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Price Deviations of S&P 500 Index Options from the
Black-Scholes Formula Follow a Simple Pattern

Abstract

It is known that actual option prices deviate from the Black-Scholes formula using the same volatil-

ity for different strikes. For the S&P 500 index options, we find that these deviations follow a stable

pattern and are described by a simple function of at-the-money-forward total volatility. This im-

plies that the term structure of at-the-money-forward volatilities is sufficient to determine the entire

volatility surface. We also find that the implied risk-neutral density is bimodal. The patterns we

find are useful in predicting future implied volatilities.



1. Introduction

It is well known (see, e.g., Rubinstein (1994)) that if one uses the Black-Scholes formula or the

binomial model with the same volatility to compute option values for different strike prices but the

same time to expiration, the computed option prices deviate from quoted prices. Equivalently, for

a fixed time to expiration the implied volatility function obtained by inverting the Black-Scholes

formula or binomial model is a non-constant function of the strike price. Depending on the shape,

this relation between the option strike price and implied volatility is known as the volatility smile

or skew. The smile or skew is by now viewed as a basic feature of most option markets, and its

presence is apparent in even the most cursory examinations of option implied volatilities. Similarly,

it is well known that option implied volatilities differ with the time remaining to expiration. Both

this phenomenon and the smile or skew are captured by the implied volatility surface, which is the

function mapping the strike price and time to expiration to implied volatility.

This paper presents a new approach for describing the differences between actual option prices

and their Black-Scholes values (computed with the same volatility for different strikes), which we

term the price deviation function, as well as the associated implied volatility function. It also

presents new empirical results about the dynamic behavior of the deviations of actual S&P 500

index (SPX) option prices from their Black-Scholes values and the associated implied volatility

function. While both the price deviation and implied volatility functions vary randomly over time,

we find that during the period 1996–2002 SPX option prices follow a stable pattern that allows the

price deviation function to be well approximated by a simple function of the at-the-money-forward

“total volatility,” defined as the product of the at-the-money-forward volatility and the square root

of the time to expiration. Thus changes in the slope and curvature of the implied volatility function

are almost completely explained by changes in the at-the-money-forward total volatility.

A large literature addresses the volatility skew, much of it consisting of papers proposing mod-

els that produce volatility skews, smiles, or both. The simplest such models are the deterministic

volatility function models in which the stock price follows a diffusion process with a diffusion coeffi-

cient or instantaneous volatility rate given by a deterministic function of the stock price and time.1

Other approaches to capturing the smile or skew include superimposing jumps on the price process

of the underlying asset, allowing for stochastic volatility by introducing an additional process to

1The constant elasticity of variance model of Cox (1976) is the earliest model that fits this description. Derman
and Kani (1994), Dupire (1994), and Rubinstein (1994) propose models in which the volatility rate is an unspecified
function of the stock price and time that is chosen to match the volatility surface. A somewhat related set of papers
including Melick and Thomas (1997), Aı̈t-Sahalia and Lo (1998), and Campa, Hang, and Reider (1998) use various
approaches to develop estimates of the state price density that are consistent with observed option prices. Another
group of papers oriented primarily to practitioners does not attempt to explain the skew, but rather focuses on
describing it. These include Derman, Kani and Zou (1996), Heynen (1993), Rosenberg (2000), and Tompkins (2001).
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describe the movement of the instantaneous volatility, or both.2 Recently, there is also a growing

literature on using the Lèvy process to model the price process, thus allowing for more flexibility

in the behavior of the jumps.3 However, evidence on the empirical performance of these models

is mixed. Using data on the prices of SPX options, Dumas, Fleming, and Whaley (1998) perform

out-of-sample empirical tests of the deterministic volatility functions and find that they are outper-

formed by an ad hoc implementation of the Black-Scholes model that smooths the implied volatility

function across strike prices and time to expiration and uses the estimated implied volatilities to

calculate option prices one week later. Brandt and Wu (2002) reach similar conclusions using data

on FT-SE 100 index options. Bakshi, Cao, and Chen (1997) and Bates (1998) compare the pricing

and hedging errors of various models and obtain results generally consistent with the idea that a

model with both discontinuous “jumps” and stochastic volatility performs better than the Black-

Scholes model using the same volatility for different strike prices. Jackwerth and Rubinstein (2001)

run an extensive horse race and find that, although the Black-Scholes model is outperformed by

both deterministic and stochastic volatility models, the variability of the pricing errors is so large

that it is not possible to rank the competing models. Moreover, it is difficult to reconcile the slope

(and changes in the slope) of the implied volatility function with the parameters of the empirical

distribution of returns and reasonable estimates of investors’ risk aversion (Bakshi, Cao, and Chen

(1997), Bates (2000), Jackwerth (2000), and Bondarenko (2001)).

A common feature of the deterministic volatility function, stochastic volatility/jump-diffusion,

and Lèvy process approaches is that they attempt to find a stochastic process that generates a risk-

neutral density consistent with the implied volatility function. An alternative approach to explain

the skew is that option prices may differ from their no-arbitrage values due to the costs and difficulty

of executing the dynamic trading strategies that appear in the derivations of options’ no-arbitrage

values.4 Despite the lack of consensus about the cause or causes of the skew, certain stylized facts

2Examples of these approaches include the jump-diffusion models of Merton (1976) and Bates (1991), the stochastic
volatility models of Hull and White (1987), Scott (1987), Wiggins (1987), Melino and Turnbull (1990, 1995), Stein
and Stein (1991), and Heston (1993a), the combined stochastic volatility jump-diffusion models of Bates (1996) and
Bakshi, Cao, and Chen (1997), and the general affine model analyzed in Duffie, Pan, and Singleton (2000).

3Examples of this approach include the variance-gamma model of Madan and Seneta (1990), Madan and Milne
(1991), Madan, Carr, and Chang (1998), the log-gamma model of Heston (1993b), the hyperbolic model of Eberlein,
Keller, and Prause (1998), the α-stable models of Janicki, Popova, Ritchken, and Woyczynski (1997), Popova and
Ritchken (1998), and Hurst, Platen, and Rachev (1999), the CGMY model of Carr, Geman, Madan, and Yor (2002),
and the log stable models of McCulloch (1987, 1996), and Carr and Wu (2003a). Other studies on applications of
Lèvy processes include Geman, Madan, and Yor (2001), Carr and Wu (2003b), and Carr and Wu (2004).

4Bollen and Whaley (2004) and Whaley (2002; Section 5.4) present evidence that the differences in the implied
volatility functions of index and individual equity options are not explained by differences in their return distributions.
Bollen and Whaley (2004) also document that movements in the implied volatilities are correlated with net buying
pressure. Longstaff (1995) and Bates (1996) also find that implied volatilities are related to the level of trading
activity. Jackwerth (2000) attempts to recover risk aversion functions from the prices of SPX options and concludes
that the prices are “irreconcilable with a representative investor,” while Bondarenko (2001) examines the prices of out-
of-the-money S&P 500 futures options and concludes that the market is inefficient. Buraschi and Jackwerth (2001;
p. 523) remark that their results regarding spanning in options markets are consistent with away-from-the-money
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about it are known. First, for index options the implied volatility is generally a decreasing function

of the strike price, i.e. the implied volatility function is negatively sloped. Second, for individual

equity options the implied volatility function is generally convex and more symmetric or “smile-

shaped” than the implied volatility function for index options, and it is less negatively sloped.5

Third, both the level and slope of the implied volatility function for index options appear to change

randomly over time.6

This paper presents new stylized facts about the volatility skew. We begin by expanding the

deviations of actual prices from Black-Scholes values using parabolic cylinder functions. It suffices to

use only two such functions, corresponding to the odd and even components of the price deviations.

For a large neighborhood of the forward price of the underlying asset, these two components can

be interpreted as the slope and curvature of the price deviation function, and can be mapped

to the slope and curvature of the implied volatility function. Using data on SPX options for the

period 1996–2002, the coefficients of both the odd and even components can be well fit as quadratic

functions of the at-the-money-forward total volatility. That is, changes in the volatility skew are

almost completely explained by changes in the at-the-money-forward total volatility. This relation

is stable during the period 1996–2002. In particular, the term structure of at-the-money-forward

volatilities determines the entire volatility surface. This finding of stability in the price deviation

and implied volatility functions stands in marked contrast to the view of a large fraction of the

literature. One difference is that most previous work has not focused on the slope and curvature of

the price deviation function. Perhaps more importantly, the slope and curvature of both the price

deviation function and the implied volatility function depend upon the total volatility σF
√

τ , and

previous authors have not focused on this quantity.

Stability in the volatility skew implies corresponding stability in at least some features of the

risk-neutral density. As shown by Breeden and Litzenberger (1978), the risk-neutral density can

be obtained by differentiating the value of a European call or put option with respect to the strike

price (and adjusting for the discount factor). Carrying out this computation using the fitted option

index options being used by a different clientele than their at-the-money counterparts. More recently, Gârleneau,
Pedersen, and Poteshman (2006) describe a model in which limits to arbitrage cause option prices to deviate from
their no-arbitrage values, and present empirical evidence consistent with that model.

5The implied volatility function for the index options has not always been negatively sloped. Rubinstein (1994)
reports that this phenomenon appears to date from the October 1987 stock market crash. Whaley (1986) and Sheikh
(1991) document changes in the implied volatility function of index options during the period 1983–1985.

6Studies documenting those styled facts include: Rubinstein (1994), Derman (1999a, 1999b), Gemmill and
Kamiyama (2000), Bakshi, Kapadia, and Madan (2001), Dennis and Mayhew (2001), and many others. System-
atic studies of the skew include Bollen and Whaley (2004), who examine changes in the implied volatilities of the
S&P 500 index options, and Gemmill and Kamiyama (2000), who study implied volatilities and volatility skews of the
S&P 500, FT-SE 100, and Nikkei 225 index options over the period 1985-1995 and conclude that “skewness changes
markedly from day to day” (p. 11). Jackwerth and Rubinstein (1996, p. 1619) take random changes in the implied
volatility function for granted, writing that “. . . the shape of the smile obviously changes from day to day, . . . ”. Sim-
ilarly, Derman (1999a, 1999b) studies how the volatility skew in the SPX options varies with the index level, and in
fact identifies seven different “regimes of volatility” during the period from September 1, 1997 to November 2, 1998.
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prices, we find that the implied risk-neutral density of index returns is bimodal. This finding has

implications for models with stochastic volatility or jump components, as it provides a stylized fact

that proposed models must capture and rules out models that cannot produce this property. The

choice of parabolic cylinder functions also has nice consequences for the implied distribution, as it,

for example, integrates to one exactly and preserves put-call parity. The parametric form of the

distribution should also be useful to researchers who want to introduce skewness and kurtosis to

the return distribution. More generally, description of the deviations of actual option prices from

Black-Scholes values in terms of parabolic cylinder functions is likely to be useful for empirical

analysis because it provides a low-dimensional (i.e., small number of parameters) description of the

price deviation and implied volatility functions.

In related work (Li and Pearson 2006), they find that our skew model is useful in predicting

future volatilities. Specifically, they update the “horse race” among competing models originally

carried out by Jackwerth and Rubinstein (2001) using more recent option data set and more recent

models. In agreement with Jackwerth and Rubinstein (2001), they find that trader rules dominate

mathematically more sophisticated models in predicting option prices. However, the simple pattern

in the implied volatility skew can be used to further improve the performances of the trader rules.

Perhaps surprisingly, the naive Black-Scholes model beats all mathematically more sophisticated

models after adjusting the skew shapes using the simple pattern.

The paper is organized as follows. Section 2 describes the deviations of actual option prices

from Black-Scholes values and presents the series expansion. Using this approach, Section 3 shows

that during the period 1996–2002 the deviations of actual prices from Black-Scholes values are well

described by a stable function of the at-the-money-forward total volatility. Section 4 connects the

price deviation function to the implied volatility function, and shows that the implied volatility

surface also can be modeled as a function of the at-the-money-forward volatility. Then, Section 5

works out the implications for the implied risk-neutral density. Finally, Section 6 shows that the

simple function provides good conditional predictions of option prices. Section 7 briefly concludes.

2. Deviations of actual option prices from Black-Scholes values and

the series expansion

We begin by modeling deviations of actual option prices (closing bid-ask midpoints) from Black-

Scholes values computed using at-the-money-forward volatilities. Figure 1 illustrates the deviations

observed at the close of trading on April 26, 2002 for the SPX options expiring in June 2002 as

a function of their strike prices. The Black-Scholes values are computed using the at-the-money-

forward volatility, defined as the implied volatility of the straddle with strike price equal to the
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forward price of the index. Because none of the traded options had strike prices exactly equal

to the forward price, the at-the-money-forward volatility is interpolated using cubic splines from

the implied volatilities of the straddles with strike prices surrounding the forward price, which on

this day is estimated to be F = $1,072.49. Due to put-call parity the deviations for the puts are

essentially identical to those for the calls, and the deviations are zero at the strike price equal to

the forward price. As is known to be typical for the SPX options, for low strike prices the actual

prices exceed the Black-Scholes values, while for high strike prices the actual option prices are less

than the Black-Scholes values. One can see in Figure 1 that the deviations can be greater than $4

(at strike X = $975) and less than −$2 (near X = $1,150). For comparison, the bid-ask spreads

of both puts and calls at both of these strikes were $2. By simple model-independent arguments,

we expect that the price deviations should approach zero as the strike prices approach infinity or

zero, or equivalently as lnX approaches ±∞. Of course, options with strike prices of infinity and

zero are not traded, but the curves plotted in Figure 1 are consistent with this prediction.

Although the prices are the data directly observed from the market, many researchers and

practitioners focus on implied volatilities, and the implied volatility function is a widely used rep-

resentation of option prices. While working with implied volatilities is equivalent to working with

prices, working with prices overcomes several problems with implied volatilities. First, for away-

from-the-money options Black-Scholes option values are insensitive to changes in volatility. As a

result, small changes in option prices lead to large changes in implied volatilities, suggesting that

implied volatilities of away-from-the-money options may not be reliable and that any fitting pro-

cedure should place less weight on the implied volatilities of such options. Working in terms of

option prices is a natural way to accomplish this “deweighting” of away-from-the-money implied

volatilities. Second, dimensional analysis argues against separating the volatility σ and time to

expiration τ from the combination σ2τ that enters the Black-Scholes formula. It is not appropriate

to treat implied volatilities for different times to expiration on equal footing. Finally, although

there are some theoretical arguments (e.g., Hodges 1996, Gatheral 1999) restricting the asymptotic

behavior of the implied volatility as the strike X approaches zero and infinity, such restrictions usu-

ally take the form of inequalities for the derivatives of implied volatility with respect to moneyness.

Because there are usually few away-from-the-money options available, it is difficult to calculate

these derivatives reliably, and these inequalities are awkward to implement. On the other hand,

it is much more natural and convenient to restrict the asymptotic behavior of option prices. For

these reasons we work with the deviations of actual option prices from Black-Scholes values.7

7The state-price density is yet another mechanism through which one might study the volatility structure (see, e.g.,
Aı̈t-Sahalia and Duarte 2003). A difficulty with this approach is that there are shape restrictions on the option value
functions, e.g., the values of both calls and puts must be convex functions of the strike, and the risk-neutral density
implied from the observed option prices must integrate to one. Imposing the convexity constraint in estimation
(for example, using smoothing splines or kernel regression) is not easy and complicated procedures are sometimes
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Besides overcoming the shortcomings of using implied volatilities, there are several advantages

of studying the price deviations directly. First, once we have fit the price deviations we can easily

use Taylor series expansion to obtain an estimated implied volatility function. In addition, the

implied risk-neutral density can be easily obtained by differentiating the fitted prices. Further,

although our procedure does not guarantee the absence of convexity violations, it turns out that

such violations are minor and occur only at strike prices that are well away from the forward price.

2.1. Series expansion of the price deviations

The Black-Scholes formulas give the values of call and put options CBS and PBS as

CBS = Fe−rτ

(
N(d1) −

X

F
N(d2)

)
, and PBS = Fe−rτ

(
−N(−d1) +

X

F
N(−d2)

)
, (1)

where S is the current stock price or index value, r is the interest rate, δ is the dividend yield, σ is

the volatility, τ is the time to expiration, X is the strike price, F = S exp((r − δ)τ) is the forward

price, and d1 and d2 are given by

d1 =
ln(F/X)

σ
√

τ
+

1

2
σ
√

τ , and d2 =
ln(F/X)

σ
√

τ
− 1

2
σ
√

τ . (2)

We call σ
√

τ the total volatility.

To compute the price deviations, we need to pick a volatility to use in the Black-Scholes formula.

We choose σF (t, τ), the at-the-money-forward volatility of an option with time to expiration τ at

calender date t.8 We make this choice because options with strikes close to the forward price are

usually actively traded with relatively small bid-ask spreads so that σF can be computed accurately.

In addition, usually the forward price lies in the middle of the available strike prices because options

with strikes close to the new index level are introduced for trading as the index level changes. Thus

σF is obtained by interpolation (which is more reliable) rather than extrapolation.

necessary to satisfy the constraint. A further difficulty is that theoretical arguments do not restrict the tail behavior
of the implied risk-neutral density. Thus, this approach provides little guidance in valuing options with strikes outside
the range of strike prices for which implied volatilities are observed.

8Because usually none of the traded options have strike prices equal to the forward price, the at-the-money-forward
volatility is interpolated from the implied volatilities of the two straddles with strike prices closest to the forward
price,which is approximately equal to the average of the implied volatilities of the call and put. The computation of
the forward price presents another problem. As argued in Longstaff (1995), reported index values and futures prices
are unreliable estimators of the true index value, and yields on Treasury bills may not be the appropriate risk-free
discount rate. Also, the observed current dividend yield might not reflect the expected dividend rate of investors.
We use Shimko’s (1993) procedure to overcome these problems by using the put-call parity relation. Because this
procedure uses only price quotes from a single market captured at the same instant, it avoids the problems associated
with asynchronous prices.

6



We measure the relative moneyness of an option using the quantity

d(t, τ, X) =
ln(F (t, τ)/X)

σF (t, τ)
√

τ
, (3)

which we call the total-volatility-adjusted moneyness or often simply moneyness. For example, a

value of d = 2 roughly means that the option is two standard deviations in (for a call) or out

(for a put) of the money. For brevity, we often suppress the arguments in d(t, τ,X) and simply

write d, and similarly for F (t, τ) and σF (t, τ). Let YA(d) denote the actual market price of a call

or put option with moneyness d, let YBS(d, σF ) denote the Black-Scholes value computed using the

at-the-money-forward volatility, and let

y = y(t, τ, X) ≡ YA(d) − YBS(d, σF )

F
(4)

denote the difference between the actual price and the Black-Scholes value, scaled by the forward

price. Scaling by the forward price is sensible because the Black-Scholes formula is homogenous of

degree one in the forward price. This scaling also makes y a dimensionless quantity.

We expand the deviations from Black-Scholes prices using parabolic cylinder function series.

These functions are given by

Dn(z) = (−1)nez2/4 dn

dzn

(
e−z2/2

)
, n = 0, 1, 2, . . . . (5)

Expressions for the lowest order functions are:

D0(z) = e−z2/4 , D1(z) = ze−z2/4 , (6)

D2(z) = (z2 − 1)e−z2/4 , D3(z) = (z3 − 3z)e−z2/4 . (7)

A number of considerations lead us to this choice of parabolic cylinder functions. First, the

functions Dn(z) (n = 0, 1, 2, · · · ) constitute a complete orthogonal function series on (−∞, +∞).

A function f(z) that: (i) has continuous first and second order derivatives; and (ii) goes to zero as

|z| → ∞ can be expanded using Dn(z) as (Wang and Guo (1989))

f(z) =

∞∑

n=0

anDn(z), where an =
1

n!
√

2π

∫
∞

−∞

f(z)Dn(z) dz. (8)

The parabolic cylinder functions can be used as a basis for deviations from Black-Scholes values

because it is reasonable to think that the deviations from Black-Scholes values satisfy condition (i)

above, and will also satisfy (ii) if the argument z is chosen to be a linear function of lnX, i.e. if
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z = a + b lnX for some a and b. Thus, deviations from Black-Scholes values should permit an

expansion in terms of the parabolic cylinder functions. Further, the parabolic cylinder functions

are a natural choice of a function series because each function Dn(z) (n = 0, 1, 2, . . .) goes to zero

as |z| → ∞, suggesting that only a few terms will be needed. As shown below, this turns out to be

the case. Parabolic cylinder functions also facilitate the connections between price deviations and

implied volatility functions and between price deviations and the implied risk-neutral density, as

will be evident later on.

Temporarily fix a calender date t and a time to maturity τ . Expanding the scaled price devia-

tions in equation (6) in terms of the parabolic cylinder functions, we have

y ≡ YA(z) − YBS(z, σF )

F
≈

N−1∑

n=0

an(t, τ)Dn(z). (9)

where N is the number of functions we use and an, for n = 0, 1, . . . , N − 1, are the expansion

coefficients. This equation is for options with different strike prices for a fixed (t, τ) pair. Based

on the evidence in Section 3 below, we first drop the terms of third and higher order. Next, we

choose the parameter z to be z =
√

2d, where d is the total-volatility-adjusted moneyness defined in

equation (3) above. As pointed out above, choosing z to be a linear function of lnX automatically

captures the asymptotic behavior of the price deviations. The factor
√

2 has the effect of making

the exponential factor exp(−z2/4) in the expressions for the parabolic cylinder functions equal to

exp(−d2/2), which is similar to a term that appears in the derivatives of the Black-Scholes formula.

As will be seen below, this is convenient when we relate the price deviations to implied volatilities.

An advantage of using d instead of d1 is that when the strike price equals the forward price, the

quantities d, the left-hand side of (9), and D1(
√

2d) are zero. This constrains a0 = a2 on the

right-hand side of (9), enabling the use of one fewer expansion function.

After making these choices, the model of price deviations from Black-Scholes values is then

y ≡ YA(d) − YBS(d, σF )

F
= a1D̃1(

√
2d) + a2D̃2(

√
2d), (10)

where

D̃1(z) = D1(z) = ze−z2/4, (11)

D̃2(z) = D0(z) + D2(z) = z2e−z2/4. (12)

This procedure produces for each (t, τ) pair two expansion coefficients a1 and a2. Empirical evidence

presented in Section 3 below shows that the coefficients a1 and a2 themselves are well fit by quadratic
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functions of the at-the-money-forward total volatility σF (τ)
√

τ :

a1 = (α1σ
2
F (τ)τ + β1σF (τ)

√
τ) exp(−rτ), (13)

a2 = (α2σ
2
F (τ)τ + β2σF (τ)

√
τ) exp(−rτ), (14)

where r = r(t, τ) is the risk-free interest rate. The details of the above fitting are explained

below. The coefficients α1, β1, α2, and β2 are stable over time in the sense that the same four

parameters fit the volatility skew for every calendar date and option expiration date over the period

January 1996–September 2002; the only parameter that varies with the calendar date and time to

expiration is the at-the-money-forward volatility σF (t, τ). Loosely, the slope and curvature of the

implied volatility function are determined by the at-the-money-forward total volatility σF (t, τ)
√

τ .

Because on each calendar date we compute the at-the-money forward volatility for each option

expiration date, equation (10) is a model of the shape of the volatility skew or smile, and not a

model of the level of implied volatility. In Subsection 3.3.4 we combine equations (10) through (14)

and fit the implied volatility surface in a single step.

2.2. Interpretation of the parabolic cylinder functions

The two functions D̃1 and D̃2 that appear in the expansion (10) can be interpreted as the odd

and even components of the deviations of actual option prices from Black-Scholes values. Figure 2

shows schematically how the two components sum to the price deviation function. The solid line

shows the deviations of option prices from Black-Scholes values computed using the at-the-money-

forward volatility as a function of the volatility-adjusted moneyness d, while the lines with circles

and crosses show the odd and even components, respectively. Further, around d = 0, that is around

the forward price, the two components can be interpreted as the slope and curvature of the price

deviation function.

The first of the two components is clearly the more important. When we estimate the coefficients

a1 and a2 separately for each calendar date as described in the next section, the estimated values

of a1 are positive for the entire sample period, ranging from zero to about 0.05. The median value

of a1 is 0.0082 while the mean is 0.0094. The estimated values of a2 are both positive and negative,

mostly in the range of −0.005 to 0.005. The median of the absolute value of a2 is 0.00073 and

the mean is 0.00085. When ln(F/X)/(σF
√

τ) = 1 (one standard deviation away from the money)

we have z =
√

2d =
√

2 and taking the median values of a1 and a2, the odd component is about

0.0082/(0.00073 × 2) = 5.62 times larger than the even component. For options that are close to

the money (small d), the relative importance of the odd component is even greater.
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3. Fitting the price deviations

In addition to the choice of expansion functions, the model in equations (10)–(14) reflects three

further key choices. These are first, the decision to omit terms of third and higher order; second,

the decision to set a0 = a2; and third, the choice to specify the expansion coefficients a1 and a2

as functions of at-the-money-forward total volatility. In this section we first describe the data we

used in this paper and then present the data analysis that motivated and supports these choices.

Subsection 3.4 below provides an empirical analysis of the fit of the model we used. In the next two

sections, we then connect our price deviation fitting with implied volatility fitting and the implied

risk-neutral density.

3.1. Data

The SPX option data used in this paper come from OptionMetrics LLC. The data include end-

of-day bid and ask quotes, implied volatilities, open interest, and daily trading volume for the

SPX (S&P 500 index) options traded on the Chicago Board Options Exchange from January 4,

1996 through September 13, 2002. The data also include daily index values and estimates of

dividend yields, as well as term structures of zero-coupon interest rates constructed from LIBOR

quotes and Eurodollar futures prices. The period from January 1996 until September 2002 includes

prices for options with 88 different expiration dates, including eight expiration dates that fall after

September 13, 2002.

We use the bid-ask average as our measure of the option price, and use all options that satisfy

the following criteria. First, we require that the option moneyness F/X satisfy 0.8 ≤ F/X ≤ 1.2

and that the total-volatility-adjusted moneyness d = ln(F/X)/(σF
√

τ) satisfy −3 ≤ d ≤ 3, where

F is the forward price of the index, X is an option strike price, τ is the time to expiration, and σF

is at-the-money-forward volatility. Second, we use only options for which both bid and ask prices

are strictly positive. Finally, we require that the time to expiration be greater than or equal to ten

business days. However, we keep all the long-term options with times to expiration up to 2 years.

We also require that for each strike price, there is a matching pair of put and call. These different

criteria overlap considerably. Imposing all criteria, we have 456,280 different option prices (228,140

calls and 228,140 puts).

These criteria are motivated by several considerations. First, they eliminate the least liquid

options. Second, they eliminate options for which the bid-ask average is unlikely to be a useful

approximation of the option value. Specifically, many of the away-from-the-money options are bid

at zero and offered at $0.5, with a bid-ask average equal to $0.25, independent of the time to

expiration or strike price. Finally, we impose the requirement that τ be greater than or equal to
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ten business days because our procedure requires prices for a range of different strikes, and for very

short times to expiration often only a few options satisfy the first two criteria.

3.2. Order of the expansion

Because parabolic cylinder functions form a basis for a function space, the price deviations can

be captured completely if sufficiently many functions are used. The question is then how many

functions are needed to capture the price deviations with a high degree of accuracy. There is

reason to think that the number of required expansion functions will be small, as Figure 2 suggests

that the two functions D̃1(z) and D̃2(z) themselves explain a large fraction of the deviations from

Black-Scholes values.

To explore this issue, let us temporarily fix a calendar day t and time to expiration τ and

consider all the options with different strikes. Using k to index the options with different strikes,

we have

yk ≡ YA(zk) − YBS(zk, σF )

F
≈

N−1∑

n=0

anDn(zk), (15)

where

zk =
√

2dk =

√
2 ln(F/Xk)

σF
√

τ
. (16)

Since we are fixing t and τ for now, we have omitted the dependence of t and τ in equation (15),

that is, we have written F for F (t, τ), σF for σF (t, τ), an for an(t, τ) and yk for y(t, τ,Xk), etc. If

we append an error term to the right-hand side, equation (15) can be thought of as an ordinary

least squares regression, with dependent variable yk and independent variables Dn(zk).

For each calendar day-expiration date pair, we estimate equation (15) using ordinary least

squares to obtain the expansion coefficients an. We begin by looking at the squared errors. If there

are K available option series on day t, define the sum of squared errors in the usual way:

SSE =
K∑

k=1

(
yk −

N−1∑

n=0

anDn(
√

2dk)

)2

. (17)

Defining the total sum of squares by SST =
∑K

k=1 (yk − ȳ)2, where ȳ =
∑K

k=1 yk/K, the coefficient

of determination R2 is given by R2 = 1 − SSE/SST .

We illustrate the fit for different choices of N using the April 26, 2002 prices of the options

expiring in June 2002. Table 1 gives the sums of squared errors (SSE) and coefficients of deter-

mination R2 at the best fitting parameter values for N = 1, 2, . . . , 7. Similar patterns of sums of

squared errors and R2’s with respect to N are found on other dates. Because the coefficients are

computed using least squares, computational constraints do not place any limit on the number of

11



functions N . However, there is no benefit to choosing N to be larger than six. First, doing this has

almost no impact on the sum of squared errors and the R2. Second, since we are not expanding

the entire price deviation function on each date (we typically have about 20 data points for each

date), including more expansion functions may well result in over-fitting the data.

The discreteness of quoted option prices inherently limits the ability to obtain an exact fit with

a smooth function, suggesting it may be the case that the choice of N = 6 already overfits the

data, and that a choice as small as N = 3 might be reasonable. Further, the fact that the left-hand

side of equation (15) is zero when dk = 0, and the parabolic cylinder functions D0, D2, D4, . . . ,

are even functions places a constraint on the coefficients of these functions. In the case of N = 3

this constraint takes the form a0 ≈ a2, where the approximate equality comes from the fact that

the expansion does not provide an exact fit. Figure 3 illustrates that this approximate equality is

satisfied in the data when N = 3. In particular, Figure 3 shows the time series of the estimated

expansion coefficients a0, a1, and a2 for each day during the five month period prior to the expiration

of the June 2002 options. The estimated coefficient a1 on the odd function D1 declines steadily as

the time to expiration decreases from around 0.4 to zero, while the coefficients a0 and a2 on the

even functions D0 and D2 are approximately constant and equal to each other. In addition, with

this choice of N = 3 the R2’s are generally above 0.95 for each calendar day, declining below this

value only when the time to expiration becomes short. Table 1 also reports the fit for N = 3 but

with constraint a0 = a2 (column 2′) and we see that the R2 is almost as large as that for N = 3

without the constraint. Similar results are obtained for the other options with the same expiration

date and the options with different expiration dates.

For these reasons we chose N = 3 and constrain a0 = a2, and thus use the expansion

yk ≡ YA(dk) − YBS(dk, σF )

F
= a1D̃1(

√
2dk) + a2D̃2(

√
2dk), (18)

where

D̃1(z) = D1(z) = ze−z2/4, (19)

D̃2(z) = D0(z) + D2(z) = z2e−z2/4. (20)

Figure 4 shows the time series of the expansion coefficients a1 and a2 obtained by estimating

equation (18). As expected, it is similar to Figure 3, with the only notable difference being that

the time series of estimated expansion coefficients are smoother. Although (18) involves one less

function, the fit remains excellent, with R2’s well above 0.92 for most of the calendar days.
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3.3. Exploratory data analysis: Patterns in the expansion coefficients

The estimation of equations (15) and (18) by ordinary least squares discussed above is done sepa-

rately for each calendar day and expiration date, i.e. the procedure imposes no restriction on the

coefficients a1 and a2 across different days and expiration dates. Estimating the expansion (18)

separately for each calendar date-expiration date pair and imposing the constraint a0 = a2 results

in a total of 12,381 estimated coefficients a1 and a2. We seek stable relations that are satisfied by

the coefficients a1 and a2.

We begin by using dimensional analysis as a rough guide, which has proven to be very useful

in physics, engineering, and even pharmacology. The left-hand side of the expansion (18) consists

of price deviations divided by the forward price, and thus is dimensionless. Through the choice of

z =
√

2 ln(F/X)/(σF
√

τ) the quantities D̃1 = ze−z2/4 and D̃2 = z2e−z2/4 also are dimensionless.

Thus, the coefficients a1 and a2 must also be dimensionless, suggesting that they can only be

functions of dimensionless quantities. The available dimensionless quantities include the moneyness

F/X, the discount factor exp(−rτ) or equivalently rτ , the total dividends δτ , the total volatility

σF
√

τ , and d, d1 and d2. Among these, we can identify the following independent quantities: d,

σF
√

τ , rτ and δτ . We disregard d, because the expansion should ensure that the dependence of the

price deviations on d is captured via the expansion functions, similar to the separation of variables

method in solving partial differential equations. Further, it seems unlikely that the dividend yield

would vary enough to drive the variation in the coefficients a1 and a2. Thus, dimensional analysis

suggests models of the form

an = fn(exp(−rτ), σF

√
τ), n = 1, 2, (21)

where the fn’s are functions to be determined.

Table 2 confirms these tentative conclusions. It shows the correlations between the expansion

coefficients a1 and a2, the at-the-money-forward total variance σ2
F τ , the time remaining to expira-

tion τ , the volatility σF , and some other variables. The correlations between a1 and both τ and σF

are high, with values of 0.7364 and 0.5248, respectively. However, the correlation between a1 and

the total variance σ2
F τ is even higher, 0.9277. These correlations are larger than the correlations

between a1 and any of the other variables.9 While the magnitudes are smaller, a similar pattern is

found in the correlations between a2 and the various variables. In particular, the correlation be-

tween a2 and σ2
F τ of −0.6521 is the largest of the correlations involving a2. In the next subsection,

we take a closer look at the odd and even components in turn.

9Further, in untabulated results we find that the relatively large correlation between F and a1 is not stable across
the different years in the sample period.
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3.3.1. The odd component

In the last section we preannounced that the model a1 = (α1σ
2
F τ + β1σF

√
τ)e−rτ (equation (13))

in which a1 is a quadratic function of at-the-money-forward total volatility provides a good fit to

the expansion coefficient a1. Table 3 shows the coefficient estimates and sum of squared errors

(SSE) for a number of models for fitting a1. The total sum of squares SST of a1 for all seven

years is 0.4511. The first row of the table (model (a)) shows results for the quadratic model. The

sum of squared errors for this model is 0.0562. This implies that this model explains 88 percent

of the variation in a1. The second model (b) presents results for a version of the model that does

not include the term e−rτ . The coefficient estimates and SSE are similar, but the first model that

includes the term e−rτ provides a slightly better fit. The next model (c) includes a constant term.

Unsurprisingly, the model with a constant term provides a better fit, in the sense that the SSE

is smaller. However, the estimated constant term is small, and not economically significant. The

next set of models (d)–(h) experiment with different functional forms of σF
√

τ and rτ , and find

that none dominates the quadratic model (a). Finally, the last three models (i)–(k) specify the

expansion coefficient a1 as a function of τ alone rather than σF
√

τ . Such models are problematic

a priori as they are not dimensionless, and the fit of these models turns out to be poor.

We next estimate the quadratic model (13) (i.e., model (a)) separately for each year. Figure 5

presents a three-dimensional view of the fit for the calendar year 2001 when the model is estimated

using the option prices from year 2001. The parameter estimates are α = 0.0437 and β = 0.0459.

In particular, Figure 5 plots the actual (dots) and fitted (stars) values of a1 for each calendar

date-expiration date pair during 2001 as a function of σ2
F and τ . For each actual value (each

dot), the fitted value is represented by the star immediately above or below it. Figure 6 presents

two-dimensional graphs obtained by projecting the data in Figure 5 onto the time to expiration,

volatility, and total variance σ2
F τ . Of each pair of panels, the left-hand panel shows the actual

data and the right-hand panel shows the fitted values. This figure confirms that the quadratic

model (13) provides an excellent fit, and also confirms that the total volatility σ2
F τ explains the

bulk of the variation in the coefficient a1. It is clear that the quadratic model (13) explains most

the variation in a1.

Figure 7 summarizes the fit of the quadratic model for the other years. In particular, it shows

the actual and fitted values of the coefficients a1 on the odd parabolic cylinder function D̃1 as a

function of the total volatility σ2
F τ separately for each of the five years 1996-2000 and the period

January 2001–September 2002. Each panel shows both the actual (gray dots) and fitted (black

dots) values. Volatilities were relatively low in 1996, and there was no SPX option with time to

expiration greater than one year in our sample. As a result, the data are concentrated toward the

lower left-hand side of the 1996 panel. We see that the fit of the quadratic model is quite good for
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all years except 1997 and 1998, and is reasonably good even for those years. In 1997 the quadratic

model still seems like a good choice, but there is considerable dispersion around the fitted values.

In 1998 there is a little less dispersion about the fitted values, and there seem to exist two patterns,

with the fitted model roughly corresponding to the average of the two patterns. Also, volatilities

were high in this time period, and the relation is more steeply sloped than in other periods. The fit

is excellent for the remaining years, with similar shapes in 1999 and 2000 and a slightly less steeply

sloped relation in 2001 and 2002.

3.3.2. The even component

Table 2 shows that the correlation between a2 and the at-the-money-forward total variance σ2
F τ is

−0.6521, which is of greater magnitude than the correlation between a2 and any other variable. In

unreported graphical analysis we plotted a2 against the dimensionless quantities σF
√

τ and rτ as

well as several other variables for the entire sample. Consistent with the argument that a1 and a2

should be functions of only dimensionless quantities, we found no clear relation with the forward

price, volatility, or interest rate.

In the last section we preannounced that the model a2 = (α2σ
2
F τ + β2σF

√
τ)e−rτ (equation

(14)) in which a2 is a quadratic function of at-the-money-forward total volatility provides a good

fit to the expansion coefficient a2. Table 4 shows the results of fitting this and alternative models

for a2. The table displays the coefficient estimates and sum of squared errors (SSE) for the same

set of models that are used to explain a1 above. As expected, since a2 is much less variable than a1

and the time series of estimates have different properties, the coefficient estimate and SSE’s are

much different from those in Table 3. Nonetheless, as with a1 the quadratic model performs better

than all other models, although the differences from some of the other models are small.

Figure 8 shows the actual and fitted values of the coefficient a2 as a function of time to ex-

piration τ , at-the-money-forward variance σ2
F , and at-the-money-forward total variance σ2

F τ for

calendar year 2001. Although both a1 and a2 are fit well by quadratic functions of the total volatil-

ity σF
√

τ , their patterns are quite different. While a1 seems to be monotone increasing in σF
√

τ ,

a2 first increases and then decreases against σF
√

τ and is nonnegative only for roughly the region

σF
√

τ < 0.06. As we will see later in Section 5, this has interesting implications for the second

central moment of the implied risk-neutral density. Of each pair of panels in Figure 8, the left-hand

panel shows the actual data and the right-hand panel shows the fitted values. This figure confirms

that the quadratic model (14) provides an excellent fit, and also confirms that the total volatility

σ2
F τ explains the bulk of the variation in the coefficient a2. The fact that the fit for a2 is not as

good as that of a1 is not surprising, as the even component explains a much smaller part of the

price deviations, and any errors will be larger relative to the explained part.
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Figure 9 summarizes the fit of the quadratic model for a2 for the other years. In particular, it

shows the actual and fitted values of the coefficients a2 on the even parabolic cylinder function D̃2

as a function of the total volatility σ2
F τ separately for each of the five years 1996-2000 and the

period January 2001– September 2002. Each panel shows both the actual (gray dots) and fitted

(black dots) values. As with Figure 7, for 1996 the data are all toward the left-hand side because

there was no SPX option with time to expiration greater one year. We see that the fitted quadratic

model is generally similar in different years, though there is a fair amount of dispersion about the

fitted values in 1997 and 1998.

3.4. One-step estimation

The above exploratory data analysis used a two-step process. We first estimated the expansion

coefficients a1 and a2 separately for each calendar date-expiration date pair, and then we searched

for models that captured the changes in a1 and a2. Having identified such a model, it is natural to

do the analysis in a single step. The one-step model is

y = α1X1 + β1X2 + α2X3 + β2X4, (22)

where

y =
YA(d) − YBS(d, σF )

F
, (23)

and the right-hand side variables are

X1 =
√

2σ2
F τd exp(−d2/2 − rτ), (24)

X2 =
√

2σF

√
τd exp(−d2/2 − rτ), (25)

X3 = 2σ2
F τd2 exp(−d2/2 − rτ), (26)

X4 = 2σF

√
τd2 exp(−d2/2 − rτ). (27)

Notice that in equation (22) we are fitting all 456,280 call and put options simultaneously (228,140

(t, τ, X) triplets for both calls and puts). Estimating this model using the entire sample, we obtain

coefficient estimates α1 = 0.1003, β1 = 0.0437, α2 = −0.0746, and β2 = 0.0166, and R2 = 0.9528,

as reported in Table 5. These estimates are similar to estimates for the quadratic models in Tables 3

and 4, where we have α1 = 0.1037, β1 = 0.0417, α2 = −0.0661 and β2 = 0.0150. These results

imply that the simple model with four parameters that are constant over time explains more than

95 percent of the deviations from Black-Scholes prices.

The above fit is excellent, in light of the fact that the discreteness of quoted prices inherently

limits the ability to obtain a perfect fit. Further, our model enforces put-call parity, which is not
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exactly satisfied in the data. Notice that in our sample, we have both periods of rising index

levels and falling index levels. However, the changes in index levels do not seem to affect the

reported pattern although they affect the implied volatility levels. Also, we have options with

time to expiration ranging from 10 days to 2 years. The fact that long-term and short-term

options both follow the same pattern is somewhat striking. In particular, this implies that the

relative expensiveness of out-of-the-money long-term options with respect to at-the-money long-

term options is not very different from the relative expensiveness for short-term options. Our results

also imply that SPX option traders have been pricing these options in a consistent manner for the

period 1996-2002.

4. Implied volatilities

The deviations of actual option prices from Black-Scholes values computed with the same volatility

for different strikes can be mapped into the implied volatility function through the inverse function

of the Black-Scholes formula. This implies that the model (10)–(14) of deviations from Black-

Scholes values has an equivalent representation in terms of the implied volatility function. In

particular, the finding that the odd and even components of the price deviations are well fit by

simple functions of the at-the-money forward total volatility suggests that implied volatilities of

different strike prices can also be expressed in terms of the at-the-money forward total volatility.

In this section we use a Taylor expansion to find a simple approximation of this relation, and thus

connect our model of price deviations to a simple model of the implied volatility function. Our

data set is the same one we used for the price deviation fitting. For each of the 12,381 calendar

date-expiration date (t, τ) pairs there is an implied volatility function computed from the straddles

for the different strike prices available. All together, there are 228,140 observations on the implied

volatility σ. Subtracting each of these implied volatilities from their corresponding at-the-money-

forward volatility for the same calendar and expiration dates, there are 228,140 observations of

implied volatility deviations ∆σ, defined as ∆σ = σ − σF .

4.1. A simple model of the implied volatility function

The model of price deviations (10)–(14) or equation (22) can be written as

YA(d) − YBS(d, σF )

F exp(−rτ) exp(−d2/2)
=

√
2(α1σ

2
F τ + β1σF

√
τ)d + 2(α2σ

2
F τ + β2σF

√
τ)d2. (28)

Letting σ(t, τ,X) denote the implied volatility at calendar date t for time to expiration τ and

strike X, define the deviation from at-the-money-forward volatility to be ∆σ(t, τ,X) ≡ σ(t, τ, X)−
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σF (t, τ), where as above σF (t, τ) is the at-the-money-forward volatility. Recognizing that YA(d) =

YBS(σ) = YBS(σF + ∆σ), we can use a first-order Taylor expansion to obtain the approximation

YA − YBS(d, σF )

F exp(−rτ)
≈ V∆σ

√
τ , (29)

where V is the modified dimensionless vega defined by

V ≡ ∂(YBS(d, σ)/F exp(−rτ))

∂(σ
√

τ)

∣∣∣∣
σ=σF

. (30)

Using the Black-Scholes formula, we see V = N ′(d1) ≈ N ′(d) exp(−dσF
√

τ/2). Combining (28)

and (29) yields

V∆σ
√

τ

exp(−d2/2)
=

√
2(α1σ

2
F τ + β1σF

√
τ)d + 2(α2σ

2
F τ + β2σF

√
τ)d2. (31)

In our data, the mean value of d is 0.24 and mean value of σF is 0.21. Thus we can approximate

exp(dσF
√

τ/2) by 1 + dσF
√

τ/2. Using this, we get the following regression model

∆σ
√

τ = αdσF

√
τ + βd2σF

√
τ + γdσ2

F τ + δd2σ2
F τ. (32)

Table 6 presents the results of estimating the model (32) and some other models over the entire

sample period. The first set of results is for the model (32), which explains 95.56 percent of the

variation in ∆σ. The second set of results for the slightly simpler model

∆σ
√

τ = αdσF

√
τ + βd2σF

√
τ + γdσ2

F τ (33)

that omits the term d2σ2
F τ explains 95.50 percent of the variation in ∆σ. Due to the almost identical

fits and the small magnitude of the term d2σ2
F τ in equation (32), we use the simpler model (33).

The third and fourth sets of results are for two models obtained by restricting some parameters in

the full model to be zero, while the fifth and sixth sets are for two other models that are not based

on our expansion. The model α(X/1000) +β(X/1000)2 (the fifth set of results) is the quadratic-fit

model of Shimko (1993). Although it is known that the Shimko model fits the volatility skew well

when estimated separately on each day, when estimated with the same parameters across calendar

days the Shimko model can only explain 22% of the volatility deviations. The last model αd + βd2

is a quadratic fit in the volatility-adjusted relative moneyness d. While it performs much better

than the Shimko model its performance is still dominated by those of the first four models.

Figure 10 shows a three-dimensional plot of actual (dots) and fitted (stars) values from the
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model in equation (33) for each calendar date-expiration date pair as a function of d and dσF
√

τ

(only one out of 200 points are shown). The fit is perfect on the planes defined by d = 0 and

dσF
√

τ = 0 because on these planes the options are at-the-money forward, and hence their implied

volatilities do not deviate from the implied volatility of the at-the-money forward option from which

deviations are measured. Comparing the locations of the fitted values to the actual values, it is

clear that the quadratic model (33) explains almost all of the variation in the values of ∆σ.

Figure 10, while indicating a good fit, actually understates the quality of the fit because the

data density is not homogeneous on the graph. For example, there are many more options with

τ = 0.3 than options with τ = 2.0, and the bulk of the options with τ = 0.3 have fitting errors

that are very close to zero. However, these very small errors are hidden in the center of the figure

where the data density is high. The following numbers give us some sense of the quality of fit. Out

of all observations, 359 options (0.16%) have a fitting error larger than 0.05, 1,239 options (0.54%)

have a fitting error larger than 0.04, 3,615 options (1.58%) larger than 0.03, 10,548 options (4.62%)

larger than 0.02, and 39,161 options (17.17%) larger than 0.01. In the other tail of the distribution,

14,3452 options (62.88%) have a fitting error smaller than 0.005, and 36.79% of the options have

an error less than 0.002. Also, the large errors concentrate in the years 1997 and 1998 (especially

in the months of August in both years), which is not surprising in light of Figure 7.

4.2. Implications of the implied volatility model

Our model captures the main features of the implied volatility surface and can be used to analyze

the slope and curvature of the skew. Fix a (t, τ) pair and hold the at-the-money-forward implied

volatility σF constant. Letting σX denote the implied volatility at strike price X for that (t, τ)

pair, we have

∂σX

∂ lnX

∣∣∣∣
X=F

= − α√
τ
− γσF . (34)

This equation says that there are two components to the slope of the skew. The first component,

−α/
√

τ , is a time-varying component that goes to zero as time to expiration increases to infinity.

The second component, −γσF , is a volatility-level driven component. This component is present

even for τ = ∞ and is proportional to the stochastic at-the-money-forward volatility level. Taken

together, the two components imply that the skew is negatively sloped, and becomes less so as the

time to expiration τ increases. Also, the skew tends to be more negatively sloped when volatility

is high. Note that α and γ come from the odd component of the price deviations only, implying

that the odd component of the price deviation is directly responsible for the slope in the implied

volatility skew.
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It is also interesting to examine the curvature of the skew at X = F . From equation (33),

∂2σX

∂(lnX)2

∣∣∣∣
X=F

=
2β

σF τ
. (35)

Since β comes from the even component of the price deviations, this shows that the even component

in the price deviations is directly responsible for the curvature of the skew. The slope and curvature

of the skew can work together to produce a smile pattern. We see that the curvature is inversely

proportional to at-the-money-forward volatility level and time to expiration. As time to expiration

increases, the curvature decreases to zero.

The model (33) also provides an answer to the question of when we can expect to see a “smile”

in the implied volatility function. The implied volatility curve reaches its minimum at

d = −α + γσF
√

τ

2β
, (36)

which is about −3.5 − 10σF
√

τ for the parameter estimates we have. From the definition of d, we

have X = F exp(−dσF
√

τ). If this turning point is low, then we are more likely to observe a smile

pattern in the traded options, which usually are roughly centered around the current index level.

Thus our model implies that we are likely to see a volatility smile more often when σF
√

τ is small

(for example, in the relatively short-term options in year 1996) and when r is small or the dividend

rate δ is large. We see that the volatility curve begin to increase again at X = 1.34F , when σF
√

τ

is about 0.07. This agrees with most stochastic volatility option pricing models, in which it is easier

to produce a smile when the instantaneous volatility and time to expiration are both small.

Some features of our results, however, are in contrast with one of the most common classes

of stochastic volatility models. Models in this class have no jumps, and specify an auxiliary in-

stantaneous volatility process that is not explicitly dependent on the stock price levels, though the

Brownian motions driving the stock process and volatility process can be correlated. Specifically,

a typical model is specified as follows:

dS = rS dt +
√

V S dWS , (37)

dV = b(V ) dt + a(V ) dWV , (38)

where the two Brownian motions are correlated with coefficient ρ(V ) and the instantaneous variance

process V is assumed to be mean-reverting. This class of models includes the now famous Heston

(1993a) model. Under some general assumptions, Lewis (2000) (see also Lee 2002) works out the
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asymptotic behavior of the implied volatilities as τ → 0 (p. 143) and τ → ∞ (p. 187):

lim
τ→0

∂VX(τ)

∂ lnX

∣∣∣∣
X=F

=
ρ(VF (0))a(VF (0))

2
√

VF (0)
, (39)

where VX = σ2
X is the square of implied volatility at strike price X, and

VX(τ) ≈ V ∞

F +
A ln(F/X)

τ
+

B ln2(F/X)

τ2
+ O(τ−3) as τ → ∞, (40)

where A, B and V ∞

F are some constants depending on the drift and diffusion functions of the

stochastic volatility process. That is to say, for very short-maturity options, the slope of the skew

tends to approach a constant while for long-maturity options, the skew tends to flatten to a common

asymptotic value regardless of the moneyness ln(F/X).

In our model, for short-maturity options,

∂VX

∂ lnX

∣∣∣∣
X=F

= −2α
√

VF√
τ

− 2γVF . (41)

In particular, the slope in our model at X = F approaches infinity at the speed of
√

τ . In comparing

equation (41) with (39), one must be cautious because we have excluded options with maturities

less than 10 days and used a certain parametric form. However, in light of the fact that our model

explains over 95% of the variation in the implied volatilities it is hard to reconcile our empirical

results with the generic behavior of stochastic volatility models for short-term options.

Our results for long-maturity options are also at odds with the generic behavior of stochastic

volatility models. In our model,

VX(τ) = VF +
2α

√
VF τ + 2γVF τ

τ
ln(F/X) +

(α + γ
√

VF τ )2 + 2β

τ
ln2(F/X) + O(ln3(F/X)). (42)

At a first glance, equations (40) and (42) seem similar because both express VX as a quadratic

function of ln(F/X). However, in our model VF does not approach a constant level but rather is

stochastic. Thus, there can be considerable variation in at-the-money-forward implied volatilities

even for long-maturity options. A second key difference is that in our model the slope of the

skew does not approach zero as τ → ∞, but rather approaches a stochastic slope −2γVF . A

third difference is the speed of convergence. In our model, if we hold VF constant, the speed

of convergence is 1/
√

τ . Interestingly, although it violates the long-maturity behavior of O(1/τ)

predicted by stochastic volatility models, this convergence agrees with the rule of thumb widely

used by practitioners that approximates the decay rate of the skew slope as τ−1/2 (see Lee 2002).10

10While our empirical results differ from predictions of stochastic volatility models with no jumps, it remains
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5. Implied risk-neutral density

If the risk-free interest rate is constant, the value of a European call option can be written as

C = e−rτ

∫
∞

0
(ST − X)+f(ST )dST , (43)

where f(ST ) is the marginal risk-neutral density of ST , the stock price at the expiration date

T . Prices of European put options can be characterized similarly. A standard result dating from

Breeden and Litzenberger (1978) is that the risk-neutral density is given by

f(ST ) = erτ ∂2Y

∂X2

∣∣∣∣
X=ST

, (44)

where Y is the value of either a call or a put option. Since volatility is itself stochastic, this

implied density should be interpreted as the marginal density of some multi-dimensional risk-neutral

distribution.

The price fitting model (10) can be written as

Y = YBS + ∆Y ≡ YBS + F (
√

2a1d + 2a2d
2)e−d2/2, (45)

where a1 = (α1σ
2
F τ + β1σF

√
τ)e−rτ , a2 = (α2σ

2
F τ + β2σF

√
τ)e−rτ , F = St exp((r − δ)τ), d =

ln(F/X)/(σF
√

τ), and we have written r for r(t, τ), σF for σF (t, τ) etc. Differentiating, the implied

risk-neutral density f imp for ST is given by

f imp = fBS + ∆f, (46)

where fBS is the lognormal density function

fBS =
1√

2πσ2
F τST

exp

(
−

(
log ST − log St − (r − δ − σ2

F /2)τ
)2

2σ2
F τ

)
, (47)

and

∆f =
Fe−d̄2/2erτ

S2
T σF

√
τ

(λ0 + λ1d̄ + λ2d̄
2 + λ3d̄

3 + λ4d̄
4), (48)

unclear whether stochastic volatility models with jumps will better conform to out empirical findings. We leave it to
future research.
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where

d̄ =
lnF − log ST

σF
√

τ
, λ0 =

√
2a1 +

4a2

σF
√

τ
, λ1 = 4a2 −

3
√

2a1

σF
√

τ
, (49)

λ2 = −
√

2a1 −
10a2

σF
√

τ
, λ3 =

√
2a1

σF
√

τ
− 2a2, λ4 =

2a2

σF
√

τ
. (50)

Apart from the factor e−rτ , a1 and a2 are quadratic functions of σF
√

τ , implying that the λ’s are

as well. Figure 11 plots the implied risk-neutral density computed using (46)–(50) above and the

lognormal density on the same graph. The parameters used are σ = 0.15, τ = 0.2, S = 1, 000,

r = 0.01, α1 = 0.1003, β1 = 0.0437, α2 = −0.0746, and β2 = 0.0166. These α’s and β’s are the

estimates from the one-step regression reported in Table 5.

A nice feature of this implied density given by (46)–(50) is that it is in closed form. Further,

other than the at-the-money-forward volatilities, it requires only four parameters, the α’s and β’s,

that describe the density for all strikes and times to expiration. Since one of the main results of this

paper is that these four parameters are very stable over time, one can use the parameters estimated

in this paper and treat them as constants. Thus, to use our parametric implied distribution, the

only input is the term structure of observed implied volatilities σF (t, τ).

The implied risk-neutral density has a number of other desirable properties. The first nice

property is that our implied density is self-consistent, that is, if we let the strike price equal the

forward price, then the option price equals the Black-Scholes price evaluated at the at-the-money-

forward implied volatility:

∫
∞

0
e−rτ (ST − F (t, τ))+f imp(ST ) dST = CBS(σF (t, τ)). (51)

Similar results hold for the put options. Second, ∆f integrates to zero exactly, implying

∫
∞

0
f imp(ST ) dST = 1, (52)

a necessary condition for f imp to be a sensible density. Third, the implied density gives the same

expected future stock price as the lognormal density, i.e.,

∫
∞

0
ST f imp(ST )dST = F. (53)

The above equation says that our implied density satisfies the necessary condition to be a risk-

neutral density. It also implies that our implied risk-neutral density preserves the forward price
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and put-call parity since it implies

∫
∞

0
e−rτ (ST − K)+f imp(ST )dST −

∫
∞

0
e−rτ (K − ST )+f imp(ST )dST = (F − K)e−rτ . (54)

The above four equations can be easily derived, either by straightforward calculations or by repeated

use of integration by parts. The implied density behaves so nicely because we have carefully chosen

σF as the base volatility and our model is, by construction, consistent with the prices of options;

and also because the parabolic cylinder functions used in our price model have good tail behavior,

that is, they go to zero exponentially as the moneyness d goes to ±∞.

It is interesting to examine the higher moments of our implied distribution. Using integration

by parts, it is easy to show that

∫
∞

0
(ST − F )2f imp dST = F 2(eσ2

F
τ − 1) + F 2

√
8πσ2

F τ
(
2a2(1 + σ2

F τ) −
√

2a1σF

√
τ
)

e(r+σ2

F
/2)τ .

(55)

The first term on the right-hand side comes from the lognormal density, while the second term in-

corporates the skew. With a bit of calculation it can be shown that the second central moment from

implied distribution will be equal to that from the lognormal distribution when either σF
√

τ = 0 or

σF

√
τ

.
=

√
2α2 − β1 +

√
(
√

2α2 − β1)2 + 4
√

2β2α1

2α1
, (56)

which with our fitted parameters equals 0.142. If σF = 0.2, then this occurs with τ = 0.5009.

For a wide range of values of τ , the second central moments of the two distributions are close.

When τ is less than 0.5009 the second central moment from the implied distribution is larger than

the second central moment of the lognormal distribution. When τ is greater than 0.5, the second

central moment from the implied distribution is smaller than that from the lognormal distribution,

and the relative difference of the two goes to zero exponentially fast when σF
√

τ goes to ∞. This

behavior comes from the fact that a2 is positive for small σF
√

τ and becomes increasingly negative

as σF
√

τ increases.

Our implied risk-neutral density can also be viewed as a correction to the normality assumption

for lnST in the Black-Scholes formula. Our density approximation bears some similarity with the

often-used Gram-Charlier series expansion (see, e.g. Corrado and Su 1996, Backus, Foresi, and

Wu 2004) to correct for skewness and kurtosis. Both densities have a correction term involving a

fourth-order polynomial. However, a key difference is that our approach specifies the correction

terms as simple functions of at-the-money-forward total volatility. Inthe Gram-Charlier aprpoxi-
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mation, one has to estimate or otherwise specify the skewness and kurtosis parameters µ3 and µ4

separately for each (t, τ) pair.

Finally, with suitable parameters the implied distribution can easily produce a volatility “smile.”

In particular, the even component is responsible for the fat right tail in our risk-neutral density. It

is also responsible for the upward curvature that appears toward the right-hand side of the implied

volatility function shown in the lower panel, i.e. the fat right tail produces the volatility smile.

Although we do not pursue the issue here, the ability of the model to produce a volatility smile

suggests that it may be able to work well with individual equity options for which the smile is more

pronounced than it is in index options (although the American feature of the individual equity

options complicates matters).

The most straightforward use of the implied density would be to value European-style options

that are not actively traded, i.e. options with strike prices that are not actively traded, or digital

options. A more interesting aspect of the implied density is that we observe a second mode or peak

in the density. A small and relatively “flat” second mode can be seen toward the left-hand side of

Figure 11. This second mode is produced by the even component, and its size depends both upon

the parameters α2, β2 of the even component and the level of the total base volatility σF
√

τ .

Figure 12 compares the lognormal and implied densities for a range of times to expiration,

namely 7, 31, 61, 91, 122, 182, 365 days and 2 years. The graphs in the various panels are

constructed using σ = 0.25, S = 1, 000, and r = 0.05, with the α’s and β’s estimated from options

in our sample with times to expiration within a small window of the times to expiration indicated

on the panels. Except for the shortest maturity graph (the one labeled 7/365), the parameters are

estimated from options with times to expiration falling within an eight day window centered on

the time to expiration indicated on the panel. The shortest maturity graph is based on parameter

estimates obtained from the options with times to expiration of between 10 and 15 days. We use an

eight day window to ensure that we have enough observations to calculate the local estimates for

α’s and β’s reliably. It is interesting to see that on all the panels the implied densities are bimodal,

with the second mode gradually developing as time to expiration increases.

This finding of a bimodal risk-neutral density has implications for models with stochastic volatil-

ity and/or jump-diffusion processes, as it provides a stylized fact that proposed models must capture

and thus rules out models that cannot produce this property. A possible concern is that the bi-

modality is due to some artifact of the methodology of expanding price deviations in terms of

parabolic cylinder functions, and is not a robust feature of the data. One response is that the

second peak is due to the even component, and Figure 2 illustrating how the odd and even compo-

nents sum to the price deviations makes clear that the even component is important in capturing

the price deviations. A second response is that other authors have also found some evidence of
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bimodality in the risk-neutral density using other approaches. Third, mathematically it is perfectly

possible for the risk-neutral distribution to be bimodal while the physical distribution is unimodal.

Bakshi, Kapadia and Madan (2003) shows how risk-neutral density of the return can have nonzero

skewness while physical distribution is symmetric through exponential tilting which comes from the

Radon-Nikodym derivative. The same mechanism can also introduce bimodality in the risk-neutral

distribution.11

6. Conditional out-of-sample forecasting of the skew

The previous analyses show that the models of the skew provide better in-sample fits than a wide

range of alternatives. In this section we conduct a conditional out-of-sample forecasting exercise to

verify that the proposed models perform better in this sense as well. This exercise is conditional

in that we do not predict the entire price or implied volatility function, but rather predict option

prices (i.e., the skew) conditional on the index value and the term structure of at-the-money-forward

implied volatilities. Specifically, for each calendar date t we start by estimating the parameters in

the selected models from a rolling window of past data. We then step ahead to a forecast date

t + ∆t, and, given the index value and at-the-money-forward volatility on t + ∆t, we use the

estimated parameters and the model to predict the price (or equivalently, volatility) deviations,

that is to predict the skew. Thus, this exercise only tests whether our models can correctly value

the away-from-the-money options, given the valuation of the at-the-money-forward options.

Interestingly, this exercise is similar to the way the models might be used in risk measurement,

for example value-at-risk calculations. In some methods of computing value-at-risk one simulates

realizations of the underlying market factors that drive price changes, and then revalues the portfolio

of financial instruments for each realization of the market factors. If one takes the market factors

to be the underlying index value and the at-the-money-forward volatilities, then the exercise in this

section corresponds to this potential use of the models.

We compare a total of seven models. Models I and II are the models of price and volatility

deviations from Sections 3 and 4, respectively. Model III is a special case of Model II with one

fewer parameter. Then Models IV through VII are various plausible alternative models. For each

calendar date, we estimate the model parameters using data from the previous two months. We

11Consider the following artificial example. Suppose the physical distribution of the future stock return R is

f(R) =
A exp(−λR2)

1 + BR2
, where λ > 0, B > 0. (57)

This physical distribution is unimodal. Now with exponential tilting factor exp(−kR), if the parameters λ, k and B

are such that k + 2(B + λ)x + Bkx2 + 2Bλx3 = 0 has three distinct real roots, then the risk-neutral density can be
bimodal.
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then look some fixed period ahead to a “forecast” date, and use the parameter estimates and the

at-the-money-forward volatility for the forecast date to compute the option prices. If that forecast

date is not a business day, we use the next business day. We repeat this for every date.

The various models are as follows:

Model I: This is the price deviation model from Section 3,

Ŷ = YBS + F
(
a1D̃1(

√
2d) + a2D̃2(

√
2d)

)
, (58)

where for each date t the parameters a1 and a2 are estimated using data from the two months prior

to t and Ŷ is the predicted price of a call or a put option on t + ∆t. We implement the model

in a one-step approach. That is, during the two-month estimation period we estimate the four

parameters γ1, . . . , γ4 from the regression:

YA − YBS

Fe−rτ
= γ1σ

2
F τde−d2/2 + γ2σF

√
τde−e2/2 + γ3σ

2
F τd2e−d2/2 + γ4σF

√
τd2e−d2/2. (59)

Model II: This is model for volatility deviations from Section 4. In this model, Ŷ = YBS(σ̂),

where

σ̂
√

τ = σF

√
τ + γ1dσF

√
τ + γ2d

2σF

√
τ + γ3dσ2

F τ, (60)

where σ̂ is the predicted value of σ. From the Taylor expansion in Section 4, this model is approx-

imately equivalent to Model I, except that we dropped the term in d2σ2
F τ . As a result this model

has three rather than four parameters. However, there is no guarantee that a model with more

parameters will perform better. On the contrary, Dumas, Fleming, and Whaley (1998) suggest

that a more parsimonious model will perform better in out-of-sample tests.

Model III: We also estimate a simpler version of Model II. In this model, Ŷ = YBS(σ̂), where

σ̂
√

τ = σF

√
τ + γ1dσF

√
τ + +γ2dσ2

F τ. (61)

This model might perform better or worse than Model II. If Model II is the true model, then we

would expect this model to perform worse than Model II; however, if Model II is overfit, then

Model III, being more parsimonious, might outperform Model II.

Model IV: In this crudest benchmark model we make no adjustments for the skew, that is for

each time to expiration we use the Black-Scholes values computed from the at-the-money-forward

volatility. Thus,

Ŷ = YBS(σF ). (62)
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However, if the parameters in the quadratic models of the price deviation components change over

time, it is not clear that our model will beat this naive model. The sum of squared errors of this

model can be viewed as the total sum of squares for all other models.

Model V: In this model the implied volatility function is approximated by a quadratic function

of the moneyness, defined in terms of X − F . Thus, Ŷ = YBS(σ̂), where

σ̂ = σF + γ1(X − F ) + γ2(X − F )2. (63)

Again, the coefficients γ1 and γ2 are estimated using data from the two months prior to date t.

This is a natural benchmark.

Model VI: Model VI is similar to V, except that moneyness is defined in terms of ln(X/F ). Thus,

Ŷ = YBS(σ̂), where

σ̂ = σF + γ1 ln(X/F ) + γ2 ln2(X/F ), (64)

and the coefficients γ1 and γ2 are estimated using data from the two months prior to date t. This

is another natural benchmark. One might expect it to perform better than Model V because it

measures moneyness in relative terms.

Model VII: Model VII is similar to V and VI, except that it uses time-adjusted moneyness

ln(X/F )/
√

τ :

Ŷ = YBS(σ̂), (65)

where

σ̂ = σF + γ1
ln(X/F )√

τ
+ γ2

(
ln(X/F )√

τ

)2

, (66)

and again the coefficients γ1 and γ2 are estimated using data from the two months prior to date t.

This benchmark tries to capture the dependence of the volatility skew on the time to expiration.

This model is very similar to those used by Natenberg (1994) and Tompkin (1999), who argue that

including the time to expiration helps in fitting the skew. We expect this model to perform well

because we know that to first order the total volatility deviations are linear in ln(X/F ). However,

in this model the slope and curvature at X = F do not depend on σF .

We compare the performances of Models I through III to the performances of the Black-Scholes

benchmark Model IV and the alternative Models V, VI, and VII. Following Huang and Wu (2004),

we compute the mean-squared errors (MSE) in each model for each forecasted day. Table 7 presents

the means, medians and standard deviations of the daily forecast MSE’s for various horizons ∆t

ranging from one to 150 calendar days, or approximately 5 months. Table 8 presents t-statistics

for pairwise comparisons of the daily out-of-sample MSE’s. In this table, Models V, VI and VII
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are compared with the performance of Model III (the model we propose) and the Black-Scholes

benchmark (Model IV). Models I, II and III are all variants of each other, and although Model II

performs slightly better than Model III we choose Model III as the reference model because this

model is the most parsimonious among all three and has the same number of parameters as Models

V, VI and VII. We calculate the t-statistic comparing two models A and B as follows:

t−statistic =
mean(MSEA − MSEB)

stderr(MSEA − MSEB)
, (67)

where the standard errors are auto-correlation adjusted based on Newey and West (1987), with the

number of lags chosen based on Andrews (1991).

Table 7 reveals that for each model the mean MSE increases as the forecasting horizon increases,

as do the medians and the standard deviations. A striking feature of the results is that Models I, II

and III, in which the slope and curvature of the price deviation or implied volatility functions are

determined by functions of at-the-money-forward total volatility, clearly dominate the other models.

All measures of performance are markedly superior for this group of models, and the t-statistics

in Table 8 reveal that the differences in the mean MSE’s between Models V, VI, and VII and

Model III are highly significant. At the one day horizon the mean forecast errors are between $0.60

and $0.68, increasing only to between $0.95 and $1.01 for the 31-day horizon and to between $2.46

and $2.58 for the 150 day horizon. The median forecast errors at the one day horizon are between

$0.34 and $0.46, increasing only to between $0.94 and $1.14 at the 150-day horizon. Within the

group of three models Model II seems to perform slightly better than Models I and III, but the

differences are small. The results for these three models are consistent with the idea that Model II

reflects the best tradeoff between flexibility and parsimony, but this may well be over-interpreting

the small differences in performance.

Of the other models, as one would expect the crude benchmark Black-Scholes Model IV that

does not attempt to capture the skew has the largest mean MSE’s for all horizons. In Model V,

introducing the skew with moneyness measured in terms of X − F decreases the mean MSE’s

significantly—the mean MSE decreases from 48.59 to 19.74 for the one-day horizon, from 49.23 to

22.73 for the 31-day horizon, and from 51.59 to 35.50 for the 150-day horizon. The t-statistics in

Table 8 reveal that the differences in the mean MSE’s are highly significant. Model VI, in which

moneyness is defined as ln(X/F ), offers additional improvement over Model V. Finally, Model VII

that measures the skew in terms of time-adjusted moneyness ln(X/F )/
√

τ provides a very large

improvement over Models V and VI. Still, Model VII is clearly inferior to Models I–III.
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7. Conclusion

This paper presents a new approach for describing the differences between the actual prices of

S&P 500 index options and their Black-Scholes values (computed with the same volatility for

different strikes) by expanding the deviations of actual prices from Black-Scholes values using

parabolic cylinder functions. It suffices to use only two functions, corresponding to the odd and

even components of the price deviations, respectively. While the price deviations from the Black-

Scholes vary randomly over time, we find that the price deviations are systematic and can be fit

quite well as quadratic functions of the total volatility. This relation is very stable.

Price deviations from the Black-Scholes formula have an equivalent representation in terms of

the implied volatility surface and also in terms of the (marginal) risk-neutral distribution of the

index level. We develop the relation between the price deviations and the implied volatilities, and

find that the differences between the total volatility at the various strike prices and the at-the-

money-forward total volatility satisfy a simple function of total-volatility-adjusted moneyness and

at-the-money-forward total volatility. Loosely, the slope and curvature of the implied volatility

function are determined by the at-the-money-forward total volatility. These findings of stability in

the price deviation and implied volatility functions stand in marked contrast to the view of a large

fraction of the existing literature. Turning to the risk-neutral distribution, we find that the implied

(marginal) risk-neutral density of index returns is bimodal.

Since the first appearance of Jackwerth and Rubinstein (2001), a challenge for option pricing

models has been to improve on the predictive performance of the simple trader rules known as

the absolute and relative smile models. Li and Pearson (2006) update the Jackwerth-Rubinstein

(2001) horse race among competing models using more recent data set and more recent models.

They find that the simple trader rules still dominate all other models and their performance can be

further improved by adjusting the predicted skew shapes using the volatility skew model proposed

in this paper. Perhaps surprisingly, after shape adjustment even the Black-Scholes model generally

performs better than mathematically more sophisticated models, even if the latter models are also

shape adjusted. With conditioning on actual at-the-money implied volatilities, the performance of

every model improves dramatically after shape adjustment.

Our findings of stability in the price deviations and the implied volatility skew, and our finding of

bimodality in the implied risk-neutral density have implications for models with stochastic volatility

and/or jump-diffusion processes, as they provide stylized facts that proposed models must capture

and thus rule out models that cannot produce these properties. More generally, the description of

the deviations of option prices from Black-Scholes values in terms of parabolic cylinder functions is

likely to be useful for empirical analysis because it provides a low-dimensional (i.e., small number

of parameters) description of the price deviation and implied volatility functions.
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Table 1

Sums of squared errors SSE and R2’s for different choices of N

Using the April 26, 2002 prices of the SPX options expiring in June 2002, we estimate the model

yk ≡ YA(zk) − YBS(zk, σF )

F
≈

N−1∑

n=0

anDn(zk),

where k indexes the different options, dk = ln(F/Xk)/(σF
√

τ), Dn is the n-th parabolic cylinder
function given by

Dn(z) = (−1)nez2/4 dn

dzn

(
e−z2/2

)
, n = 0, 1, 2, . . . .

and

zk =
√

2dk =

√
2 ln(F/Xk)

σF
√

τ
.

The table reports the sum of squared errors SSE and R2’s for different choices of N . The
column 2′ is for N = 3 but with the constraint a0 = a2. The total sum of squares is 241.7974.

N 1 2 2′ 3 4 5 6 7

SSE 230.08 22.197 9.9890 6.0089 0.2543 0.2540 0.0840 0.0839
R2 0.0491 0.9082 0.9587 0.9751 0.9989 0.9989 0.9997 0.9997
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Table 2

Correlations between the expansion coefficients and other variables

This table reports the correlations between the expansion coefficients a1 and a2 for the odd
and even components of the price deviations, the dimensionless total volatility σ2

F τ , and other
variables. The expansion coefficients are estimated separately for each calendar day-expiration
date pair by estimating the model of price deviations (18) using ordinary least squares.

a1 a2 τ σF σ2
F τ F r S exp(−δτ)

a1 1.0000
a2 −0.6245 1.0000
τ 0.7364 −0.5164 1.0000
σF 0.5248 −0.2439 0.0297 1.0000
σ2

F τ 0.9277 −0.6521 0.8643 0.4033 1.0000
F 0.3333 −0.1763 0.0846 0.4754 0.2826 1.0000
r 0.0165 −0.0491 0.0218 −0.1013 −0.0024 0.0423 1.0000

S exp(−δτ) 0.2340 −0.1046 −0.0444 0.4756 0.1679 0.9897 0.0053 1.0000
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Table 3

Models to explain the coefficient a1 on the odd expansion function D̃1

The table shows the parameter estimates and sums of squared errors (SSE) for a variety of models
to explain the expansion coefficient a1 for the odd component. The number of observations is
12,381. The total sum of squares is 0.451127. The standard errors for the parameter estimates are
given in the parentheses.

Model f1 γ α β SSE

(a) (α(σ2
F τ) + β(σF

√
τ)) exp(−rτ) 0.1037 0.0417 0.0562

(0.0015) (0.00036)
(b) α(σ2

F τ) + β(σF
√

τ) 0.0795 0.0432 0.0597
(0.0015) (0.00036)

(c) γ + α(σ2
F τ) + β(σF

√
τ) 0.0011 0.1120 0.0300 0.0587

(0.000081) (0.0027) (0.0010)
(d) γ + α(σ2

F τ) + β(σ2
F τ)2 0.0030 0.2170 −0.2496 0.0616

(0.000037) (0.0018) (0.015)
(e) γ + α(σ2

F τ)2 + β(σF
√

τ) −0.0001 0.4484 0.0547 0.0572
(0.000055) (0.0099) (0.00041)

(f) α(σ2
F τ)β 0.0903 0.6270 0.0619

(0.00017) (0.0017)
(g) γ + α(σ2

F τ)β 0.0019 0.1213 0.7857 0.0594
(0.000033) (0.00042) (0.0017)

(h) α(σ2
F τ)β exp(−rτ) 0.1062 0.6598 0.0588

(0.00017) (0.0018)
(i) ατ + β

√
τ 0.0007 0.0119 0.1951

(0.00015) (0.00016)
(j) ατ2 + β

√
τ 0.0001 0.0124 0.1954

(0.000052) (0.000081)
(k) ατ2 + βτ −0.0061 0.0199 0.2095

(0.000094) (0.00014)
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Table 4

Models to explain the coefficient a2 on the even expansion function D̃2

The table shows the parameter estimates and SSE’s for a variety of models to explain the
expansion coefficient a2 for the even component. The number of observations is 12,381. The total
sum of squares for a2 is 0.0162. The standard errors for the parameter estimates are given in the
parentheses.

Model f2 γ α β SSE

(a) (ασ2
F τ + βσF

√
τ) exp(−rτ) −0.0661 0.0150 0.0088

(0.00060) (0.00014)
(b) α(σ2

F τ) + β(σF
√

τ) −0.0622 0.0143 0.0089
(0.00057) (0.00014)

(c) γ + α(σ2
F τ) + β(σF

√
τ) 0.00037 −0.0516 0.0099 0.0088

(0.000032) (0.0011) (0.00039)
(d) γ + α(σ2

F τ) + β(σ2
F τ)2 0.00093 −0.0111 −0.1367 0.0089

(0.000014) (0.00067) (0.0058)
(e) γ + α(σ2

F τ)2 + β(σF
√

τ) 0.00103 −0.1820 −0.00233 0.0090
(0.000022) (0.0039) (0.00016)

(f) α(σ2
F τ)β −0.8265 2.8295 0.0138

(0.0145) (0.0076)
(g) γ + α(σ2

F τ)β 0.00088 −0.0863 1.5434 0.0089
(0.000009) (0.00086) (0.0048)

(h) α(σ2
F τ)β exp(−rτ) −0.9232 2.8403 0.0138

(0.0161) (0.0078)
(i) ατ + β

√
τ −0.0028 0.0030 0.0119

(0.000038) (0.000040)
(j) ατ2 + β

√
τ 0.0009 0.0012 0.0131

(0.000014) (0.000021)
(k) ατ2 + βτ −0.0012 0.0016 0.0143

(0.000025) (0.000036)
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Table 5

One-step analysis for the deviations of actual option prices from Black-Scholes values

The one-step model is

y = α1X1 + β1X2 + α2X3 + β2X4,

where y is the normalized price deviation given by

y =
YA(d) − YBS(d, σF )

F
,

and

X1 =
√

2σ2
F τd exp(−d2/2 − rτ),

X2 =
√

2σF

√
τd exp(−d2/2 − rτ),

X3 = 2σ2
F τd2 exp(−d2/2 − rτ),

X4 = 2σF

√
τd2 exp(−d2/2 − rτ).

The parameters α1 and β1 are related to the odd component while α2 and β2 are related to
the even component. Total number of observations is 456,280. Estimated standard errors are in
parentheses below the coefficient estimates.

α1 β1 α2 β2 SST SSE R2

0.1003 0.0437 −0.0746 0.0166 14.0628 0.6635 0.9528
(0.00029) (0.000061) (0.00030) (0.000052)
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Table 6

Models to explain the volatility deviations ∆σ
√

τ

The table shows the parameter estimates and R2’s for several of models to explain the total
volatility deviations ∆σ

√
τ . The number of observations is 228,140. The total sum of squares for

∆σ
√

τ is 107.28. Estimated standard errors are in parentheses below the coefficient estimates.

Model α β γ δ R2

αdσF
√

τ + βd2σF
√

τ + γdσ2
F τ + δd2σ2

F τ 0.1352 0.0308 0.4366 −0.0899 0.9556
(0.00027) (0.00019) (0.0015) (0.046)

αdσF
√

τ + βd2σF
√

τ + γdσ2
F τ 0.1410 0.0207 0.3995 0.9550

(0.00025) (0.000087) (0.0013)
αdσF

√
τ + βd2σF

√
τ 0.2098 0.0124 0.9372

(0.00013) (0.00010)
αdσF

√
τ + γdσ2

F τ 0.1695 0.3020 0.9442
(0.00025) (0.0014)

α(X/1000) + β(X/1000)2 0.0500 −0.0370 0.2163
(0.00017) (0.00013)

αd + βd2 0.0212 −0.0011 0.6414
(0.00004) (0.00002)
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Table 7

Out-of-sample forecasting performance of Models I–VII in Section 6

For each calendar date t, we estimate parameters in these models using 2 months of past data.
We then use these parameters to predict the option prices for date t + ∆t. N is the number of
forecasted trading days. We report the mean, median and standard deviations of mean-squared
errors on each day for each of the models.

Model
(Number of parameters)

Horizon ∆t I II III IV (BS) V VI VII
(days) N (4) (3) (2) (0) (2) (2) (2)

1 1630 mean 0.65 0.60 0.68 48.59 19.47 16.24 1.96
median 0.41 0.34 0.46 36.84 14.71 13.33 1.08

std. dev. 0.95 0.95 0.90 37.93 16.46 11.87 2.10

3 1629 mean 0.66 0.62 0.69 48.68 19.65 16.30 1.98
median 0.41 0.36 0.47 36.75 14.55 13.27 1.11

std. dev. 0.91 0.92 0.86 37.96 16.90 11.98 2.10

7 1626 mean 0.72 0.68 0.75 48.99 20.30 16.61 2.01
median 0.43 0.37 0.49 36.97 14.65 13.35 1.15

std. dev. 1.09 1.10 1.03 38.14 18.03 12.40 2.20

31 1609 mean 1.01 0.95 1.01 49.23 22.73 17.48 2.17
median 0.54 0.47 0.58 37.25 14.63 13.52 1.26

std. dev. 1.54 1.55 1.46 37.89 22.57 13.95 2.53

61 1588 mean 1.47 1.38 1.44 49.96 26.47 18.93 2.45
median 0.73 0.65 0.75 37.93 14.95 13.63 1.32

std. dev. 2.23 2.23 2.14 38.03 30.00 16.39 3.07

91 1567 mean 1.92 1.82 1.87 50.68 30.07 20.23 2.75
median 0.85 0.77 0.91 38.29 15.69 13.56 1.44

std. dev. 2.75 2.76 2.63 37.95 38.18 19.09 3.53

150 1527 mean 2.58 2.46 2.51 51.59 35.50 21.74 3.29
median 1.07 0.94 1.14 39.05 16.90 14.25 1.85

std. dev. 3.18 3.18 3.09 37.50 51.59 22.10 4.12
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Table 8

Pairwise t-statistics for Model Comparisons in conditional out-of-sample forecasting

Entries report the t-statistics defined in equation (67). Every one of the models V, VI and
VII are compared with the performance of model III (this paper) and model IV (Black-Scholes
benchmark). We compare the differences in performance for seven different forecasting hori-
zons. N is the number of forecasted trading days. All corresponding p-values are smaller than 10−5.

Horizon ∆t N V–III VI–III VII–III V–IV VI–IV VII–IV

1 1630 24.06 27.80 16.68 -20.49 -21.58 -25.99
3 1629 23.60 27.55 16.53 -20.32 -21.53 -25.99
7 1626 22.72 26.97 16.27 -20.13 -21.54 -26.01
31 1609 19.87 24.53 14.06 -17.79 -20.81 -26.17
61 1588 17.01 21.88 11.44 -14.01 -19.72 -26.29
91 1567 14.95 19.58 9.01 -10.34 -18.49 -26.56
150 1527 12.78 17.49 7.11 -6.24 -17.25 -26.90
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Figure 1. Differences between the actual prices and Black-Scholes values for both SPX call and
put options expiring in June 2002 observed on April 26, 2002. The actual prices are the bid-ask
midpoints from the close of trading, and the Black-Scholes values are computed using the at-the-
money-forward implied volatility for the straddles.
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Figure 2. Odd and even components of the price deviation function. The horizontal axis is the
total-volatility-adjusted moneyness d. The solid line is the price deviation function, the line with
circles is the odd expansion function D̃1, and the line with crosses (“+”) is the even expansion func-

tion D̃2. The three lines illustrate the approximate decomposition of the price deviation function
into the odd and even components.
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Figure 3. Expansion coefficients a0, a1, and a2 from equation (9) for the five months prior to the
expiration of the June 2002 option.
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Figure 4. Expansion coefficients a1 and a2 from equation (18) for the five months prior to the
expiration of the June 2002 option using two expansion functions.
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Figure 5. Actual and fitted values of the coefficients a1 on the odd parabolic cylinder function D̃1

as a function of the implied variance σ2
F and the remaining time to expiration τ for each calendar

date-expiration date pair during 2001. The actual values are shown by dots ·, and the fitted values
by stars *. The coefficients a1 are estimated separately for each calendar date-expiration date pair
by estimating equation (13) using ordinary least squares.

48



00.511.52
0

0.01

0.02

0.03

Time to maturity

a
1

0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

Volatility

a
1

00.511.52
0

0.01

0.02

0.03

Time to maturity

F
it
te

d
 a

1

0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

Volatility

F
it
te

d
 a

1

0 0.05 0.1 0.15
0

0.01

0.02

0.03

σ
F

2
 τ

a
1

0 0.05 0.1 0.15
0

0.01

0.02

0.03

σ
F

2
 τ

F
it
te

d
 a

1

Figure 6. Actual and fitted values of the coefficients a1 on the odd parabolic cylinder function D̃1

as a function of the time to expiration τ , the implied volatility σF , and the total volatility σ2
F τ for

each calendar date-expiration date pair during 2001. The actual values are shown in the left-hand
panels, and the fitted values in the right-hand panels. The coefficients a1 are estimated separately
for each calendar date-expiration date pair by estimating the quadratic model (13) using ordinary
least squares.
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Figure 7. Actual and fitted values of the coefficients a1 on the odd parabolic cylinder function
D̃1 as functions of the total volatility σ2

F τ separately for each of the five years 1996-2000 and the
period January 2001 - September 2002. Each panel shows both the actual (gray dots) and fitted
(black dots) values. The coefficients a1 are estimated separately for each calendar date-expiration
date pair by estimating the quadratic model (13) using ordinary least squares.
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Figure 8. Actual and fitted values of the coefficients a2 on the even parabolic cylinder function D̃2

as a function of the time to expiration τ , the implied volatility σF , and the total volatility σ2
F τ for

each calendar date-expiration date pair during 2001. The actual values are shown in the left-hand
panels, and the fitted values in the right-hand panels. The coefficients a2 are estimated separately
for each calendar date-expiration date pair by fitting (14) using ordinary least squares.
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Figure 9. Actual and fitted values of the coefficients a2 on the odd parabolic cylinder function
D̃2 as a function of the total volatility σ2

F τ separately for each of the five years 1996–2000 and the
period January 2001 - September 2002. Each panel shows both the actual (gray dots) and fitted
(black dots) values. The coefficients a1 are estimated separately for each calendar date-expiration
date pair by fitting (14) using ordinary least squares.
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Figure 10. Actual and fitted values of the implied volatility deviations ∆σ as a function of d
and dσF

√
τ for one out of every 200 calendar date-expiration date pairs during the entire sample

period. The actual values are shown by dots ·, and the fitted values by stars *.
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Figure 11. Implied risk-neutral density computed by differentiating the price deviation model
(10) compared to the lognormal density. The parameters used are: σ = 0.15, τ = 0.2, S = 1, 000,
r = 0.01. The parameters αi and βi used are those from the one-step regression, that is, α1 = 0.1003,
β1 = 0.0437 and α2 = −0.0661, β2 = 0.0150.
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Figure 12. Implied and lognormal risk-neutral densities for various horizons, computed using
parameters estimated from the entire sample. The graphs in the various panels are constructed
using σ = 0.25, S = 1, 000, and r = 0.05, with the α’s and β’s estimated from all options over
the entire sample period with times to expiration within a small window of the times to expiration
indicated on the panels. Except for the shortest maturity graph (the one labeled 7/365), the
parameters are estimated from options with times to expiration falling within an eight day window
centered on the time to expiration indicated on the panel. The shortest maturity graph is based
on parameter estimates estimated from the options with times to expiration of between 10 and 15
days.
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