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Abstract

In a simple Neoclassical Growth Model with endogenous technical change, I expand
on the hypothesis of Induced Innovation including a production externality from a fixed
input, called ‘land’, which represents the carrying capacity of the earth’s atmosphere.
Land is assumed to be congested by the use of labor and capital in production. A market
economy where land is free will fail to reach a steady state, and may end up in either
of three possible cases: (i) a catastrophe driven by overaccumulation; (ii) a state in
which Induced Innovation stops capital deepening but not environmental decline; (iii) a
path of perpetual decumulation of capital resembling an industrial counterrevolution. A
planned economy, instead, will assign a shadow-price to land, thus setting in motion the
Induced Innovation engine and fostering land-augmenting technological progress which
will reduce environmental stress. The unique equilibrium if this economy is found to
be locally asymptotically stable in the numerical analysis for substitution elasticities
smaller than 1. The corresponding direction of technical change is characterized by
constant shares of all inputs, a positive growth rate of labor- and land-augmenting
technologies, and by a rate of growth of capital-augmentation equal to zero.

——————
Keywords: Induced Innovation, Climate Change, Technological Change, Functional Dis-
tribution of Income.
JEL Classification System: O30, Q55.

∗I thank Duncan Foley, Ali Khan and Willi Semmler for useful comments and suggestions on an earlier
draft. I should also thank participants to the SCEPA Policy Worshop and the New School-UMass Graduate
Students Workshop. All errors are mine.

1



1 Introduction

In recent years, the global level of attention on climate change has risen considerably,
spreading from the scientific community to policy-making and the general public. The
Intergovernmental Panel on Climate Change (IPCC) has published to date 4 Assessment
Reports, the most recent of which after the plenary meeting held in November 2007, sum-
marizing the agreement reached by the nations of the world on the key findings and the
uncertainties about the issues at stakes. Quoting from the IPCC Synthesis Report 2007:1

Warming of the climate system is unequivocal, as is now evident from obser-
vations of increases in global average air and ocean temperatures, widespread
melting of snow and ice and rising global average sea level (p. 30).

There is also a widespread consensus that greenhouse gases (GHGs) are to be ascribed
among the causes of global warming: the concentration of CO2 (carbon dioxide), CH4

(methane) and N2O (nitrous oxide) in the atmosphere increased as a result of human activ-
ities, mostly because of fossil fuel use and agriculture. GHGs accumulate in the atmosphere
for very long time, and concentration of such gases lead to warming of land and oceans, as
data on global average surface temperature and sea level display without any doubt for the
more recent periods. In the words of the IPCC Synthesis Report,

There is very high confidence that the global average net effect of human activ-
ities since 1750 has been one of warming (ibid., p. 37).

To complete this brief snapshot of the facts, IPCC’s best estimate of the temperature change
over the coming century is between 1.8 and 4.0oC. Other than melting of permanent ice
packs and consequent sea rise, coastal erosions, floods, climate change has important eco-
nomic effects, too, as the nations participating to the 1997 Kyoto Conference recognized
in agreeing to put forward a system of economic incentives to limit the emissions of GHG.
Among such effects we can include: (i) higher crop productivity at mid- to high latitudes for
local mean temperature increase, and decrease in crop productivity at tropical regions for
the same reason; (ii) increasing exposure of industries, settlements and societies in coastal
and river flood plains, areas whose economies are linked with climate-sensitive resources,
regions prone to extreme weather events, especially where rapid urbanization is occurring;
(iii) effects in health status because of malnutrition, deaths due to extreme weather events,
increased frequency of cardio-respiratory diseases due to higher concentrations of ground-
level ozone in urban areas related to climate change, and the altered spatial distribution of
some infectious diseases. (IPCC [18], p. 48).

Global warming is likely to display its economic consequences in the long-run, due to geo-
physical time constants such as the half-life of atmospheric carbon dioxide, so that climate
change is naturally incorporated in growth models.2 On the other hand, it is universally

1Available for download at http://www.ipcc.ch/ipccreports/index.htm.
2See Foley [12], also for a discussion of why the usual time-horizon of growth model is to some extent

inappropriate to assess the economic impact of global environmental change.
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recognized that technological change the key driving force of economic growth. Stylized
facts of post-war capitalist development, such as constancy of input shares and of capital
productivity coupled with rising labor productivity, don’t support neutrality of technolog-
ical progress on factor augmentation, pointing instead toward explicit consideration of the
bias, or direction of technical change. The direction of technological progress has funda-
mental implications on the functional distribution of income, as shown by several authors
(Kennedy [19], Drandakis and Phelps [11], Nordhaus [28] are early examples. More recently,
the interest on the bias of technical change has flourished again: see above all Acemoglu
[2], [1]). In a world facing fundamental challenges from global warming, three important
questions to address are: i) what can be the role of economic incentives on patterns of
technical change directed at reducing GHG emission or environmental stress in general?
ii) Will this technological progress be biased? iii) If so, what are the implied patterns of
income distribution of such technological change?

If we adopt the standard, old-fashioned Neoclassical view of exogenous technical change,
in a closed economy the impact of emission permits or distortionary taxes on technology will
be that of textbook-substitution from GHG emitting inputs to other inputs to production
according to their relative prices. Conversely, a New Endogenous Growth approach will
emphasize the role of profit-appropriation in non-competitive markets for more environ-
mentally friendly, idea-based intermediate products in bolstering the endogenous reduction
of GHG emissions from the producers of the final goods, and the role of taxes/subsidies in
fostering this process.

A different standpoint to analyze the phenomenon of interest, related the second one, is
rooted in Marx’s view of capitalist social relations as a powerful source of induced technical
progress arising from the capitalists’ incentive to develop and adopt cost-reducing methods
of production. These ideas, also appearing in Hicks [17], have been developed into formal
models mostly in the 1960s starting with the thought-provoking contribution by Kennedy
[19], followed by a number of articles by some of the most prominent scholars of the past
century. Despite some obvious similarities, tracing back to the parallel between Marx’s and
Schumpter’s ideas on technological progress, a key difference between the Induced Innova-
tion view and the New Growth view of technical change is that income distribution is the
ultimate focus of the former whereas the latter has primarily to do with economic efficiency.3

Also, a wave of strong criticism to the Induced Innovation approach, sometimes by its same
proponents, determined its decadence after the 1970s, while New Growth Theory still enjoys
the favor of the profession. Nevertheless, the Induced Innovation literature has proven to be
able to explain in an economically appealing way some key facts of capitalist development,
and this, together with the unavoidable degree of arbitrariness in picking models one likes,4

is the reason why I choose to follow this approach instead of the more recent one.
This paper develops a model that is Neoclassical in spirit but that incorporates Induced

Innovation to provide an answer to the three questions above. The production function
of the stylized economy I study, which is a simple extension of the one in Nordhaus [28],
features a fixed input of production, which I will call ‘land’ and represents the carrying ca-
pacity of the earth’s atmosphere. Consistently with the agreement reached by the nations
participating to the IPCC, atmosphere capacity is assumed to be congested by ‘human
activities’, namely by the use of labor and capital in production. The other distinctive

3This is of course a bird-fly distinction, but it will suffice for the purposes of this paper.
4As a matter of fact, I’m interested in developing a model of optimal growth, and the types of growth

analyzed by New Growth theorists are clearly not optimal in the sense of Pareto. This is another justification
for my choice.
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feature of the model is Kennedy’s [19] ‘Innovation Possibility Frontier’ (IPF henceforth), a
function describing the trade-off between different types of factor-augmentation for given
growth possibilities of the economy.5 The trade-off between factor-augmenting technologi-
cal changes includes land-augmenting technologies.

Optimal growth pursued by an omniscient, benevolent planning authority requires (shadow)
pricing of every input including land, thus setting in motion the Induced Innovation engine
of technical change on it. The equilibrium path of technical change is characterized by
constant input shares, a positive growth rate of both labor and land augmentation and
a zero growth rate of capital-augmenting technical progress. In a market economy where
land is free, instead, the induced technical change mechanism is prevented to operate by
failure to price the fixed resource. In the unpriced land case, if any, land augmentation will
be too small, and the economy will fail to reach its steady state progressively reducing its
production possibilities. This process can be characterized by either one of three scenarios,
according to the actual shape of the IPF: (i) never-ending capital deepening, which in turn
will produce increasing congestion on land; (ii) steady capital accumulation but decreasing
land-efficiency; (iii) industrial regress taking place through progressive capital decumula-
tion. Therefore, in all the three contexts failure to price land is a cause of concern for a
market economy.

Before moving forward to illustrate the model and its properties, one objection has to be
raised and disposed of. The roots of the induced innovation concept point toward consider-
ing cost-based technical change a feature peculiar of capitalist, and not of socially planned
economies. In other words, if it makes perfect sense to consider profit-seeking capitalists
to innovate to economize on market input costs, the extension of this line of reasoning to a
social planner appears cumbersome, in what innovation in this context would be induced by
social, and not actual market prices. Although in different institutional settings, however,
both social and market prices reflect social scarcity of objects with economic relevance, if
we adopt a Neoclassical point of view. If one agrees with this sentence, it makes no differ-
ence whether or not prices have a monetary content. Induced innovation is therefore the
power of social scarcity of inputs to production to generate technical change. It is under
this interpretation that the narrative of planned as opposed to market economy is followed
in this paper.

2 The Model

2.1 Basic Assumptions and Definitions

In a simple one-sector economy, production of output requires labor, L, capital, K and
a natural resource, which we call ‘land’, representing the carrying capacity of the earth’s
atmosphere. The production possibilities of this economy are bounded by the following
function:

Y = h(θ)F (AL,BK) (1)

5It must be said that it was Carl Christian von Weiszacker to first develop the IPF, which he called
‘technical progress function’. That work however was never published, and this is why the paper by Kennedy
is the one usually referred to in the literature.
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where θ ≡ T/F (AL,BK), T being a parameter which summarizes technical change on
land. The total amount of land available in the economy is normalized to 1, and we assume
h′ > 0, h′′ < 0. The term h(θ) in the production function is meant to capture the ‘effects of
human activities’ on climate change. The idea is that the way in which capital and labor are
utilized for production purposes (described in a stylized way by F ) congest the atmosphere
capacity. On the other hand, F is the typical linearly homogeneous neoclassical production
function, with A, B being positive parameters denoting respectively labor- and capital-
augmenting technical change. It is easy to check that the production function (1) displays
constant returns to scale in effective inputs. Defining y ≡ Y/L, x ≡ BK

AL , the intensive form
of (1) is:

y = h(θ)Af(x) = h

(

φ

Af(x)

)

Af(x) (2)

where φ ≡ T/L. Also, if k ≡ K/L, we have x = Bk/A. The standard regularity (Inada)
conditions on f are assumed to be satisfied. Population grows exponentially at the ex-
ogenous rate n. There is no public sector: aggregate demand will equal consumption plus
investment. Denoting by δ the ‘radioactive’, exogenous depreciation rate, the accumulation
equation is K̇ = sY −δK, where s is the propensity to save. From what above, accumulation
of capital per worker follows the law of motion:

k̇ = sh(θ)Af(x) − (δ + n)k (3)

Productive factors are paid their marginal product. We distinguish the case of a market
economy not pricing land from the case of a planned economy in which the land externality is
accounted for. If land is not priced, a market economy will consider it as a mere externality.
Hence, the land share in output would be zero, and the production share in output will

equal 1. The capital share in the market economy is f ′(x)
f(x) x, and the market labor share is

given by f(x)−f ′(x)
f(x) x ≡ ω(x). Also, the elasticity of substitution between capital and labor

in f is defined as:

σ ≡ −
f ′(x)[f(x) − xf ′(x)]

xf(x)f ′′(x)
(4)

Conversely, denote the land share in the planned economy as ∂Y/∂T
Y T = h′(θ)

h(θ) θ ≡ λ(θ). In

this case, the capital share will be [xf ′(x)/f(x)][h(θ)− θh′(θ)]/h(θ) = (1−ω(x))(1−λ(θ)),
and the labor share will equal ω(x)(1 − λ(θ)). Hence, the production share in the planned
economy will be 1− λ(θ). It is worth observing that what I call ‘land share’ is nothing else
than what is traditionally referred to as ‘mitigation’ in recent climate change literature, as
for instance in Nordhaus [30]. Symmetrically, we define:

η ≡ −
h′(θ)[h(θ) − θh′(θ)]

θh(θ)h′′(θ)
(5)

Finally, we extend the traditional framework of Induced Innovation by assuming that
at each moment in time the growth rates of labor-, land- and capital-augmenting technical

change are related by a three-dimensional version of Kennedy’s [1964] IPF. Denoting Ȧ
A ≡

α, Ṫ
T ≡ τ , Ḃ

B ≡ β, (α, τ, β) ∈ Υ ⊂ R
3, the IPF written in explicit form is :

β = g(α, τ), with ∇g < 0, D2g negative definite (6)

and we assume, following Drandakis and Phelps [11], that there exist 0 < ᾱ <∞, 0 < τ̄ <∞
such that g(ᾱ, τ̄) = −∞, so that the frontier is allowed to cross the axes and take values
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below zero for finite values of its arguments.
The Induced Innovation theorists of the ’60s and ’70s utilized a functional specification

of the kind β = g(α), thus imposing zero land-augmenting technical change. The inclusion
of τ in the domain of the IPF, together with the form of the production function (1), are
the building block of the analysis carried in this paper.

2.2 Optimal Direction of Technical Change

Let us start with the problem of allocating the given growth possibilities of the economy into
different factor-augmenting technologies, as in the models by Kennedy [19], Drandakis and
Phelps [11], Samuelson [32]. The analysis, which extends the framework by Nordhaus [28]
is notationally simpler than that including the choice of optimal rate of technical change,
and thus leads to an easier understanding of the implications arising from the assumptions
made on technology for the patterns of technical change and income distribution arising
when the congestion effects of human activities on atmosphere are optimally accounted for.

2.2.1 The Planner’s Problem

Consider an omniscient, benevolent social planner willing to maximize the present dis-
counted value of consumption per capita over an infinite horizon.6 The frontier (6) de-
scribes the trade-off in allocating the given growth rate of technological progress in different
factor-augmenting improvements. The problem faced by the planning authority is:

Choose s, α, τ to maximize V (0) =

∫

∞

0
e−ρt

[

(1 − s)h(θ)Af

(

Bk

A

)]

dt

subject to k̇ = sh(θ)Af(x) − (δ + n)k

Ḃ = g(α, τ)B

Ȧ = αA

Ṫ = τT

(7)

The associated Hamiltonian is:

H = e−ρt

{

(1 − s)h

(

φ

Af(Bk

A
)

)

Af
(

Bk
A

)

+ p1

[

sh

(

φ

Af(Bk

A
)

)

Af
(

Bk
A

)

− (δ + n)k

]}

+e−ρt
{

p2e
αsstg(α, τ)B + p3αA+ p4τT

}

(8)

where αss denotes the steady state value for the growth rate of labor augmentation.7 Also,
the initial conditions

A(0) = A0, B(0) = B0, T (0) = T0, k(0) = k0 given (9)

6Ramsey [31] argued that a planning authority shouldn’t discount the streams of consumption in its
maximization program. If this is the case, neither the Maximum Principle, which relies on convergence
of the integral (7), nor the Dynamic Programming approach, which requires discounting as a sufficient
condition, are the correct techniques for solving this problem. Brock [6], McKenzie [24] developed a different
method to solve undiscounted growth problems, known as the ‘Value-Loss Approach’. See also Khan and
Mitra [20] for a geometric interpretation in a multi-sector framework.

7Observe that the adjoint variable for Ḃ is assumed to be p2e
αsst, so that the paper compares directly

with the analysis in Nordhaus [28].
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must be fulfilled, together with non-negativity of the shadow-prices pi(t) ≥ 0∀t,∀i =
1, . . . , 4, and the transversality conditions, which we state in terms of the shadow-prices
given that our problem has a free-end point:8

lim
t→∞

e−ρtp1(t) = lim
t→∞

e−(ρ−αss)tp2(t) = lim
t→∞

e−ρtp3(t) = lim
t→∞

e−ρtp4(t) = 0 (10)

from which ρ > αss must hold for any positive value of p2(t). The first order necessary
conditions for an ordinary maximum of the Hamiltonian are:

∂H

∂s
= (p1 − 1)Ah(θ)f(x) = 0 (11)

∂H

∂α
= p2e

αsstBgα + p3A = 0 (12)

∂H

∂τ
= p2e

αsstBgτ + p4T = 0 (13)

and are also sufficient because of concavity of g with respect of both α, τ and the fact that
∂2H/∂s2 = 0. Also, recall that even if in principle B is allowed to grow exponentially,
we are not maximizing over B but on what makes it grow, and our assumptions on the
production function and the IPF are enough to ensure concavity. On the other hand, the
necessary conditions for optimality are existence of continuous function pi(t), i = 1, . . . , 4
such that, denoting γ ≡ 1 − s(1 − p1):

ρp1 − ṗ1 = γBf ′(x)[h(θ) − θh′(θ)] − (δ + n)p1 (14)

(ρ− αss)p2 − ṗ2 = γe−αsstkf ′(x)[h(θ) − θh′(θ)] − g(α, τ)p2 (15)

ρp3 − ṗ3 = γh(θ)[h(θ) − θh′(θ)][f(x) − f ′(x)x] + αp3 (16)

ρp4 − ṗ4 = γ
h′(θ)

L
+ τp4 (17)

Since the constraint set is convex, for f, h, g being strictly concave and the other state vari-
ables being described by linear functions, the above equations together with the transver-
sality conditions are also sufficient to characterize the optimal path.

2.2.2 Steady State in the Planned Economy

Equations (9)-(17) describe a system of necessary and sufficient conditions for optimality
of the program (7) whose long-run solution we are interested in. One way to find such
solution, followed by Nordhaus [28], is to note that at a steady state all shadow-prices must
be constant. Using the resulting equilibrium values of the adjoint variables, we are able to
solve for the long-run quantities we are interested in, that is the effective capital-labor ratio
x, the effective land θ, and the growth rates of labor-augmenting and land-augmenting
technical change. Setting all shadow-prices constant, and noting that at an equilibrium
p1 = 1 = γ from (11), we obtain:

Bf ′(x) =
(ρ+ δ + n)

h(θ) − θh′(θ)
=

(ρ+ δ + n)

[1 − λ(θ)]h(θ)
(18)

8See Sethi and Thompson [33], p.75 for a taxonomy of terminal conditions for a broad class of models.
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p2 =
A[h(θ) − θh′(θ)]xf ′(x)

B[ρ− αss − g(α, τ)]
e−αsst =

A[1 − λ(θ)]h(θ)[1 − ω(x)]f(x)

B[ρ− αss − g(α, τ)]
e−αsst (19)

p3 =
[h(θ) − θh′(θ)][f(x) − f ′(x)x]

ρ− α
=

[1 − λ(θ)]h(θ)ω(x)f(x)

ρ− α
(20)

p4 =
h′(θ)

(ρ− τ)L
(21)

It is first useful to derive an equation of motion for θ. Logarithmic differentiation of φ
Af(x)

yields:
θ̇
θ =

(

φ̇
φ − Ȧ

A − xf ′(x)
f(x)

ẋ
x

)

=
{

(τ − α− n) − [1 − ω(x)] ẋx
}

(22)

The next step is to find a dynamic equation for x. Because p1 = 1 always along an
optimal control, we can differentiate totally with respect to time (18) to derive:

Ḃf ′(x) +Bf ′′(x)ẋ = ρ+δ+n
(1−λ)2h2 [λ′h− h′(1 − λ)] θ̇

= Bf ′(x)
[

λ′

1−λ − h′

h

]

θ̇
θ

= Bf ′(x)
[

η−1
η

λ
θ − λ

θ

]

θ̇

= −Bf ′(x)λη
θ̇
θ

Divide both sides by Bf ′(x), multiply and divide the second addendum in the RHS of the

last equation by xf(x)
f(x)−xf ′(x) , and use (4) to get:

Ḃ

B
−
ω

σ

ẋ

x
= −

λ

η

θ̇

θ

Substituting (22) and solving for ẋ/x, we obtain the law of motion for the effective capital-
labor ratio:

ẋ

x
=

ησ

ηω(x) + σ[1 − ω(x)]λ(θ)

[

g(α, τ) −
λ(θ)

η
(α+ n− τ)

]

(23)

where it is understood that η, λ are functions of θ and σ, ω depend on x.
Evaluation of (15) and (16) at constant shadow-prices and substitution in (12) yields the

optimal direction of labor-augmenting technical change:

− gα =
ω(x)

1 − ω(x)

[

ρ− αss − g(αss, τss)

ρ− αss

]

(24)

Whereas, inserting the equilibrium values (19) and (21) into (13) yields the optimal direction
of land augmentation:

− gτ =
λ(θ)

1 − λ(θ)

1

1 − ω(x)

[

ρ− αss − g(αss, τss)

ρ− τss

]

(25)

From which it is apparent that when land is not priced gτ = 0 as in the model without
land.

We are now able to characterize the steady state of this model. Since in steady state

8



ẋ/x = 0, τss = αss +n in (22). Hence, g(αss, τss) = 0. Summarizing, a long-run equilibrium
of our system is:

τss = αss + n (26)

g(αss, τss) = βss = 0 (27)

−gα,ss =
ω(xss)

1 − ω(xss)
(28)

λ(θss)

1 − λ(θss)
= −gτ,ss[1 − ω(xss)]

(

ρ− αss − n

ρ− αss

)

(29)

where the last equation is solved for the ratio λ/(1 − λ) for comparative statics purposes,
and requires as an additional condition that ρ > αss − n = τss. This equilibrium exists
and is unique for σ 6= 1 ∩ η 6= 1, paralleling what shown by the cited authors. In fact,
when either of the substitution elasticities equals one, the innovation possibility frontier
is not able to pin down the ratio of factor shares, for it is only the form of the (Cobb-
Douglas, in this case) production function determining the factor distribution of income.
When σ 6= 1, instead, ω(x) ∈ [0, 1] and ω(x)/(1 − ω(x)) ∈ [0,∞). Similarly, for η 6= 1,
λ(θ) ∈ [0, 1] and λ(θ)/(1 − λ(θ)) ∈ [0,∞). Observe also that, since (26) is sufficient to
determine the equilibrium rate of land augmentation given (28), the role of (29) is to pin
down the equilibrium value of θ.

The optimal direction of land-augmenting technical progress resulting from this model
compares interestingly to that in Foley [12]. In his paper, he expands on Kennedy’s result
assuming that the growth rate of land-augmenting technologies is a function of the land share
only. If we increase the dimensionality of IPF, instead, we see that (i) land augmentation
depends negatively on the capital share and thus positively on the labor share, and (ii)
the direction of land augmentation relates positively on both the rate of labor-augmenting
technical progress and on population growth rate. Hence, being the direction of land-
augmenting technical change derived in an optimizing framework, it will display important
feedback effects from the other endogenous and exogenous variables of the model, which
were ruled out by assumption in the previous treatments of the subject.

We can also compute the optimal long-run savings rate for the planned economy. Since
ẋ
x =

(

Ḃ
B + k̇

k − Ȧ
A

)

= 0, we have:

g(αss, τss) +
sBh(θ)f(xss)

xss
− (δ + n) − αss = 0

so that, using (18):

sss = [1 − ω(xss)][1 − λ(θss)]

(

αss + δ + n

ρ+ δ + n

)

(30)

The optimal savings rate is always less than 1, for ρ > αss from the transversality conditions.
The savings rate of the benchmark model with no land is easily obtained setting λ = 0.

2.3 The Dynamical System

The solution approach we adopted above amounts to find a long-run equilibrium of the
system as values for the variables of interest that ensure constant shadow-prices of all the
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state variables. This method has the disadvantage of being silent of what happens out of
equilibrium.9

The dimensionality of the problem at hand may look too high to enable us to study
the dynamical system arising from the maximization program solved by the social planner.
Nonetheless, a closer look at the sufficient conditions for a maximum of (8) reveals that we
can exploit (11) on the one hand, and make use of the IPF and of its relative shadow-price
on the other, to end up in a fully determined 4-dimensional system in two state variables,
θ, x, and two control variables, α, τ . In order to do so, we proceed as it is usually done in
standard courses on growth theory in ‘eliminating’ the adjoint variables of the Hamiltonian
from the picture so that we can focus on the behavior of the control variables and state
variables only.10

Let us start in standard fashion by totally differentiating (12) with respect to time:

ṗ2e
αsstBgα + αp2e

αsstBgα + p2e
αsstḂgα + p2e

αsstBgααα̇ = −ṗ3A− p3Ȧ

Using (12) and (15), we have, rearranging:

eαsstBgα

[

(ρ− αss)p2 −
A

B
e−αsst(1 − ω(x)f(x)(1 − λ(θ)h(θ)

]

+ p2e
αsstBgααα̇ = −ṗ3A

Making use of (16), and then of (12) again, we obtain:

eαsstBgα

[

(ρ− αss)p2 −
A

B
e−αsst[1 − ω(x)]f(x)[1 − λ(θ)]h(θ)

]

+ p2e
αsstBgααα̇

= A(1 − λ(θ)h(θ)ω(x)f(x) + (ρ− α)p2e
αsstBgα

We can now harmlessly substitute (19) in the previous equation. Simplifying, we obtain:

1

ρ− αss − g(α, τ)
gααα̇[1 − ω(x)] = ω(x) +

ρ− α

ρ− αss − g(α, τ)
gα[1 − ω(x)]

from which, finally:

α̇ =
1

gαα

{

gα(ρ− α) +
ω(x)

1 − ω(x)
[ρ− αss − g(α, τ)]

}

(31)

Similar calculations lead to:

τ̇ =
1

gττ

{

gτ (ρ− τ) +
λ(θ)

1 − λ(θ)

1

1 − ω(x)
[ρ− αss − g(α, τ)]

}

(32)

It is obvious that equations (31) and (32) alone have the same equilibrium values as (24)
and (25), and yield the same long-run equilibrium we found above when considered together
with (22) and (23).

Summing up, we have derived a dynamical system formed by (22), (23), (31) and (32).
This system can be studied in the standard way, as we will do in the following section.

9This issue may ring a bell to economists following the Classical-Marxian school of thought, too. We found
an equilibrium of the system at constant long-run prices. Long-run prices give us a complete description of
the ‘center of gravitation’ of the system itself. However, from long-run prices we cannot infer law of motions
for all the variables of interest, and therefore we are not able to study the ‘gravitation’ process for a system
starting out of the long-run equilibrium. Nordhaus [28] was aware of this problem, in recognizing that ‘We
have not shown that in the general case [that is, for other initial conditions] the optimal path is to go to the
Harrod equilibrium’ (p.61), the ‘Harrod Equilibrium’ in this paper being equations (18), (27), (28), (30).

10See Barro and Sala-i-Martin [5], for instance, for an example of this method in the simple Neoclassical
Growth Model case.
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2.4 Stability Analysis

I now study the behavior of the dynamical system above in a neighborhood of its steady
state. I will consider the following three cases: (i) planned economy without land; (ii)
market economy with unpriced land, and (iii) planned economy with land. Although the
first case is not immediately relevant for the purposes of this paper, it is of interest in
itself because Nordhaus [28], who first studied the model without land, did not provide an
analysis of the solution paths outside the equilibrium. This special case is also interesting
because it is simple enough to be studied analytically.

2.4.1 Planned Economy without Land Constraint on Production

Suppose for a moment to be a growth theorist not concerned with the environment, wish-
ing to study the simplest no-externality scenario arising in the special case where h(θ) =
1, θ̇/θ = 0 always. A reason for studying such special case can be a strong prior on atmo-
sphere carrying capacity as a non-scarce factor, or simply the lack of conclusive evidence
on environmental stress available in the early stages of research on economic growth. The
dynamics of our system take place in the two-dimensional plane (x, α). The nontrivial rest

point of this economy is the Harrod equilibrium −gα = ω(xss)
1−ω(xss)

, g(αss) = 0 which ensures
constancy of the effective capital-labor ratio. The Jacobian matrix evaluated at the steady
state is:

JNordhaus,ss =





0 − σ(xss)
1−ω(xss)

xss

1
gαα

(

1−σ
σ

)

[

ω(xss)
(1−ω(xss))xss

]

ρ− αss + 1
gαα

(

ω(xss)
1−ω(xss)

)2





The determinant is finite and negative if and only if σ ∈ (0, 1) and positive if σ > 1, for
gαα < 0. Thus, if 0 < σ < 1 the two eigenvalues are of opposite sign, and the Harrod
equilibrium is saddle-path stable. Conversely, when σ > 1, we need to look at the trace of
the matrix, too. A necessary and sufficient condition for the trace to be negative is:

− gαα >
1

ρ− αss

(

ω(xss)

1 − ω(xss)

)2

(33)

If this is the case, under σ > 1 both eigenvalues are of equal sign and sum up to a negative
number: the long-run equilibrium is stable. Conversely, if the inequality has the wrong sign,
both eigenvalues are positive and the system is unstable. Therefore, the term in the RHS
of the inequality (33) acts as a bifurcation parameter of the two-dimensional version of our
system, provided that labor and capital are gross-substitutes in the production function.11

The inequality (33) says that, even when σ > 1, the system may be stable or unstable
according to how concave is Kennedy’s IPF. It is important to point out, however, that
there is very little empirical evidence supporting a substitution elasticity between capital
and labor greater than 1. I will briefly survey this evidence in describing the calibration and
simulation exercise I carry in the general four-dimensional case. In light of such evidence,

11In defining productive inputs as gross-substitutes if the elasticity of substitution is greater than 1, i
follow Acemoglu [1].
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the analysis of the case σ > 1 is included only for completeness.
These new findings on the model pair interestingly with the important result that, if σ <

1, an economy that remains in the Harrod equilibrium maximizes the preference functional
(8), whereas the Harrod equilibrium is not the optimal path if σ > 1.12 Thus, our simple
economy either has an optimal saddle-path stable equilibrium as in the typical Neoclassical
Growth Model, or a potentially unstable equilibrium that, however, does not maximize the
preference functional (8), and it is not grounded in the available evidence on capital-labor
substitution.13 Of course, when σ = 1 an equilibrium with a role for the IPF doesn’t exist
in this model, so that it is needless to study its properties.

Figure 1: Simulation results for the planned economy without land over 200 periods. Elas-
ticity of substitution: σ = {.3 (red), .5 (green), .7 blue}.

Figure 1 displays the results of a simulation round over 200 periods of the model without
land under the following calibration: g(α) = q− a

να
ν , q = .02, ν = 2, and a being calibrated

internally so as to solve g(α) = 0. The discount rate is set exogenously at ρ = .05, equal to
the depreciation rate, the population growth rate n = .02 and the elasticity of substitution
equals 1/2. The endogenous variable x is set as to solve ω(xss) = 2/3, which is roughly the
observed labor share in total output in advanced capitalist economies.

Given that we are dealing with a two-point boundary value problem with a saddle-path
stable equilibrium, in order to compute the solution I specified an initial condition for
the state variable x and a terminal condition for the control variable α, and then used
a shooting algorithm to force the system back to its stable manifold. Standard duality
arguments guarantee that the terminal condtion on α is equivalent to a terminal condition
on p2. As expected, the eigenvalues of the Jacobian matrix, evaluated numerically at several

12See Nordhaus [28] for a proof.
13Drandakis and Phelps [11] studied a dynamical system without land in the plane (K, 1− ω), and found

that the system is stable or unstable according to σ being less than or greater than one respectively. The
same result holds true in the Classical scenario without a land constraint studied as a special case in Foley
[12].
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points along the optimal trajectories, are of opposite sign.14

2.4.2 Unpriced Land in the Market Economy

Consider a market economy (whose relative variables are denoted by the subscriptM) where
land is not priced. In this case, −gα M = ω/(1 − ω),but −gτ M = 0. Our assumptions on
the IPF imply that

−g−1
τ (0) < −g−1

τ

[

λ(θss)

1 − λ(θss)

1

1 − ω(xss)

(

ρ− αss

ρ− αss − n

)]

Hence, g−1
τ (0) = τM < αss +n, so that g(α, τM ) > 0. Depending on the actual shape of the

IPF, and provided that σ, η > 0, three cases may arise, but a steady state is never reached
in any of them. Hence, there is no need for the study of the Jacobian matrix. The three
possible scenarios are:

1. ẋ/x > 0 (Foley’s Catastrophe). From (23), the effective capital-labor ratio fails to
reach its steady state value, and grows forever at a strictly positive rate, as long as
σ, η > 0 (recall that although land is not priced the elasticity of output with respect
to land is never zero in this model). Failure to price land completely overthrows the
ability of an elasticity of substitution smaller than one to hold back capital deepening,
contrary to the typical feature of the early models of induced innovation without
externalities.15 As a consequence, θ̇/θ doesn’t reach its steady state either and keeps
growing at a negative rate, so that land becomes increasingly congested reducing the
production possibilities of the economy. Output will inevitably tend to zero, due to the
destructive interplay of diminishing productivity of x in f and increasingly negative
impact of θ on h (recall that h′′ < 0).
Hence, the unpriced land scenario in this model is as hopeless as the correspondent
case in the Classical model by Foley [12]. The same forces of endlessly increasing
capital deepening that determine an always rising effective capital-labor ratio are at
work here, and their effect is enhanced by the congestion externality on land. As a
result, the market capital share rises depressing the labor share. But the higher the
capital share, the worse the impact of a rising x on output per worker, as it is easily
seen by differentiating y with respect to x when land congestion is taken into account:

∂y

∂x
= Ah(θ)f ′(x) −Ah′(θ)(1 − ω)f(x)

If the effective capital-effective labor ratio keeps growing without reaching its steady
state value, the inability of a market economy to price land triggers all forces driving
technical progress to work in the wrong direction.

2. ẋ/x = 0 (Environmental Decline with Steady Capital Accumulation). The effective
capital-labor ratio is constant, but θ fails to reach a steady state, shrinking forever

14The software used for simulations is Mathematica 6, and the code is available from the author upon
request.

15This is just another way of saying that an equilibrium with induced innovation involves a constant
capital-labor ratio, and this condition will not be met in this case.
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toward zero. Induced technical change succeeds in holding back capital deepening,
but land augmentation is not enough to overcome the congestion effect of production
on land. The eventual state of zero production, however, is reached at a slower pace
than in the previous case, given that there is no overaccumulation.

3. ẋ/x < 0 (Industrial Counterrevolution - The Luddite’s Dream). The forces at work
in case 1 are reversed: capital decumulates forever, and land becomes less and less
congested without any need of land augmentation.16 At lower levels of output, the
effective capital-labor ratio becomes more productive, but decreasing returns to effec-
tive land are also at work in lowering the impact of diminishing factor intensity on
production. Capital accumulation, and output as a consequence, keeps tending to to
but never reaches zero because of the Inada condition f ′(0) = ∞ which rules out the
option of not undertaking production on the basis of economic convenience.

We conclude that failure to price land is never harmless on a market economy. The prevailing
scenario will eventually depend on the actual functional form of the IPF, but in any case
it is hard not to be concerned about the harmful effects of unpriced land on patterns of
capitalist economic growth. In particular, case 2 must not be underestimated, in what it
leads to a state of the world similar to case 1 without sharing with the latter its evident
catastrophic signs.

2.4.3 Planned Economy with Land: Numerical Analysis

In this section, I analyze the stability properties of the full model numerically. From a
calibration standpoint, the moments of the endogenous variables to match are: i) a long-
run growth rate of labor productivity roughly equal to 2%; ii) a roughly constant capital
productivity; iii) a labor share of about 2/3 of output. Parameters exogenously given to
the model will be the discount rate ρ, the depreciation rate δ, and the population growth
rate n. The depreciation rate is assumed to be 5% per period, and the population growth
rate to equal 2% per period, both in standard fashion in the macro literature. As for the
discount rate, we need to assume ρ to be big enough to ensure a positive and finite share of
land in output. In particular, the calibration of the discount rate must satisfy ρ > αss + n.
Hence, for these simulation rounds, I set ρ = .05.

The next step is to assume a functional form and calibrate the IPF. In what above, I only
required the function to be decreasing and concave in both α, τ . The easiest specification
one can think of is an exponential one:

g(α, β) = q −
a

ν
(α+ β)ν

Under a quadratic exponent ν, the parameters a, q can be easily calibrated internally. In
fact, observation of (28) reveals that the LHS of the equation doesn’t depend on the inter-
cept q. Evaluating the equation at (αss, τss) = (.02, .04) and solving for a yields a = 33.333.
Using this value, we can then set q so as to solve g(αss, τss) = 0, which returns q = .06.

16An issue not considered here is that, if idle machines cannot be destroyed completely, disposal of capital
in the environment may be a cause of land congestion, or more generally an environmental threat too, as
are for instance idle nuclear plants.
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Finally, we need to assign values to the substitution elasticities σ, η. The vast litera-
ture on estimation of the elasticity of substitution between capital and labor is far from
conclusive, but most of the articles on the subject suggest that the aggregate elasticity of
substitution is significantly less than 1.17 Nadiri [26], Nerlove [27] and Hamermesh [16] sur-
vey a range of early estimates of the elasticity of substitution, which are generally between
0.3 and 0.7. David and Van de Klundert [7] provide an estimate of σ to be in the neigh-
borhood of 0.3. Using the translog production function, Griffin and Gregory [14] estimate
elasticities of substitution for nine OECD economies between 0.06 and 0.52. Berndt [4], on
the other hand, finds an estimate of the elasticity of substitution equal to 1, but does not
control for a time trend, creating a strong bias towards 1. Using more recent data, and
various different specifications, Krusell, Ohanian, Rios-Rull, and Violante [15] and Antras
[3] also find estimates of the elasticity significantly less than 1. Estimates implied by the
response of investment to the user cost of capital also typically yield an elasticity of substi-
tution between capital and labor significantly less than 1 (see, e.g., Chirinko [8], Chirinko,
Fazzari and Mayer [9] and [10], or Mairesse, Hall and Mulkay [22]).

Assigning a value of .5 to the elasticity of substitution σ seems a fairly appropriate
average of the estimation results surveyed above. On the other hand, an estimate of the
substitution elasticity between effective land and f is not only not available but also in
principle problematic to obtain. To break ties, I assume η = σ, and as a robustness exer-
cise I evaluate solutions for these elasticities equal to 0.3, 0.5, 0.7, which imply steady a
sequence of steady-state values {(xss,i, θss,i)}

3
i=1 equal to {(1.35, 1.9), (2, 4.5), (5.04, 33.43)}

respectively. The simulation round for the full model depicted in Figure 2 is obtained by
taking a discrete-time approximation of the system.18

Figure 2: Simulation results for the full model: ρ = .05, δ = .05, n = .02. Elasticities of
substitution: σ = η = {0.3 (red), 0.5 (green), 0.7 (blue)}.

The Jacobian matrix, evaluated numerically for the discretized system, has four distinct

17The following survey closely follows Acemoglu [2].
18As it is clear from the dynamical system, this approximation is harmless. The system is solved in

Mathematica using the function ‘FindRoot’. Due to the two point-boundary nature of the problem, initial
conditions are given for the state variables x, θ and terminal conditions for the variables α, τ . Standard
duality arguments guarantee that a terminal condition on the control variables is equivalent to a terminal
condition on the adjoint variables. On the other hand, as a consistency check on the optimality of the
solutions, I computed equilibrium paths assigning different values to the terminal t, up to 2000 periods, and
find that the solution for the first 200 periods is not sensitive to the choice of the terminal horizon.
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eigenvalues inside the unit circle, and therefore the equilibrium is locally stable. The sim-
ulation round displayed in Figure 2 show that the model converges fairly quickly to its
balanced growth path. Given our calibration, labor augmentation settles onto a 2% growth
rate, land augmentation grows at 4%, and the labor share converges to a long-run value of
2/3 of F . The land share stabilizes around 18% of total output, which is fairly high com-
pared to the results on mitigation appearing, for instance, in the DICE model by Nordhaus
[30]. The reason of this discrepancy has to be found in the requirement on the discount rate.
Typically, models of climate change assume exogenous technical change, and for simulation
purposes calibrate the discount rate very low compared to macroeconomic growth models.
Here, the discount rate has to be set fairly high for consistency reasons: one the one hand,
the use of the Maximum Principle to solve the planner’s problem requires ρ > αss. On
the other hand, we want the land share/mitigation to be positive and finite, which in turns
imposes ρ > αss + n.

2.5 Balanced Growth Path

The growth rate of the planned economy at a balanced growth path will be given by:

ẏ
y = h′(θ)

h(θ) θ
(

φ̇
φ − Ȧ

A − xf ′(x)
f(x)

ẋ
x

)

+ Ȧ
A + xf ′(x)

f(x)
ẋ
x

= λ(θss)(τss − n− αss) + αss

= αss

(34)

On the other hand, a planned economy with no externality from land grows at the war-
ranted rate αss + n. Finally, a market economy in the unpriced land case will grow at the
(unbalanced) rate:

˙yM

y
= λ

(

η + (1 − λ)

η

)

(τ − α− n) + α+
ησ

ηω(x) + σ[1 − ω(x)]λ(θ)
(1 − ω)(1 − λ)g(α, τ)

As it is intuitive, there is a one-to-one correspondence between the three scenarios discussed
above and ẏM

y R αss.

2.6 Comparative Dynamics

In analyzing the dynamical properties of our solution path, we found that the long-run
equilibrium of the system is unique and locally saddle-path stable. It is then of interest
to study the effect of changes in the exogenous variables of the model on its steady state.
Consider first an increase in the population growth rate. It is clear from (26) that the
long-run growth rate of land-augmenting technical change must increase. On the other
hand, differentiating the right-hand side of (29) with respect to n we can see that the ratio
λ/(1 − λ), and therefore the land share, will fall, as it is intuitive given that there is full
employment and the whole population growth will be absorbed in production. Also, the
savings rate responds positively, and in the same way, to both n and δ, given ρ− αss > 0.

An increase in the discount rate ρ will reduce the optimal savings rate given the higher
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degree of time-impatience, as it is standard in growth theory. What is perhaps surprising
is that a higher discount rate determines a higher share of land in total output. In fact,

∂λ/(1 − λ)

∂ρ
= −gτ,ss

(1 − ω)n

(ρ− αss)2
> 0

This result is, however, much less counterintuitive than it seems. A look at (17) reveals that
when the discount rate increases, the shadow-price of land augmentation increases. The
central plan office compensates for a higher time-impatience of its citizens by increasing
technical change directed at reducing congestion on land. To put it differently, since an
amount in ρ determines an increase in present consumption, the social planner has to
compensate for the higher consumption through an increase in mitigation on land. Figure 3
plots the solution paths for ρ = .1. The increase in time-impatience determines a dramatic
increase in the equilibrium land share. All the other parameters are calibrated as above.

Figure 3: Simulation results for ρ = .1, all the other parameters as above.

On the other hand, an increase in population growth requires recalibration of the IPF,
and this is due to the fact that β = 0 must hold in equilibrium. In Figure 4, I increase
population growth to .4, and consequently τss =.6, and reassign values to a, q so as to ensure
g(.2, .6) = 0. The plot for σ = η = .7 is pathological, but still converges eventually to a
steady state.

2.7 Optimal Rate of Technical Change

In the above setup, we studied the determination of the optimal direction of technological
change. For the framework to become an endogenous growth model we need to include also
the planner’s choice of intensity, or rate, of technical change. The conclusions about the
long-run equilibrium of the system reached in the previous section are not sensitive to the
inclusion of the optimal rate of technical change in the planner’s problem.

Consider a social planner determining both the direction and the rate of technological
change by allocating part of the labor force into the educational sector, as in Uzawa [36].
If we follow the Neoclassical tradition in imposing that labor is fully employed, the amount
of labor in the educational sector will be a fraction of the total labor force: Le = (1 − u)L.
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Figure 4: Simulation results for n = .04, a = 25, q = .08

However, workers in Le can be employed in any of the factor-augmenting technologies. To
keep things simple, I make the assumption that land augmentation is subject to the same
technology as other factor-augmentations, and that the planner chooses the portion ν of
workers Le employed on production of land-augmenting technologies. Therefore, we can
rewrite equations (6) as:

Ȧ = αξ(1 − νu)A, Ṫ = τξ[1 − u(1 − ν)]T, Ḃ = g(α, τ)ξ(1 − νu)B (35)

where g is exactly as above. Following Uzawa [36], we assume that the function ξ is concave
enough to ensure that the present discounted value of consumption per capita converges
as t → ∞, that is we assume: ξ(1) < ρ < ξ(0) + ξ′(0), and ξ′ > 0, ξ′′ < 0. The planning
problem is to choose s, α, τ, u, ν to maximize (7) under the constraints (3), (35), (9) and
(10). The Hamiltonian of the problem is:

H = e−ρt

{

(1 − s)Ah

(

φ

Auf(x/u)

)

uf
(x

u

)

+ p1

[

sAh

(

φ

Auf(x/u)

)

uf
(x

u

)

− (δ + n)
A

B
x

]}

+e−ρt
{

p2e
αssφ(1−νssuss)tg(α, τ)φ(1 − νu)B + p3αφ(1 − νu)A+ p4τφ[(1 − u(1 − ν)]T

}

(36)

where the conjugate variable for B is now p2e
αssξ(1−νssuss)t because of the specification of

the technology for production of factor-augmentation. The first-order conditions for an
ordinary maximum of (36) are:

(p1 − 1)Ah(θ)uf
(x

u

)

= 0 (37)

∂H

∂α
= p2e

assξ(1−νssuss)tgαξ(1 − νu)B + p3ξ(1 − νu)A = 0 (38)

∂H

∂τ
= p2e

αssξ(1−νssuss)tgτξ(1 − νu)B + p4ξ[1 − u(1 − ν)]T = 0 (39)

∂H
∂u

= γA [h(θ) − θh′(θ)]
[

f
(

x
u

)

− x
uf

′
(

x
u

)]

−ξ′
{

ν
[

p2e
αssξ(1−νssuss)tg(α, τ)B + p3αA

]

+ (1 − ν)p4τT
}

= 0
(40)

∂H

∂ν
= p4ξ

′uτT −
[

p2e
αssξ(1−νssuss)tg(α, τ)B + p3αA

]

ξ′u = 0 (41)
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Equations (14)-(17) modify as follows:

ṗ1 = (ρ+ δ + n)p1 − γ
[

h(θ) − θh′(θ)
]

f ′
(x

u

)

B (42)

ṗ2 = [ρ− αssξ(1 − νssuss) − g(α, τ)ξ(1 − νu)] p2

− [h(θ) − θh′(θ)] γf ′
(

x
u

)

e−αssξ(1−νssuss)t A
Bx

(43)

ṗ3 = [ρ− αξ(1 − νu)]p3 − γ
[

h(θ) − θh′(θ)
]

u
[

f
(x

u

)

−
x

u
f ′

(x

u

)]

(44)

ṗ4 = {ρ− τξ[1 − u(1 − ν)]}p4 − γ
h′(θ)

L
uf

(x

u

)

(45)

while equations (18) and (28)-(30) become:

Bssf
′

(

xss

uss

)

=
ρ+ δ + n

[1 − λ(θ)]h(θ)
(46)

g(αss, τss) = ψ(θss) {τssξ[1 − uss(1 − νss) − n− αssξ(1 − νssuss)]} = 0 (47)

−gα =
ω(x)

1 − ω(x)
(48)

−gτ =
λ(θss)

1 − λ(θss)

1

1 − ω(xss)

[

ρ− αssξ(1 − νssuss)

ρ− τssξ[1 − uss(1 − νss)

]

ξ[1 − uss(1 − νss)]

ξ(1 − νssuss)
(49)

sss = [1 − ω(xss)][1 − λ(θss)]

[

αssξ(1 − νssuss) + δ + n

ρ+ δ + n

]

(50)

The difference with the equilibrium conditions in the previous section being only the appear-
ance of the intensity values multiplying the factor-augmentation rates. Also, the equation
determining the optimal innovation intensity is, from (40):

ξ′(uss) =
ω(x)

ν
[

(1−ω(x))λ(θ)(n−τss)
ρ−[αss+λ(θ)(n−τss)]ξ(1−νssuss)

+ ω(x)αssξ(1−νssuss)
ρ−αssξ(1−νssuss)

]

+ (1 − νss)
λ(θ)τssξ[1−uss(1−νss)]

ρ−τξ[1−uss(1−νss)]

(51)
and from (41) we have:

(1 − ω(x))λ(θ)(n− τss)

ρ− [αss + λ(θ)(n− τss)]ξ(1 − νssuss)
+

αssω(x)

ρ− αssξ(1 − νssuss)
=

λ(θ)τss
ρ− τssξ[1 − uss(1 − νss)]

(52)
The long-run equilibrium of the model including the choice of intensity of technical

change is exactly the same as the simpler case of choice of direction only, and involves
positive land and labor augmentation, zero capital augmentation, and constant shares of all
inputs. The conclusions we reached above extend to the market economy where land is not
priced. The same properties of the resulting dynamical system can be derived by assuming
u, ν to be constant over time at their equilibrium values.

3 Discussion

Economists have been dealing with environmental issues for a long time. Sophisticated mod-
els for environmental policy evaluation have been developed over the past three decades, a
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recent example being the DICE-2007 studied in [30]. In such model, the issue of direction of
technical change in presence of externalities from the atmosphere capacity is not addressed,
as technical change is assumed to be Hicks-neutral. Hicks-neutrality of technical change is
a natural outcome of models of Induced Innovation when there is no accumulating factor,19

but it is at odd with a basic stylized fact of capitalist development: increasing labor produc-
tivity coupled with rising capital/labor ratio. The present model produces a Harrod-neutral
path of technological progress as a special case in the planned economy without land, as
the standard model of Induced Innovation with capital accumulation. Also, zero capital
augmentation is one of the steady state outcomes in the planned economy with land.

The viewpoint I took in this paper is that induced technical change can be a powerful
source of economic growth, and that the early contributions on Induced Innovation have
proved to be successful in reproducing some of the long-run features of capitalist economies.
Hence, I chose to adopt a modification of a fairly old model of optimal technical change
with Induced Innovation, first studied by Nordhaus [28]. The model presented here can
be seen as a Neoclassical counterpart of the Classical framework developed recently by
Foley [12], and shares with the latter the basic idea: assigning a (shadow-) price to land
will induce cost-reducing technical change directed at economizing the use of land in pro-
duction, thus reducing environmental strees. Differently from Nordhaus, I introduced an
externality arising from a fixed natural resource, affecting production of output. Unlike
Foley’s model, in which the dependence of each factor-augmenting technical change on its
own share in costs is assumed, I augmented the dimensionality of Kennedy’s [19] IPF to
include land-augmenting technical change. Such feature of the present framework creates
important equilibrium feedbacks among different kinds of factor-augmentation, including
land, that were ruled out by assumption in the previous analyses of the subject. Another
difference is that Foley’s model is closed by a Goodwin predator-prey cycle, whereas full
employment in the planned economy is imposed here. This feature of the model calls for
relaxing the assumption of a fully-employed labor force in order to address the possible
presence of trade-offs or trade-ins between labor market institutions and environmental
policies. Finally, the scenario depicted by Foley in the unpriced land case is only one of
the possible cases arising in the present model. The reason behind this different result lays
in the different assumption on technology I made in this paper, which explicitly considers
land congestion through human activities in agreement with the consensus reached by the
nations participated in the IPCC.

The Induced Innovation approach has been sharply criticized for its lack of microfoun-
dations, especially in [29], and this weakness, among others, was responsible for the decline
of growth models based on induced technical change. At the firm level, in fact, it is not
clear how innovation can be financed and priced if there are constant returns to scale and
competition. The problem of reconciling economic growth with competition, however, is
common to the whole early growth literature, and involves removing the assumption of
constant returns to scale in the production function. Twenty years of literature on Endoge-
nous Growth have addressed this issue, spanning from AK frameworks, to models of human
capital accumulation, to R&D-based growth models. All these strands of literature feature
increasing returns. Recent models with decreasing returns to scale reconciled growth and
competition, using the fact that firms in regime of decreasing returns have inframarginal
rents to finance R&D expenditure.20 In a planned economy, the complication of financing

19See Samuelson [32] for an enlightening illustration of this point.
20A very recent example of a model with decreasing returns and induced innovation, also providing detailed

references to the literature, is Zamparelli [38]. The price to pay for this reconciliation between growth and
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innovation is not compelling, as long as the social planner is able to choose the of the labor
force working in the production of new technologies, as it happens in Uzawa [36], and in the
present model with a minor modification due to the increased dimensionality of the IPF.
However, because of the underlying assumption of competition, a meaningful comparison
between market and planned economies in this model can be made only with an exogenous
rate of technical progress as in section 2.2, and this is the reason why I didn’t extend the
comparisons to the endogenous growth framework of section 2.7.

Another matter of criticism is the assumed stationarity of the trade-off between factor
augmentations represented by the IPF. Magat [23], and Skott [35] explored the implications
of depletion of innovation possibilities on the dynamics of factor shares in a model based
on that of Drandakis and Phelps [11]. Depletion of innovation possibilities can be seen as a
way to capture environmental decline occurring at a faster pace than what is implied by the
aggregate production function 1, as it seems to be the case in the very recent years. This
extension is left for future research. On the other hand, in the market counterpart of the
present model based on imperfect competition, there is no need for an explicit specification
of the IPF (see Acemoglu [1]), because each factor-augmenting technical progress will be
determined by its own technology. ‘Innovation possibility frontiers’ will be implicitly deter-
mined by the relative slopes of such technologies, and their slope will be time-varying.

The most important assumption in this paper is that human activities, in the form of use
of capital and labor in production, congest a limited resource, which I called ‘land’. In their
controversial 1972 book commissioned by the Club of Rome, Meadows et al. [25] explored
the consequences of the interaction between capitalist production, exponential population
growth and a limited resource utilized in production such as oil. Their predictions were
contradicted by history, because of technical progress in oil extraction which made more oil
available for human activities. Several interesting lessons can be learned from this story.
First, I believe oil to be a striking example of the power of induced innovation as a source
of economic growth. Fuel-efficiency was not a problem when oil was cheap on the market.
Increases in oil price are more and more fostering induced technical change to make more
efficient the use of such resource, and are also setting in motion the forces of substitution
between productive inputs, in what other sources of energy are being explored to reduce
the world’s dependence on petroleum. Land pricing is likely to produce the same kind of
mechanisms of induced technical progress we have seen happening with fossil fuels, and
this mechanism will cope with progressive substitution from land-congesting to more land-
friendly inputs. Second, world population in 1972 was 3,860 billion. Today is over 6,600
billion. Given such spectacular growth, it makes sense to explore its implications for techni-
cal change under the type of limits to production possibilities postulated in this paper. We
found that land-augmenting technical progress must grow at a rate equal to the sum of the
growth rate of labor augmentation plus the rate of population growth to ensure existence
of a steady state to the economy. An immediate extension of this model is to explore its
properties with endogenous population growth, and it is left for future research.

A key implication of the congestion hypothesis in the unpriced market case is that labor
and capital will each appropriate a portion part of the land’s contribution to the productive
process, so that the market will remunerate factors more than it is socially optimal. As a
consequence, if labor is fully employed in the planned economy, it cannot be in the market
economy not pricing land. This poses problems additional to the ones already outlined
in the comparisons of the two economies regarding their innovative ability. On the other

competition, however, is that the optimal dimension of the firm tends to zero.
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hand, it points toward extensions of the framework to open economies in order to study
the interaction between environmental policies and movements of labor and capital across
countries, with the difficulty that such interaction will occur when the country not pricing
land is out of the steady state path.

A final methodological remark can be made considering that the whole argument of this
paper lays on the implicitly assumed ability of an economist to aggregate across different
inputs to production into categories such as ‘labor’, ‘capital’, and ‘land’. As pointed out
by Samuelson [32], from a mathematical standpoint there is no difference between the ar-

guments producing output according to the technology (1). Here, and usually in models of
economic growth, a meaningful distinction between labor, capital, and land can be made
only regarding their respective law of motions: ‘capital’ accumulates, ‘labor’ is scarce, ‘land’
is fixed.21 The peculiar aspects of the use of labor in production, such as the contractual
features of labor relation as opposed to those of ‘land’ and ‘capital’, are not addressed in
this paper, as it is assumed that each factor is paid its marginal product. Tavani [34] ana-
lyzes at a micro level the differences in enforceability of contracts for different factors in a
two-input production model, showing that they are in general relevant for the direction of
technical change in market economies, even when productive inputs are not distinguishable
as far as their motion over time is considered. Different ways of enforcing the contracts
regulating the use of inputs in production must be a feature of a more realistic model of
capitalist technological progress.

4 Conclusion

In this paper, I extended an early model of induced technical change first studied by Nord-
haus [28]. The extension amounts to include a production externality from a fixed resource
(land) congested by the use of labor and capital in production, and to increase the dimen-
sionality of Kennedy’s [19] IPF by adding land-augmenting technical change. In standard
fashion, I was also able to study both analytically and numerically the dynamical system
that results out of the infinite horizon problem (7), this way providing an account of the
equilibrium and out-of-equilibrium dynamics of the model, and addressing long-standing
questions remained unanswered in the framework. I showed that:

1. The planned equilibrium without land is either saddle-path stable if the elasticity of
substitution between labor and capital is less than one, or stable if the substitution
elasticity is greater than one and the IPF is sufficiently steep at the steady state, a
precise meaning of the adjective ‘steep’ being given by the fulfillment of the inequality
(33).

2. A market economy not pricing land always fails to reach a steady state, and may end

21The present model has another feature that is perhaps interesting for economists familiar with the early
Induced Innovation literature. It is not hard to show that, if we assume all shadow-prices to be constant over
time at their steady state values, the long-run optimal solution involves an equally positive growth rate of
all factor-augmenting technologies, and thus equal shares of all factors in output. This result has been called
‘Kindleberger Paradox’ by Samuelson [32], and it is typical of models of Induced Innovation when there is
no accumulating factor. Here, it arises because constant shadow prices will not reflect the aforementioned
differences between productive inputs.
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up in either one of three worrying scenarios: (i) a catastrophe led by overaccumulation
of capital: (ii) a slower environmental decline where capital deepening is held back by
Induced technical change but land congestion is not; (iii) a path of industrial regress
where capital progressively decumulates.

3. A planned economy with land has an equilibrium, unique when σ, η 6= 1, in which
the shares of all inputs are constant, the rates of labor and land augmentation are
positive, and the rate of capital-augmenting technical change is zero. I showed that,
under the calibration proposed, the equilibrium path is locally asymptotically stable.

These findings lose some of their importance if we consider that a proper account of en-
dogenous growth in a market economy requires removing the hypothesis of competition
that underlies the comparisons made in this paper. Influential models of directed techni-
cal change in non-competitive markets have been developed recently by Acemoglu [1], [2],
although environmental externalities are absent in those frameworks. A different type of
exercise might be to study the role of land congestion in the natural market counterpart of
the growth model analyzed in section 2.7, that of human capital due to Lucas [21]. I also
don’t address intergenerational equity issues (see for instance Greiner and Semmler [13]),
nor the role played by uncertainty in climate change (Weitzman [37]). All the above direc-
tions in which the Induced Innovation framework can be extended to include externalities
from the atmosphere capacity appear to be fruitful areas for further investigation.
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