∈Nθ ′
xi j = R− (nθ −1) for the type θ ′ 6= θ .

1. Robustness against unilateral deviations: First, it directly follows that Is
i (x−i) =

(1/2)(nθ −1) for each agent i of type θ . Then, the particular value β (θ ;x−i) of the slope

36 Notice that if i already behaves as in [a] of Fig. 1, the scenario (ii) above, where β < di(x)/si(x) and i

is investing with full intensity in same type others, case (c) cannot take place.
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β specified in footnote 16, under which each agent i of type θ is indifferent between
investing with full intensity in links to each other agent of her same type and investing
less, equals:

β (θ ;x−i) =
R− (nθ −1)+2Id

i (x−i)

2(nθ −1)
.

Therefore, if for each possible type θ ∈Θ , and each type θ ′ 6= θ , the level β of assortative
interests equals the indifference cutoff value β (θ ;x−i) above, then no agent has unilateral
incentives to deviate from the proposed strategy profile x, as stated by condition 1. of the
proposition. On the other hand, if β > β (θ ;x−i), then such an agent i ∈ Nθ has incentives
to deviate from investing with full intensity in each other agent of her same type. Thus,
the inequality β ≤ β (θ ;x−i), for each i ∈ Nθ and each type θ ∈ Θ , gives us a necessary
condition for x to be stable.

2. Robustness against bilateral deviations: Note first that if β ≤ β (θ ;x−i), then no
agent of type θ has incentives to lower her full-intensity investments in each other agent of
her same type. Therefore, no pair of two different agents of the same type have incentives
to deviate from investing with full intensity in each other agent of type θ either. The
only possible class of profitable bilateral deviations that remains to be ruled out must then
involve two agents of different types. In particular, since nθ ≥ 3 for each type θ , we can
consider a deviation by a pair of agents i and j, with i ∈ NA and j ∈ NB, in which each of
the two agents redirect third-party investments into each other. As already argued in the
proof of Lemma 2, such a (unique) class of bilateral deviations is prevented if and only
if for each pair of agents that belong to different groups at least one of the agents invests
with full intensity in the other agent, as stated in 2. of the proposition.

Finally, we verify that the size of the resource R allows for the type of connections
described in conditions 1. and 2. of the proposition to be feasible for all agents in the
population. Note that under a strategy profile x that induces a maximally homophilic
network, the capacity constraint requirement (Assumption 3) for each agent i ∈ Nθ , for
θ ∈Θ , takes the form

(nθ −1)+ ∑
j∈Nθ ′

xi j ≤ R.

By aggregating the requirement above across all agents i ∈ Nθ , for both types θ ∈ Θ , it
follows then that the size of the resource R must necessarily satisfy

nA(nA −1)+nB(nB −1)+ ∑
i∈NA

∑
j∈NB

xi j + ∑
i∈NB

∑
j∈NA

xi j ≤ nR. (9)

Note that the number of possible pairs (i, j) ∈ NA ×NB of different-type agents is nAnB.
If for each of such nAnB different possible pairs at least one of the agents from the pair
invests with full intensity in the other agent, as prescribed by condition 2. of the proposi-
tion, then the minimum aggregate quality for the connections among different-type agents
amounts precisely to nAnB. Therefore, any profile x that satisfies such a condition must
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necessarily satisfy nAnB ≤ ∑i∈NA
∑ j∈NB

xi j +∑i∈NB
∑ j∈NA

xi j. By combining this inequal-
ity with the condition in Eq. (9) above, we obtain that a necessary requirement from
condition 2 of the proposition to be satisfied is nA(nA −1)+nB(nB −1)+nAnB ≤ nR, or
equivalently, R ≥ (n−1)−nAnB/n.

PROOF OF Corollary 2. The sufficient conditions for β and R derived by Corollary 2
follow from the requirements of Proposition 1. First, note that for the class of strategy
profiles x proposed in the corollary, we have Id

i (x−i) ≥ (nB −1)/2 for each agent i ∈ Nθ

and each type θ ∈ Θ . Then, by combining the lower bound (nB − 1)/2 on the total
incoming intensity Id

i (x−i) with the condition 1. derived in Proposition 1, it follows that
β ≤ [R+(nB −nA)]/2(nA −1) is a sufficient condition for all agents to have incentives
to invest with full intensity in each other same-type agent. Secondly, note that condition
2. of Proposition 1 is satisfied by construction for the strategy profiles x described by
the corollary. Thirdly, consider an agent i ∈ Nθ , for θ ∈ Θ , who makes investments as
prescribed by the class of strategy profiles x proposed in Corollary 2 but does not invest
any extra amount on any other different-type agent. Then, it follows that xi satisfies

∑
j∈Ni

θ

xi j + ∑
j∈Nθ ′

xi j = (nθ −1)+nθ ′/2 for nθ ′ even;

∑
j∈Ni

θ

xi j + ∑
j∈Nθ ′

xi j = (nθ −1)+(nθ ′ −1)/2+1 for nθ ′ odd.

In addition, we know that for each agent i ∈ Nθ and each type θ ∈Θ

(nθ −1)+(nθ ′ −1)/2+1 ≤ nA +(nB −1)/2.

Therefore, if R ≥ nA+(nB−1)/2, then each agent has the amount of resource R required
to follow the prescription for the class of strategy profiles x proposed by Corollary 2.

PROOF OF Proposition 2. Consider a strategy profile x that induces a minimally ho-
mophilic network g = g(x). Hence, for each agent i ∈ N of type θ , we have xi j = 1 for
each j ∈ Nθ ′ and ∑ j∈Ni

θ
xi j = R−nθ ′ for the type θ ′ 6= θ .

1. Robustness against unilateral deviations: It follows directly that Id
i (x−i)= (1/2)nθ ′

for each agent i of type θ . Then, the particular value β (θ ;x−i) of the slope β specified in
footnote 16, under which each agent i of type θ is indifferent between investing with full
intensity in links to each different-type agent and investing less, equals:

β (θ ;x−i) =
2nθ ′

(R−nθ ′)+2Is
i (x−i)

.

Therefore, if for each possible type θ ∈Θ , and each type θ ′ 6= θ , the level β of assorta-
tive interests equals the indifference value β (θ ;x−i) above, then no agent has unilateral
incentives to deviate from the proposed strategy profile x, as stated by condition 1. of
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the proposition. On the other hand, if β < β (θ ;x−i), then such an agent i ∈ Nθ has in-
centives to deviate from investing with full intensity in each different-type agent. Thus,
the inequality β ≥ β (θ ;x−i), for each i ∈ Nθ and each type θ ∈ Θ , gives us a necessary
condition for x to be stable.

2. Robustness against bilateral deviations: Note first that if β ≥ β (θ ;x−i), then no
agent of type θ has incentives to lower her full-intensity investments in each agent of type
θ ′. Therefore, no pair of two different agents have incentives to deviate from investing
with full intensity in each other either. The only possible class of profitable bilateral
deviations that remains to be ruled out must then involve two agents of the same type.
In particular, since nθ ≥ 3 for each type θ ∈Θ , we can consider a deviation by a pair of
agents i, j ∈ Nθ , for i 6= j, in which both agents redirect third-party investments into each
other. By the proof of Lemma 2, such a (unique) class of bilateral deviations is prevented
if and only if for each pair of same-type agents, at least one of them is already investing
with full intensity in the other agent.

Finally, the size of the resource R must allow for the type of connections described
in conditions 1. and 2. of the proposition to be feasible for all agents in the population.
Under a strategy profile x that induces a minimally homophilic network, the capacity
constraint requirement (Assumption 3) for each agent i ∈ Nθ , for θ ∈Θ , takes the form

∑
j∈Ni

θ

xi j +nθ ′ ≤ R.

By aggregating the requirement above across all agents i ∈ Nθ , for both types θ ∈Θ ,
it follows then that the size of the resource R must necessarily satisfy

∑
i∈Nθ

∑
j∈Ni

θ

xi j +nθ nθ ′ ≤ nθ R. (10)

Note that the number of possible pairs (i, j) ∈ Nθ ×Nθ , with i 6= j, between same-type
agents is nθ (nθ − 1). If for each of such nθ (nθ − 1) different possible pairs, at least
one of the agents from the pair invests with full intensity in the other agent, as pre-
scribed by condition 2. in the proposition, it follows that the aggregate quality between
all the agents of type θ must be at least nθ (nθ − 1)/2. Therefore, a minimally ho-
mophilic network that satisfies such a condition must necessarily satisfy nθ (nθ −1)/2 ≤

∑i∈Nθ
∑ j∈Ni

θ
xi j. By combining this inequality with the condition in Eq. (10) above, we

obtain that (nθ −1)/2+nθ ′ ≤ R for each θ ∈Θ is a necessary requirement for condition
2. of the proposition to be satisfied. Since nA ≥ nB, it follows that R ≥ nA +(nB − 1)/2
must in fact hold.

PROOF OF Corollary 4. The sufficient conditions for β and R derived by Corollary 4
follow from the requirements of Proposition 2. First, note that, for the class of strategy
profiles x proposed in the corollary, we have Is

i (x−i) is always lower for agents i ∈ NB than
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for agents i ∈ NA. Also, for each agent i ∈ NB, we have Is
i (x−i) = R−nA. Then, by com-

bining the total incoming intensity Is
i (x−i) with the condition 1. derived in Proposition 2,

it follows that β ≥ nA/(R− nA) is a sufficient condition for all agents to have incentives
to invest with full intensity in each different-type agent. Secondly, it is easy to verify that,
by construction, the proposed strategy profile always satisfies the key condition given in
Lemma 2 to prevent profitable bilateral deviations. Finally, since nA ≥ nB, it follows that
lA = nA−nB for each i ∈ NA, whereas lB = 0 for each i ∈ NB Therefore, if R ≥ nA+α(nB),
then we can ensure that each agent has, at least, the amount R of the resource required to
follow the prescription for the class of strategy profiles x proposed by Corollary 4.

PROOF OF PROPOSITION 3. We prove statements (i) and (ii) of the proposition by con-
tradiction.

(i) Consider a strategy profile x that induces a maximally homophilic network g =
g(x). Then, for each agent i ∈ Nθ , and each type θ ∈ Θ , we have xi j = 1 for each j ∈
Ni

θ . Therefore, Is
i (x−i) = (1/2)(nθ − 1) for each agent i ∈ Nθ , and each type θ ∈ Θ .

Then, using the expression of the upper bound β (θ ;x−i) for the indifference value of β ,
associated to the unilateral optimal choice described by [a] in Fig. 1, it follows that

β̂i,θ (x)≡
R− (nθ −1)+2Id

i (x−i)

2(nθ −1)
. (11)

That is the value for the level of assortative interests under which agent i is indifferent
between investing with full intensity in each other same-type agent and investing lower
amounts in some same-type agent. First, suppose that the strategy profile x is such that
x ji = [R− (nθ ′ −1)]/nθ for each pair of agents i ∈ Nθ , and j ∈ Nθ ′ , for each type θ ∈Θ
and θ ′ 6= θ . Thus, each agent in the population receives a constant proportional amount of
investments from each different-type agent. In this case the investment received by each
agent from each different-type agent depends only on the group to which she belongs.
For each i ∈ Nθ and each θ ∈Θ , the indifference value in Eq. (11) takes the form

β̂θ ≡
nR−nθ (nθ −1)−nθ ′(nθ ′ −1)

2(nθ −1)nθ
.

Suppose that β ∈ (1,+∞). Then, each agent i ∈ Nθ has (weak) incentives to invest with
full intensity in each other same-type agent only if

β̂θ > 1 ⇔ nR−3nθ (nθ −1)−nθ ′(nθ ′ −1)> 0.

Now, recall that by Assumption 3, R < nθ +nθ ′ −1. Therefore, we know that

nR−3nθ (nθ −1)−nθ ′(nθ ′ −1)< (nθ +nθ ′)(nθ +nθ ′ −1)−3nθ (nθ −1)−nθ ′(nθ ′ −1)

= 2(n′θ −nθ +1)< 0 for some type θ ∈Θ , and for θ ′ 6= θ ,
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since nA ≥ nB. Therefore, each agent i ∈ NA has (strict) incentives to deviate from the pro-
posed profile x that induces a maximally homophilic network. Secondly, consider another
strategy profile x′ 6= x that induces as well a maximally homophilic network g = g(x′)
and such that β̃i,θ (x

′) > β̃θ . By the monotonicity of preferences, the resource constraint
∑ j 6=i x′i j ≤ R must be satisfied with equality for each agent who has no unilateral incen-

tives to deviate from x′. Then, it must be the case that β̃ j,θ (x
′)< β̃θ for some other agent

j ∈ Nθ . In other words, if β̃i,θ (x
′)> 1 for some agent i ∈ Nθ , then it must be the case that

β̃ j,θ (x
′)< 1 for some other agent j ∈ Nθ . In this case, such an agent j would have (strict)

incentives to deviate unilaterally from x′. Therefore, we conclude that if β ∈ (1,+∞), then
at least one agent in the population has unilateral incentives to deviate from any profile
that induces a maximally homophilic network.

(ii) Consider a strategy profile x that induces a minimally homophilic network g =
g(x). Then, for each agent i ∈ Nθ , and each type θ ∈Θ , we have xi j = 1 for each j ∈ Nθ ′

for the type θ 6= θ . Therefore, Id
i (x−i) = (1/2)nθ ′ for each agent i ∈ Nθ , and each type

θ ∈Θ . Then, using the expression of the upper bound β (θ ;x−i) for the indifference value
of β , associated to the unilateral optimal choice described by [c] in Fig. 1, it follows that

β̃i,θ (x)≡
2nθ ′

(R−nθ ′)+2Is
i (x−i)

. (12)

That is the value for the level of assortative interests under which agent i is indiffer-
ent between investing with full intensity in each different-type agent and investing lower
amounts in some different-type agent. First, suppose that the strategy profile x is such that
x ji = (R−nθ ′)/(nθ −1) for each pair i, j ∈ Nθ , with i 6= j, and for each type θ ∈Θ . Thus,
each agent in the population receives a constant proportional amount of investments from
each other same-type agent. In this case, the investment received by each agent from each
other same-type agent depends only on the group to which she belongs. For each i ∈ Nθ

and each θ ∈Θ , the indifference value in Eq. (12) takes the form

β̃θ ≡
nθ ′

(R−nθ ′)
.

Suppose that β ∈ (0,1]. Then, each agent i ∈ Nθ has (weak) incentives to invest with
full intensity in each different-type agent only if β̃θ ≤ 1. Using the expression for β̃θ

derived above, we observe that this is possible for each type θ ∈ Θ only if R > 2nA and
R > 2nB simultaneously. However, that is a contradiction given that by Assumption 3,
R < n−1. Secondly, consider another strategy profile x′ 6= x that induces as well a mini-
mally homophilic network g = g(x′) and such that β̃i,θ (x

′)< β̃θ . By the monotonicity of
preferences, the resource constraint ∑ j 6=i x′i j ≤ R must be satisfied with equality for each
agent who has no unilateral incentives to deviate from x′. Then, it must be the case that
β̃ j,θ (x

′)> β̃θ for some other agent j ∈ Nθ . In other words, if β̃i,θ (x
′)≤ 1 for some agent

i ∈ Nθ , then it must be the case that β̃ j,θ (x
′) > 1 for some other agent j ∈ Nθ . In this

58



case, such an agent j would have strict incentives to deviate unilaterally from x′. There-
fore, we conclude that if β ∈ (0,1], then at least one agent in the population has unilateral
incentives to deviate from any profile that induces a minimally homophilic network.

PROOF OF Corollary 5. First, consider a strategy profile x that induces a maximally
homophilic network g = g(x). Stability of such a network requires that no agent wants
to deviate unilaterally from the proposed strategy profile x. Specifically, stability of a
maximally homophilic network g = g(x) requires that

β ≤ β̂ (x) = inf
i∈Nθ ,θ∈Θ

R− (nθ −1)+∑ j∈Nθ ′
x ji

2(nθ −1)
.

Now, let us complete the description of the proposed profile x by requiring that each agent
i∈Nθ , for each θ ∈Θ , receives a common intensity of investments from the different-type
agents. Thus, consider that x satisfies ∑ j∈Nθ ′

x ji = nθ ′ [R− (nθ ′ −1)]/nθ for each i ∈ Nθ

and each θ ∈Θ . This construction of x entails that the highest possible cutoff value β̂ (x)
for the optimal unilateral behavior where agents want to invest with full intensity in all
other same-type agents (which was described by [a] of Fig. 1) cannot exceed one. Then,
given that nA ≥ nB, we observe that such a proposed maximally homophilic network
g = g(x) satisfies the criterion of robustness against unilateral deviations if and only if

β ≤
nR− [nA(nA −1))+nB(nB −1)]

2nA(nA −1)
≡ βl.

By the proof of Proposition 3 (i), the cutoff value βl in the right-hand side of the expres-
sion above cannot exceed one. Furthermore, Proposition 3 established that if β ≤ 1, then
stable minimally homophilic networks do not exist. Then, provided that the cutoff value
βl is strictly less than one, if β ∈ (βl,1], all stable networks must necessarily be partially
homophilic. For the case in which βl equals one, recall that Proposition 3 guaranteed then
that stable maximally homophilic networks do not exist for β > 1.

Secondly, consider a strategy profile x that induces a minimally homophilic network
g = g(x). Recall that robustness against unilateral deviations requires that

β ≥ β̃ (x) = sup
i∈Nθ ,θ∈Θ

2nθ ′

(R−nθ ′)+∑ j∈Ni
θ

x ji
.

Let us complete the description of the proposed profile x by requiring that each agent
i ∈ Nθ , for each θ ∈ Θ , receives a common intensity of investments from the same-type
agents. Thus, consider that x satisfies ∑ j∈Ni

θ
x ji = R−nθ ′ for each i ∈ Nθ and each θ ∈Θ .

This proposal gives us a profile x that yields the lowest possible cutoff value β̃ (x) for
the optimal unilateral behavior where all agents want to invest with full intensity in all
different-type agents (which was described by [c] of Fig. 1). Since nA ≥ nB, it follows
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that such a proposed minimally homophilic network g = g(x) satisfies the criterion of
robustness against unilateral deviations if and only if

β ≥
nA

R−nA

≡ βh > 1.

It follows from Proposition 3 (ii), that if β > 1, then stable maximally homophilic
networks do not exist. As a consequence, we know that if β ∈ (1,βh], then all stable
networks must necessarily be partially homophilic.

This completes our derivation of an interval [βl,βh] of “intermediate” assortative levels
for which only partially homophilic networks are stable.

PROOF OF Proposition 4. Consider the social value function v, defined in Eq. (7). First,
consider an arbitrary investment profile x ∈ X that induces a collection of sets of pairs
({(si(x),di(x))}i∈NA

,{(s j(x),d j(x))} j∈NB
) of same-type and different-type qualities. Then,

the average of the qualities for same-type and different-type links, respectively, across all
agents in each group Nθ can be computed as

s̄θ (x) = (1/nθ ) ∑
i∈Nθ

si(x) = (1/2nθ ) ∑
i∈Nθ

∑
j∈Ni

θ

[xi j + x ji] (13)

and
d̄θ (x) = (1/nθ ) ∑

i∈Nθ

di(x) = (1/2nθ ) ∑
i∈Nθ

∑
j∈Nθ ′

[xi j + x ji]. (14)

Secondly, using the definition of same-type si(x) and different-type di(x) aggregate
qualities, let us propose another investment profile x̂ ∈ X such that si(x̂) and di(x̂) be
constant across all agents i ∈ Nθ for each type θ ∈ Θ . From the definition of the aggre-
gate qualities, it follows that the quantities ∑ j∈Ni

θ
x̂i j, ∑ j∈Ni

θ
x̂ ji, ∑ j∈Nθ ′

x̂i j, and ∑ j∈Nθ ′
x̂ ji

must be constant across agents within each population group. Accordingly, we start by
proposing a profile x̂ such that, for each agent i ∈ Nθ and each type θ ∈Θ , we have

(a) ∑ j∈Ni
θ

x̂i j = yθθ and ∑ j∈Ni
θ

x̂ ji = zθθ , and

(b) ∑ j∈Nθ ′
x̂i j = yθθ ′ and ∑ j∈Nθ ′

x̂ ji = zθθ ′ .

In particular, for any agent i∈Nθ , the amount yθθ describes i’s total investments in the rest
of her same-type agents, whereas yθθ ′ describes i’s aggregate investments in all different-
type agents. Similarly, for any agent i ∈ Nθ , the amount zθθ describes the total of in-
vestments that i receives from the rest of her same-type agents, whereas zθθ ′ describes i’s
aggregate investments that i receives from all different-type agents. Thus, under the pro-
file x̂, the sums of the aggregate outgoing and incoming investments are only contingent
on the characteristics of the agents.

Given the proposal above, note first that, by summing the investments made and re-
ceived over all same-type agents for any type, it follows that nθ yθθ = nθ zθθ , so that it
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must necessarily be the case that yθθ = zθθ . Secondly, by noting that the sum of the in-
vestments made by all agents from Nθ in all the agents of the group Nθ ′ must be equal
to the sum of the investments received by all agents of the group Nθ ′ from all agents
from Nθ , it follows nθ yθθ ′ = nθ ′zθ ′θ . Our proposal accordingly incorporates also these
two considerations. Crucially, from the definitions of si and di, it follows that the char-
acteristics imposed by our proposal for the profile x̂ are necessary and sufficient to make
si(x̂) = s j(x̂) and di(x̂) = d j(x̂) for each pair of (distinct) agents i, j ∈ Nθ , for each type
θ ∈Θ .

Furthermore, consider that, for such a profile x̂, each agent satisfies her capacity con-
straint (Assumption 3) with equality. Then, the constant investments proposed by means
of x̂ must satisfy

yθθ + yθθ ′ = R for each θ ∈Θ , and for θ ′ 6= θ . (15)

The associated qualities are simply derived as si(x̂) = (1/2)[yθθ + zθθ ] = yθθ and di(x̂) =
(1/2)[yθθ ′+zθθ ′ ], where, as indicated above, we must also consider that zθθ ′ =(nθ ′/nθ )yθ ′θ ,
for each agent i ∈ Nθ , each type θ ∈Θ , and θ ′ 6= θ .

Now, we can set a relationship between the linkage qualities associated to x̂, which are
constant across all agents within each population group, and the average qualities derived
in Eq. (13) and Eq. (14) for the profile x. By requiring si(x̂) = s̄θ (x) and di(x̂) = d̄θ (x) for
each i ∈ Nθ and each θ ∈Θ , we obtain

yθθ =
1

nθ
∑

i∈Nθ

∑
j∈Ni

θ

xi j, zθθ =
1

nθ
∑

i∈Nθ

∑
j∈Ni

θ

x ji, and

yθθ ′ =
1

nθ
∑

i∈Nθ

∑
j∈Nθ ′

xi j, zθθ ′ =
1

nθ
∑

i∈Nθ

∑
j∈Nθ ′

x ji.

(16)

Conditional on the above established relationship (Eq. (16)) between the profiles x and x̂,
clearly the profile x̂ satisfies the capacity condition required by Eq. (15):

yθθ + yθθ ′ = (1/nθ )
(

∑
i∈Nθ

∑
j∈Ni

θ

xi j + ∑
i∈Nθ

∑
j∈Nθ ′

xi j

)

= R.

Notice also that our relationship between the two investment profiles, entails that x̂ satis-
fies x̂i j ∈ [0,1] for each pair of (distinct) agents i, j ∈ N.

Therefore, we establish the key equality u(si(x̂),di(x̂)) = u(s̄θ (x), d̄θ (x)) for each
agent i ∈ Nθ , and each θ ∈ Θ , where for each i, (si(x̂),di(x̂)) ∈ Di(x̂−i). Importantly,
we can establish such an equality regardless of whether (s̄θ (x), d̄θ (x)) belongs to the fea-
sible set Di(x−i) for each agent i ∈ Nθ , and each θ ∈Θ . Now, since the utility function u
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is (strictly) concave in the (si,di) space (Assumption 2–(3)), it follows that

v(g(x̂)) = ∑
i∈N

u(si(x̂),di(x̂)) = ∑
θ∈Θ

∑
i∈Nθ

u(s̄θ (x), d̄θ (x))

= ∑
θ∈Θ

∑
i∈Nθ

u
(

(1/nθ ) ∑
i∈Nθ

si(x),(1/nθ ) ∑
i∈Nθ

di(x)
)

≥ ∑
θ∈Θ

∑
i∈Nθ

(1/nθ ) ∑
i∈Nθ

u(si(x),di(x)) = ∑
θ∈Θ

∑
i∈Nθ

u(si(x),di(x)) = v(g(x)),

where the inequality above holds strictly unless our initial investment profile x satisfies
si(x) = s̄θ (x) and di(x) = d̄θ (x) for each i ∈ Nθ and each θ ∈ Θ . It follows then that an
efficient network g = g(x̂) requires that the qualities (si(x̂),di(x̂)) be constant across all
agents i within each of the two population groups.

PROOF OF Proposition 5. Let x̂ be a strategy profile that satisfies the necessary condition
given by Proposition 4. Then, we can fully describe the profile x̂ using the type-contingent
aggregate investments yAA, yBB. The social planner can select in a totally independent way
the pair of variables yAA, yBB, under the respective restrictions yAA ∈ [R−nB,nA −1] and
yBB ∈ [R− nA,nB − 1]. In turn, the aggregated investments yAB, yBA, zAB, and zBA can be
derived from the optimally selected quantities yAA, yBB. Using the expression of the social
value in Eq. (8), the problem that the social planner can thus be set as

max
{yAA,yBB}

nAu
(

yAA,
nR−nAyAA −nByBB

2nA

)

+nBu
(

yBB,
nR−nAyAA −nByBB

2nB

)

s.t.: yAA ∈ [R−nB,nA −1];

yBB ∈ [R−nA,nB −1].

(17)

Observation of the problem in Eq. (17) above allows us to proceed as follows.

(i) We identify a sufficient condition on the level of assortative interests β under
which, regardless of the aggregate investment choice yAA of the agents from the larger
group NA, the utility of any agent from the smaller group NB is maximized when she in-
vests with full intensity in all other same-type agents, i.e., yBB = nB−1. Furthermore, the
identified condition on β simultaneously ensures that the agents from the larger group NA

maximize their utilities when they choose to invest with full intensity in all other same-
type agents, i.e., yAA = nA − 1, independently of the choice yBB of the agents from the
smaller group. Since the welfare function v(g(x̂)) aggregates the utilities of all the agents,
for each of the two groups, it follows that the derived condition is sufficient to guarantee
that the value function is maximized when all agents invest with full intensity in all other
same-type agents, i.e., yAA = nA −1 and yBB = nB −1.

On the one hand, let us take as given an arbitrary quantity yAA ∈ [R−nB,nA −1], and
suppose then that the social planner chooses the quantity yBB in order to maximize the
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utility of a representative agent of the smaller group, NB. Thus, we are now restricting
attention to the (hypothetical) problem

max
yBB∈[R−nA,nB−1]

u
(

yBB,
nR−nAyAA −nByBB

2nB

)

.

Then, recall that Assumption 2–(4) (b) establishes that ∂u(si,di)/∂ si > ∂u(si,di)/∂di for
each (si,di) such that di/si > β . Therefore, if

β <
nR−nAyAA −nByBB

2nByBB

for each yBB ∈ [R− nA,nB − 1], then we can guarantee that maximization of the utility
of any agent i ∈ NB is uniquely achieved by selecting yBB = nB − 1, for each possible
yAA ∈ [R− nB,nA − 1]. Furthermore, since the function [nR−nAyAA −nByBB]/2nByBB is
strictly decreasing in yBB, it follows that

β <
nR−nAyAA −nB(nB −1)

2nB(nB −1)
(18)

is a sufficient condition that ensures maximization of the utility of the agents j ∈ NB is
characterized by yBB = nB −1, for any given yAA ∈ [R−nB,nA −1].

On the other hand, let us now take as given an arbitrary quantity yBB ∈ [R−nA,nB−1],
and restrict attention to the (hypothetical) problem of choosing the value of yAA that solves

max
yAA∈[R−nB,nA−1]

u
(

yAA,
nR−nAyAA −nByBB

2nA

)

.

Using again Assumption 2–(4) (b), we can guarantee the solution to the problem above is
characterized by yAA = nA −1 if

β <
nR−nAyAA −nByBB

2nAyAA

for each yAA ∈ [R−nB,nA−1]. Since the function [nR−nAyAA −nByBB]/2nAyAA is strictly
decreasing in yAA, it follows that

β <
nR−nA(nA −1)−nByBB

2nA(nA −1)
(19)

is a sufficient condition that ensures maximization of the utility of the agents i ∈ NA is
characterized by yAA = nA −1, for any choice yBB ∈ [R−nA,nB −1].

Therefore, if both conditions (18) and (19) are simultaneously satisfied for values
yAA = nA−1 and yBB = nB−1, then the utility of the agents from the smaller group NB is
maximized when they choose yBB = nB−1 conditional on the choice yAA = nA−1 while,
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at the same time, the utility of the agents from the larger group NA is maximized when
they choose yAA = nA − 1 conditional on the choice yBB = nB − 1. Since conditions (18)
and (19) combined guarantee such (common) features for the optimal choices of the two
separate (hypothetical) problems—relative to each of the two populations—, we obtain
that such sufficient conditions combined ensure that the only solution to the problem in
Eq. (17) entails yAA = nA −1 and yBB = nB −1.

Since nA ≥ nB, we have that

nR−nA(nA −1)−nB(nB −1)
2nB(nB −1)

≥
nR−nA(nA −1)−nB(nB −1)

2nA(nA −1)
.

In addition, recall from Eq. (4) the expression of the particular value

βl = [nR−nA(nA −1)−nB(nB −1)]/2nA(nA −1).

Thus, if β < βl , then the only way in which the social planner can maximize the social
value v(g(x̂)) is by choosing yAA = nA −1, yBB = nB −1. Such choices also yield yAB =
R−(nA−1), yBA = (R−(nA−1))+(nA−nB), zAB = (nB/nA)[(R−(nA−1))+(nA−nB)],
and zBA = (nA/nB)(R− (nA −1)). Accordingly, for each agent i ∈ Nθ , each type θ ∈Θ ,
and θ ′ 6= θ , an efficient network ĝ = g(x̂) entails

si(x̂) = nθ −1 and di(x̂) =
n(R− (nA −1))+nB(nA −nB)

2nθ
.

(ii) Similarly to the arguments used in (i), we consider separately two hypothetical
problems that address the maximization of the utility of any agent from a given group,
regardless of the choices made by the agents from the other group. Again, we derive
a sufficient condition on the level of assortative interests β under which, regardless of
the aggregate investment choice yAA of the agents from the larger group NA, the utility
of any agent from the smaller group NB is maximized when the agents invests with full
intensity in all different-type agents, i.e., yBB = R− nA. Furthermore, such a condition
on β guarantees at the same time that the agents from the larger group NA maximize
their utilities when they invest with full intensity in all different-type agents as well, i.e.,
yAA = R−nB, independently of the choice yBB of the agents from the smaller group. The
additive nature of the welfare function v(g(x̂)) leads then to that the derived condition is
sufficient to guarantee that the value function is maximized when all agents invest with
full intensity in all other same-type agents, i.e., yAA = R−nB and yBB = R−nA.

First, fix an arbitrary quantity yAA ∈ [R− nB,nA − 1], and let us look for the quantity
yBB that solves the (hypothetical) problem

max
yBB∈[R−nA,nB−1]

u
(

yBB,
nR−nAyAA −nByBB

2nB

)

.
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Then, recall Assumption 2–(4) (c) establishes that ∂u(si,di)/∂ si < ∂u(si,di)/∂di for each
(si,di) such that di/si < β . Therefore, if

β >
nR−nAyAA −nByBB

2nByBB

for each yBB ∈ [R−nA,nB −1], then we can guarantee that the solution to the problem of
this first step is uniquely given by yBB =R−nA. Since the function [nR−nAyAA −nByBB]/2nByBB

is strictly decreasing in yBB, it follows that

β >
nR−nAyAA −nB(R−nA)

2nB(R−nA)
(20)

is a sufficient condition that ensures that maximization of the utility of the agents j ∈ NB

is characterized by yBB = R−nA, for any given yAA ∈ [R−nB,nA −1].

Secondly, take as given an arbitrary quantity yBB ∈ [R−nA,nB −1], and restrict atten-
tion to the (hypothetical) problem of finding the values of yAA that solve

max
yAA∈[R−nB,nA−1]

u
(

yAA,
nR−nAyAA −nByBB

2nA

)

.

Using again Assumption 2–(4) (c), we can guarantee the solution to the problem above is
characterized by yAA = R−nB if

β >
nR−nAyAA −nByBB

2nAyAA

for each yAA ∈ [R−nB,nA−1]. Since the function [nR−nAyAA −nByBB]/2nAyAA is strictly
decreasing in yAA, it follows that

β >
nR−nA(R−nB)−nByBB

2nAyBB
(21)

is a sufficient condition that ensures maximization of the utility of the agents i ∈ NA is
characterized by yAA = R−nB, for any given yBB ∈ [R−nA,nB −1].

Crucially, if both conditions Eq. (20) and Eq. (21) are simultaneously satisfied for
yAA = R−nB and yBB = R−nA, then the utility of the agents from the smaller group NB

is maximized when they choose yBB = R− nA conditional on the choice yAA = R− nB,
while at the same time, the utility of the agents from the smaller group NA is maximized
when they choose yAA = R − nB conditional on the choice yBB = R − nA. Since such
sufficient conditions combined guarantee the above mentioned (common) features for the
optimal choices of the two (hypothetical) problems relative to each of the populations, it
follows that such conditions are sufficient to ensure that the only solution to the problem
in Eq. (17) entails yAA = R−nB and yBB = R−nA.
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Note that Eq. (20) and Eq. (21) are simultaneously satisfied for yAA = R− nB and
yBB = R−nA if and only if

β > max
{ nA

R−nA

,
nB

R−nB

}

=
nA

R−nA

= βh,

since nA ≥ nB. Therefore, if β > βh then the only way in which the social planner can
maximize the value function v(g(x̂)) is by choosing

yAA = R−nB, yBB = R−nA, yAB = zAB = nB, yBA = zBA = nA.

Accordingly, for each agent i ∈ Nθ , each type θ ∈ Θ , and θ ′ 6= θ , an efficient network
ĝ = g(x̂) entails si(x̂) = R−nθ ′ and di(x̂) = nθ ′ .

PROOF OF Corollary 6. Let x̂ be a strategy profile that satisfies the necessary condition
given by Proposition 4. Take nA = nB = n/2. Then, the problem that faces the social
planner stated in Eq. (17) can be rewritten as

max
{yAA,yBB}

V (yAA,yBB)

s.t.: yAA ∈ [R−n/2,n/2−1];

yBB ∈ [R−n/2,n/2−1],

(22)

where

V (yAA,yBB)≡ u
(

yAA,R− (1/2)(yAA + yBB)
)

+u
(

yBB,R− (1/2)(yAA + yBB)
)

.

Using the problem in Eq. (22), we proceed then as follows.

(i) Note that, for each type θ ∈Θ , we have that ∂V (yAA,yBB)/∂yθ > 0 if and only if

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂ si
>

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂di

Assumption 2–(4) (b) allows us to establish that the inequality above is satisfied if and
only if

β <
R− (1/2)(yAA + yBB)

yθθ

or each yAA,yBB ∈ [R−n/2,n/2−1]. Then, for the symmetric choice yAA = yBB = n/2−
1—in which each agent from each population group invests with full intensity in all other
same-type fellows—to be associated to an efficient network, the required necessary and
sufficient condition on the level of assortative interests takes the form

β <
2R

n−2
−1 =

2R−n+2
n−2

= βl.
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(ii) For each type θ ∈Θ , we have that ∂V (yAA,yBB)/∂yθ < 0 if and only if

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂ si
<

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂di

It follows from Assumption 2–(4) (c) that the inequality above is satisfied if and only if

β >
R− (1/2)(yAA + yBB)

yθθ

for each yAA,yBB ∈ [R− n/2,n/2− 1]. Then, for the symmetric choice yAA = yBB = R−
n/2—in which each agent from each population group invests with full intensity in all
different-type agents—to be associated to an efficient network, the required necessary
and sufficient condition on the level of assortative interests takes the form

β >
n

2R−n
= βh.

(iii) Consider a level of assortative interests β ∈ (βl,βh). It follows from (i) and
(ii) above that neither choices in which all agents invest with full intensity in all their
same-type fellows nor choices in which they invest with full intensity in all different-type
agents induce efficient networks. Now, consider symmetric aggregate investment choices
yAA = yBB = ŷ that give rise to partially homophilic networks that belong to the class in
which all agents behave unilaterally as in [b] of Lemma 1 ([b] in Fig. 1). Such choices
induce an efficient network if and only if

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂ si
=

∂u
(

yθθ ,R− (1/2)(yAA + yBB)
)

∂di

It follows from Assumption 2–(4) (a) that the requirement above is satisfied if and only if

β =
R− ŷ

ŷ
=

n+2(R−nA)

2ŷ
−1 ⇔ ŷ = yAA = yBB =

R

1+β
=

n+2(R−nA)

2(1+β )

for ŷ ∈ (R− n/2,n/2− 1). Finally, note that symmetric aggregate investment choices
yAA = yBB = ŷ are required to ensure that the condition above holds for both population
groups.
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