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Abstract

A new multivariate semi-parametric risk forecasting framework is proposed, to

enable the portfolio Value-at-Risk (VaR) and Expected Shortfall (ES) optimization

and forecasting. The proposed framework accounts for the dependence structure

among asset returns, without assuming their distribution. A simulation study is

conducted to evaluate the finite sample properties of the employed estimator for

the proposed model. An empirically motivated portfolio optimization method, that

can be utilized to optimize the portfolio VaR and ES, is developed. A forecast-

ing study on 2.5% level evaluates the performance of the model in risk forecasting

and portfolio optimization, based on the components of the Dow Jones index for

the out-of-sample period from December 2016 to September 2021. Comparing to

the standard models in the literature, the empirical results are favourable for the

proposed model class, in particular the effectiveness of the proposed framework in

portfolio risk optimization is demonstrated.

Keywords: semi-parametric; Value-at-Risk; Expected Shortfall; multivariate; port-

folio optimization.
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1 Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES) play a central role in the risk manage-

ment systems of banks and other financial institutions. For more than two decades, VaR

has been the official risk measure adopted worldwide by financial intermediaries operating

in the global financial system. Nevertheless, VaR has some important theoretical limits.

First, VaR cannot measure the expected loss for extreme (violating) returns. In addition,

it can be shown that VaR is not always a coherent risk measure, due to failure to match

the subadditivity property. For these reasons, the Basle Committee on Banking Super-

vision proposed in May 2012 to replace VaR with the ES (Artzner 1997; Artzner et al.

1999). ES is defined as the expectation of the return conditional on it having exceeded

the VaR. Differently from VaR, ES is a coherent measure and “measures the riskiness

of a position by considering both the size and the likelihood of losses above a certain

confidence level” (Basel Committee on Banking Supervision, 2013). Thus, in recent years

ES has been increasingly employed for tail risk measurement.

Comparing to VaR, there is much less existing work on modeling ES, which is partly

due to the non-elicitability of ES alone. However, the recent work in Fissler and Ziegel

(2016) has shown that the pair (VaR,ES) is jointly elicitable. They develop a family of

joint loss, or scoring, functions that are strictly consistent for the true VaR and ES, i.e.,

they are uniquely minimized by the true VaR and ES series. This result has important

implications for the estimation of conditional VaR and ES as well as for ranking risk

forecasts from alternative competing models. Taylor (2019) proposes a joint VaR and ES

modelling approach (named as ES-CAViaR in this paper) based on the minimization of

the negative of an Asymmetric Laplace (AL) log-likelihood function that can be derived

as a special case of the Fissler and Ziegel (2016) class of loss functions, under specific

choices of the functions involved. Furthermore, Patton et al. (2019) propose new dynamic

models for VaR and ES, through adapting the generalized autoregressive score (GAS)

framework (Creal et al., 2013) and utilizing a 0-degree homogeneous loss function falling

in the Fissler and Ziegel (2016) class (FZ0).

The works mentioned above focus on univariate time series and do not take into ac-

count the correlation among assets in financial markets. Several quantile-based methods,
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see for example the works in Baur (2013), Bernardi et al. (2015), White et al. (2015),

have been developed to estimate VaR in a multivariate setting and model the tail inter-

dependence between assets, while the ES component is not specified in these frameworks.

In this paper we contribute to the literature on portfolio risk forecasting by propos-

ing a class of semi-parametric marginalized multivariate GARCH (MGARCH) models

that generate portfolio VaR and ES forecasts jointly, taking multivariate information on

the returns of portfolio constituents as input. Our main reference model is given by a

marginalized version of the dynamic conditional correlations (DCC) model (Engle, 2002)

whose parameters are estimated by minimization of a negative AL log-likelihood as in

Taylor (2019). In the remainder, for short we will refer to this model as the DCC-AL

model. The proposed framework can be easily generalized to other parameterizations

from multivariate GARCH literature such as the corrected DCC (cDCC) of Aielli (2013)

or dynamic covariance models such as the BEKK model of Engle and Kroner (1995). Our

preference for the DCC parameterization is motivated by the flexibility of this specifica-

tion and its widespread diffusion among practitioners 1. At the same time, the AL scoring

function can be replaced in a straightforward manner by any other strictly consistent loss

for the pair (VaR, ES) such as the FZ0 used by Patton et al. (2019).

In a risk forecasting perspective, the DCC-AL model extends the univariate approach

of Taylor (2019) to a multivariate framework, with the objective of obtaining joint esti-

mates of both VaR and ES for portfolios of financial assets, accounting for their cross-

sectional correlation structure. Due to its semi-parametric nature, the proposed frame-

work does not require the formulation of any assumption on the conditional distribution

of portfolio returns, since the required VaR and ES factors are estimated minimizing a

strictly consistent loss function. However, compared to the univariate semi-parametric

approaches in risk forecasting, due to its underlying multivariate GARCH structure, the

DCC-AL model can be used for a wider range of applications such as portfolio optimiza-

tion and hedging.

1We also derived a marginalized version of the cDCC model, cDCC-AL for short. However, consistently

with previous findings, the cDCC-AL and DCC-AL models turned out to give very similar estimates,

motivating our decision to keep the mathematically simpler DCC-AL as the main reference model. Results

for the cDCC-AL model are available upon request.
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The DCC-AL model develops a multivariate portfolio risk optimization framework

based on the minimization of a risk-targeted strictly consistent loss function. It has

significant differences to the existing semi-parametric multivariate risk forecasting frame-

works. First, Merlo et al. (2021) generalize the AL distribution to a multivariate setting

for portfolio risk optimization, while their approach is limited to low portfolio dimensions,

i.e., three market indices are studied in their paper. Second, the DCC model could be

estimated semi-parametrically by using the Gaussian Quasi Maximum Likelihood (DCC-

QML) method. Then the portfolio VaR and ES can be produced by the filtered historical

simulation (HS) approach by calculating the sample quantiles and tail averages of the

standardized returns (Francq and Zaköıan, 2015). The DCC-QML with HS is a two-step

process, while the DCC-AL can jointly estimate and forecast portfolio VaR and ES in

one step, which is more convenient from a practical perspective. Further, the DCC-QML

approach optimizes a Gaussian based quasi-likelihood, while the DCC-AL optimizes a

risk-targeted strictly consistent loss function for VaR and ES, e.g., the AL based joint

loss function.

In an empirical application to a panel of 28 assets included in the Dow Jones index,

we find that, when forecasting risk for an equally weighted portfolio, DCC-AL models

are competitive with state-of-the-art univariate semi-parametric approaches and perform

better than parametric DCC models. When focusing on the out-of-sample hedging per-

formance of the model, our results show that the DCC-AL model clearly outperforms a

benchmark equally weighted allocation strategy. We also find evidence that in a high

volatility period, at the outbreak of the COVID-19 crisis in 2020, compared to the DCC-

QML, the DCC-AL model is characterized by a better out-of-sample minimum variance

hedging performance. In addition, our empirical results show that the DCC-AL model can

be effectively used as a modelling platform for the generation of minimum risk (VaR, ES)

portfolios without requiring any parametric assumption on the conditional distribution of

returns, including its ellipticity.

The paper is structured as follows. Section 2 reviews the semi-parametric univariate

risk forecasting approaches and presents the proposed framework and its technical de-

tails. A two stage model estimation procedure is shown in Section 3. Section 4 presents

the simulation study. An empirically motivated portfolio risk optimization procedure is
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developed in Section 5. The empirical results of the proposed model in risk forecasting

and portfolio optimization are discussed in Section 6. Section 7 concludes the paper.

2 Statistical framework

2.1 Description of the environment

First, let rt = (rt,1, . . . , rt,n)
′ be a vector of returns on the n portfolio assets at time t and

generated by the process:

rt = µt +H
1/2
t zt, (1)

where zt
iid∼ D1(0, In), D1 is a multivariate distribution with zero mean and identity

covariance matrix, µt = E(rt|It−1) is the conditional mean vector of returns with It−1

as the information available at time t − 1, and H
1/2
t is a positive definite matrix such

that H
1/2
t (H

1/2
t )′ = Ht, with Ht = var(rt|It−1) being the conditional covariance matrix of

returns.

Pre-multiplying both members of Equation (1) by the (transposed) vector of portfolio

weights w = (w1, . . . , wn)
′, we obtain the following (univariate) portfolio returns:

rt(w) = w
′

rt = w
′

µt +w
′

H
1/2
t zt.

It is easy to infer that these can be equivalently represented as:

rt(w) = w
′

µt + et
√
w

′Htw, (2)

where et is a scalar continuous error term such that et
iid∼ (0, 1). In order to simplify the

presentation, we here assume that zt has a spherical distribution, thus the distribution

of et will be the same as the marginal distribution of the components of zt. Assuming

sphericity of the distribution of zt is equivalent to assume ellipticity of the conditional

distribution of rt(w) (see e.g. Francq and Zaköıan, 2020). However, as it will be discussed

later, this condition is not strictly required in our setting but is here invoked with the

only purpose of facilitating the illustration of the proposed approach. Further, we assume

that the Cumulative Distribution Function (CDF) of et is strictly increasing on the real

line ℜ.
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Assuming that asset returns follow the process in (2) and given the set of weights w,

the α-level portfolio conditional VaR and ES are given by:

Qt,α = w
′

µt + qα
√

w
′Htw, ESt,α = w

′

µt + cα
√

w
′Htw, (3)

where w
′

µt and w
′

Htw are the conditional mean and variance of portfolio returns rt(w),

respectively. 0 < α << 1 denotes the target level for the estimation of VaR and ES. In the

empirical application we focus on α = 2.5%. qα = F−1
e,t−1(α) and cα = E(et|It−1, et ≤ qα),

where Fe,t−1(.) represents the cumulative distribution function (CDF) of et conditional on

It−1. Therefore, qα and cα are the portfolio VaR and ES factors calculated based on the

definitions of VaR and ES.

In order to simplify notation, in the remainder, unless differently specified, the fol-

lowing notational conventions are adopted: Qt,α ≡ Qt, ESt,α ≡ ESt, qα ≡ q and cα ≡ c,

rt ≡ rt(w).

2.2 Univariate approaches to portfolio risk forecasting

The literature on semi-parametric forecasting of portfolio risk has so far mostly been

limited to univariate approaches. In this section, we present a selective review of the

most relevant contributions to the research on this topic.

Focusing on VaR forecasting, Koenker and Machado (1999) note that the usual quan-

tile regression estimator is equivalent to a maximum likelihood estimator based on the

AL density with a mode at the quantile. The parameters in the model for Qt can then

be estimated maximizing a quasi-likelihood based on:

p(rt|It−1) =
α(1− α)

σ
exp

(
−(rt −Qt)(α− I(rt ≤ Qt))

σ

)
,

for t = 1, . . . , N and σ is a scale parameter.

Taylor (2019) extends this result to incorporate the associated ES quantity into the

likelihood expression, noting a link between ESt and a dynamic σt, resulting in the con-

ditional density function:

p(rt|It−1) =
(α− 1)

ESt

exp

(
(rt −Qt)(α− I(rt ≤ Qt))

αESt

)
. (4)
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This allows a likelihood function to be built and maximised, given model expressions

for (Qt, ESt). Taylor (2019) notes that the negative logarithm of the resulting likelihood

function is strictly consistent for (Qt, ESt) considered jointly, e.g., it fits into the class

of jointly consistent scoring functions for VaR and ES developed by Fissler and Ziegel

(2016). Along the same lines, Patton et al. (2019) investigate a class of semi-parametric

models, including some observation driven models, whose parameters can be estimated

minimizing a 0-degree homogeneous loss function (FZ0) still included in the same class.

Gerlach and Wang (2020) extend the framework in Taylor (2019) by incorporating realized

measures as exogenous variables, showing improved VaR and ES forecast accuracy.

As mentioned above, all these papers focus on univariate semi-parametric modelling

approaches that, when applied to portfolio returns, do not explicitly assess the impact

of cross-sectional correlations among assets. Although this issue has been extensively

analyzed in the literature on parametric MGARCH models (Bauwens et al., 2006), to the

extent of our knowledge, no attempts have been made to address it in a multivariate semi-

parametric risk-targeted framework (except the framework given by Merlo et al. (2021)

as discussed in Section 1). In order to fill this gap, in the next section we propose a

novel modelling strategy based on the use of what we call a semi-parametric marginalized

MGARCH model.

2.3 Semi-parametric marginalized MGARCH models

In this section, we present the proposed semi-parametric marginalized MGARCH frame-

work. In order to explicitly highlight the link between portfolio risk and Ht, Equations

(3) can be reparameterized as:

Qt = w
′

µt +

√
w

′H
(q)
t w, ESt = w

′

µt +

√
w

′H
(c)
t w, (5)

where we define H
(q)
t = Htq

2 and H
(c)
t = Htc

2. In the remainder, we will conventionally

use the superscript (q) to denote variables or quantities related to “q”uantile (VaR), while

(c) will be used in variables or quantities related to “c”onditional tail expectation (ES).

Inspired by Taylor (2019), the ratio between c2 and q2 is then modelled as

c2

q2
=

H
(c)
t

H
(q)
t

= 1 + exp(γ0). (6)
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By construction, this formulation guarantees that the VaR and ES do not cross. It

is evident that the VaR and ES dynamics are driven by those of Ht in expression (2).

These can be modelled using a wide range of specifications from the MGARCH literature.

Without any loss of generality, due to its flexibility and widespread diffusion among

practitioners, our proposed modelling approach builds on the DCC model of Engle (2002)

and shares the same volatility and correlation dynamics. Under the DCC specification,

the conditional variance and covariance matrix Ht is decomposed as:

Ht = DtPtDt, (7)

where Dt is a (n × n) diagonal matrix such that its i-th diagonal element is Dt,ii = ht,ii,

with h2
t,ii = var(rt,i|It−1). Since our approach is developed in a fully semi-parametric

framework, the specification for h2
t,ii is indirectly recovered assuming an ES-CAViaR type

model for the individual asset VaRs and ESs. Among the several diverse specifications

that have been proposed in the literature (Engle and Manganelli, 2004; Taylor, 2019),

for presentation purposes, without any loss of generality, we focus on the ES-CAViaR

model with the Indirect GARCH (IG) specification for VaR and multiplicative VaR to

ES relationship:

Qt,i = −
√
ω
(q)
i + α

(q)
i r2t−1,i + βiQ2

t−1,i, (8)

ES2
t,i = (1 + exp(γ0,i))Q

2
t,i, i = 1, . . . , n,

where, by a variance targeting argument, the intercept ω
(q)
i is parameterized as:

ω
(q)
i = (q2i (1− βi)− α

(q)
i ) var(rt,i) (9)

so to make explicit the dependence on qi, that is the VaR factor for the i-th asset. This

is easily derived considering that the VaR model implies

Q2
t,i = ω

(q)
i + α

(q)
i r2t−1,i + βiQ

2
t−1,i. (10)

Noting that, with µt = 0, Qt,i = qiht,ii, the expression in (9) is then obtained applying

targeting to the recursion in (10).

The matrix Pt in Equation (7) is the conditional correlation matrix of the returns

vector rt. Multiplying both sides of (7) by q2 and further introducing Ptq
2 = P

(q)
t , H

(q)
t
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can be parameterized as follows:

H
(q)
t = q2DtPtDt = DtP

(q)
t Dt, (11)

which makes explicit the dependence of H
(q)
t on individual assets volatilities (Dt), condi-

tional correlations (Pt) and tail properties of the error component (q). The matrix P
(q)
t

is given by the conditional correlation matrix Pt multiplied by q2. Hence, it will have all

its diagonal elements equal to q2.

Based on Equations (6) and (11), the proposed framework can be shown as:

H
(q)
t = DtP

(q)
t Dt, (12)

H
(c)
t = (1 + exp(γ0))H

(q)
t ,

We refer to our proposed model (12) as a marginalized semi-parametric DCC model.

We call it marginalized since, given a portfolio composition w, it is fitted to the univariate

portfolio returns rt(w) rather than to the vector process rt, see discussion related to

Equations (1), (2) and (3) for details. The semi-parametric nature of the model derives

from the fact that, as it will be later discussed in Section 3, its coefficients are fitted

minimizing a jointly consistent loss for Qt and ESt without assuming the parametric

family of the conditional distribution of returns. In particular, we use the negative of

the AL log-likelihood in Equation (4) as the loss function. For this reason we denote the

proposed semi-parametric DCC model (12) as DCC-AL model. The proposed framework

can be further explored with a time varying H
(c)
t to H

(q)
t relationship. However, the results

in Taylor (2019) and Gerlach and Wang (2020) show that a constant multiplicative factor

between VaR and ES is capable of producing very competitive risk forecasts in univariate

risk forecasting models. Therefore, to limit the focus of the paper we employ the constant

multiplicative factor (1 + exp(γ0)).

To model Pt in Equation (11) and ensure unit correlations on its main diagonal,

according to the DCC model we use:

Pt = S
−1/2
t RtS

−1/2
t , (13)

where S
1/2
t is a diagonal matrix containing the diagonal entries of R

1/2
t , i.e., S

1/2
t,ii = R

1/2
t,ii .

The dynamics of Rt can be parsimoniously modelled as:

Rt = Ω+ aǫtǫ
′

t + bRt−1, (14)
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where ǫt is a (n× 1) vector whose i-th element is given by ǫt,i = rt,i/ht,ii; a and b are non-

negative coefficients satisfying the stationarity condition (a+ b) < 1. When Ω and R0 are

positive definite and symmetric (PDS), the condition (a+b) < 1 is sufficient to ensure that

Rt is PDS, for any time point t. As further explained in Section 3, the maximum number

of simultaneously estimated coefficients can be further reduced by applying correlation

targeting (Engle, 2002) in Equation (14):

Rt = (1− a− b)Σ̂ǫ + aǫt−1ǫ
′

t−1 + bRt−1, (15)

where

Σ̂ǫ = T−1

T∑

t=1

ǫtǫ
′

t. (16)

Given the assumptions on a and b, no identifiability issue arises and only four coefficients

need to be estimated in the DCC-AL model: q, a, b and γ0. The parameter estimate q

(VaR factor) allows us to directly estimate the quantile of the error distribution in the

model for portfolio returns. Furthermore, in the Monte Carlo simulations to be shown in

Section 4, we can compare the estimates obtained for this coefficient with its theoretical

value. Since we have defined c2/q2 = 1 + exp(γ0), after estimating parameters q and γ0,

the value of the ES factor c can be immediately recovered.

Remark 1. It is worth noting that the proposed semi-parametric framework can be easily

adapted to consider other multivariate GARCH specifications for Ht. For example, this

could be estimated by the BEKK model of Engle and Kroner (1995) that we here consider

in its scalar version:

Ht = Ω+ aut−1u
′

t−1 + bHt−1, (17)

with ut = rt − µt; a, b ≥ 0 and a + b < 1; Ω = CC ′ where C is upper triangular. To

avoid the estimation of the intercept matrix Ω with (n+1)×n/2 elements, from standard

MGARCH literature we can apply covariance targeting to Equation (17) :

Ht = Σ̂(1− a− b) + aut−1u
′

t−1 + bHt−1, (18)

where Σ̂ = v̂ar(ut), with v̂ar(.) denoting the empirical variance and covariance matrix

operator. Multiplying both sides of Equation (18) by q2, we get:

Htq
2 = Σ̂(q2 − aq2 − bq2) + aq2ut−1u

′

t−1 + bq2Ht−1.
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Letting aq2 = a(q), H
(q)
t = Htq

2 and H
(c)
t = Htc

2, the marginalized semi-parametric

BEKK model is then obtained as:

H
(q)
t = Σ(q2 − a(q) − bq2) + a(q)ut−1u

′

t−1 + bH
(q)
t−1, (19)

H
(c)
t = (1 + exp(γ0))H

(q)
t .

In the remainder, given the DCC type models’ greater flexibility and appeal for practition-

ers, we will exclusively focus on evaluating the performance of the DCC-AL model in risk

forecasting and optimization. However, in general, the proposed framework could be eas-

ily extended by modelling the dynamics of Ht through a wide range of parameterizations

selected from the MGARCH literature. For example, when dealing with large dimen-

sional systems, an interesting addition could be to consider the Dynamic Equicorrelated

Conditional Correlation (DECO) model by Engle and Kelly (2012).

3 Estimation

The estimation of the DCC-AL model in (14) can performed by means of a two step pro-

cedure in the spirit of Engle (2002). To simplify the presentation, we here set µt,i = µi = 0

that, in practical applications, is equivalent to work with the demeaned data. The DCC-

AL estimation procedure can be then outlined as follows.

Step 1 is dedicated to the estimation of the individual assets volatilities. In order to

gain robustness against heavy tailed distributions, the ht,ii are indirectly obtained via

the estimation of n separate ES-CAViaR Indirect GARCH (ES-CAViaR-IG, Taylor 2019)

models employing a multiplicative VaR to ES factor, as defined in Equation (9)2.

Namely, for each asset, the coefficients of the individual risk models

ξi = (α
(q)
i , βi, qi, γ0,i)

2Alternatively, the ht,ii could be obtained by Gaussian QML estimation of GARCH(1,1) models. We

prefer not to take this route since the Gaussian QML estimator can be characterized by substantial

efficiency losses in the presence of heavy tailed errors (Hall and Yao, 2003).
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are separately estimated minimizing an AL loss:

ξ̂i = argmin
ξi

ℓ1(ri; ξi) = −
T∑

t=1

(
log

(α− 1)

ESt,i

+
(rt,i −Qt,i)(α− I(rt,i ≤ Qt,i))

αESt,i

)
,

for i = 1, . . . , n. The set of estimated 1-st stage coefficients is denoted as: ξ̂ = (ξ̂1, . . . , ξ̂n).

Step 2 is dedicated to the estimation, conditional on ξ̂, of the coefficients controlling

correlation dynamics (vech(Ω), a, b) and the tail properties of the conditional distribution

of portfolio returns (q, γ0). Here, as usual, the notation vech(Ω) denotes the column-

stacking operator applied to the upper portion of the symmetric matrix Ω. Again, these

coefficients can be jointly estimated minimizing the AL loss function:

θ̂ = argmin
θ

ℓ2(r;θ|ξ̂) = −
T∑

t=1

(
log

(α− 1)

ESt

+
(rt −Qt)(α− I(rt ≤ Qt))

αESt

)
, (20)

where Qt and ESt are the portfolio VaR and ES as defined in Equation (5), θ = (vech(Ω),

a, b, q, γ0).

Namely, the estimated volatilities from Step 1 are used to compute the estimated

standardized asset returns:

ǫ̂t = D̂−1
t rt,

where D̂t,ii = ĥt,ii = Q̂t,i/q̂i, with the hat denoting estimated quantities; ǫ̂t is then plugged

into Equation (14) to obtain R̂t that can in turn be used to obtain P̂t using Equation

(13); P̂t and D̂t are used to produce the Ĥ
(q)
t and Ĥ

(c)
t with (12). Finally, portfolio VaR

and ES, Q̂t and ÊSt, can be calculated with (5).

Remark 2. It is worth noting that direct estimation of vech(Ω) would imply optimizing the

AL loss wrt n(n+ 1)/2 additional parameters, that can be hardly feasible for even mod-

erately large cross-sectional dimensions. For example, in our empirical analysis, where

we work with a portfolio of dimension n = 28, we would have to estimate 406 distinct Ω

coefficients. To overcome this issue, correlation targeting can be applied. When correla-

tion targeting is used and Rt is modelled as in Equation (15), the estimation procedure is

modified to incorporate an intermediate step in which var(ǫt) is estimated by the sample

variance and covariance matrix of ǫ̂t = D̂−1
t rt (Σ̂ǫ). Therefore, the loss in Equation (20)
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is then optimized only wrt (a, b, q, γ0).

In step 1, we use the Matlab 2021b “fmincon” optimization routine to estimate the ES-

CAViaR-IG models. In step 2, the Matlab “MultiStart” facility is further employed for

“fmincon” to improve the robustness of the estimation results. We use 5 separate sets

of starting points, generating 5 local solutions, then the optimum set among these is

finally chosen as the parameter estimates. The detail of “MultiStart” is explained in the

the Matlab documentation https://au.mathworks.com/help/gads/multistart.html.

Using a standard laptop with i7 1.8GHz CPU and 16GB RAM, the estimation of the

DCC-AL model with a dataset of 3000 sample size and n = 28 assets takes approximately

5 minutes.

4 Simulation Study

In this section a simulation study is conducted to assess the statistical properties of the

two-step AL loss based estimation procedure discussed in the previous section. The aim

of this study is firstly to assess the bias and efficiency of the estimators of the DCC-AL

parameters (a, b, q, γ0). Furthermore, we also assess the the risk forecasting performances

of the estimated DCC-AL model in an equally weighted portfolio, through evaluating the

one-step-ahead 2.5% level portfolio VaR and ES forecast accuracy as compared to the

“true” simulated values.

Consistent with the empirical findings arising from our empirical application, we have

considered as Data Generating Process (DGP) a parametric DCC model of dimension

n=28 with the true values of the correlation dynamic parameters in Equation (15) given

by a = 0.12 and b = 0.78:

Qt = (1− 0.12− 0.78)Σǫ + 0.12ǫt−1ǫ
′

t−1 + 0.78Qt−1, (21)

where Σǫ is a n× n matrix with unit diagonal and off-diagonal elements equal to 0.5.

In the return equation rt = µt +H
1/2
t zt, the conditional mean vector µt of returns is

chosen to be zero. The DGP univariate volatilities are assumed to follow the GARCH(1,1)
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model:

h2
t,i = 0.1 + 0.1r2t−1,i + 0.8h2

t−1,i, i = 1, . . . , n.

The parametric distribution of returns is assumed to be zt
iid∼ D1(0, In), where the follow-

ing choices of D1 have been considered:

• Standardized multivariate Normal distribution: zt
iid∼ Nn(0, In).

• Standardized multivariate Student’s t distribution: zt
iid∼ tn(0, In; ν), where the

degrees of freedom parameter ν has been set equal to 10.

• A multivariate non-spherical distribution with Student’s t marginals (nst: zt
iid∼

nstn(0, In;ν); the density of this distribution is obtained taking the product of n

independent univariate standardized t1(0, 1; νi) densities; ν = (ν1, . . . , νn) is the n-

dimensional vector of marginal degrees of freedom parameters. When νi = ν (∀i),
the marginal densities of the product are the same as those of the multivariate

t, although the joint density is different (Bauwens and Laurent, 2005). In our

simulations, the values of νi have been uniformly drawn over the interval [5,15].

While the first two distributions belong to the spherical family, the same does not hold

for the third one (nst).

The DCC-AL model is then fitted to the time series of equally weighted (w = 1/n)

portfolio returns generated from the chosen DGP, for three different sample sizes T ∈
{2000, 3000, 5000}. Overall, matching 3 different distributional assumptions and sample

sizes, we have 9 simulation settings and, under each of these, 250 return series have been

generated.

Conditional on the chosen error distribution and on the values of the correlation

parameters a and b, the true values of the other two parameters q and γ0 in the DCC-AL

model can be then calculated as follows.

In the spherical case, multivariate Normal and t, letting F (.) be the CDF of zt,i,

q = F−1(α) and c = E(zt,i|zt,i ≤ q). From (6) it is then easy to obtain:

γ0 = log

(
c2

q2
− 1

)
.

Therefore, taking the multivariate Normal case as an example, in the DCC-AL the

true value of q2 is Φ−1(α)2 = (−1.96)2 = 3.8415. The true value for c2 is
(

φ(Φ−1(α))
α

)2

=
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(−2.3378)2, where Φ is the standard Normal CDF and φ is standard Normal Probability

Density Function (PDF). Further, we have (1 + exp(γ0)) =
c2

q2
= (−2.3378)2

(−1.9600)2
= 1.4227, thus

γ0 = log(1.4227− 1) = −0.8610. These true values of a, b, γ0 and q2 for the multivariate

Normal distribution are shown in the True rows in Table 1. When zt
iid∼ tn(0, In; ν =

10), the true values of q, c and γ0 are obtained through a similar approach, replacing

the analytical formulas for q and c with the equivalent expressions for an univariate t

distribution.

In the nst case, the true values of q, c and γ0 need to be calculated via simulations since

this distribution is not a member of the spherical family. It also follows that, differently

from what observed for the multivariate Normal and t cases, the values of these coefficients

will be dependent on the chosen portfolio allocation. So they could change when moving

from equal weighting to a different allocation scheme.

More specifically, q and c can be calculated by the following procedure.

1. For a given set of randomly generated degrees of freedom values ν and portfolio

allocation w, a return series with size Tsim × n (Tsim = 105) is simulated from the

specific DCC process taken as DGP: r∗j , j = 1, . . . , Tsim.

2. Given the simulated returns r∗j , conditional covariance matrix H∗

j and portfolio

allocation w, the time series of simulated standardized portfolio returns is computed

as:

z∗j =
r∗j
h∗

j

,

for j = 1, . . . , Tsim and where

r∗j = w′r∗j , h∗

j =
√
w′H∗

jw.

3. The empirical quantile and conditional tail average of the z∗j series are then used as

the simulated “true” values for q and c. These values can be used to calculate the

true values for γ0 through inverting Equation (6).

For ease of reference, for each DGP, the true parameter values for (a, b, q, γ0) are included

in the True rows in Table 1.
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The DCC-AL model is then fitted to each simulated dataset, using the estimation

procedure as outlined in Section 3. The simulation results for the DCC-AL model are

shown in Table 1 where, for ease of presentation, we have chosen not to report parameter

estimates of the fitted first stage ES-CAViaR-IG models.

The rows labeled as True report, for each DGP, the values of the parameter true values

used for simulation. The empirical averages of the 250 parameter estimates, for various

return distributions and sample sizes, are shown in the Mean rows. The Root Mean

Squared Error (RMSE) values between the parameter estimates and the true values are

shown in the RMSE rows in Table 1.

To further evaluate the accuracy of the portfolio VaR and ES forecasts from the

estimated DCC-AL model, for all 250 simulated datasets, we compare the one-step-ahead

Q̂T+1 and ÊST+1 forecasts based on the estimated parameters with their counterparts

based on the true DGP coefficients. For Q̂T+1 and ÊST+1, the True rows then report

the averages of the 250 risk forecasts based on the true parameters, for different return

distributions and sample sizes.

First, the results provide support to the use of the two-step AL based estimation

method and show that it is able to produce relatively accurate parameter estimates.

Overall, the estimated bias (|Mean − True|) is reasonably low. When the distribution is

fixed, the absolute bias decreases as the time series length T increases. For all parameters,

the values of the RMSE also monotonically decrease as T increases, suggesting consistency

of the estimation procedure. When the sample size is fixed, as expected, the RMSE

values are clearly larger when the errors follow a multivariate Student’s t, comparing to

multivariate Normal distribution.

The estimation results are still relatively accurate for the non-spherical nst distri-

bution that, for correlation parameters, returns RMSE values slightly higher than those

obtained in the Normal case. For parameters q and γ0, the simulated RMSE is in line

with the Normal case, for γ0, and even lower for q.

These results suggest that the proposed semi-parametric estimation procedure is able

not only to keep track of the volatility and correlation dynamics but also of the distri-

butional properties of portfolio returns, through the estimation of q and γ0 (implicitly

c).

15



Finally, reminding that the main motivation for the DCC-AL model is the genera-

tion of accurate portfolio risk forecasts, the last two columns of Table 1 provide a very

important benchmark for assessing the properties of the proposed estimation procedure.

Comparing the α = 2.5% estimated and true risk forecasts, for both VaR and ES, it

can be noted that these two series are on average very close even for the shortest sample

size T = 2000. The RMSE values are also remarkably low: with T = 2000 they do not

exceed 0.0811 for VaR and 0.1034 for ES, and their values monotonically decrease as T

increases across three return distributions. This last set of results confirms the ability of

the proposed two-stage estimation procedure to accurately reproduce the portfolio risk

dynamics.

5 A portfolio risk optimization procedure using the

proposed semi-parametric framework

A further appeal of the proposed DCC-AL models is that they can be used to optimize

portfolio risk and produce minimum VaR and ES portfolios, that is evidently not possible

when using univariate semi-parametric approaches.

Portfolio optimization (PO) targeted on the minimization of VaR/ES has by far

received much less attention than the traditional mean-variance optimization. Under the

assumption of normally distributed returns, Rockafellar and Uryasev (2000) show that the

computation of the mean-VaR, mean-ES and mean-variance frontiers result in equivalent

optimization problems. Namely, they show that the efficient frontiers obtained from mean-

VaR and mean-ES optimization are subsets of the mean-variance efficient frontier. It is

easy to show that a parallel result holds for the family of elliptical distributions.

Assuming that the conditional distribution of returns on portfolio components is

elliptical, through rewriting Equation (5) we can get the portfolio VaR and ES analytical

solution as:

Qt = w′µt + q
√
w′Htw, ESt = w′µt + c

√
w′Htw, (22)

where VaR and ES factors q and c depend on the level α but do not depend on the

weight vector w and, hence, on portfolio configuration. Therefore, under the ellipticity
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Table 1: DCC-AL model parameter estimates and VaR and ES forecasting results with

simulated datasets.

DGP a b γ0 q2 Q̂T+1 ÊST+1

N , T = 2000 True 0.1200 0.7800 -0.8610 3.8415 -1.3704 -1.6346

Mean 0.1360 0.7150 -0.9131 3.9308 -1.3849 -1.6420

RMSE 0.0751 0.1995 0.1639 0.2057 0.0606 0.0762

N , T = 3000 True 0.1200 0.7800 -0.8610 3.8415 -1.3565 -1.6180

Mean 0.1310 0.7319 -0.8919 3.9079 -1.3669 -1.6244

RMSE 0.0615 0.1736 0.1200 0.1613 0.0521 0.0611

N , T = 5000 True 0.1200 0.7800 -0.8610 3.8415 -1.3665 -1.6299

Mean 0.1265 0.7528 -0.8830 3.9018 -1.3760 -1.6367

RMSE 0.0466 0.1118 0.1029 0.1363 0.0392 0.0454

t, T = 2000 True 0.1200 0.7800 -0.5097 3.9717 -1.4353 -1.8159

Mean 0.1591 0.6719 -0.5844 4.1136 -1.4479 -1.8108

RMSE 0.1023 0.2419 0.1894 0.2967 0.0811 0.1034

t, T = 3000 True 0.1200 0.7800 -0.5097 3.9717 -1.3825 -1.7491

Mean 0.1497 0.6894 -0.5658 4.0686 -1.3990 -1.7543

RMSE 0.0884 0.2248 0.1527 0.2167 0.0692 0.0850

t, T = 5000 True 0.1200 0.7800 -0.5097 3.9717 -1.4155 -1.7909

Mean 0.1303 0.7395 -0.5459 4.0619 -1.4304 -1.7995

RMSE 0.0617 0.1564 0.1172 0.1613 0.0534 0.0703

nst, T = 2000 True 0.1200 0.7800 -0.8311 3.8772 -1.3570 -1.6259

Mean 0.1440 0.7030 -0.8893 3.9012 -1.3538 -1.6096

RMSE 0.0894 0.2245 0.1656 0.1849 0.0639 0.0762

nst, T = 3000 True 0.1200 0.7800 -0.8311 3.8772 -1.3806 -1.6542

Mean 0.1356 0.7223 -0.8657 3.8978 -1.3799 -1.6461

RMSE 0.0729 0.1926 0.1246 0.1539 0.0576 0.0706

nst, T = 5000 True 0.1200 0.7800 -0.8311 3.8772 -1.4001 -1.6775

Mean 0.1277 0.7486 -0.8569 3.9091 -1.4057 -1.6788

RMSE 0.0496 0.1195 0.1029 0.1251 0.0383 0.0465

assumption, the same VaR and ES factors could be used for computing risk for different

portfolio configurations. On the other hand, if this assumption is removed, q and c could

change as a function of w. In practical applications this would imply that the risk model

should be re-estimated each time the portfolio configuration changes.
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In financial applications, deviations from the ellipticity assumption often occur due to

the presence of specific features such as skewness. A notable example of non-elliptical dis-

tributions is given by the multivariate skew-t distribution that is derived by Bauwens and

Laurent (2005) through the “contamination” of a symmetric multivariate t distribution

via the method proposed by Fernández and Steel (1998).

In the parametric world, if the ellipticity assumption is removed, the availability of

an analytical formula for portfolio VaR and ES forecasting is not guaranteed and, in most

cases, simulation methods should be used. Using a semi-parametric approach allows to

obtain VaR and ES forecasts through an analytical formula where the VaR and ES factors

are not constant but their values depend on w. This complicates the implementation of

minimum risk PO procedures since the risk model should be in principle re-estimated

at each PO iteration, making the numerical solution of the problem computationally

challenging.

In this section, to overcome these difficulties we propose a simple and empirically

motivated minimum risk PO procedure that is here presented with reference to the DCC-

AL model. However, it is worth remarking that the procedure is not specific to this model

but can be immediately extended to other semi-parametric specifications such as DCC

models fitted by both Gaussian QML and Composite QML. The proposed PO procedure

can be illustrated as follows.

1. Estimate the DCC-AL model with variance targeting by minimizing the AL joint

loss, to produce parameter estimates: â, b̂, q̂ and γ̂0. We use equal weights to start

the process.

2. Relying on the estimated DCC-AL model, use the estimated Ĥ
(q)
t and q̂ to calculate

the conditional covariance matrix Ĥt =
Ĥ

(q)
t

q̂2
.

3. Repeat the following process for Nsim times (we use Nsim = 1000):

(a) Randomly generate a vector of portfolio weights w of size n× 1, where

wi =
ui∑n
i=1 ui

,

with ui
iid∼ U(0, 1), and U(0, 1) represents a uniform distribution on the interval

[0,1].
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(b) Compute the portfolio conditional variance: w′Ĥtw, t = 1, . . . , T .

(c) Compute the series of standardized portfolio returns ẑt =
w′(rt−µ̂)√

w′Ĥtw
, t = 1, . . . , T ,

where µ̂, of size n×1, is the vector of estimated mean return levels for n assets

and used to demean the data.

(d) For the generated ẑt series, compute sample quantile q̃ and sample conditional

tail average c̃.

After Nsim iterations, we obtain the following entities:

- a matrix of simulated portfolio weights: w, of size Nsim × n,

- a vector of simulated VaR factors: q̃, of size Nsim × 1,

- a vector of simulated ES factors: c̃, of size Nsim × 1,

4. Run two separate ordinary least squares (OLS) regressions using q̃ and c̃ as depen-

dent variables, respectively, and w as the matrix of regressors3, to get the regression

coefficients β̂q and β̂c, respectively.

5. For a given w, the portfolio VaR and ES can be calculated as:

Q̂t = w′µ̂t +w′β̂q

√
w′Ĥtw, ÊSt = w′µ̂t +w′β̂c

√
w′Ĥtw, (23)

here the OLS predictions w′β̂q and w′β̂c can be treated as predictions for the

underlying VaR and ES factors (q and c).

6. Given a target portfolio return µ0, minimum risk portfolios are then calculated

minimizing Q̂t or ÊSt with respect to w under the set of constraints4:

w′µ̂t ≥ µ0; 0 ≤ wi ≤ 1;
n∑

i=1

wi = 1.

In the paper we focus on the left tail of the return distribution, thus the portfolio

VaR and ES have negative values. Therefore, the minimization objectives are based

on the absolute values of portfolio VaR and ES. In order to simplify the illustration of

the procedure, we have ruled out short selling practices by imposing positive portfolio

3The constant term is omitted to avoid multicollinearity due to the fact that
∑n

i=1
wi = 1

4Minimization has been performed using the Matlab “fmincon” optimization routine in Matlab 2021b.
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weights. However, it is worth noting that this doesn’t imply any loss of generality since

the framework can be readily extended to consider the case of negative weights.

Steps 1-4 are aimed at predicting the VaR and ES factors as a function of the portfolio

compositionw, without assuming ellipticity and having to re-estimate the DCC-AL model

at each PO iteration. A simple naive alternative would be to replace, in the Q̂t and

ÊSt calculations as in Equation (23), the OLS predictions w′β̂q and w′β̂c by the noisy

simulated VaR and ES factors q̃ and c̃ respectively. Under this respect, the regression

in step 4 can then be seen as a linear filter whose aim is to attenuate the noise in the

simulated q̃ and c̃ series (as can be seen in the Figure 6 to be shown in Section 6.3).

Alternative choices of the OLS filter could in principle be considered, such as a Neural

Network trained on the simulated factors. The motivations for our preference for the OLS

filter are twofold. First, the use of the OLS is computationally convenient. Second, in

our empirical study, such as Figure 7 to be shown in Section 6.3, we found the OLS filter

is able to approximate the underlying (unobserved) VaR and ES factors (q and c) with

good accuracy.

6 Empirical Study

The performance of the proposed models in forecasting risk and optimizing minimum risk

portfolios has been assessed via an empirical study on a multivariate time series of US

stock returns.

After providing a short description of the data and describing the forecasting design

in Section 6.1, in Section 6.2 we focus on assessing the risk forecasting performance of the

proposed models for an equally weighted portfolio. This choice does not imply any loss

of generality since our investigation could be easily replicated under alternative portfolio

configurations. Our preference for the equally weighted scheme is motivated by the robust

performance of this simple allocation rule that, in many instances, has been found to be

competitive with more sophisticated benchmarks (DeMiguel et al., 2007).

In addition, following the discussion in Section 5, in Section 6.3 we also evaluate the

effectiveness of proposed framework in generating minimum risk portfolios.

20



6.1 Equally weighted portfolio risk forecasting

Daily closing price data are collected for 28 out of the 30 components of the Dow Jones

index, for the period 4 January 2005 to 28 September 2021. Only assets providing full

coverage of the period of interest have been considered for the analysis.

For day t, denoting the daily closing prices as Ct, the daily log return can be calculated

as:

rt,i = log(Ct,i)− log(Ct−1,i),

where rt,i is the return for i-th asset in the portfolio on day t, i = 1, . . . , n, and t = 1, . . . , T .

The total sample size T is 4213. Therefore, at time t we have rt = (rt,1, . . . , rt,n) which

is a (n × 1) vector of returns on the n = 28 portfolio assets. For the equally weighted

portfolio considered in our analysis, the portfolio return for day t is then given by:

rt(w = 1/n) =

∑n
i=1 rt,i
n

,

The computed time series of equally weighted portfolio returns is shown in Figure

1. As can be seen in the plot, two major high volatility periods are clearly visible. The

outbreak of coronavirus disease (COVID-19) has caused a highly volatile period in 2020

and, less recently, the 2008 Global Financial Crisis has also greatly impacted the financial

market.

A rolling window scheme, with fixed in-sample size Tin = 3000 and daily re-estimation,

is then implemented to generate Tout = 1213 out-of-sample one-step-ahead forecasts of

VaR and ES at 2.5% level. Therefore, the in-sample period is from 4 January 2005 to

1 December 2016, and the out-of-sample period covers the time range from 2 December

2016 to 28 September 2021.

Several existing univariate semi-parametric models are selected as benchmarks for

comparison. First we consider the recently proposed ES-CAViaR model (Taylor, 2019)

with Symmetric Absolute Value (SAV) and Indirect GARCH (IG) specifications for the

quantile regression equation. Regarding the ES specification, to facilitate the performance

comparison with the DCC-AL, we choose the model with the constant multiplicative ES

to VaR factor (1 + exp(γ0)), which is the factor that we use in the proposed DCC-AL

model.
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Figure 1: Equally weighted portfolio returns for 28 assets in the Dow Jones index.

In addition, the semi-parametric Conditional Autoregressive Expectile framework

(CARE, Taylor 2008), with SAV and IG specifications, is also included.

Furthermore, the risk forecasting performances of the proposed framework are com-

pared to those yielded by the conventional DCC models fitted through different estimation

approaches. First, we consider a standard DCC model fitted by a two stage procedure

(Engle, 2002) combining maximization of Gaussian likelihoods in the first (volatility) and

second (correlation) stage of the estimation procedure with the application of correlation

targeting. At the VaR and ES forecasting stage, depending on the assumptions formu-

lated on the error distribution, two different series of forecasts are generated labeled as

DCC-N, when a multivariate Normal distribution is assumed, and DCC-QML, when a

semi-parametric approach is taken. Namely, for the DCC-N approach, the theoretical

quantile and conditional quantile average based on the Normal distribution are used for

VaR and ES calculation. For the QML, differently, the semi-parametric filtered historical

simulation approach is used to calculate the VaR and ES. The error quantiles q̂ and tail

expectations ĉ are then estimated by computing the relevant sample quantiles and tail

averages of standardized returns (rt divided by its volatility). Finally, level-α VaR and ES
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forecasts are obtained by multiplying q̂ and ĉ, respectively, by the portfolio conditional

standard deviation forecast from the fitted DCC model.

When applied to even moderately large datasets, such as the one that is here con-

sidered, the original approach to the estimation of DCC parameters described in Engle

(2002) has been found to be prone to return biased estimates of the correlation dynamic

parameters. This motivates our choice to consider, as a further benchmark, the Com-

posite Likelihood (clik) approach developed in Pakel et al. (2021). Along the same lines

discussed above, the estimated volatility and correlation parameters are then used to

generate two different sets of VaR and ES forecasts labeled as DCC-clik-N and DCC-clik-

QML, respectively.

Finally, the picture is completed by considering a parametric DCC model fitted by ML

using multivariate Student’s t likelihoods in the estimation of volatility and correlation

parameters (DCC-t). VaR and ES forecasts are generated considering theoretical quantiles

and tail expectations for a standardized Student’s t distribution.

For all the DCC benchmarks, in order to guarantee a fair comparison with the DCC-

AL model, the fitted univariate volatility specifications are given by GARCH(1,1) models.

In Figure (2), it is interesting to note that the estimated correlation parameters in the

DCC-AL model vary over the forecasting period, reacting to changes in the underlying

market volatility level. In particular, the estimated value of a is characterized by a

positive trend originating at the outbreak of the pandemic COVID-19 crisis. An opposite

behaviour is observed for b.

Table 2 compares the DCC-AL estimates of correlation coefficients with those ob-

tained for the benchmark DCC specifications considered, reporting the average estimates

of correlation parameters a and b across all forecasting steps. Here, consistent with previ-

ous findings in the literature, standard DCC estimators tend to oversmooth (very close to

1 estimates for b) correlations, while this is not the case for DCC-AL models. The DCC-

clik estimates stay in between. It is here worth noting that the DCC-clik and DCC-AL

models are based on different first stage volatility estimators: QML-GARCH for DCC-

clik, and ES-CAViaR-IG as in Equation (8) for DCC-AL. In addition, Figure 3 shows

the cross-sectional averages of the estimated conditional correlations (calculated based on

Pt in Equation (13)) across the forecasting period. As can be seen, the dynamics of the

23



2017 2018 2019 2020 2021 2022

0.1

0.15

0.2

a

2017 2018 2019 2020 2021 2022

0.7

0.75

0.8

0.85

b

Figure 2: Plots of estimated correlation parameters a and b of the DCC-AL model. The

vertical lines denote the outbreak of the COVID-19 emergency (as officially declared by

the World Health Organization on 30 January 2020). Whole forecasting sample (1213

days).
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Figure 3: Cross-sectional averages of the estimated conditional correlation for DCC-

QML, DCC-t, DCC-clik and DCC-AL across the whole forecasting sample (1213 days).

estimated conditional correlations between DCC-AL and DCC-clik are relatively close to

each other.

Table 2: Average estimates (across time) of correlation dynamic parameters (a and b)

from different models and estimation methods. Whole forecasting sample (1213 days).

DCC-AL DCC-QML DCC-t DCC-clik

a 0.1217 0.0040 0.0023 0.0308

b 0.7827 0.9788 0.9816 0.9198

The average of estimated first stage univariate modelling coefficients, across all assets

and forecasting steps, is reported in Table 3. GARCH-t and QML-GARCH, used in

DCC-t and DCC-QML respectively, appear to be less reactive (smaller α estimates) to

past shocks compared to the ES-CAViaR-IG, used in the DCC-AL model.
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Table 3: Average estimates (across times and assets) of the first stage univariate mod-

elling parameters (α and β) from different models and estimation methods across the full

forecasting sample (1213 days). For ES-CAVIAR-IG, we report α = α(q)/q2.

GARCH-t QML-GARCH ES-CAViaR-IG

α 0.0902 0.0852 0.1369

β 0.8702 0.8944 0.8059

6.2 Evaluation of VaR and ES forecasts

Assuming equally weighted portfolio returns rt(w = 1/n), one-step-ahead forecasts of

daily VaR and ES from the proposed DCC-AL model are produced by using Equation

(5). In this section, these forecasts are compared with the ones from the competing models

presented in Section 6.1.

The standard quantile loss function is employed to compare the models for VaR

forecast accuracy: the most accurate VaR forecasts should minimize the quantile loss

function, given as:
Tin+Tout∑

t=Tin+1

(rt − Q̂t)(α− I(rt ≤ Q̂t)) , (24)

where Tin is the in-sample size, Tout is the out-of-sample size and Q̂Tin+1, . . . , Q̂Tin+Tout is

a series of VaR forecasts at level α for observations rTin+1, . . . , rTin+Tout .

Moving to the assessment of joint (VaR, ES) forecasts, as discussed in Section 2.2,

Taylor (2019) shows that the negative logarithm of the likelihood function built from

Equation (4) is strictly consistent for Qt and ESt considered jointly, and fits into the class

of strictly consistent joint loss functions for VaR and ES developed by Fissler and Ziegel

(2016). This loss function is also called the AL log-score in Taylor (2019) and is defined

as:

St(rt, Q̂t, ÊSt) = −log

(
α− 1

ÊSt

)
− (rt − Q̂t)(α− I(rt ≤ Q̂t))

αÊSt

. (25)

In our analysis, we use the joint loss S =
∑Tin+Tout

t=Tin+1 St to formally and jointly assess and

compare the VaR and ES forecasts from all models.

First, Figure 4 visualizes the 2.5% portfolio ES forecasts from the DCC-QML, DCC-
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clik-QML and DCC-AL models, using equally weighted Dow Jones returns. In general,

we can see that the ES forecasts produced from the DCC-AL model are comparable

to the ones from the DCC-QML and DCC-clik-QML. In order to more clearly visualise

the difference in the ES forecasts from the three models, Figure 5 shows the zoomed in

results of the Figure 4. Inspecting the ES forecasts at the start of 2020 period, when

the financial market is greatly impacted by the outbreak of COVID-19, we can see that

the three models have distinctive behaviours. Comparing to the DCC-QML model, the

DCC-AL model is more reactive to the return shocks.This is because of the larger a and

α estimates as discussed in Tables 2 and 3. The ES forecasts from the DCC-clik-QML

stay in between the ones from DCC-QML and DCC-AL, which is also consistent with the

findings from Table2.
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Figure 4: 2.5% ES forecasts from the DCC-QML, DCC-clik-QML and DCC-AL models,

using equally weighted Dow Jones returns.

The quantile and joint loss results from the proposed DCC-AL model and other

competing models are shown in Table 4. Overall, the results show that the proposed

DCC-AL model generates competitive loss results comparing to other models, which lends

evidence on the validity of the proposed semi-parametric framework. Furthermore, the

DCC-AL model generates smaller loss values than all other parametric or semi-parametric
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Figure 5: Zoomed in 2.5% ES forecasts from the DCC-QML, DCC-clik-QML and DCC-

AL models, using equally weighted Dow Jones returns.

DCC models that have been taken as benchmarks.

The Model Confidence Set (MCS) of Hansen et al. (2011) is employed to statistically

compare the quantile loss (Equation (24)) and joint loss (Equation (25)) values yielded

by the different models. A MCS is a set of models, constructed such that it contains

the best model with a given level of confidence, selected as either 75% or 90% in our

paper. Two methods, R and SQ (see Hansen et al., 2011, for details), are employed to

calculate the MCS test statistic. The MCS results, using both quantile and joint loss

functions, are shown in Table 5. As can be seen, the DCC-AL is included in MCS for

both methods across both 90% and 75% tests. However, the DCC-QML, DCC-N and

DCC-clik-N models are excluded from the 90% MCS with the SQ method and joint loss.

On the 75% level with the SQ method and joint loss, all the DCC models, except the

proposed DCC-AL, are excluded from the MCS.

To further backtest the VaR forecasts, we have employed several quantile accuracy

and independence tests, including: the unconditional coverage (UC) test (Kupiec et al.,

1995); the conditional coverage (CC) test (Christoffersen, 1998); the dynamic quantile

(DQ) test (Engle and Manganelli, 2004); and the quantile regression based VaR (VQR)
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Table 4: The quantile loss (Equation (24)) and joint loss function (Equation (25)) values for

all competing models across the full forecasting sample.

Model Quantile loss Joint loss

CARE-SAV 90.4 2,405.4

CARE-IG 89.1 2,392.1

ES-CAViaR-SAV 89.4 2,398.1

ES-CAViaR-IG 87.3 2,369.5

DCC-QML 98.7 2,492.6

DCC-N 101.2 2,566.8

DCC-clik-QML 95.2 2,453.9

DCC-clik-N 97.7 2,528.9

DCC-t 101.5 2,555.3

DCC-AL 89.1 2,386.8

test (Gaglianone et al., 2011). Table 6 presents the UC, CC, DQ (lag 1 and lag 4), and

VQR backtests’ p-values for the 10 competing models. The “Total” columns show the

total number of rejections at the 5% significance level. As can be seen, the DCC-AL is

the only framework which receives 0 rejections. The DCC-N model receives 5 rejections,

while the DCC-t model gets rejected 3 times. This demonstrates the importance of

the return distribution selection in parametric MGARCH models. The DCC-AL model,

which is semi-parametric, shows advantage from this perspective. Comparing the DCC-

AL model to the semi-parametric DCC models with QML, the DCC-AL still has better

performance considering these backtests. These results again lend evidence on the validity

and effectiveness of the DCC-AL in forecasting VaR.

Lastly, Bayer and Dimitriadis (2022) propose three versions of ES backtests named

as Auxiliary, Strict and Intercept ES regression (ESR) backtests. These ESR backtests

(two-sided), labeled as V1, V2, and V3, respectively, are also employed to backtest the

ES forecasts from the 10 competing models.

For the implementation, we use the R package developed by the authors, which

can be found at: https://search.r-project.org/CRAN/refmans/esback/html/esr_
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Table 5: The 90% and 75% MCS results based on the quantile loss and joint loss function

values, using both the R and SQ methods.

Model R - quantile SQ - quantile R - joint SQ - joint

90% MCS

CARE-SAV 1 1 1 1

CARE-IG 1 1 1 1

ES-CAViaR-SAV 1 1 1 1

ES-CAViaR-IG 1 1 1 1

DCC-QML 1 1 1 0

DCC-N 1 1 1 0

DCC-clik-QML 1 1 1 1

DCC-clik-N 1 1 1 0

DCC-t 1 1 1 1

DCC-AL 1 1 1 1

75% MCS

CARE-SAV 1 1 1 1

CARE-IG 1 1 1 1

ES-CAViaR-SAV 1 1 1 1

ES-CAViaR-IG 1 1 1 1

DCC-QML 1 1 1 0

DCC-N 1 1 1 0

DCC-clik-QML 1 0 1 0

DCC-clik-N 1 0 1 0

DCC-t 1 1 1 0

DCC-AL 1 1 1 1

Note:“0” in red represents models that are not in MCS.

backtest.html. The link also includes the details of the three versions of the backtests.

As in Table 7, the three backtests return quite consistent results, with the DCC-AL model

being not rejected. The models that get rejected at the 5% level by all three backtests

are DCC-N, DCC-clik-N and DCC-t. Meanwhile, the semi-parametric DCC-QML and

DCC-clik-QML do not get rejected.
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Table 6: Summary of 2.5% VaR forecasts UC, CC, DQ1, DQ4, and VQR backtests’

p-values and the total number of rejections at the 5% significance level.

Model UC CC DQ1 DQ4 VQR Total

CARE-SAV 76% 16% 9% 3% 46% 1

CARE-IG 95% 46% 41% 6% 0% 1

ES-CAViaR-SAV 90% 14% 8% 2% 68% 1

ES-CAViaR-IG 67% 83% 82% 1% 84% 1

DCC-QML 76% 3% 0% 0% 0% 4

DCC-N 4% 2% 0% 0% 0% 5

DCC-clik-QML 51% 18% 6% 0% 20% 1

DCC-clik-N 9% 10% 4% 0% 5% 2

DCC-t 13% 4% 0% 0% 11% 3

DCC-AL 67% 83% 81% 8% 42% 0

Table 7: Summary of three versions (V1, V2, V3) of ES backtests’ p-values and the total

number of rejections at the 5% significance level.

Model V1 V2 V3 Total

CARE-SAV 83% 83% 70% 0

CARE-IG 95% 95% 76% 0

ES-CAViaR-Mult-SAV 92% 92% 78% 0

ES-CAViaR-IG 96% 96% 96% 0

DCC-QML 20% 20% 24% 0

DCC-N 0% 0% 1% 3

DCC-clik-QML 35% 35% 21% 0

DCC-clik-N 0% 0% 1% 3

DCC-t 2% 2% 1% 3

DCC-AL 87% 87% 71% 0
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6.3 Hedging performance

In this section we evaluate the hedging performance of the DCC-AL model in producing

minimum variance, VaR and ES portfolios and compare results with those obtained by

standard DCC models taken as benchmarks. Minimum risk (VaR and ES) portfolios are

computed using the PO procedure illustrated in Section 5 with the main difference that,

since our interest is in hedging, at this stage we do not impose any constraint on the

mean return target µ0 of the optimized portfolio. On the other hand, minimum variance

portfolios are, as usual, computed by numerically minimizing portfolio volatility with

respect to the weights vector w.

First, we present some empirical results to further demonstrate how the PO procedure

proposed in Section 5 works and lend evidence on its validity. Figure 6 visualizes the

simulated VaR and ES factors q̃ and c̃ (of size Nsim × 1) generated from the in-sample

data used for the first forecasting step. We can see that the simulated q̃ and c̃ series

are centered around -2.1 and -2.7 respectively, with certain level of variation (noise) as

expected. These two series are then used as the target variables for the OLS Step 4 of

the PO procedure. As discussed, the OLS step aims to filter out the noise in the q̃ and

c̃ series and potentially improve the approximation accuracy to the underlying VaR and

ES factors.

With Steps 5 and 6 of the PO procedure, we can produce the optimized minimum

VaR and ES portfolios over the out-of-sample period. Figure 7 presents the out-of-sample

OLS predicted VaR and ES factors (w′β̂q and w′β̂c as in Equation (23), obtained through

the OLS regression embedded in Step 4 of the procedure. In addition, relying on the out-

of-sample optimized minimum VaR and ES portfolio weights, at each forecasting step we

also re-estimate the DCC-AL model on the optimized portfolio returns, thus obtaining

a new set of estimates for the underlying VaR and ES factors that we denote as q̂ and

ĉ, respectively. Here, we remind that q̂ is directly estimated while ĉ can be recovered

from estimated DCC-AL parameters q̂ and γ̂0 using Equation (6). Being based on the

minimization of a strictly consistent loss, under correct specification of the underlying

risk dynamics, q̂ and ĉ provide consistent estimates for the underlying q and c. Hence,

a comparison of these estimates with the OLS based predictions at the optimum can be
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used to check the accuracy of the latter approximation for the risk factors of the optimized

portfolios. It is evident that the OLS predicted VaR factors and estimated q̂ series are very

close. Similar observations hold for ES. Therefore, such results demonstrate the validity

of the PO procedure which can produce VaR and ES factors that can approximate the

underlying q and c with good accuracy. In this way, the PO procedure, while still not

assuming ellipticity, avoids the need of re-estimating the DCC-AL model at each portfolio

configuration. Now we present additional empirical results, via comparing the DCC-AL

and standard DCC models, to further demonstrate the effectiveness in PO of the DCC-AL

model and of the proposed PO procedure.
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Figure 6: The simulated VaR and ES factors q̃ and c̃ of size Nsim× 1 generated from the

in-sample data used for the first forecasting step.

A summary of the PO optimization results is shown in Table 8. For all the competing

models, including DCC-QML, DCC-t, DCC-clik-QML and the proposed DCC-AL, the

minimum variance portfolios are firstly calculated. It is worth noting that, for DCC-t and

DCC-N, due to the spherical nature of the chosen error distribution, minimum variance

and minimum risk hedged portfolios are virtually identical. Minimal differences in the

optimal portfolio allocation could only occur due to the (here negligible) conditional mean

term appearing in the VaR and ES measures. Furthermore, DCC-(clik)-QML and DCC-
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Figure 7: The top plot shows the OLS predicted VaR factor w′β̂q and the estimated q̂

in DCC-AL for the optimized minimum VaR portfolio. The bottom plot shows the OLS

predicted ES factor w′β̂c and the estimated ĉ in DCC-AL for the optimized minimum ES

portfolio. Whole forecasting sample (1213 days).

(clik)-N by construction return identical minimum variance allocations, being based on

the same estimated conditional variance and covariance matrix.

In Tables 8 and 9, DCC-AL min. VaR and DCC-AL min. ES represent the optimized

portfolios built from DCC-AL using the proposed PO procedure as shown in Section 5.

DCC-(clik)-QML min. VaR and DCC-(clik)-QML min. ES are the optimized portfolios

built from the DCC-(clik)-QML model using the PO procedure for minimum risk portfo-

lios described in Section 5. The portfolio allocation exercise is based on the same rolling

window scheme described in Section 6.2. At each time point t, models are estimated on

a rolling window of 3000 observations extending up to time t and the predicted Ĥt+1 is

used to optimize portfolio allocation for time t + 1. We rule out short-selling operations

by restricting portfolio weights to take values in [0,1].

The columns in Table 8 report the out-of-sample empirical variances, VaR and ES

computed over the hedged portfolios for different models. Lastly, an equally weighted

(EW) portfolio is also included as a benchmark. Compared to the benchmark EW case,

34



all the estimated DCC models yield substantial reductions in terms of out-of-sample em-

pirical variance, VaR and ES. When focusing on the whole out-of-sample period, the

hedging performance of the DCC-AL model is quite competitive comparing to the other

DCC models, which also lends evidence on the validity of the DCC-AL and the proposed

portfolio risk optimization process in Section 5. On the other hand, more relevant differ-

ences appear in a short term perspective when focusing on specific critical events such as

the COVID-19 outbreak. Table 9 replicates the analysis in Table 8 focusing on a forecast-

ing subsample including 100 consecutive days, from 7 February 2020 to 1 July 2020, in a

neighbourhood of the COVID-19 outbreak. Compared to the empirical findings arising for

the whole forecasting period, it shows that DCC-AL and DCC-clik-QML models are able

to hedge ES risk more effectively than DCC-QML and DCC-t. For example, the empirical

ÊS(r
(p)
t , α) produced by the DCC-AL and DCC-clik-QML minimum ES portfolios are (in

absolute values) smaller than that of the DCC-QML and DCC-t. Comparing the DCC-

AL and DCC-clik-QML models, we find that the two models return close performances.

The empirical variance v̂ar(r
(p)
t ) of the DCC-AL minimum variance portfolio is slightly

smaller than that of the DCC-clik-QML minimum variance portfolio. Similarly, for the

minimum VaR portfolios produced by the DCC-AL and DCC-clik-QML, the empirical

VaR from DCC-AL is, in absolute value, also slightly smaller. The empirical ES values

from DCC-AL and DCC-clik-QML minimum VaR portfolios are identical.

Summarizing the empirical evidence, what we have found is that in the long-term,

when referring to the whole forecasting period, the selected performance indicators, based

on unconditional variance, VaR and ES, do not reveal any striking differences between

minimum variance and minimum risk portfolios. This suggests that the conditional dis-

tribution of returns is, for most days, likely to be close to some distribution falling within

the elliptical family.

Nevertheless, in the short term, the selected optimal portfolio allocations can differ

quite substantially across different strategies: that is minimum variance, VaR and ES.

Evidence in this direction is indirectly provided by the analysis performed on the 100 days

“COVID-19” subsample. More specifically, this intuition is confirmed by Figure 8, that

reports the boxplots of the DCC-AL model optimized weights for all the assets included in

our portfolio and for all allocation strategies for the 100 days “COVID-19” subsample, and
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even more clearly by Figure 9, that reports differences between asset allocations yielded

by minimum variance and minimum risk portfolios. Even if the median differences tend

to stay close to zero, the tails of the boxplots reveal that there are more than a few time

periods in which the weights assigned to specific portfolio assets can differ quite a lot

across different allocation strategies.

Table 8: Descriptive statistics of out-of-sample returns r
(p)
t for different portfolios

with α = 2.5%. v̂ar(r
(p)
t ): empirical variance; V̂ aR(r

(p)
t , α): empirical VaR; ÊS(r

(p)
t , α):

empirical ES. Whole forecasting sample (1213 days).

v̂ar(r
(p)
t ) V̂ aR(r

(p)
t , α) ÊS(r

(p)
t , α)

EW 1.5233 - 2.4682 - 4.1951

DCC-QML min. variance 1.0342 - 2.0135 - 3.6360

DCC-t min. variance 1.0310 - 1.9407 - 3.5127

DCC-QML min. VaR 1.0001 - 1.9722 - 3.5255

DCC-QML min. ES 1.0262 - 1.9953 - 3.5928

DCC-clik-QML min. variance 0.9788 - 1.9517 -3.2625

DCC-clik-QML min. VaR 0.9844 - 1.9992 - 3.3384

DCC-clik-QML min. ES 0.9818 - 1.9755 - 3.3407

DCC-AL min. variance 1.0037 - 2.0884 - 3.5945

DCC-AL min. VaR 0.9841 - 2.1251 - 3.5503

DCC-AL min. ES 0.9840 - 2.1077 - 3.5534

7 Conclusions

In this paper, we propose an innovative tail risk forecasting framework in a multivari-

ate and semi-parametric setting. Through introducing variance targeting, the proposed

framework is capable of modelling high dimensional return series parsimoniously and effi-

ciently. In addition, a statistical procedure is designed to employ the proposed framework

for optimising the portfolio VaR and ES. Compared to the state-of-the-art univariate

semi-parametric models, the proposed framework delivers competitive risk forecasting
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Table 9: Descriptive statistics of out-of-sample returns r
(p)
t for different portfolios with

α = 2.5%. v̂ar(r
(p)
t ): empirical variance; V̂ aR(r

(p)
t , α): empirical VaR; ÊS(r

(p)
t , α): em-

pirical ES. Period: forecasting steps 801-900 (100 days) corresponding to the interval 7

February 2020 to 1 July 2020.

v̂ar(r
(p)
t ) V̂ aR(r

(p)
t , α) ÊS(r

(p)
t , α)

EW 11.2036 - 7.5400 - 11.5660

DCC-QML min. variance 6.6620 - 6.3077 - 9.3131

DCC-t min. variance 6.5782 - 6.4684 - 9.7652

DCC-QML min. VaR 6.3404 - 5.4028 - 9.1153

DCC-QML min. ES 6.5718 - 5.9916 - 9.3512

DCC-clik-QML min. variance 6.0174 - 5.9946 -7.0825

DCC-clik-QML min. VaR 6.0992 - 6.8327 - 7.2388

DCC-clik-QML min. ES 6.0821 - 6.7658 - 7.1063

DCC-AL min. variance 6.0097 - 5.9419 - 7.0825

DCC-AL min. VaR 5.8914 - 6.3003 - 7.0356

DCC-AL min. ES 5.8973 - 6.2114 - 7.1063
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Figure 8: Boxplots of DCC-AL model minimum variance, VaR and ES portfolio weights.

The x-axis shows the 28 components of the Dow Jones index. Period: forecasting steps

801-900 (100 days) corresponding to the interval 7 February 2020 to 1 July 2020.
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Figure 9: Boxplots of differences of DCC-AL model minimum variance and VaR, min-

imum variance and ES, and minimum VaR and ES portfolio weights. The x-axis shows

the 28 components of the Dow Jones index. Period: forecasting steps 801-900 (100 days)

corresponding to the interval 7 February 2020 to 1 July 2020..
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performances and, in addition, it can be used for a wider range of applications such as

portfolio optimisation and investigation of risk spillovers. Compared to existing DCC es-

timation approaches, our empirical application shows that the DCC-AL is able to deliver

more accurate risk forecasts and hedging performances in line with those of DCC-clik-

QML estimators (Pakel et al., 2021).

From a different viewpoint, it is worth noting that our framework also delivers a semi-

parametric approach to the generation of robust estimates of DCC coefficients. Under this

respect, in our empirical application we find that semi-parametric estimates of dynamic

correlation parameters obtained from the DCC-AL model, as the DCC-clik estimator,

are potentially not affected by the well known severe downward bias towards zero that,

in even moderately large dimensions, typically characterizes estimates obtained through

Gaussian QML (Pakel et al., 2021). A comparison of the statistical properties of our

estimator with those of QML and clik-QML would be of great interest. However, this

goes beyond the scope of this paper and is currently left for future research.

In addition to this, our projects for future research are focused on two main additional

issues. First, we are extending the DCC-AL model via including the high frequency

realized measures, to further improve its performance. A second issue of interest is related

to a refinement of the minimum risk PO procedure discussed in Section 5. In particular,

the OLS regression in Step 4 of the procedure could be replaced with a more flexible

Neural Network regression.
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