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Abstract

People form cognitive maps about their networks from the information they have −mental represen-
tations of who is connected with whom in the network they are embedded in (Krackhardt, 1987). The
aim of this paper is twofold. First, we develop a model of how people form mental representations about
the network from the (incomplete) information they have. We relate them with notions of equivalence
among nodes and identify a cognitive bias towards asymmetric network structures. We then explore the
incidence that players’ network perception has on their equilibrium behavior and payoffs in the induced
Bayesian Games. A general condition for equilibrium existence under different setups of incomplete net-
work information is derived. Such a condition uncovers the relevance of the order of the automorphism
group of the cognitive networks as a main driver of behavior and welfare.

Keywords: Network Games, Graphical Games, Network Cognition, Incomplete Information, Structural
Equivalence, Automorphic Equivalence
JEL: A14, D85, J60, J30.

1 Introduction

In many contexts, people act on the basis of others’ choices. When deciding whether to get a vaccine
individuals are inŕuenced by the behavior of their friends and acquaintances. The same applies to decisions
such as voting, starting a business, going on strike or engaging in criminal activities. Empirical evidence on
these issues is vast (see Bramoulé et al. 2020 for a survey), and has motivated the development of theoretical
models where the mutual inŕuence that people exert on each other depends on the network topology (Bala
and Goyal, 1998; Jackson and Yariv, 2007; Galeotti et al. 2010; Bramoullé et al. 2014; Bourlès et al. 2017,
2021). In such models, interactions among agents is represented through an adjacency matrix or graph,
and the major interest is to characterize the impact that speciőc features of the social structure have on
individuals’ choices and welfare.

Attempts to study these issues have been approached in two different ways. One approach presumes that
individuals have complete information about the network they are embedded in (e.g. Goyal and Moraga-
González, 2001; Ballester et al. 2006; Bramoullé and Kranton, 2007, Bramoullé et al. 2014).1 This is rather
a strong assumption, which may not hold in reality, as people usually have limited information about the
network they integrate. Moreover, even in contexts in which complete information is available, people exhibit
cognitive limitations when encoding and remembering the network accurately (Dessi et al. 2016, Brashears,
2013; Brashears and Quintane, 2015; Brashears et al. 2016). Although this approach has allowed to derive
interesting and novel results,2 it presents an important drawback: even when one focuses on a particular
network, a wide range of equilibrium outcomes are possible. Drawing conclusions about the impact of each
speciőc network feature on behavior is therefore difficult. A second approach assumes that people do not
have complete information about the network they are part of, but their information conőnes to a speciőc
aspect of the network architecture (Jackson and Yariv, 2007; Galeotti et al. 2010; Feri and Pin, 2020;

∗We thank comments from Coralio Ballester, Sergio Cappellini, María Paz Espinosa, Jaromír Kovářík, Norma Olaizola,
Melika Liporace, Arnold Polanski and Fernando Vega-Redondo, among many other conference participants.

†Postdoctoral fellow, 424 Chemin du Viaduc, 13080 Aix-en-Provence (France). E-mail: sofia.ruiz-palazuelos@univ-amu.fr
1This is the approach in the main bulk of the literature on network games.
2Ballester et al. (2006) for example, show that the equilibrium actions of players are proportional to their Bonacich centrality,

while Bramoullé et al. (2014) prove that equilibrium outcomes depend on the lowest eigenvalue of the network matrix.
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Ruiz-Palazuelos, 2021). Galeotti et al. (2010), for example, consider a setup where agents do not know the
identity of the agents they are going to interact with. Players’ network information limits to the number of
connections they have (their degree) and the degree distribution of the population. Under these conditions,
every symmetric equilibrium is proved to be monotone non-decreasing (non-increasing) in players’ degrees
under strategic complements (substitutes) when nodes have degrees either with independent probabilities or
with probabilities that are positively (negatively) correlated.3 Such a result evinces a fundamental premise
of many seminal works: social connections create personal advantages.4

The information setup of Galeotti et al. (2010) applies to situations where the unique network feature
that affects people’s decisions is the number of individuals they expect to interact with, from a relatively
unbounded population (e.g. a country). This applies to decisions such as learning a language or getting
vaccinated. A natural way of modeling this type of situations (where the network inŕuencing people’s
behavior is typically very large) is to identify players’ beliefs about the network with a probability degree
distribution, setting aside beliefs about other network aspects. This assumption is reasonable in environments
that exhibit the following features: (i) people have a good sense of their volume of future interactions and (ii)
they have neither information about the identity of their contacts nor about any other aspect of the network
topology.

Notwithstanding this, in many real-life situations people have incomplete network information but they
know how popular their opponents might be, whether they know each other, their own proclivity to occupy
central positions in the network, etc. (Killduf et al. 2008; Simpson et al. 2011; Brands et al. 2013; Smith et
al. 2020). Such more detailed information in turn allows network members to learn further properties of their
local and global networks. Indeed, research in social psychology documents that people entering into a social
group tend to form a cognitive map of the existing network−a mental picture of connections capturing who
is connected with whom in the group (Kilduff and Tsai, 2003). For example, newcomers to a őrm may have
a certain idea about the network integrated by company members: they may notice the number of people
working in each department, the connections among the company sections, the degree of hierarchy of the
őrm, who shares office with whom, who eats with whom, etc. All this information provides signals enabling
to form representations about the őrm network. This has profound implications for network analysis, as it is
the cognitive network(s) (the social structure(s) that exists in people’s minds), rather than the network they
are actually embedded in, what drives people’s choices. This raises novel research questions:

• From the perspective of network perception, how can we model people’s beliefs about the network
in this kind of contexts? What can people deduce about the underlying social structure from their
incomplete network information? Which network features affect how people view their social networks?

• From the game-theoretical perspective, what can be said about equilibrium behavior and the aggregate
welfare in the presence of network cognitive maps? What is the relation between degree, equilibrium
actions and payoffs in this type of scenarios? Can we link the depth of network information to the
multiplicity of equilibria?

This paper aims to answer these questions. We propose a theoretical model of how people form men-
tal representations about the network from the (incomplete) information they have. We present different
information settings which differ in the depth of information that agents have about the network they are
embedded in, ranging from an extreme case of incomplete network information (a setup similar to that in
Galeotti et al. 2010) to the complete information scenario. We analyse how, and to what extent, agents can
infer different aspects of the interaction structure in function of the information that they possess even if
they are not directly informed about these aspects. To that aim, we show how exploring the role of informa-
tion requires to distinguish two types of information: information about links (related to connectivity) and
information about nodes (relevant to learn who is connected with whom). Building up on this, we develop a
theoretical framework linking incomplete network information to agents’ beliefs about the properties of the
underlying network architecture, and we use it to analyse the equilibrium behavior and payoffs in the induced
Bayesian games played on networks.

3Games of strategic complements (substitutes) represent situations where individuals’ incentives to take actions increase
(decrease) with the number of people playing such actions. Examples of strategic complements include the decision of using a
software, supporting a political party or learning a language. Strategic substitutes encompass decisions such as starting a new
business in a geographical area, paying for a public good or experimenting with a novel technology.

4The monotonicity property of equilibria implies that, in both types of games, the expected payoffs of highly (poorly)
connected agents are higher (lower).
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We őrst show that even a minimal knowledge of the social environment enables people to learn both
the network geometries that are compatible with their information as well as their probability distribution,
which in turn allows them to calculate the probability distribution of any network feature (e.g. the clustering
coefficient, the betweeness centrality of any node, the number of components, etc.). We provide conditions
under which all agents have identical perceptions of the underlying network architecture: they have identical
beliefs about the feasible network geometries and their probabilities. We show that, once we depart from such
conditions, agents may have different beliefs about the set of feasible geometries and/or about its probability
distribution. Furthermore, individuals with complete and incomplete network knowledge can coexist under
any information setup−even when their level of network information is limited and equal across agents−and
this may have important consequences on behavior.

Our model reveals a clear-cut result: when several networks are compatible with agents’ information
(i.e. different networks in individuals’ minds can correspond to the network they are actually embedded in),
the probability distribution of these feasible networks depends on the order of their automorphism group, a
network property that captures the degree of similarity among network members in terms of how they are
connected to others.5 This result holds under any scenario in which individuals’ information enables them
to form mental representations about the underlying social network. We show that the probability that an
agent assigns to each feasible network geometry increases monotonically as the order of its automorphism
group decreases. As an implication, agents believe more likely to occupy positions in networks with more
asymmetric structures (say, in hierarchical structures integrated by people occupying heterogeneous network
positions) rather than in networks where individuals are connected to others in a more egalitarian way.

These results have implications for structural theory. In effect, the existence of an automophism between
two nodes has been recognized as a criterion to determine whether individuals play the same role or have
the same status in the social system (Lorrain and White, 1971; Sailer, 1978; Winship and Mandel, 1983;
Burt, 1987; Faust, 1988; Müller and Brandes, 2022). In particular, the notions of structural equivalence and
automorphic equivalence−both based on the existence of automorphisms among nodes− identify individuals
that are related to others in a similar way (Wasserman and Faust, 1994; Easley and Kleinberg, 2010; Everett
and Borgatti, 1992). Both concepts are conceived as a formalization of the notion of social position, and have
been used to identify individuals playing the same role in the society.6 Our model uncovers the relevance
of these equivalence notions for network perception. By characterizing the speciőc incidence that these
measures have in the order of the automorphism group of the feasible networks, we identify a perception bias
towards less homogeneous social structures. Speciőcally, the probabilistic weight that an individual assigns
to each feasible network increases as the degree of similarity among their members according to these notions
decreases.

In the second part, we explore the implications of our network perception model on Bayesian games of
strategic substitutes and strategic complements played on networks. For both games, we derive a condition
that guarantees the existence of an equilibrium in different setups of incomplete network information. The
condition shows that the degree of substitutability between players’ actions and the ones of their feasible
neighbors depends on the automorphism group of the cognitive networks to which such neighbors belong.
The smaller the order of the automorphism group of a feasible network, the more likely the network is to
correspond to the network in which players are actually embedded in, and the more inŕuenced players are
by their neighbors’ actions in that network. This result has a twofold implication. First, regardless on the
topology of the network in which players are actually immersed in, equilibrium actions are mostly inŕuenced
by the topology of the networks that are more asymmetric, among all those that are compatible with play-
ers’ information. Second, when the returns of playing a certain equilibrium action differ across networks
and equilibrium proőles, the equilibria in which such returns are higher in more asymmetric structures are
sustainable for a wider range of parameter values. This suggest a positive relation between the degree of
asymmetry of the network and the equilibrium welfare it yields. Along, we provide a sufficient condition
for a network to be efficient−to be a network under which equilibrium welfare is at least as high as in any
other network compatible with players’ network information−. The condition suggests that, under certain
conditions, the only networks that are efficient are the more asymmetric ones.

As for the impact of degree on equilibrium actions and payoffs, no general conclusions can be extracted.

5We provide a formal deőnition in Section 1.
6The idea is that what deőnes the role of a person in the social system, say, the role of a professor in a university, is the

way (s)he is connected to students, professors, administrative staff, and people playing other roles. These equivalence notions
have also been applied to identify sectors of an economy, as őrms producing similar products have similar relations to providers,
consumers, and other actors in the economy (see Burt 1977, 1978a. 1978b).

3



Equilibrium actions do not vary monotonically with players’ degree as in Galeotti et al. (2010), but multiple
equilibria with different patterns can exist, even when players’ network information is restricted to their own
degree and the degree distribution of the network. These results hold under all our incomplete information
setups, but they are surprising specially when players have asymmetric beliefs about the underlying network.
We show that people are able to reach different equilibria even in these contexts.7

Last, we explore the effects of manipulating players’ network information on the equilibrium structure.
Subtle variations in players’ network information may induce abrupt variations in players’ cognitive maps
and equilibrium behavior. As a result, the equilibrium structure may change dramatically even if the network
information varies only slightly, but the direction in which it changes is network-speciőc. Increasing players’
network information has thus non-monotonic effects on the structure and number of equilibria.

The main innovation of this work is the development of a theoretical framework of network perception
and its application to the study of network games. The proposed framework complements the large litera-
ture on network cognition in social psychology and sociology (Krackhardt; 1987, Carley; 1986; Michaelson
and Contractor, 1992; Freeman, 1992; Kumbasar et al. 1994; Casciaro, 1998; Johnson and Orbach; 2002;
Janicik and Larrick, 2005; Smith, 2020) and recently in economics (Dessi et al. 2016), by characterizing
formally the formation of people’s cognitive network maps. In this sense, we uncover a relation between
some canonical notions of similarity among nodes (automorphical equivalence and structural equivalence)
and network perception.8 Although such notions have been fundamental in structural theory, they have not
been theoretically related, to the best of our knowledge, to network perception.9 The uncovered relation
between these notions and agents’ network perception reŕects a cognitive bias towards asymmetric structures
that may imply a misperception of agents’ social environments, since empirical evidence shows that a certain
degree of symmetry is ubiquitous in real-life social networks (MacArthur et al. 2008; Ball and Geyer-Schulz,
2018a, 2018b).10

As for network games, an important contribution of this work is to point out the cognitive dimensions
of social networks as a crucial element for the study of strategic interactions. Such a dimension has been
overlooked in the literature on network games. This paper provides a őrst step toward bridging the two main
assumptions regarding network knowledge: extremely limited information (Galeotti, et al. 2010; Jackson
and Yariv, 2005; 2007; Sundararajan, 2008) and complete information (Goyal and Moraga-González, 2001;
Ballester et al. 2006; Bramoullé and Karton, 2007, 2014). We characterize the intermediate information
setups and exploit their role in network interactions. The strengths of our model for the analysis of network
games are two. First, a fundamental critique of the analysis of games under incomplete information is that
the equilibrium achieved strongly depends on the information assumptions that are made (Weinstein and
Yildiz, 2007). While this critique applies generally to all incomplete information games, we show that it
is particularly relevant for those played on networks, given (i) the wide range of network elements that
may shape players’ behavior and welfare and (ii) the variety of network characteristics that players can
learn from the knowledge of particular network aspects, as a consequence of the intrinsic interdependency
among different network features. The proposed model overcomes these obstacles by providing equilibrium
predictions that apply for different information setups. It further shows that the introduction of incomplete
information is not panacea to solve the equilibrium selection problem. Second, the interest of the study of
network games−and what differentiates them from other types of strategic interactions− is the fact that the
way in which players inŕuence each other is determined by the topology of the network. Yet, the impact of
the network in agents’ behavior can be blurred when players’ network information is limited to a reduced
set of network elements. Our predictions rely on a belief structure that includes a variety of aspects of the
network topology. This allows to study the strategic interactions of people in realistic contexts of incomplete
network information, while preserving the relevance of the role of the network in such interactions.

Last, while most network applications in economics focus on connectivity, centrality, and network density
(see Jackson, et al. 2017), we uncover the role of one particular feature of the network structure−the net-

7Although these őndings may be surprising, they are consistent with empirical evidence. Different studies show that small
pieces of network information allow people to meet targets that could be expected to require a full knowledge of the network
structure to be reached (see Milgram, 1967; Travers and Milgram, 1977, Dodds et al. 2003 or Backstrom et al. 2012).

8These notions are canonical in social network analysis (see e.g. Everett, 1985; Hanneman and Riddle, 2003; Newman, 2004,
Leicht, et al. 2006; Casse et al. 2013; Jin et al. 2014; Prota and Doreian, 2016). Although they were initially studied in
sociology (Boorman and White, 1976; White et al. 1976; Sailer, 1978; Doreian, 1988; Winship, 1988; Burt, 1976, 1990; Borgatti
and Everett, 1992; Doreian et al. 2005), their study has extended to more general domains (see e.g. Rossi et al. 2014)

9Some empirical papers study how perceived similarity relates to these notions of equivalence among nodes (e.g. Michaelson
and Contractor, 1992). Yet, their context is different to ours.

10Wang et al. (2009) also őnd a certain degree of symmetry in their analysis of the world trade network. On the contrary,
almost all random graphs are asymmetric (Erdös-Renyi, 1963).
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work automorphism group−in agents’ perception, behavior, and welfare. This network property is receiving
increasing attention in mathematics and physics (MacArthur and Anderson, 2006; Xiao, et al. 2008a, 2008b,
2008c; Wang et a. 2009; Dehmer et al. 2020), given its impact on the dynamics of processes that take
place on networks (Golubitsky and Stewart, 2003), on the network’s eigenvalue spectrum (Cvetkovíc et al.
1979) or because of its utility to simplify the network topology by collapsing redundant information (Xiao
et al 2008b), among other applications.11 This paper points out the importance of this network property on
behavior and welfare, by showing that behavior of people may be shaped to a greater extent by the network
characteristics associated to asymmetric structures in incomplete information contexts as a consequence of
the greater probabilistic weight that they assign to these network architectures.

The paper is organized as follows. Section 2 presents some background deőnitions. Section 3 presents
different setups of network information. Section 4 provides the results on network perception, which are the
bases of our theoretical framework. Results on network games are presented in Section 5 and Section 6.
Section 7 concludes.

2 Background Definitions

Let g = (N,E) be a social network characterized by a set of nodes N = {1, .., n} and a set of edges or links
E between them. Each node in g represents one agent and there are n =

∣

∣N
∣

∣ agents in the network. Let
gij denote the link between i ∈ N and j ∈ N ; gij = 1 if individuals i ∈ N and j ∈ N are directly linked in
g and gij = 0 otherwise, with gij = gji, ∀i, j ∈ N . The network is represented by a n symmetric adjacency
matrix A = (gij)i,j∈N , with gii = 0. A path between i ∈ N and j ∈ N is a sequence of links i1i2, ..., , iK−1, iK
such that gikgik+1

= 1 for each k ∈ {1, 2, ...,K − 1}, and such that each node in the sequence is distinct.
The distance between i and j, denoted dij , is the length of the shortest path between them. A network is
connected if there is a path connecting any two nodes.

The neighborhood of node i is the set of agents directly connected to i, Ni(g) = {j ∈ N : gij = 1}. The
degree of node i is the cardinality of Ni(g), ki(g) = |Ni(g)|. Although both characteristics are similar, the
level of network information that they capture is different: the degree reŕects with how many other agents one
interacts without providing any information about their identities, while the neighborhood reŕects both their
number and their identities. Considering one or another feature has important consequences in certain parts
of our analysis. The set of i’s second-order neighbors is N2

i (g) = {s ∈ N : gijgjs = 1 for some j ∈ N, i ̸= s}.

The degree distribution of network g, denoted Fg(k), speciőes, for all k ∈ {0, 1, ..., n− 1}, the fraction of
nodes that have degree k in this network:12

Fg(k) =
1

n
|{i ∈ N : ki(g) = k}|

The degree counts in network g, denoted Dg(k) = n ∗ Fg(k), are the numbers of nodes that have degree
k in this network.

Let kNi(g) = (k1, k2, ..., kki
) be the vector of degrees of all agents in Ni(g), where kj is the degree of neighbor

j ∈ Ni(g) (j = 1, 2, ..., ki) and kj ≥ kj+1. The joint degree distribution of g, denoted Fg(k, (k1, k2, ..., kk),
is the proportion of nodes in g that have degree k and neighbors with degrees given by the vector kNi(g) =
(k1, k2, ..., kk),

Fg

(

k, (k1, k2, ...kk)
)

=
1

n

∣

∣

∣

{

i ∈ N :
(

ki(g), kNi(g)

)

=
(

k, (k1, k2, ..., kk)
)}∣

∣

∣

for all k ∈ {0, 1, ..., n− 1}.

Analogously, we write Fg(t) to denote generally the frequency distribution of a network measure, where
t is a speciőc value of such a measure and ti(g) the value that it has for node i ∈ N :

Fg(t) =
1

n
|{i ∈ N : ti(g) = t}|

for all t ∈ T , where T is the set of feasible values of this measure.

11See also Soicher, (2004) and Kocay, (2007), for its application to simplify the computational complexity of network algo-
rithms.

12In contexts of random networks, Fg(k) is naturally interpreted as the probability that a randomly selected node has degree
k (Vega-Redondo, 2007), while here it is the distribution of degree frequencies in the network.
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The geometry of a network correspond to its structure: the network architecture created by its edges. Two
networks have the same geometry if and only if they are isomorphic: there exists a bijection (an isomorphism)
f : N → N ′, such that ij ∈ E if and only if f(i)f(j) ∈ E′ (see Borgatti and Everett, 1992). Thus, f just
relabels the nodes, but their network structure is the same. For example, the four networks in Figure 1 are
isomorphic. We use the symbol ∼= to denote an isomorphism; g ∼= g′ means that g and g′ are isomorphic.

Figure 1: A set of isomorphic networks

Network g = (N,E) is different from network g′ = (N ′, E′) if and only if their respective adjacency matrices
differ, i.e. if gij ̸= g′ij , for at least one ij ∈ E ∪ E′. The adjacency matrix of a network depends on
two aspects: (i) the network geometry and (ii) the distribution of labels among the nodes (how agents are
distributed within the network). Hence, networks g and g′ can be different if either (i) or (ii) (or both) differs
in the two networks. For example, network g and g1 in Figure 1 are isomorphic. However, since agents are
distributed differently in g and in g1 both networks are distinct, as reŕected in their respective adjacency
matrices:

g =

















gii gij gil gim gio gir
gji gjj gjl gjm gjo gjr
gli glj gll glm glo glr
gmi gmj gml gmm gmo gmr

goi goj gol gom goo gor
gri grj grl grm gro grr

















=

















0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

















̸= g1 =

















0 1 1 0 0 0
1 0 0 0 0 1
1 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 1 0

















Similarly, g3 is different from the other three networks in Figure 1, since it is integrated by different
agents. In our analysis, the only isomorphic networks to g that will play a role are those integrated by the
agents in N .

An isomorphism f of a graph with itself that preserves the adjacency matrix is known as an automorphism,
f : N → N , where ij ∈ E if and only if f(i)f(j) ∈ E. That is, an automorphism is a permutation of the
labels of the nodes in g that results in a network g′ = g. For example, f : f(i) = l, f(j) = r, f(l) = i, f(m) =
o, f(r) = j, f(o) = m is an automorphism of g, as it results in network g2 = g (see Figure 1). The set
composed of all the automorphisms of g is the automorphism group of g, denoted Aut(g) (Chartrand et al.
2010). Note that all graphs in Aut(g) represent the same network, since they all have the same adjacency
matrix. The order of the automorphism group of g is the number of elements in Aut(g), |Aut(g)| ≥ 1. It
captures the degree of symmetry of the network: the greater |Aut(g)|, the more symmetric network g is (Xiao
et al., 2008b).

Two nodes i ∈ N and j are automorphically equivalent if they are identical in terms of all network
measures (degree, second-order degree, centrality, number of cycles to which they belong, etc.). Namely, i
and j are automorphically equivalent if and only if there exists an automorphism f : N → N such that
f(i) = l. We write i ≡ l to indicate that i and l are automorphically equivalent. In network g of Figure 1,
i ≡ l, j ≡ r and m ≡ o. Other pairs of agents are not automorphically equivalent, since their number of
second-order neighbors is different. Two nodes occupy the same position in the network if and only if they
are automorphically equivalent, regardless on whether the identity of their direct and indirect neighbors is
distinct. We write oi(g) to refer to the position of i in network g. In network g in Figure 1 there are three
different positions: oi(g) = ol(g), oj(g) = or(g) and om(g) = oo(g).

6



An important property of automorphically equivalent nodes is that we can exchange their labels to form
a new network that is identical to the original one (Friedkin and Johnsen, 1997). For example, starting from
graph g in Figure 1, we can exchange the labels of i and l and relabel all other nodes to obtain network g2
(in the same Figure) with the same adjacency matrix as g, g2 = g. Notice that this is possible because i ≡ l.
If we swap the labels of two nodes that are not automorphically equivalent, say, i and j in network g, we
cannot obtain a network equal to g.

The orbit of node i is the set composed of all nodes that occupy the same position as i, Oi(g) = {l ∈
N : oi(g) = ol(g)} = {l ∈ N : l ≡ i}. In network g of Figure 1, Oi(g) = Ol(g) = {i, l}, Oj(g) = Or(g) =
{j, r}, Om(g) = Oo(g) = {m, o}.

Structural equivalence is a particular form of automorphic equivalence. Node i ∈ N is structurally
equivalent to l ∈ N if and only if both agents are connected to the same nodes, Ni(g)\{l} = Nl(g)\{i}.13 We
write i ≡s l to indicate that i and l are structurally equivalent. Structural equivalence is more demanding than
automorphic equivalence: it not only requires that the nodes occupy indistinguishable structural locations
in the network, but also that the identities of the agents connected to them are the same. Thus, structural
equivalent nodes must be automorphically equivalent, but the opposite is not true. For example, in network
g in Figure 2, nodes s and m are structurally equivalent and therefore s ≡ m. However, there is no pair of
structurally equivalent nodes in network g of Figure 1, despite the fact that i ≡ l, j ≡ r and m ≡ o. The set
of nodes that are structurally equivalent to i is denoted Si(g) = {j ∈ N : j ≡s i}.

Figure 2: Networks in GFg(k) when Dg(1) = 2 and Dg(2) = 1

Both automorphically equivalence and structural equivalence are notions that identify actors who are
connected in the same to other nodes in the network. These notions have been used to identify individuals
that play the same social role in the social system (Faust, 1988; Borgatti and Everett, 1992). The underlying
argument is that what deőnes the role that a person plays in a society, say, a CEO, is the distinctive set
of links that people that are CEOs have to people that employees, directors, team leaders, administrative
staff and so on, in the same way as employees are deőned by their relationships to team leaders, providers,
directors, CEOs and individuals playing other roles. According to this conception, people in the same orbit
can be regarded as people playing the same role in the society, and thus the set of orbits reŕects the degree of
diversity of social roles in the network. Such a presence ultimately reŕects in the order of the automorphism
group of the network, as the following lemma highlights.

Lemma 1. Let g = (N,E) and g′ = (N ′, E′) two networks such that N = N ′. If
∣

∣Oi(g)
∣

∣ ≤
∣

∣Oi(g
′)
∣

∣∀i ∈ N

and for some i ∈ N either (i)
∣

∣Oi(g)
∣

∣ <
∣

∣Oi(g
′)
∣

∣ or (ii)
∣

∣Si(g)
∣

∣ <
∣

∣Si(g
′)
∣

∣ or both, then |Aut(g)| < |Aut(g′)|.

Lemma 1 relates these equivalence notions with the order of the automorphism group of the network. By
construction, the order of the automorphism group of a network increases as the number of automorphically
equivalent nodes does, ceteris paribus. Yet, maintaining őxed the orbits in the network, |Aut(g)| increases
with the number of structurally equivalent nodes, as structural equivalence is more strict than automorphic
equivalence. Consider for instance the networks in Figure 3. In gz ∈ {g2, g3} there are two different orbits of
size 2, Or(gz) = Om(gz) = {r,m} and Ol(gz) = Oo(gz) = {l, o} and two orbits of size 1, Oi(gz) = {i} and
Oj(gz) = {j}. However, since Sr(g2) = Sm(g2) = {r,m} and Sl(g2) = So(g2) = {l, o}, while Sx(g3) = ∅ for
x ∈ {i, j, r,m, l, o} |Aut(g3)| = 2 < |Aut(g2)| = 4.14. Similarly, |Aut(g1)| = 2 < |Aut(g2)| = 4, as the orbit of

13According to the standard deőnition, i an l are structurally equivalent if and only if Ni(g) = Nl(g) (Burt, 1976). Since this
deőnition is too strict, different relaxations have been proposed (see e.g. Everett et al. 1990). Our relaxed deőnition increases
the set of structurally equivalent nodes: while three nodes {i, j, k} composing a network triangle are not structurally equivalent
according to the standard deőnition, they are structurally equivalent according to ours. Observe that i and l with Ni(g) = {l}
and Nl(g) = {i} are structurally equivalent, since Ni(g) \ {l} = Nl(g) \ {i} = /O. However, neither i nor l are structurally
equivalent to an isolated node m, since Ni(g) \ {m} = {l} ̸= Nm(g) \ {i} = /O, and Nl(g) \ {m} = {i} ̸= Nm(g) \ {l} = /O.

14In Section 4 (footnote 23), we explain the calculation of the order of the automorphism group of these networks.
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each node is at least as high in g2 as in g1 and the number of structurally equivalent nodes to r(m) is greater
in g2 than in g1.

15

Figure 3: Networks g1, g2 and g3

Let G be the set of all feasible networks integrated by the agents in N . The set GFg(k) ⊆ G is the subset
of different networks in G with degree distribution Fg(k) and size n:

GFg(k) = {g ∈ G : |{i ∈ N : ki(g) = k}| = Dg(k), ∀k}

Suppose for example that N = {i, s,m}, Dg(1) = 2 and Dg(2) = 1. Then, GFg(k) is integrated by three
networks in Figure 2, GFg(k) = {g, g1, g2}. In this example, all networks in GFg(k) are isomorphic. However,
GFg(k) can generally contain networks with different geometries.

The clustering coefficient of each i ∈ N , Ci(g), is the proportion of agents in Ni(g) that i are mutually
linked (the proportion of triangles in i’s neighborhood):

Ci(g) =

∑

j ̸=i;k ̸=j;k ̸=i gij
g
ik
g
jk

∑

j ̸=i;k ̸=j;k ̸=i gik
g
ij

.

3 Network knowledge

Let g = (N,E) be the network in which individuals are embedded in, and Ii(g) the information set that
each i ∈ N has about network g. Consider a scenario where each i ∈ N has two pieces of information
about g: (i) a private information about a set of characteristics of i’s position in g, denoted ti(g), and (ii)
a common knowledge information about g as a whole, referred as Ic(g). All agents have the same type of
private information about their network position. However, the content of such an information may differ
among individuals. For example, if ti(g) = ki(g), then tj(g) = kj(g) ∀j ∈ N . Nevertheless, it is possible
that ti(g) ̸= tj(g). We further assume that {|E|, θ, n} ∈ Ic(g), where θ ∈ {∅, θ} is an information about the
network formation process. However, agents do not have information about the identity of their direct and
indirect neighbors. In our analysis, any information setup exhibiting these features is referred as Setting S,
and Ii(g) = {ti(g), I

c(g)} ∀i ∈ N under Setting S.

Setting S accomplishes to different information contexts. Below, we present three particular examples:
Setting S(a), Setting S(b) and Setting S(c).

Setting S(a). The private information of each i ∈ N is ti(g) = ki(g) and Ic(g) = {Fg(k), n, θ}. That is,
agents know their degree, the degree distribution of the network and its size, and may have some information
about the mechanisms that drive the formation of links, if θ ̸= ∅.16. Setting S(a) is similar to that in Galeotti
et al. (2010)17 Such a setting applies, for example, to recently hired employees: they may know the number
of people with whom they are going to interact in the company, but not necessarily who these people will be
at the moment they are hired. Similarly, teachers may anticipate the number of students they will have in
their classes, but not their identity at the beginning of the school year.

15Note that, although the set of orbits is greater in g3 than in g1, nodes in the same orbit are structurally equivalent in g1 but
not in g3. Since structural equivalence is more strict than automorphical equivalence, |Aut(g1)| = |Aut(g3)| in this example.

16The signal θ affects network perception as we explain in Section 4.
17The difference between our Setting S(a) and the setup in Galeotti et al. (2010) is that players know the distribution of

degree frequencies in our setup, while in Galeotti et al. (2010) they know the probability degree distribution. Both assumptions
lead to results on network perception that are essentially the same, as we explain later.
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Figure 4(g) displays network g, while Figure 4(a) represents how i views the network under Setting S(a)
conditioned on Ii(g) = {ki(g), [Fg(1),Fg(2),Fg(3)], n, θ} =

{

2, [ 12 ,
1
3 ,

1
6 ], 6, θ

}

. The solid (dashed) lines in
Figure 4(a) are the links in network g that are (not) observed by i. Note that all nodes but i are unlabelled
in Figure 4(a) because i does not have information about the identity of these agents.

Setting S(b). Under Setting S(b), agents’ private information corresponds to their degree and the
degree of their neighbors, ti(g) = (ki(g), kNi(g)) ∀i ∈ N , while Ic(g) = {Fg(k), n, θ}. Suppose for instance
that network g is the network in Figure 4(g). From Ii(g) = {ki(g), (kl, ko), [Fg(1),Fg(2),Fg(3)], 6, θ} =
{

2, (3, 2), [ 12 ,
1
3 ,

1
6 ], 6, θ

}

, i knows that agents in Ni(g) have degrees 3 and 2, but not their identities. Figures
4(b1) and 4(b2) represent the two possibilities in which links of i’s neighbors can be disposed given Ii(g).
Since i does not know which of these two conőgurations is the true one, Ii(g) is jointly represented by Figures
4(b1) and 4(b2). In Figure 4(b2), the dashed line represents the link that is not directly observed by i.18

Setting S(b) applies for contexts where individuals may have information about the popularity of their
future partners, but not about their identities. Think for instance about actors considering to take part of a
movie. They may anticipate the popularity of other actors involved in the project, but not who these people
will be when accepting the role. Likewise, organizers of a business event may anticipate the popularity of the
people that are likely to attend, but not necessarily their identities at the time they organize it.

Figure 4: Network g and Ii(g) under Setting S(a), S(b) and S(c) Unlabelled nodes represent agents whose identity
is unknown for i. Solid (dashed) lines represent links that are (not) directly observed by i.

Setting S(c). In this setup, ti(g) =
(

ki(g), kNi(g), Ci(g)
)

∀i ∈ N and IC = {Fg(k), n, θ}. Consider for
example network g in Figure 4(g). Figure 4(c) represents the information that i has about the network under
Setting S(c), Ii(g) = {ki(g), (kl, ko), Ci(g), [Fg(1),Fg(2),Fg(3)], 6, θ} =

{

2, (3, 2), 1, [ 12 ,
1
3 ,

1
6 ], 6, θ

}

. Such an
information structure applies for many environments. A prospective leader team of a őrm may anticipate
the popularity of the people that will integrate each of the teams, as well as the proportion of connections
that are likely to form among their members. The same applies for a person that works as a coordinator of
the company or as an intermediary among őrms.

These setups are examples of information contexts exhibiting the characteristics of Setting S. Beyond
these examples, there exist others. For example, in certain situations individuals may have information
about their tendency to be close to others in the network, but not about the identity of their partners when
choosing actions; or situations in which they know their proclivity to serve as bridges among others, but
not the identity of their neighbors when deciding their behavior. To simplify the exposition, we present our
network perception model on the basis of any information setup that present the characteristics of Setting S
(i.e. under the assumption that agents do not have information about the identity of neighbors, neighbors’
neighbors and so on). Such an approach enables us to obtain a simple analytical expression for many of our
results, simplifying the exposition. In Section 7, we analyse scenarios where agents have information about
the identity of their neighbors and neighbors’ neighbors. As we show there, the implications of our network
perception model maintain for such information setups.

18In a subsequent section, we show that i can learn such a link from Ii(g) (i.e. she can deduce that the degree-one agents
integrate a dyad), despite not being provided such an information directly.
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4 Network Perception

4.1 Network beliefs

From Ii(g), each i ∈ N forms beliefs about the network (s)he is embedded in. Deőne Bi(g) ⊆ G as the set
of all networks that are compatible with Ii(g) under Setting S, with bi(g) = |Bi(g)|. Namely, Bi(g) is the set
of feasible networks in i’s beliefs; each network in Bi(g) could be network g according to the information of
i. Depending on the information setup, Bi(g) is different:

• Under Setting S(a), Bi(g) = {g′ ∈ GFg(k) : ki(g
′) = ki(g)}

• Under Setting S(b), Bi(g) = {g′ ∈ GFg(k) : ki(g
′) = ki(g), kNi(g′) = kNi(g)}

• Under Setting S(c), Bi(g) = {g′ ∈ GFg(k) : ki(g
′) = ki(g), kNi(g′) = kNi(g), Ci(g

′) = Ci(g)}

Set Bi(g) may differ across agents under any information setup. Furthermore, it is possible the coexistence
of individuals with complete and incomplete network knowledge. This can occur even within one information
setup (where the level of network information of all network members is the same), since the content of the
the information of different agents can be distinct. The following example illustrates.

Example 1. Consider network g in Figure 2. Given Fg(1) =
2
3 , Fg(2) =

1
3 and n = 3, GFg(k) is integrated

by the three networks in Figure 2, GFg(k) = {g, g1, g2}. Under Setting S(a), Ii(g) = {ki(g),[Fg(1),Fg(2)], n, θ} =

{2,
[

2
3 ,

1
3

]

, 3, θ}, thereby, Bi(g) = {g}. On the contrary, Bs(g) = {g, g2} and Bm(g) = {g, g1}, since
Is(g) = Im(g) = {1,

[

2
3 ,

1
3

]

, 3, θ} under this information setup. Hence, i knows the whole network, while
the network knowledge of s and m is incomplete. ■

Distribution of the feasible networks. The common knowledge information of agents may include
some information about the forces that drive network formation, denoted θ. Speciőcally, θ ∈ {∅, θ} is an
information that each i ∈ N may possess about the mechanisms that affect the formation of links. Such an
information is obtained from the context. For example, θ can represent the knowledge that a prospective
employee has about the number and frequency of meetings involving people working in different departments,
the information that (s)he has about the type of networking activities that are likely to take place in the
company or the sort of relationships that are likely to be established among company members. If i expects
to integrate a company whose members work in a top-down manner, i may believe more likely to occupy
the position of an agent in network g3 in Figure 3 rather than the position of an individual in g2 in the
same őgure. The opposite applies if i expects to integrate a company characterized by teamwork. Thus, the
probability distribution of the networks in Bi(g) depends on θ. We denote µgx

(

θ
)

to the probabilistic weight
that i gives to gx ∈ Bi(g) on the basis of θ. As θ is informative about the network structure but not about the
identity of neighbors, µgx

(

θ
)

= µgy

(

θ
)

as long as i’s position in these networks is the same (oi(gx) = oi(gy)).

When θ = ∅, each i ∈ N believes that links form randomly as in the Erdös-Renyi model and µgx

(

θ
)

= 1
bi(g)

∀gx ∈ Bi(g). If rather θ ̸= ∅, the forces that drive network formation differ from randomness in i’s beliefs,
and i assigns probability µgx

(

θ
)

= 1
bi(g)

(1+κgx) to each gx ∈ Bi(g). Until the end of Section 4.3 , we analyse

network perception when the networks in Bi(g) are uniformly distributed, θ= ∅.19

Feasible network geometries. So far we have provided the example of a simple network (Example 1),
where all networks in Bi(g) have the same geometry, ∀i ∈ N . However, some networks in Bi(g) may have
different network geometries, while others may be different but isomorphic. We say that a particular network
geometry is a feasible geometry if some graph in Bi(g) have such a geometry. Let Ωi(g) = {1, 2, ..., ωi(g)} be
the set of feasible geometries in i’s beliefs, with ωi(g) = |Ωi(g)|. The set of (isomorphic) networks in Bi(g)
with geometry z ∈ Ωi(g) is denoted Bz

i (g), and bzi (g) = |Bz
i (g)|. Networks in Bz

i (g) differ in how agents
are allocated within the network, but they all have the same network geometry. Throughout our analysis,
we assume that gz ∈ Bi(g) has geometry z ∀z ∈ Ωi(g) and geometries in Ωi(g) are indexed according to
their degree of symmetry in an increasing order, |Aut(gz)| < |Aut(gz+1)|∀z ∈ Ωi(g) : z + 1 ≤ ωi(g). Claim 1
provides conditions under which all agents have identical beliefs about the network geometry.

Claim 1. If Ii(g) = {ti(g), I
c} and Fg(t) ∈ Ic ∀i ∈ N under Setting S, then Ωi(g) = Ωj(g) ∀i, j ∈ N

19Example 5, at the end of Section 4.3, illustrates the difference between both scenarios (θ = ∅ and θ ̸= ∅). Clearly,
∑

gx∈Bi(g)
µgx

(

θ
)

= 1 in any case
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In words, if the common knowledge information of agents includes the frequency distribution of the
network aspect that is privately known by them, all individuals have identical beliefs about the set of feasible
geometries. This happens for example under Setting S(a), as we ilustrate below. Note that the feasibility of a
network geometry only depends on |E| and on n, which is common knowledge. Since the private information
of agents does not provide them any information about the network structure than that conveyed in the
common knowledge one, Ωi(g) = Ωj(g) ∀i, j ∈ N .

Distribution of the feasible geometries (θ = ∅). Each i can infer the probability that network g has
a particular geometry z by counting the number of (isomorphic) networks in Bi(g) with this geometry and
dividing this number by the total number of feasible networks, bi(g). In other words, agent i believes that
network g has geometry z with probability ρzi =

∑

z∈Bz
i (g)

µgz

(

θ
)

=
bzi (g)
bi(g)

. Agent i may assign more probability

to some network geometries than to others, as Example 2 illustrates.

Example 2. Suppose we are under Setting S(a), and Ii(g) = {ki, [Fg(1),Fg(2),Fg(3)], n, θ} =
{

ki(g),
[

1
2 ,

1
3 ,

1
6

]

, 6, ∅} . From Ii(g), a fully rational i can infer that there are three feasible network geometries,
depicted in Figure 5. Depending on how agents are allocated in the network, there are different networks
with each of these geometries. In particular, there exist bi(g) = 450 different networks that are feasible in
the beliefs of an i with ki(g) = 1 : b1i (g) = 180 networks have geometry 1, b2i (g) = 90 have geometry 2, and
b3i (g) = 180 have geometry 3, as we show in the following sections. ■

Figure 5: In each network, nodes in dark blue (yellow) are structurally equivalent. Nodes in light blue (yellow) are
automorphically equivalent but not structurally equivalent

ki(g) b1i (g) b2i (g) b3i (g) bi(g)
ki(g)=1 180 90 180 450
ki(g)=2 120 60 120 300
ki(g)=3 60 30 60 150
∑

360 180 360 900

Table 1: Network beliefs conditioned on Ii(g) (Example 2).

Notice that in Example 2 all agents have identical beliefs about the feasible geometries regardless of their
degree: they assign probability 180

450 = 120
300 = 60

150 = 0.4 to geometry 1, probability 90
450 = 60

300 = 30
150 = 0.2 to

geometry 2, and probability 0.4 to geometry 3. As we show below, this not by chance, but it is a general
property of agents’ beliefs for information setups exhibiting the conditions in Claim 1.

Under other information setups, network members may have different beliefs about the set of feasible
geometries and their probabilities. Consider, for instance, network g in Figure 4(g). Under Setting S(b),
i ∈ N knows that (s)he has a degree-two neighbor and a degree-three one. Hence, the only geometries that
are feasible given Ii(g) are geometry 1 and geometry 2 in Figure 5.20 Conditional on Il(g), on the contrary,
the feasible geometries are geometries 2 and 3 in Figure 3, while conditional on Ij(g) the only feasible one is
geometry 2 in the same őgure.

4.2 Isomorphisms of a graph

Let N̄ ⊆ N be a subset of nodes in a network g, with n̄ =
∣

∣N̄
∣

∣. We compute the number of distinct labelings
of the nodes in N \ N̄ . In other words, we compute the number of distinct isomorphic networks to g that can

20Observe that no degree-two agent has a degree-two neighbor in the third network of Figure 3. Hence, geometry 3 is not a
feasible geometry given Ii(g).
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be obtained by permuting exclusively the labels of the nodes in N \ N̄ . We denote this number y(g | N̄).21

Labels of the nodes in N̄ are not permuted, they are maintained őxed. Notice that in some cases we may
permute the labels of some nodes in N \ N̄ without any incidence in the adjacency matrix of the network:
given g we may permute the labels of some nodes in N \ N̄ and get a network g′ = g. The set of different
ways in which we can (exclusively) permute the labels of the nodes in N \ N̄ without affecting the adjacency
matrix of g is given by the stabilizer of N̄ , stabg(N̄). The stabilizer of a subset of nodes N̄ in g is the set
of all automorphisms that map each node in N̄ into itself, stabg(N̄) = {f ∈ Aut(g) : f(v) = v, ∀v ∈ N̄}
(Erwin and Harary, 2006). Consider for example network g2 in Figure 6. Since r ≡s m and l ≡s o,
Stabg(i) = {f, f ′, f ′′, f ′′′}, resulting in g2, g′2, g

′′

2 and g′′′2 in Figure 6, respectively.

Lemma 1. Let g = (N,E). The total number of distinct isomorphic networks to g that can be obtained
by exclusively permuting the labels of the nodes in N \ N̄ is:

y(g | N̄) =
∣

∣

{

g′ ∈ G : oi(g
′) = oi(g) ∀i ∈ N̄

}∣

∣ =
(n− n̄)!

∣

∣stabg(N̄)
∣

∣

Proof. There are (n − n̄)! possible permutations of the labels of the nodes in N \ N̄ . For each of these
(n − n)! possible labelings, there are

∣

∣stabg(N̄)
∣

∣ that are equal, as there are
∣

∣stabg(N̄)
∣

∣ different ways in
which we can permute the labels of the nodes in N \ N̄ without any incidence in the adjacency matrix of the
network. Thereby, y(g | N̄) = (n−n̄)!

|stabg(N̄)|
. ■

Figure 6: Actions of the automorphisms in Stab(i)
in g2

Figure 7: Actions of the automorphisms in Stab(i)
in g3

Example 3. Suppose N̄ = {i}, n̄ = 1.

(a) Consider network g1 in Figure 8. Since there is no pair of automorphically equivalent nodes in
N \ N̄ , each permutation of the labels of the nodes in N \ N̄ gives rise to a different network. Therefore,
Stabg1(i) = {f}, where f(i) = i ∀i, and |Stabg1(i)| = 1. Hence, y(g1 | {i}) = (n−1)!

1 = 120. Similarly,
y(g6 | {i}) = 120.22

(b) Consider now network g2 in Figure 8. Since r ≡s m and l ≡s o, Stabg2 = {f, f ′, f ′′, f ′′′}, resulting in
g2, g′2, g

′′
2 , and g′′′2 in Figure 6, respectively. Since |Stabg2(i)| = 4, y(g2 | {i}) = (n−1)!

4 = 30.

(c) As for network g3 in Figure 8, since m ≡ r and l ≡ o, |Stabg3(i)| = 2, as shown in Figure 7. Therefore,
y(g3 | {i}) = (n−1)!

2 = 60. Analogously, y(g4 | {i}) = y(g5 | {i}) = 60.23 ■

Example 3 calculates the number of distinct isomorphic networks that exist conditional on a given position
of i making use of Lemma 1. For instance, there exist 120 different networks with the geometry of g1 in
Figure 8 in which i occupies the position oi(g1); all these networks differ in how agents different from i are
allocated. Lemma 1 is necessary to compute bzi (g) and bi(g), as we show in the next section.

21Consider for example network g in Figure 2, and assume N̄ = {s}. Maintaining őxed the position of agent s in that network,
there are two different networks that are isomorphic to g: network g and network g2 in Figure 2. Hence, y(g | N̄) = y(g | {s}) = 2.

22Recall from Section 2 that automorphically equivalent nodes have the property that their labels can be interchanged to form
a new network that is identical to the original one. Since j ≡ r in g6, we could interchange the labels of these two nodes and
relabel all other nodes in the network to obtain a network that is identical to g6 . Nevertheless, there is no way to exchange the
labels of any nodes different from i and obtain network g6 maintaining őxed the label of i, since all nodes different from i are
located at a different distance from i.

23Since |Stabg1 (i)| = 1 and |Oi(g1)| = 2, we can compute |Aut(g1)| applying the Orbit-Stabilizer Theorem (in the Appendix):
|Aut(g1)| = |Oi(g1)|∗|Stabg1 (i)| = 2. Analogously, |Aut(g2)| = |Oi(g2)|∗|Stabg2 (i)| = 4 and |Aut(g3)| = |Oi(g3)|∗|Stabg3 (i)| =
2, as we introduced in Section 2.

12



Figure 8: Networks in Example 3

4.3 Beliefs about the network geometry

In our incomplete information setups, agents do not have complete information about their network position.
The information set of each i ∈ N only describes some aspects of oi(g), but there may exist distinct positions
compatible with such an information. We say that a position is feasible in i’s beliefs if it is consistent with
Ii(g): if it exists a positive probability that i occupies this position according to i’s beliefs. The set of feasible
positions of i in gz is P z

i (g) = {oi(gz) : gz ∈ Bz
i (g)}, and identiőes the positions that i can occupy in network

g if g has geometry z ∈ Ωi. The total number of agents in gz = (Nz, Ez) that occupy a position in P z
i (g) is

αi(gz) = {i ∈ Nz : oi(gz) ∈ P z
i (g)}.

Proposition 1 calculates bzi (g) and bi(g) under Setting S.

Proposition 1. Let gz ∈ Bz
i (g). Under Setting S:

bzi (g) =
(n− 1)!αi(gz)

|Aut(gz)|
and bi(g) =

∑

z∈Ωi(g)

bzi (g)

Proof. Assume we are under Setting S. If Pi(gz) = {oi(gz), oi(gs), ..., oi(gl)}, there exist at least one
network in Bi(g) in which i occupies the position oi(gz). Precisely, there are y

(

gz | {i}
)

(isomorphic)
networks in Bz

i (g) in which i occupies the position oi(gz); all these networks differ in how agents different
from i are allocated. Similarly, there are y

(

gs | {l}
)

(isomorphic) networks in Bz
i (g) where i occupies the

position oi(gs), and analogously for other positions in P z
i (g). Hence, if P z

i (g) = {oi(gz), oi(gs), ..., oi(gl)},
bzi (g) = y

(

gz | {i}
)

+ y
(

gs | {i}
)

+ ...+ y
(

gl | {i}
)

. By Lemma 1:

bzi (g) = y
(

gz | {i}
)

+ y
(

gs | {i}
)

+ ...+ y
(

gl | {i}
)

=
(n− 1)!

∣

∣Stabgz ({i})
∣

∣

+
(n− 1)!

∣

∣Stabgs({i})
∣

∣

+ ...+
(n− 1)!

∣

∣Stabgl({i})
∣

∣

Applying the Orbit-Stabilizer Theorem (in the Appendix) this is equal to:

(n− 1)!
∣

∣Oi(gz)
∣

∣

∣

∣Aut(gz)
∣

∣

+
(n− 1)!

∣

∣Oi(gs)
∣

∣

∣

∣Aut(gs)
∣

∣

+ ...+
(n− 1)!

∣

∣Oi(gl)
∣

∣

∣

∣Aut(gl)
∣

∣

=
(n− 1)! αi(gz)

|Aut(gz)|

■

Example 4 illustrates Proposition 1.

Example 4. Consider the information structure of Example 2, with ki(g) = 1. Figure 5 represents
Ωi(g) = {1, 2, 3}, while Figure 8 displays gz ∈ Bi, gz ∈ {g1, g2, g3, g4, g5, g6}. Since P 1

i (g) = {oi(g1), oi(g4)},
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P 2
i (g) = {oi(g2), oi(g5)} and P 3

i (g) = {oi(g3), oi(g6)}:

b1i (g) = y
(

g1 | {i}
)

+ y
(

g4 | {i}
)

= 120 + 60 =
(n− 1)!αi(g1)

|Aut(g1)|
=

5! 3

2
= 180

b2i (g) = y
(

g2 | {i}
)

+ y
(

g5 | {i}
)

= 30 + 60 =
(n− 1)!αi(g2)

|Aut(g2)|
=

5! 3

4
= 90

b3i (g) = y
(

g3 | {i}
)

+ y
(

g6 | {i}
)

= 60 + 120 =
(n− 1)!αi(g3)

|Aut(g3)|
=

5! 3

2
= 180

Hence, bi(g) = b1i (g) + b2i (g) + b3i (g) = 450.

■

Example 4 shows that an agent i with information set Ii(g) =
{

1,
[

1
2 ,

1
3 ,

1
6

]

, 6, θ(g) = ∅
}

believes that there
are 450 feasible networks: 180 have geometry 1 in Figure 5, 90 have geometry 2, and 180 have geometry 3 in
the same Figure, as we introduced in Example 2. Following the same procedure as for the degree-one agent,
it can be obtained the number of feasible networks in the beliefs of each i ∈ N with ki ̸= 1 (see Table 1).

Proposition 1 provides an expression for bzi (g) and another for bi(g). Dividing both expressions, we
get the probabilistic weight that i assigns to geometry z ∈ Ωi(g) when θi = ∅, ρzi =

∑

gz∈Bz
i (g)

µgz

(

θ
)

=
bzi (g)
bi(g)

.

Corollary 1 gives such a probability, and shows its relation with the order of the network automorphism group.

Corollary 1. Let gz ∈ Bz
i (g) be a network with geometry z ∈ Ωi(g) and θ = ∅. Under Setting S, each

i ∈ N believes that network g has geometry z with probability ρzi = 1

1+
∑

x∈Ωi(g)\{z}

αi(gx)|Aut(gz)|

αi(gz)|Aut(gx)|

Corollary 1 shows that the probabilistic weight that each i ∈ N assigns to each feasible geometry z ∈ Ωi(g)
depends on two aspects: (i) the number of agents that occupy a position in P z

i (g), αi(gz), and (ii) the order of
the automorphism group of the network, |Aut(gz)|. The probability that i assigns to z increases with αi(gz)
and decreases with |Aut(gz)|. As an implication, agents believe more likely to be immersed in a network
integrated by agents playing a great diversity of social roles rather than a network with a more homogeneous
structure, whenever αi(gz) = α ∀z ∈ Ωi(g). As explained in Section 2, the order of the automorphism
group of a network captures the variety of social roles their members play: the lower |Aut(gz)|, the greater
the number of distinct positional subgroups that integrate gz and greater the diversity of social roles in the
network. Note in Corollary 1 that ρzi decreases as |Aut(gz)| increases, ceteris paribus, which means that
ρzi < ρyi if |Aut(gz)| >

∣

∣Aut(gy)
∣

∣ and αi(gz) ≤ αi(gy), where gz ∈ Bz
i (g) and gy ∈ By

i (g).

The second implication of Corollary 1 is that, when the conditions in Claim 1 hold, all network members
assign the same probability to each feasible network geometry, even if ti(g) ̸= tj(g). When agents know
the frequency distribution of the network aspect that is privately known by players and the network size,
αi(gz) = αi(gy), ∀gz, gy ∈ Bi(g) and ∀i ∈ N . Consequently ρzi = 1

1+
∑

x∈Ωi(g)\{z}

|Aut(gz)|
|Aut(gx)|

= ρzj ∀i, j ∈ N . This

occurs for example under Setting S(a).

Under other information setups (e.g. Setting S(b) and Setting S(c)), agents may have not only different
beliefs about the feasible geometries, but also about their probabilities when the set of feasible geometries is
equal across players. Since ρzi depends on αi(gz) ∀i ∈ N , ρzi (g) can be different from ρzj (g) if the number of
agents that occupy a position in P z

i (g) and P z
j (g) is different (αi(gz) ̸= αj(gz)).

Network beliefs when θ ̸= ∅. So far we have focused on the case where i does not have any information
about the network formation process, θ = ∅. In absence of this information, each i assigns the same probability
to each feasible network as links were formed randomly. Nevertheless, the context in which agents move may
provide them information about the mechanisms that drive the creation of links. If such mechanisms differ
from random selection, i may assign distinct probabilities to different networks in Bi(g), as Example 5
illustrates.

Example 5. Consider the information assumptions in Example 2, with θ ∈ {θ0, θ1}, θ0 = ∅ and ki(g) = 3.
Figure 5 displays Ωi(g) = {1, 2, 3}. Assume θ1 is the probability that the network is connected, and θ1 = 0.9.
Column 2(4) in Table 2 shows the probabilistic weight that each i ∈ N assigns to networks g1, g2 and g3 in
Figure 8 conditioned on θ0 (θ1). Column 3(5) provides the probability that network g has geometry z ∈ Ωi(g)
conditioned on θ0(θ1). ■
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gz in Figure 8 µgz

(

θ0
)

=
1

bi(g)

ρzi
(

θ0
)

= ρzi=
bzi (g)
bi(g)

µgz

(

θ1
)

= 1
bi(g)

(1 + κgz ) ρzi
(

θ1
)

=
bzi (g)
bi(g)

(1 + κgz )

gz, z = 1 1
150 0.4 1

150

(

1 + 0.1
120

)

0.45

gz, z = 2 1
150 0.2 1

150

(

1− 0.1
30

)

0.1

gz, z = 3 1
150 0.4 1

150

(

1 + 0.1
120

)

0.45

Table 2: Network beliefs conditioned on Ii(g) (Example 5)

We conclude this section by stressing that the implications of our network perception model can hold
under information setups that do not exhibit the features of Setting S. Speciőcally, if players do not know
|E|, but their beliefs about the population are captured by a probability degree distribution, the probability
that each i assigns to each feasible geometry z ∈ Ωi(g) depends on three aspects: (i) the probability that
g has |E| links, (ii) αi(gz) and (iii) |Aut(gz)|. Yet, maintaining constant |E| and αi(gz), ρzi decreases with
|Aut(gz)|. Suppose for instance that, instead of knowing |E|, agents know that each link in the network forms
with probability p ∈ (0, 1) as in the Erdös-Renyi network model. In this case, the probability that i assigns
to a feasible geometry z ∈ Ωi(g) with |E| links is:

p|E|(1− p)(
n
2)−|E| bzi (g)

where p|E|(1− p)(
n
2)−|E| is the probability that the network has |E| links. Then, if gz ∈ Bi(g) and gy ∈ Bi(g)

have the same connectivity and αi(gz) = αi(gy), ρzi > ρyi whenever |Aut(gz)| < |Aut(gy)|.

4.4 Inference about network features

An important implication of our model is that each i ∈ N can learn the probability distribution of any
network characteristic from Ii(g). For example, i can deduce the probability that the network aspect that
is privately known by j, say, j’s degree under Setting S(a), has a particular value, tj(g) = k. Deőne
Ti = {t1, t2, ..., tx} as a set of possible values for ti(g) under Setting S, with Ti(g) = Tj(g) ∀i, j ∈ N .
The subset of positions in P z

i (g) in which i has a neighbor whose private information belongs to T is
P z
i (g | T ) = {oi(gz) ⊆ P z

i (g) : ∃j ∈ Ni(gz) : tj(gz) ∈ T}. For instance, under Setting S(a), P z
i (g | T )

is the subset of positions in P z
i (g) in which i has a neighbor with a degree in T . The number of agents in

gz ∈ Bi(g) that occupy a position in P z
i (g | T ) is αi(gz | T ) = |{i ∈ Nz : oi(gz) ∈ P z

i (g | T )}|, gz = (Nz, Ez).
Proposition 2 provides the probability that i has a neighbor j such that tj(g) ∈ T conditioned on Ii(g)

under Setting S.

Proposition 2. Under Setting S, the probability that it exist a j ∈ Ni(g) such that tj(g) ∈ T conditioned
on Ii(g) is:

p[oi(g) ⊆ Pi(g | T ) | Ii(g)] =
∑

z∈Ωi(g)

µgz (θ)
(n− 1)! |αi(gz | T )|

|Aut(gz)|

Proof. Assume P z
i (g | T ) = {oi(gz), oi(gy), ..., oi(gm))}. If network g has geometry z ∈ Ωi(g), i has a

neighbor j ∈ Ni(g) : tj(g) ∈ T if i occupies any position in P z
i (g | T ). There are y(gz | {i}) feasible networks

in which i occupies the position of oi(gz), and i assigns probability µgz (θ) to each of them.24 Analogously,
there are y(gy | {i}) feasible networks in which i occupies the position of i in gy, each of them with probability
µgy (θ) = µgz (θ), and similarly for other positions in P z

i (g | T ). Then:

p
[

oi(g) ∈ P z
i (g | T ) | Ii(g)

]

= µgz (θ)y(gz | {i}) + µgs(θ)y(gy | {i}) + ...+ µgm(θ)y(gm | {i})

= µgz (θ)
(n− 1)!

∣

∣Oi(gz)
∣

∣

∣

∣Aut(gz)
∣

∣

+ µgy (θ)
(n− 1)!

∣

∣Oi(gy)
∣

∣

∣

∣Aut(gy)
∣

∣

+ ...+ µgm(θ)
(n− 1)!

∣

∣Oi(gm)
∣

∣

∣

∣Aut(gm)
∣

∣

=

= µgz (θ)
(n− 1)! |αi(gz | T )|

|Aut(gz)|

where the second equality holds applying the Orbit-Stabilizer Theorem, and:

p
[

oi(g) ∈ Pi(g | T ) | Ii(g)
]

=
∑

z∈Ωi(g)

p
[

oi(g) ∈ P z
i (g | T ) | Ii(g)

]

24Recall that θ is informative about the network structure, but not about the identity of i’s neighbors. Then, µgz (θ) = µgy (θ)
whenever gz and gy have the same geometry.
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Note that i can learn the probability of any network aspect under Setting S, even if it does not correspond
to the private information of any player. Assume for example that ti(g) does not denote the private informa-
tion of i under Setting S, but the value of a particular measure of i’s position in g, say, ti(g) = Ci(g) under Set-
ting S(a). If we assume that T is a set of feasible values for Ci(g), and Pi(g | T ) = {oj(gz) ⊆ Pi(g) : ci(g) ∈ T},
Proposition 2 shows how i can learn the probability that Ci(g) ∈ T .

5 Network Games

We analyse the strategic interactions that take place in the network under Setting S. Network members
are the players of a Bayesian Game in which they have incomplete information about the position of other
players. We exploit our belief formation framework to analyse the equilibria that arise under such incomplete
information framework.

5.1 The games

Our major interest is to characterize equilibrium outcomes when players base their actions on the private
knowledge that they have about the characteristics of their network position, such as the knowledge of their
degree under Setting S(a) or the knowledge of their degree and their neighbors’ under Setting S(b). To bring
out such a relation clearly, we follow Galeotti et al. (2010) and Feri and Pin (2020) and focus on the symmetric
equilibria of the games in most part of our analysis (conőgurations where agents’ choices are determined by
their private network knowledge).25 To that aim, the type of each i ∈ N in g is denoted τi(g), and corresponds
to the private information of i throughout Section 5: under Setting S(a), τi(g) = ti(g) = ki(g) ∀i ∈ N , under
Setting S(b), τi(g) = ti(g) = (ki(g), kNi (g)) ∀i ∈ N , and so on. To simplify notation, we write τi to denote
generally the type of i. The common type space (the set of feasible types) is T , while Fg(τ) is the frequency
distribution of types in network g. A symmetric strategy σ is a mapping that speciőes which action is chosen
as a function of each player’s type σ(τi) ∈ X, where X is the action set. The strategy σ is symmetric if and
only if σ(τi) = σ(τj) ∀τi, τj : τi = τj .

We analyse network games of strategic substitutes and strategic complements similar to those in Bramoullé
and Kranton (2007) and Jackson (2010), respectively. In both games, each player chooses simultaneously
an action in X = {0, 1}. For strategic complements, playing 1 may be interpreted as adopting a software,
attending to an event or engaging in a criminal activity and playing 0 as not doing so. For strategic sub-
stitutes, action 1 may be experimenting with a novel technology, contributing to a public good or collecting
information, and 0 as not taking these actions. In both cases, playing 1 bears a cost c ∈ (0, 1) and playing 0
is free.

The active players are the agents that play action 1. Let Aσ = {τi ∈ T : σ(τi) = 1 ∀i ∈ N} denote the
set of active types in both games, i.e. the set of types for which σ speciőes action 1. The set of positions in
P z
i (g) in which i has an active neighbor is P z

i (g | Aσ) = {oi(gz) ∈ P z
i (g) : ∃j ∈ Ni(gz) : τj(gz) ∈ Aσ}, while

Pi(g | Aσ) = {oi(gz) ∈ Pi(g) : ∃j ∈ Ni(gz) : τj(gz) ∈ Aσ} is the set of all feasible positions of i in which i is
linked to an active player.

In both games, the utility function of each i ∈ N when all players in g follow the strategy σ is denoted
ui(σ, g), and ui(σ, g) depends on the action of i and on the sum of actions of i’s neighbors. The expected
utility of i of playing 0 when all agents follow the strategy σ is EUi

(

0, σ, Ii(g)
)

, while EUi

(

1, σ, Ii(g)
)

is the
expected utility of i of playing 1 conditioned on the same strategy.

25As discussed in Galeotti et al. (2010), this is further motivated by the fact that the set of all equilibria is roughly equal
to the set of symmetric equilibria in large networks. This is because agents with the same private information (say, individuals
with the same degree under Setting S(a)) have virtually identical beliefs about the underlying network. For instance, the only
difference between i’s and j’s beliefs about the network under Setting S(a) when ki(g) = kj(g) is that j(i) is a feasible neighbor
of i(j), while i(j) is not. Then, both agents face virtually the same probability over neighbors’ actions in large networks and
their best-responses to their neighbors’ choices are, in the vast majority of the cases, identical. Thus, the range of parameter
values for which players with identical types are best responding with different actions is negligible for large networks.
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Strategic substitutes. The utility of each i is:

ui(σ, g) =



















0 if σ(τi) = 0 and
∑

j∈Ni(g)

σ(τj) = 0

1 if σ(τi) = 0 and
∑

j∈Ni(g)

σ(τj) ≥ 1

1− c− µ(σ) if σ(τi) = 1

where µ(σ) = 0 if
∑

j∈Ni(g)

σ(τj) = 0 and µ(σ) = µ ∈ [0, 1− c) otherwise.

Thus, players prefer that some of their neighbors play action 1 rather than taking this action themselves.
However, if none of their neighbors plays 1, they prefer playing 1 rather than 0. The parameter µ represents
players’ regret when they incur in the cost of playing 1 and observe that they could have free ridden.

Under strategic substitutes, EUi

(

0, σ, Ii(g)
)

is the probability that at least one of agent in Ni(g) plays
action 1. That is, the probability that i has a neighbor with a type in Ag given Ii(g):

EUi

(

0, σ, Ii(g)
)

= p
[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

When θ = ∅:

EUi

(

0, σ, Ii(g)
)

=
|{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) ∈ Aσ}|

bi(g)

In equilibrium, each i plays 0 if and only if:

EUi

(

0, σ, Ii(g)
)

≥ EUi

(

1, σ, Ii(g)
)

= 1− c− EUi

(

0, σ, Ii(g)
)

µ

That is, if:
1− c

1 + µ
≤ EUi

(

0, σ, Ii(g)
)

= p
[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

Strategic complements. In this case:

ui(σ, g) =



















−c if σ(ti) = 1 and
∑

j∈Ni(g)

σ(τi) = 0

1 if σ(ti) = 1 and
∑

j∈Ni(g)

σ(τj) ≥ 1

−µ(σ) if σ(τj) = 0

for each i ∈ N , with µ(σ) = 0 if
∑

j∈Ni(g)

σ(tj) = 0 and µ(σ) = µ ∈ [0, c) otherwise.

It is readily seen that players prefer playing 1 if some neighbor plays this action and playing 0 otherwise.
In this case, µ represents the regret of players when they take action 0 and observe that they could have
obtained greater payoffs by playing 1. Under strategic complements:

EUi

(

1, σ, Ii(g)
)

= −c+ p
[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

When θ = ∅:

EUi

(

1, σ, Ii(g)
)

= −c+
|{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) ∈ Aσ}|

bi(g)

Each i is best responding with action 1 if and only if:

EUi

(

1, σ, Ii(g)
)

≥ EUi

(

0, σ, Ii(g)
)

= −p
[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

µ

or equivalently, if:

c

1 + µ
≤ p

[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

Threshold. Hereafter, q denotes the threshold above which i is best responding with action 0(1) under
strategic substitutes (complements): q = 1−c

1+µ
under strategic substitutes and q = c

1+µ
under strategic

complements.
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5.2 Equilibrium

In this section, we characterize the Bayes-Nash equilibria of the games and analyse the effects of varying the
perceived network on equilibrium behavior. We further explore the consequences of our network perception
model on equilibrium welfare.

5.2.1 Equilibrium behavior

Let gz = (Nz, Ez). Under Setting S, the number of agents that occupy a feasible position of i, αi(gz), is
number of individuals of type τi in gz ∈ Bi(g). Deőne αi(gz | Aσ) = |{i ∈ Nz : oi(gz) ∈ P z

i (g | Aσ)}| as the
number of agents that occupy a feasible position of i in gz and have an active neighbor when all agents follow
the strategy σ. Namely, αi(gz | Aσ) is the number of players of type τi in gz ∈ Bi(g) that have an active
neighbor. Proposition 3 provides a condition under which a symmetric strategy σ constitutes an equilibrium
under strategic substitutes (complements) under Setting S. The condition shows that, for each z ∈ Ωi(g), the
best response of each i ∈ N depends on two aspects: (i) the proportion of type-τi agents that have an active
neighbor in gz ∈ Bi(g) and (ii) the probability that i assigns to geometry z, ρzi .

Proposition 3. Let σ be a symmetric strategy under Setting S and θ = ∅. The strategy σ constitutes a
Bayes-Nash Equilibrium under strategic substitutes (complements) if and only if:

∑

z∈Ωi(g)

αi(gz | Aσ)

αi(gz)
ρzi ≥ q ∀i : τi ∈ X and

∑

z∈Ωi(g)

αi(gz | Aσ)

αi(gz)
ρzi ≤ q ∀i : τi ∈ Y

where X=T \Aσ and Y =Aσ under strategic substitutes and X= Aσ and Y = T \Ag under strategic comple-
ments.

Proof. See the Appendix.

Proposition 3 characterizes the inŕuence that players’ cognitive maps about network g have on their
equilibrium actions. The greater the proportion of agents that occupy a feasible position of i and are
linked to an active type in each of the feasible networks, the more likely i is to occupy the position of
any of these individuals, and the greater are i’s incentives of playing action 0(1) under strategic substitutes
(complements). If αi(gz | Aσ) and αi(gz) = αi(gy) for two networks gz ∈ Bz

i (g) and gy ∈ By
i (gy) such that

|Aut(gz)| < |Aut(gy)|, then the actions of i’s neighbors in gz have a greater impact on i’s behavior than the
action of i’s neighbors in gy, since ρzi > ρyi .

26 Thus, the degree of substitutability between players’ actions
and the actions of their feasible neighbors depends negatively on the order of the automorphism group of the
network to which such neighbors belong.

Now we ask: is the equilibrium unique? Example 6 shows that different equilibria with varied patters
are possible, even when players’ network information is limited to their degree and the degree distribution of
the network. These results are not exclusive of this information setup (Setting S(a)). In Section 7 we show
that multiple and varied equilibria can exist even in information settings where players’ have heterogeneous
beliefs about the underlying social structure.

Example 6. Assume ∀i ∈ N : Ii(g) = {ki(g), [Fg(1), Fg(2), Fg(3)] , n, θ = ∅} =
{

ki(g), [
1
5 ,

3
5 ,

1
5 ], 5, θ = ∅

}

and T = {k, k′, k′′} = {1, 2, 3}. Figure 9 shows Ωi(g) = {1, 2} ∀i ∈ N . Note that |Aut(g1)| = |Aut(g2)| = 2,
where gz ∈ Bi(g) has geometry z ∈ Ωi(g) = {1, 2}.

Figure 9: Ωi(g) ∀i ∈ N in Example 6

There are three strategies that constitute a pure-strategy symmetric equilibrium:

26Observe in Corollary 1 that, if αi(gz) = αi(gy) and |Aut(gz)| < |Aut(gy)|, then ρzi > ρyi .
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(a) σ1 : σ1(2) = 0 and σ1(ki) = 1 for ki ∈ {1, 3}, ∀i ∈ N and 1
2 ≤ q ≤ 5

6 .
(b) σ2 : σ2(3) = 1 and σ2(ki) = 0 for ki ∈ {1, 2}, ∀i ∈ N and q ≥ 1

2 .
(c) σ3 : σ3(1) = 1 and σ3(ki) = 0 for ki ∈ {2, 3}, ∀i ∈ N and q ≥ 5

6 .

Table 3 lists the expected utility of playing 0 of each type of i ∈ N when all agents follow each of these
strategies.

T EUi

(

0, σ1, Ii(g)
)

EUi

(

0, σ2, Ii(g)
)

EUi

(

0, σ3, Ii(g)
)

k = 1 1/2 1/2 0
k′ = 2 5/6 5/6 1/6
k′′ = 3 1/2 0 1/2

Table 3: EUi(1, σx, Ii(g)) in Example 6, x ∈ {1, 2, 3}.

■

Galeotti et al. (2010) show that, in binary games of strategic substitutes (complements), the equilibrium is
unique and monotone non-increasing (non-decreasing) in players’ degrees when nodes have degrees either with
independent probabilities or with probabilities that are negatively (positively) correlated and players are not
indifferent between playing different actions. Their result is intuitive: under degree independence, the beliefs
of i about the degree of each j ∈ Ni(g) are identical as the beliefs of s about the degree of each l ∈ Ns(g), even
when ki > ks. This implies that i and s face the same probability distribution over the action of j ∈ Ni(g) and
l ∈ Ns(g), respectively, since the action of each j ∈ N is determined by tj(g) = kj(g). However, given that i
has a more neighbors, the probability that at least one agent in Ni(g) plays 1 is greater than the probability
that at least agent in Ns(g) does. Then, for all i, s ∈ N : ki(g) > ks(g), EUi

(

0, σ, Ii(g)
)

≥ EUs

(

0, σ, Is(g)
)

under strategic substitutes and EUi

(

1, σ, Ii(g)
)

≥ EUs

(

0, σ, Is(g)
)

under strategic complements. As a result,
the equilibrium is characterized by a threshold: under strategic substitutes (complements) players with a
degree lower than k̄ play action 1(0) and other players action 0(1). If nodes have degrees with probabilities
that are negatively (positively) correlated, the probability that i has a neighbor with a degree below (above)
the threshold increases with ki(g), and the monotonicity property of equilibrium under strategic substitutes
(complements) maintains.

Example 6 shows that, in contrast to Galeotti et al. (2010), equilibria are not necessarily monotone non-
increasing in players’ degrees under strategic substitutes under Setting S(a). The reason is that, in our model
each i learns the probability of having neighbors with particular degrees from Ii(g), and this probability is
not always independent nor does necessarily vary monotonically with ki(g), even if links are formed randomly
in agents’ beliefs (θ = ∅). This means that the probability that s ∈ N has a degree-k neighbor conditioned on
Is(g) may be greater than the probability that i has a degree-k neighbor conditioned on Ii(g), even if ks < ki.
Thus, if σ(k) = 1, s may be more likely to have an active neighbor than i, despite having a lower number of
connections. If this occurs, EUs

(

0, σ, Is(g)
)

may be greater than EUi

(

0, σ, Ii(g)
)

, s may be responding with
a lower action than i, and the equilibrium is not monotone non-increasing. Under strategic complements,
similar results are obtained. If conditioned on Ii(g), the probability that i has a degree-k neighbor is neither
independent nor monotone increasing in ki(g), players with greater degrees may have lower incentives to play
higher actions, and the monotonicity property of equilibrium may fail to hold.27

In a nutshell, unless players have some speciőc beliefs about the network assortativity patterns, there is not
a systematic relationship between degree and equilibrium behavior, even if players’ private information about
the network conőnes to this network measure. However, there is a network feature that has a clear impact on
behavior and payoffs in all setups of incomplete network information: the order of the automorphism group
of the network. In the following section we show the inŕuence that this network property has on equilibrium
welfare.

5.2.2 Equilibrium welfare

.
27Suppose for instance that Ii(g) = {ki(g), Jg

(

k, (k1, k2, ..., , k)
)

, n, θ} = {ki(g), [Jg
(

1, (1)
)

, Jg
(

2, (2, 2)
)

], 8, θ} =

{ki(g), [
1
4
, 3
4
], 8, θ}. Conditioned on Ii(g) there are two feasible geometries: one in which degree-two nodes form two differ-

ent three-cycles and the degree-one nodes a dyad, and another in which degree-two nodes are connected a six-cycle and the
degree-one nodes are linked. Under these conditions, there are four symmetric equilibria: σ1 : σ1(k) = 1 for k = 1 and σ1(k) = 0
for k = 2, σ2 : σ2(k) = 0 for k = 1 and σ2(k) = 1 for k = 2 and and two equilibria where all agents play action 0(1).
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We now explore the implications of Proposition 3 on players’ payoffs and the aggregate welfare. Under
Setting S, the set of equilibria is the same across all networks that are compatible with players’ information.
However, the payoffs that players receive may differ across these networks, if their respective geometries are
different. Consider, for example, any two networks g1 and g2 with geometries 1 and 2 in Figure 9. Under
Setting S(a), the three strategies in Example 6 are equilibrium strategies. However, when agents play σ1, the
sum of their payoffs is 5− 2c in network g1, and 4− 2(c+ µ) in network g2. Thus, although players’ choices
are identical, the sum of the payoffs they obtain is not.

We want to understand how the equilibrium welfare relates to the geometry of the network. To that aim,
we deőne Wτi(σ, g) as the sum of the payoffs of type-τi players in network g. Under strategic substitutes:

Wτi(σ, g) =
∑

i∈N :τi(g)=τi

ui(σ, g) =

{

αi(g|Aσ) if σ(τi) = 0

αi(g)(1− c)− αi(g|Aσ)µ if σ(τi) = 1

Under strategic complements:

Wτi(σ, g) =
∑

i∈N :τi(g)=τi

ui(σ, g) =

{

αi(g|Aσ)−
[

αi(g)− αi(g|Aσ))
]

c if σ(τi) = 1

−αi(g|Aσ)µ if σ(τi) = 0

Similarly, the average welfare of type-τi players in g is
Wτi

(σ,g)

αi(g)
, while W (g, σ) =

∑

i∈N

ui(σ, g) is the

aggregate welfare in g.

Proposition 3 shows that the range of parameter values for which i is best responding with action σ(τi)
increases as the average welfare of type-τi players in each of the feasible networks conditioned on σ does. The
extent to which it increases depends on |Aut(gz)|. Consider for instance the game of strategic substitutes.

Conditioned on σ(τi) = 0,
Wτi

(σ,gz)

αi(gz)
= αi(gz|Aσ)

αi(gz)
in each gz ∈ Bi(g). Action σ(τi) = 0 is a best-response if and

only if EUi

(

0, σ, Ii(g
)

is greater than a threshold q = 1−c
1+µ

. As EUi

(

0, σ, Ii(g
)

increases with αi(gz|Aσ)
αi(gz)

, the
range of parameter values for which σ(τi) = 0 is a best response increases as the average welfare of type-τi
players conditioned on σ(τi) = 0 in each gz ∈ Bi(g) does. Similarly, the range of parameter values for which

σ(τi) = 1 is a best response increases as
Wτi

(σ,gz)

αi(gz)
conditioned on σ(τi) = 1 is greater (αi(gz|Aσ)

αi(gz)
conditioned on

σ(τi) = 1 is lower). In both cases, the geometry of gz determines the extent to which the range of parameter
values changes, since ρzi depends negatively on |Aut(gz)|. As this holds for all i ∈ N , Proposition 3 suggests
that, under certain conditions, the equilibria that provide greater payoffs in more asymmetric structures are
sustainable for a greater range of parameter values. Corollary 2 clariőes this result.28

Corollary 2. If Ωi(g) = Ωj(g), ρ
z
i = ρzj ∀i, j ∈ N , and

∑ωi(g)
z=x

Wτi
(gz,σ

′)

αi(gz)
≥

∑ωi(g)
z=x

Wτj
(gz,σ)

αj(gz)
∀i, j ∈ N :

σ(τi) = σ′(τj) and ∀x ∈ Ωi(g), with strict inequality for some i, j ∈ N : σ(τi) = σ′(τj) and some x ∈ Ωi(g),
then σ′ is sustainable for wider range of parameter values than σ.

Corollary 2 applies for setups in which all players have identical beliefs about the network geometry.
Such a symmetry in beliefs is present when the conditions in Claim 1 hold, for example. Recall that, if the
conditions in Claim 1 satisfy, αi(gz) = αi(gy) ∀gz, gy ∈ Bi(g) and i ∈ N , and all agents have identical beliefs
about the feasible network geometries and their probabilities.

Proposition 4 provides a condition that guarantees that equilibrium welfare is at least as high in g as in
any other network composed of the same types of players as g and compatible with the information of some
player. Formally, network g is efficient if ✁∃g′ ∈ ∪

i∈N
Bi(g) : Fg(τ) = Fg′(τ) such that W (σ, g′) > W (σ, g), for

any σ that constitutes a (symmetric) equilibrium under Setting S.

Proposition 4. Assume we are under Setting S, network g has geometry z ∈ Ωi(g), and µ = 0. Network
g is efficient if:

1. c <
ρz
i

αi(gz)
under strategic substitutes.

2. 1− c <
ρz
i

αi(gz)
under strategic complements.

28Recall from Section 4 that geometries in Ωi(g) are indexed according to their degree of symmetry, |Aut(gz)| < |Aut(gz+1)|,
∀z ∈ Ωi(g) : z + 1 ≤ ωi(g), ∀i ∈ N .
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with
ρz
i

αi(g)
≤

ρz
j

αj(g)
∀j ∈ N .

To illustrate Proposition 4, consider the information structure in Example 6, and let g1 and g2 be two
networks with geometry 1 and 2 in Figure 9, respectively. Given that |Aut(g1)| = |Aut(g2)| = 2, all agents
in g1 believe that the network they are immersed in has geometry 1 with probability ρ1i = 1

2 , and geometry
2 with the same probability, ρ2i = 1

2 . Since αi(g1) = αi(g1) = 1 when ki(g) ∈ {1, 3} and αi(g1) = αi(g2) = 3
when ki(g) = 2, Proposition 4 implies that network g1 is efficient for c < 1

6 under strategic substitutes and
analogously for g2. Note that for c ≥ 1

6 , network g2 is not efficient: when all agents play the equilibrium
strategy σ1−which is an equilibrium strategy for 1

6 ≤ c ≤ 1
2 when µ = 0− W (g1, σ1) = 5− 2c > W (g1, σ2) =

4− 2c.29

6 Network information effects

This section explores the effects of varying the depth of players’ network information on equilibria. We őrst
explore the impact of increasing players’ network information on the structure and number of equilibria.
Then, we analyse the consequences of assuming that players know the identity of other network members on
the way they perceive the network as well as on their equilibrium behavior.

6.1 Information and structure of equilibria

Research on network games has shown how the introduction of incomplete network information can solve
the problem of equilibrium multiplicity. The question that arises is the following: can we link the depth of
network information to the number and/or structure of equilibria? Example 7 shows that increasing players’
network information has non-monotone effects on the structure and number of equilibria.30

Example 7. Assume players are embedded in network g in Figure 2. Figure 10 shows the pure-strategy
symmetric equilibria that arise under strict strategic substitutes under different information setups. The
green (black) nodes in Figure 10 represent agents playing action 1(0).

a) Galeotti et al. (2010). For all i ∈ N , let Ii(g) = {ki(g), Pg(k)}, where Pg(k) is the probability
degree distribution. Suppose that according to Pg(k) each node has degree k = 1 with probability p1 and
degree k = 2 with probability p2, independently on the degree of other nodes. Under strict substitutes, the
only equilibrium strategy is σ1 : σ1(ki) = 1, ∀ki(g) = 1 and σi(ki) = 0, ∀ki(g) = 2, for p21 < 1 − q < p1.
Clearly,

EUi

(

0, σ1, Ii(g)
)

= 1− p
ki(g)
1

which is greater than q for ki(g) = 2 and p21 < 1 − q < p1, and lower than q for ki(g) = 1 and the same
parameter values. On the contrary, strategy σ2 : σ2(ki) = 0, ∀ki = 1 and σ2(ki) = 1, ∀ki = 2. is not an
equilibrium strategy: since the expected utility of playing zero is always greater for the degree-two players
than for the degree-one ones, for any cost value for which the second agents are best responding with action
0, the former ones must be best-responding with this action as well. Then, σ1 is the unique equilibrium
strategy under strict strategic substitutes.31

b) Setting S(a). For all i ∈ N , Ii(g) = {ki(g), [Fg(1),Fg(2)] , n, θ} =
{

ki(g),
[

2
3 ,

1
3

]

, 3, ∅
}

.32 Hence,
Bs(g) = {g, g2}, Bm(g) = {g, g1} and Bi(g) = {g}, where g, g1 and g2 are depicted in Figure 2. Since each
i can infer the unique feasible geometry from Ii(g), both σ1 and σ2 in (a) are equilibrium strategies for any
cost value.

Suppose all players follow an asymmetric strategy σ3 : σ3(ks) = 1 for ks and σ3(km) = σ3(ki) = 0.
Agent i knows that s ∈ Ni(g), and since EUi

(

0, σ3, Ii(g)
)

= 1, i is best responding with action 0. The
opposite occurs for s: when all agents play σ3, EUs

(

0, σ3, Is(g)
)

= 0, and s is best responding with action

29σ2 and σ3 are equilibria for c ≥ 1
2

and c ≥ 5
6
, respectively, and W (g1, σ2) = W (g2, σ2) = 4−c and W (g1, σ3) = W (g2, σ3) =

2− c.
30As we analyse the effects of varying network information on the (total) number of equilibria that arise under different

information setups, we have to consider all types of equilibria, included those involving asymmetric strategies. As mentioned
above, the range of parameter values for which asymmetric equilibria sustain is negligible in large networks.

31Note that there is not equilibrium where all players play the same actions. If all agents play 1, EUi

(

0, σ, Ii(g)
)

= 1 > q for

all i, so each player wants to deviate and play action 0. The same applies if all they play 0: since EUi

(

0, σ, Ii(g)
)

= 0 < q, each
i wants to change to action 1.

32We can also assume that Ii(g) = {ki(g), Pg(k) [Fg(1),Fg(2)] , n, θ} ∀i ∈ N , i.e. players know the probability degree
distribution Pg(k) and the particular realization of degrees in the network, Fg(k).
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Figure 10: Pure-strategy equilibria under strict substitutes (Example 7)

1. Last, the probability that at least one neighbor of m plays 1 when all agents follow the strategy σ3 is
EUm

(

0, σ3, Im(g)
)

= |{g1}|
bm(g) = 1

2 . Then, under strict strategic substitutes (q > 1
2 ), σ3 and σ4 are equilibrium

strategies, where σ4 : σ4(km) = 1 for km and σ4(ks) = σ4(ki) = 0.

b) Complete information. Each i is best responding with action 0 if there is at least one neighbor
playing 1, and with action 1 otherwise. Then, the only possible equilibrium strategies are σ1 and σ2. ■

Example 7 illustrates how reducing players’ information does not necessarily solve the equilibrium selection
problem: although the shift from the complete information setup to the information setting in Galeotti et
al. (2010) eliminates any ambiguity in behavior, the shift from the complete information scenario to Setting
S(a) does not. Notice that the set of equilibria under our Setting S(a) and the information setup in Galeotti
et al. (2010) is markedly different even when the difference between both setups is subtle (under our Setting
S(a), players’ know the distribution of degree frequencies in the network while in Galeotti et al. (2010) they
know the probability degree distribution).

6.2 Richer network information

So far we have focused on the case where players know their own identities but they do not have information
about the identity of other network members. However, in many circumstances, people know the identity
of their people they interact with, as well as the identity of their neighbors’ neighbors. We now explore the
effects that such a network knowledge has on players’ network perception and behavior.

Deőne Setting S’ as an information setup such that Ii(g) = {ti(g), I
c(g)} ∀i ∈ N , where ti(g) is the private

information of i about i’s network position and Ic(g) a common knowledge information about network g.
As in Setting S, {|E|, θ, n} ∈ Ic(g). However, Setting S and Setting S’ differ in one important aspect: ti(g)
includes information about the identity of the people that are located at a distance equal or lower than d ≥ 1
from i under Setting S’ while it does not under Setting S. Let NIi(g) = {j ∈ N : dij ≤ d} be the set of agents
whose identity is known by i under Setting S’, with nIi(g) = |NIi(g)| > 1 and NIi(g) ∈ ti(g). Setting S’(b)
and Setting S’(c) are two particular cases of Setting S’.

Setting S
′(b). Under Setting S’(B), Ii(g) =

{

Ni(g), kNi(g),Fg(k), n, θ
}

, ∀i ∈ N . For example, if g is the
network in Figure 11(g), Ii(g) = {Ni(g), (kl, ko), [Fg(1),Fg(2),Fg(3)], 6, θ} =

{

{l, o}, (3, 2), [ 12 ,
1
3 ,

1
6 ], 6, θ

}

.
Figures 11(b1) and 11(b2) represent the two possible ways in which links can be allocated conditioned on
Ii(g).

Setting S’(c). The information set of each i is Ii(g) =
{

Ni(g), NNi(g),Fg(k), n, θ
}

, where NNi(g) =
(Nj(g), ..., Nm(g)) is the vector integrated by the neighborhoods of i’s neighbors, Ni(g) = {j, ...,m}. The
only difference between Setting S’(b) and Setting S’(c) is that under Setting S’(c) each i knows the iden-
tity of the agents in N2

i (g). The fact that i is informed about the identity of the agents in N2
i (g) im-

plies that i knows the three- and four-cycles among the agents in Ni(g) ∪ {i}, what in turn provides i
information about the degree of the agents in N2

i (g). Assume network g is the network in Figure 11(g).
Figure 11(c) represents the network knowledge of i given Ii(g) =

{

{l, o}, (Nl(g), No(g)), [
1
2 ,

1
3 ,

1
6 ], 6, θ(g)

}

=
{

{l, o},
(

{i,m, o}, {i, l}
)

, [ 12 ,
1
3 ,

1
6 ], 6, θ(g)

}

. From Ii(g), i knows that l and o are linked. Moreover, since neigh-
bors l and o are simultaneously second-order neighbors of i, the degree of two agents in N2

i is also known by
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i.33

Figure 11: Network g and Ii(g) under Setting S’(b) and S’(c). Unlabelled nodes represent agents whose identity is
unknown for i. Solid (dashed) lines represent links that are (not) directly observed by i.

These examples illustrate how a subtle change in agents’ network information− assuming that agents know
their neighbors’ degrees or they know their neighbors’ neighborhoods− can have important consequences on
agents’ network knowledge. As Example 8 shows, such a difference between settings can entail abrupt changes
in behavior, even when players’ condition their behavior on the same network aspect under both information
setups. But őrst we ask: are the predictions of our network perception model valid when players have
information about other agents’ identities?

The answer is positive. Let B̄z
i (g) ⊆ Bz

i (g) be a subset of Bz
i (g) that satisőes the following condition:

if gz ∈ B̄z
i (g) and gy ∈ B̄z

i (g), then oi(gz) ̸= oi(gy) for some i ∈ NIi . Assume B̄z
i (g) is not a subset

of any other set B̄′
i(g) ⊆ Bz

i (g) satisfying such a condition. If B̄z
i (g) = {gz, gy, ..., gl}, there are y(gz | n̄Ii)

isomorphic networks that could be network g; these networks only differ in how agents in N \NIi are allocated.
Analogously, there are y(gy | n̄Ii) different feasible networks that (only) differ in the position occupied by
the agents in NIi . Following the same reasoning for all networks in B̄z

i (g), the total number of networks with
geometry z ∈ Ωi(g) under Setting S′ is:

bzi (g) = y(gz | NIi) + y(gz | NIi) + ...+ y(gy | NIi) =
∑

gl∈B̄z
i (g)

(n− nIi) !

|Stabgz (nIi)|

and bi(g) =
∑

z∈Ωi(g)
bi(g).

Observe that the perception bias towards assymmetric network structures maintains under Setting S’.
As |Aut(gz)| decreases, either |B̄z

i (gz)| is greater or |Stabgz (nIi)| is lower (or both). This means that bzi (g)

increases as |Aut(gz)| decreases. Consequently, bzi (g)
bi(g)

increases as the degree of asymmetry of gz grows.

Example 8. Consider the networks34 in Figure 13. The three networks have the same degree distribu-
tion, whereas only networks (b) and (c) have the same joint degree distribution. We analyse: (i) whether
players’ behavior may change depending on whether they have information about their second-order neigh-
bors’ identities (Setting S’(b) vs. Setting S’(c)) and (ii) whether players with the same degree and neighbors’
degrees may behave differently depending on the observed geometry of links in their local network (Setting
S(c)). To that aim, the type of each i ∈ N deőnes as τi = (ki(g), kNi(g)) both under Setting S’(b) and under
Setting S’(c), and we compare the symmetric equilibria that arise in different networks within and across
these setups.

Table 4 contains the symmetric equilibrium strategies in the networks of Figure 12 for the game of strategic
substitutes and µ = 0. As Table 4 shows, there are 5 feasible types, τi ∈ {τ1, τ2, τ3, τ4, τ5}. The range of cost
values for which each of these strategies constitutes an equilibrium in each network is displayed in Figure

33In a similar way, i could obtain some information about the degree of the agents in N2
i (g) by observing the four-cycles

among the agents in {i} ∪ Ni(g): if i observes that a second-order neighbor z is linked both to j ∈ Ni(g) and to k ∈ Ni(g), i
knows that kz ≥ 2. Analogously, if z is a common neighbor of x neighbors of i, i knows that kz ≥ x.

34To simplify the exposition, nodes in these networks are unlabeled. This allows us to provide all the calculations in terms of
node i (see the Appendix).
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Figure 12: Networks in Example 8

13. As can be seen in this őgure, equilibria can be different within and across setups, since the different
information of players traduce in different beliefs about the network and this, in turn, in different equilibrium
choices. ■

Figure 13: Symmetric equilibria in Example 8

Type of i ∈ N σ1(τ
x) σ2(τ

x) σ3(τ
x) σ4(τ

x) σ5(τ
x) σ6(τ

x) σ7(τ
x) σ8(τ

x) σ9(τ
x)

τ1 =
(

2; (2, 2)
)

0 0 1 1 1 0 0 0 1

τ2 =
(

2; (3, 2)
)

1 1 0 0 0 0 0 0 0

τ3 =
(

2; (3, 3)
)

1 1 0 0 1 0 0 1 1

τ4 =
(

3; (2, 2, 2)
)

0 0 1 1 0 1 1 0 0
τ5 =

(

3; (3, 2, 2)
)

0 1 0 1 1 1 0 1 0

Table 4: Symmetric equilibrium strategies in Example 8

To summarize, the examples in this section provide a crucial message: although the framework of Galeotti
et al. (2010) eliminates the problem of multiplicity of equilibria in network games, their uniqueness and
monotonicity results are largely not robust to relaxing their information assumptions. As a result, their
approach fails to reőne the set of predictions in many situations in which people still have local network
information. Such situations abound.

The introduction of incomplete information as a way of solving the problem of multiplicity of equilibria
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has faced a major critique: the equilibrium achieved depends on the way incomplete information is introduced
(Weinstein and Yildiz, 2007). While this critique applies generally to all incomplete information games, it
seems particularly relevant for those played on networks, given the variety of network aspects that players
can infer from the information they are given.35 Examples 7 and 8 illustrate that behavior is particularly
sensitive to subtle changes in players’ network information. This implies that, even when it is clear the
network aspects that are unknown for players in speciőc contexts (e.g. the degree of agents that are two-link
separated from them), őne differences in the information assumptions (e.g. assuming that players know the
identity of their second-order neighbors or not) can bias the results in a particular direction.

7 Conclusion

Cognitive network research has showed how people form mental representations about their networks that
inŕuence their behavior (Brewer, 2011, Smith et al. 2021). Literature on network games has primarily opted
for a simpliőcation of people’s network perception by making exogenous assumptions on players’ network
knowledge, abstracting from the fact that rational agents form beliefs about the network structure from the
information they are given (e.g. Galeotti et al. 2010). However, network beliefs inŕuence behavior. A strong
contribution of this work is to show the cognitive dimensions of social networks as a key element for the study
of network games. We derive the probability distribution of players’ cognitive networks when agents’ network
information is incomplete, but enough for them to form mental representations about the underlying social
structure.

To the best of our knowledge, this is the őrst paper that models people’s cognitive maps of their networks
and studies their relevance in network games. Our model uncovers the impact that canonical notions of
equivalence among nodes have on network perception. Although these notions have broadly been studied by
sociologists, they have not yet been theoretically related to network perception

We identify a bias in people’s perception towards asymmetric network structures. If we order a set
of networks with the same degree distribution according to the size of their automorphism group, such
an order reŕects a likelihood ranking of network geometries in people’s beliefs. As an implication, the
degree of substitutability between players’ actions and the actions of their (feasible) neighbors−assumed to
be exogenous in previous works36−is shown to depend on a particular network feature: the order of the
automorphism group of the network to which such neighbors belong.

Our theoretical framework provides a way of capturing players’ beliefs about a variety of network features
that are absent in canonical models of network analysis (e.g. in random-graph models), which allows to
analyse their incidence on behavior in incomplete information contexts. Our model uncovers two major
challenges for network analysis. First, since players’ infer a variety of network features from the information
they are given, a subtle variation in players’ network information can change completely the spectrum of
equilibria. This requires a deeper understanding of the network knowledge that people actually have in
different contexts, and calls for experimental research to analyse this issue. Second, the great range of
equilibria that emerge under each information setup makes it hard to draw conclusions on the incidence that
őner feature has on behavior. A prospective way to address this matter might be to impose some ceteris
paribus restrictions on the set of feasible geometries (similarly as in Espinosa et al. 2020) in such a way that
players’ are only uncertain about one speciőc network feature, while they have a founded knowledge of its
probability distribution. On the other hand, the relationship between the order of the network automorphism
group and the set of eigenvalues of the adjacency matrix (see Cvetkovíc et al. 1979) requests further analysis
of the implications of our model for network games, as the lowest eigenvalue has been identiőed as a major
driver of social and economic outcomes (Bramoullé and Kranton, 2014). We leave this for future research.
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Appendix

The Orbit Stabilizer Theorem. Let Stabv(g) = {g ∈ Aut(g) : f(v) = v} be the stabilizer of
node v ∈ N . Then,

|Aut(g)| = |Ov(gz)| ∗ |Stabv(g)|

Proof of Lemma 1. Suppose |Oi(g)| ≤ |Oi(g
′)| ∀i ∈ N . Then, for each automorphism f : N → N

exists there is an identical automorphism f : N ′ → N ′. If ∃i ∈ N :
∣

∣Oi(g)
∣

∣ <
∣

∣Oi(g
′)
∣

∣, then there exist
at least one automorphism in g′ that does not exist in g. Thereby,

∣

∣Aut(g)
∣

∣ <
∣

∣Aut(g′)
∣

∣.

We still have to prove that if
∣

∣Oi(g)
∣

∣ =
∣

∣Oi(g
′)
∣

∣∀i ∈ N , and ∃m ∈ N ′ :
∣

∣Sm(g)
∣

∣ <
∣

∣Sm(g′)
∣

∣, then
∣

∣Aut(g)
∣

∣ <
∣

∣Aut(g′)
∣

∣. Suppose ∃m ∈ N ′ : |Sm(g′)| > |Sm(g′)|. For each r ∈ Sm(g′) \ Sm(g), there exists
an automorphism f : N ′ → N ′ such that

f(w)











r if w = m

m if w = r

w otherwise

as Nm(g′) \ {r} = Nr(g
′) \ {m} ∈ Sm(g′). On the contrary, it does not exist such an automorphism

between m and r in network g, since r /∈ Sm(g). As a result,
∣

∣Aut(g)
∣

∣ <
∣

∣Aut(g′)
∣

∣. ■

Proof of Proposition 3. Suppose all agents follow the strategy σ. The expected utility of i of
playing 0 under strategic substitutes is the probability that i occupies a position in Pi(g | Aσ) =
{oi(gz), oi(gy), ..., oi(gr)}. Conditioned on Ii(g) and θ = ∅, each i assigns probability µgz (θ) =

1
bi(g)

to
each feasible network gz ∈ Bi(g). Then:

EUi

(

0, σ, Ii(g)
)

= p
[

oi(g) ∈ Pi(g | Aσ) | Ii(g)
]

= µgz (θ)y(gz | {i}) + µgy (θ)y(gy | {i}) + ...+ µgr (θ)y(gr | {i})

=
1

bi(g)

[

(n− 1)

|Stabgz ({i})|
+

(n− 1)

|Stabgy ({i})|
+ ...+

(n− 1)

|Stabgr ({i})|

]

=
(n− 1)!

bi(g)

∑

z∈Ωi(g)

αi(gz|Aσ)

|Aut(gz)|

(1)

where the penultimate and last equality hold applying Lemma 1 and the Orbit-Stabilizer Theo-
rem, respectively. By Proposition 1, bi(g) =

∑

z∈Ωi(g)

bzi (g) = (n − 1)!
∑

z∈Ωi(g)

αi(gz)
|Aut(gz)|

. Substituting

bi(g) = (n − 1)!
∑

z∈Ωi(g)

αi(gz)
|Aut(gz)|

into (1) and operating, EUi

(

0, σ, Ii(g)) =
∑

z∈Ωi(g)

αi(gz|Aσ)
αi(gz)

ρzi . Playing

0 is a best response for i if and only if EUi

(

0, σ, Ii(g)) ≥ 1−c
1+µ

. Following the same reasoning, action

1 is a best response for i if and only if EUi

(

1, σ, Ii(g)
)

=
∑

z∈Ωi(g)

αi(gz|Aσ)
αi(gz)

ρzi ≥ c
1+µ

under strategic

complements. ■

Example 6. The set of types that play 1 according to the strategy σ1 is Aσ1 = {1, 3}. Assume ki(g) = 2.
The set of feasible positions of i in which i is linked to a neighbor with a degree in k ∈ {1, 3} is
Pi(g | Aσ1

) = {oi(g1), oi(g2), oi(g3)} where {g1, g2, g3, g4} ∈ Bi(g) are represented in Figure 14. Given

that P 1
i (g | Aσ1

) = {oi(g1), oi(g3)} and Pi(g1) = {oi(g1), oi(g3)},
αi(g1|Aσ1

)

αi(g1)
= |Oi(g1)|+|Oi(g3)|

|Oi(g1)|+|Oi(g3)|
= 1.

Similarly, since P 2
i (g | Aσ1

) = {oi(g2)} and Pi(g2) = {oi(g2), oi(g4)},
αi(g2|Aσ1

)

αi(g2)
= |Oi(g2)|

|Oi(g2)|+|Oi(g4)|
= 2

3 .

By Corolary 1, ρ1(θ) = 1

1+
|Aut(g1)|

|Aut(g2)|

= 1
2 and ρ1(θ) = ρ2(θ), since |Aut(g1| = |Aut(g2|. Then,

EUi

(

0, σ1, Ii(g)
)

= ρ1(θ) +
2

3
ρ1(θ) =

5

6

and analogously for other values in Table 3.
Table 5 provides the probability that i has a degree-k neighbor as a function of Ii(g). As can be seen,
the probability that i has a degree-k neighbor does not vary monotonically on ki.
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Figure 14: Pi(g) in Example 6 for ki(g) = 2

ki(g) ki(g) = 1 ki(g) = 2 ki(g) = 3
k = 1 0 1/2 1/2
k = 2 1/6 5/6 5/6
k = 3 1/2 1 0

Table 5: Probability that i has a degree-k neighbor, conditioned on Ii(g)

■

Proof of Proposition 4. Let g = g1. By construction, g1 ∈ Bi(g) ∀i ∈ N .

Strategic substitutes. Let g2 ∈ Bi(g) : Fg1(τ) = Fg2(τ). Then, αi(g1) = αi(g2). Imagine that σ(τi) = 0
and Wτi(g2, σ) > Wτi(g1, σ). That is, αi(g1, |Aσ) = αi(g2, |Aσ)− π. Action σ(τi) = 0 is a best response for i
if and only if:

EUi

(

0, σ, Ii(g)
)

=
αi(g1, |Aσ)

αi(g1)
ρ1i +

αi(g2, |Aσ)

αi(g2)
ρ2i + ...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i

=
αi(g2, |Aσ)− π

αi(g1)
ρ1i +

αi(g2, |Aσ)

αi(g2)
ρ2i + ...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i ≥ 1− c

or equivalently iff.:

c ≥ 1−

[

αi(g2 | Aσ)

αi(g1)
(ρ1i + ρ2i ) + ...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i

]

+
π

αi(g1)
ρ1i (2)

Since 1 −
[

αi(g2|Aσ)
αi(g1)

(ρ1i + ρ2i ) + ...+
αi(gωi

|Aσ)

αi(gωi
) ρωi

i

]

is always positive, (2) does not satisfy if ρ1
i

αi(g1)
> c.

Then, i is not best responding with action 0 if ρ1
i

αi(g1)
> c. Given that ρ1

i

αi(g1)
≤

ρ1
j

αj(g1)
∀j ∈ N , then (2) does

not satisfy for any i ∈ N when ρ1
i

αi(g1)
> c. Then, there is not a symmetric equilibrium strategy σ: σ(τj) = 0

and Wτj (g2, σ) > Wτj (g1, σ) for any j ∈ N , where g2 ∈ Bj(g) : αj(g1) = αj(g2).

When σ(τi) = 1 and µ = 0, Wτi(gz, σ) = αi(gz)(1− c) = αi(gy)(1− c), ∀gz, gy ∈ Bi(g) : αi(gz) = αi(gy)
and ∀i ∈ N . Then, there is not an equilibrium strategy σ such that σ(τi) = 1 and Wτi(g2, σ) > Wτi(g1, σ), for
some g2 ∈ Bi(g) : αi(g1) = αi(g2) and some i ∈ N . As a result, W (g1, σ) =

∑

i∈N Wτi(g1, σ) ≥ W (g2, σ) =
∑

i∈N Wτi(g2, σ).

Strategic complements. Reasoning is analogous under strategic complements. Suppose σ(τi) = 1 and
∃g2 ∈ Bi(g) : Wτi(g2, σ) > Wτi(g1, σ) ∧ αi(g1) = αi(g2). In equilibrium:

αi(g1 | Aσ)

αi(g1)
ρ1i+

αi(g2 | Aσ)

αi(g2)
ρ2i+...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i =
αi(g2 | Aσ)− π

αi(g1)
ρ1i+

αi(g2 | Aσ)

αi(g2)
ρ2i+...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i ≥ c

which implies that:

1− c ≥ 1−

[

αi(g2 | Aσ)

αi(g1)
(ρ1i + ρ2i ) + ...+

αi(gωi
| Aσ)

αi(gωi
)

ρωi

i

]

+
πρ1i

αi(g1)
(3)
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If ρ1
i

αi(g1)
> 1− c, (3) does not hold and σ(ti) = 1 is not a best response for i. As ρ1

i

αi(g1)
≤

ρ1
j

αj(g1)
∀j ∈ N , (3)

does not satisfy for any j ∈ N whenever ρ1
i

αi(g1)
> 1 − c. Then, applying the same reasoning as for strategic

substitutes the result follows. ■

Example 8.

A) Symmetric equilibria under Setting S′(b).

Network (a). Network (a) is integrated by types 1, 2, 3 and 4. Hence, there is an equilibrium if all these
types are playing their best response to their neighbors’ actions.

When all agents play the strategy σ1, the expected utility of playing 0 of each type of i is the probability
that at least one agent in Ni(g) plays 1:

EUi
(0, σ1, Ii(g)) =

∣

∣{g ∈ Ii(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (3, 2
)

∨ τj(g) =
(

2; (3, 3
)

}
∣

∣

bi(g)

Similarly,

EUi
(0, σ2, Ii(g)) =

∣

∣{g ∈ Ii(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (3, 2
)

∨ τj(g) =
(

2; (3, 3
)

∨ τj(g) =
(

3; (3, 2, 2
)

}
∣

∣

bi(g)

EUi
(0, σ3, Ii(g)) =

∣

∣{g ∈ Ii(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (2, 2
)

∨ τj(g) =
(

3; (2, 2, 2
)∣

∣

bi(g)

EUi
(0, σ4, Ii(g)) =

∣

∣{g ∈ Ii(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (2, 2
)

∨ τj(g) =
(

3; (2, 2, 2
)

∨ τj(g) =
(

3; (3, 2, 2
)∣

∣

bi(g)

EUi
(0, σ5, Ii(g)) =

∣

∣{g ∈ Ii(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (2, 2
)

∨ τj(g) =
(

2; (3, 3
)

∨ τj(g) =
(

3; (3, 2, 2
)∣

∣

bi(g)

Table 6 and Table 7 provides EUi

(

0, σx, Ii(g)
)

for σx ∈ {σ1, σ2, σ3, σ4, σ5}. Each of these strategies is an
equilibrium strategy for the range of cost speciőed in Table 8.

Note that players of types 1 and 2 must play different actions in equilibrium. If both types play 1(0), the
expected utility of playing 0 of a type-one i is 1(0). Then, i is not best responding with action 1(0) but with
action 0(1).

Similarly, there cannot exist an equilibrium in which type-two players and type-four players take both
action 1: if type-two players play 1, best response of type-four players is playing 0, since type-four players have
a type-two neighbor with probability 1 (see Figure 18). Analogously, there is not an equilibrium such that
type-three players and type-four players play both action 1, as type-four players are linked to a type-three
neighbor with probability 1.

Last, there is neither an equilibrium in which types 3, 4 and 5 take action 0(1): if all these types play
0(1), the expected utility of playing 0 of each type-three player is 0(1), since each neighbor of i is either type
4 or type 5 with probability 1. Hence, best response of each type-three player is not playing 0(1) but playing
1(0).

Considering this, the only additional equilibrium strategies that could exist are the followings:

• σ9 : σ9(τ
x) = 0, for x ∈ {2, 4, 5} , and σ9(τ

x) = 1 for x ∈ {1, 3}.

• σ10 : σ10(τ
x) = 0, for x ∈ {1, 3, 4} and σ10(τ

x) = 1 for x ∈ {2, 5}.

• σ11 : σ11(tau
x) = 0, for x ∈ {1, 3, 4} and σ11(τ

x) = 1 for x ∈ {1, 5}.

where:

EUi
(0, σ9, Ii(g)) =

∣

∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (2, 2)
)

∧ τj(g) =
(

2; (3, 3)
)

}
∣

∣

bi(g)

EUi
(0, σ10, Ii(g)) =

∣

∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(

2; (3, 2)
)

∧ τj(g) =
(

3; (3, 2, 2)
)

}
∣

∣

bi(g)
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for all i ∈ N .

Table 9 shows EUi
(0, σ9, Ii(g)), EUi

(0, σ10, Ii(g)) and EUi
(0, σ11, Ii(g)) ∀i ∈ N . Observe that, when all

agents play the strategy σ9, type-one players are best responding with action 1 if 1− c ≥ 0.529, while type-
two players are best responding with action 0 if 1− c ≤ 0.5. Since both things cannot occur simultaneously,
strategy σ9 is not an equilibrium strategy. Analogously, when all agents play the strategy σ10, type-two
players are best responding with action 1 if 1− c ≥ 0.916, while type-three players are best responding with
action 0 if 1 − c ≤ 0.4. Hence, strategy σ10 is not an equilibrium strategy. The same happens for strategy
σ10: in this case type-one players are best responding with action 1 if 1− c ≥ 0.529, while type-three players
are best responding with action 0 if 1− c ≤ 0.4. Then, σ10 is not an equilibrium strategy.

Networks (b) and (c). Networks (b) and (c) are composed of types 2, 3 and 4. Hence, there exist an
equilibrium if these types are playing their best response to their neighbors’ actions.

As explained above, there cannot exist an equilibrium such that σ(τ1) = σ(t2) = 1, ∀i ∈ N . However,
since there are not type-one players neither in network (b) nor in network (c), strategies σ6, σ7 and σ8

are equilibrium strategies for certain values of c in both networks. Table 10 provides EUi
(0, σ6, Bi(g)),

EUi
(0, σ7, Bi(g)) and EUi

(0, σ8, Bi(g)) ∈ N . Table 11 provides the symmetric equilibria that exist for each
range of c.
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Figure 15: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (2, 2)) under Setting B

Figure 16: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (3, 2)) under Setting B
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Figure 17: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (2, 2)) under Setting B

Figure 18: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (3, 2)) under Setting B
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B) Symmetric equilibria under Setting S(c).
Network (a). Table 11 and Table 12 show the expected utility of playing 0 of types 1 and 2 for each

equilibrium strategy. Under Setting S’(c), type-three players observe that their two neighbors are not linked
and consequently are type 4. If all type-four agents play 1, best response of type-three players is playing 0
and viceversa. Consequently, the strategies σ10 and σ11 deőned in point A are not equilibrium strategies for
any value of c.

Each type-four i can deduce the whole network from the Ii(g). Hence, i can learn that two agents in Ni(g)
are type 2 and o is type 3. Then, a type-four i is best responding with action 1 if neither type-two players
nor type-three players play action 1, and with action 0 if either type-two players or type-three players (or
both) play 1. Table 13 shows the symmetric equilibria for each range of c. Strategies σ6, σ7 and σ8 are not

equilibrium strategies: if all players of type 1 and 2 play 0, the best response of a type-one player is playing
1.
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Figure 19: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (2, 2)) under Setting S’(c)

Figure 20: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (3, 2)) under Setting S’(c)
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Network (b). Recall that network (b) is exclusively integrated by players of types 2, 3 and 4, and there
exist an equilibrium as long as these types are playing their best response to their neighbors’ actions.

Each type-two i observes that the degree-two agent in Ni(g) is type 3. Then, there is not any symmetric
equilibrium in which type-two players play 1: if all players of type 2 play 1, the expected utility of playing
0 of each type-two player is 1, so this player is best responding with action 1. The strategy σ9 is not an
equilibrium strategy : since EUi

(0, σ9, Ii(g)) = 0 for each type-two i, best response of i is playing action 1.
Considering the networks in Figure 21:

EUi
(0, σ3, Ii(g)) = EUi

(0, σ7, Ii(g)) =
y(g0 | {i, j, l,m})

bi(g) =
∑1

x=0 y(g0 | {i, j, l,m})
=

3

6
=

1

2

EUi
(0, σ5, Ii(g)) = EUi

(0, σ8, Ii(g)) =
y(g1 | {i, j, l,m})

bi(g) =
∑1

x=0 y(g0 | {i, j, l,m})
=

3

6
=

1

2

and
EUi

(0, σ4, Ii(g)) = EUi
(0, σ6, Ii(g)) = 1

for each i of type 2.

Figure 21: Set ∪
z∈Ωi(g)

B̄z
i (g) of each i of type

(

2; (3, 2)) under Setting S’(c)

As for network (a), players of type 3 and 4 learn their neighbors’ types from Ii(g). Players of type 3 are
best responding with action 0(1) if type-4 agents play 1(0) while type-four players 4 are best responding with
action 1(0) if neither players with type 2 nor players with type 3 take this action.

Equilibrium strategies cost
σ3 c ≥ 0.5
σ4 c ∈ [0, 1]
σ5 c ≥ 0.5
σ6 c ∈ [0, 1]
σ7 c ≥ 0.5
σ8 c ≥ 0.5

Table 14. Symmetric equilibria in network (b) under Setting S’(c)

Network (c). As in the previous case, network (c) is exclusively integrated by players of types 2, 3 and
4. If these types are playing their best response to their neighbors’ actions there exist an equilibrium.

Under Setting S’(c), type-two players have identical beliefs about their neighbors’ types in network (c)
and in network (a), since the geometry created by their neighbors’ links is identical in both networks. Then,
Table 11 and Table 12 provide the expected utility of playing 0 of a type-two i when all agents play a strategy
in {σ1, σ2, σ3, σ4, σ5, σ9}. As in network (a), players of type 3 and type 4 learn their neighbors’ types from
Ii(g).

Table 14 lists the expected utility of playing 0 of each type-two i when all agents play σ6, σ7 or σ8. Tables
15 provides the symmetric equilibrium strategies in network (c) for each cost value.
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Table 14: Example 8

Table 15: Example 8
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