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Abstract 

This study investigates the mechanism determining changes in job offers and analyzes the role of 

worker flows in the relationship between job offers and employment. It applies a queueing system 

to dynamic general equilibrium models and analyzes economic fluctuations. The queueing system 

helps in considering the relationship between job offers and employment and changes in job offers 

in response to shocks. The numerical simulations indicate that worker flows influence changes in 

job offers in response to a productivity shock. Although employment fluctuations remain constant, 

changes in job offers amplify when fewer workers join and/or more workers leave the firm, 

whereas they decrease when more workers join and/or fewer workers leave. The shock responses 

of other variables in each model are in line with the reactions of the standard dynamic general 

equilibrium models. These findings provide important insights into labor market dynamics. 
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1. Introduction 

At the macroeconomic level, job offers are one of the critical indicators when discussing 

economic policies because they reflect labor market conditions. At the organizational level, job 

offers play a crucial role in ensuring the necessary amounts of employment. However, job 

vacancies may not always be filled, for reasons such as disagreement regarding employment 

contracts and leaving. The resulting unfulfilled job vacancies lead to a gap between changes in 

job offers and fluctuations in employment. Cabo and Martín-Román (2019), Goux et al. (2001), 

and Hamermesh and Pfann (1996) discuss the fluctuations in new hiring and employment using 

the dynamic models of labor demand. Studies such as Chiarini and Piselli (2005), Lindé (2009), 

and Mitra et al. (2019) analyze employment fluctuations using dynamic general equilibrium 

(DGE) models considering the demand and supply sides of labor. The fluctuations analyzed in 

these frameworks do not correspond to changes in job offers because job vacancies are not always 

filled. This gap highlights the need for a framework analyzing changes in job offers. 

   In the given context, this study investigates the mechanism of the changes in determining job 

offers and expounds on the relationship between job offers and worker flows through a theoretical 

analysis. We use two DGE models with and without unemployment, respectively. The model with 

unemployment in this study is based on the efficiency wage model by Collard and de la Croix 

(2000), which is extended to investigate the change in job offers. The other model extends the 

standard DGE model. The change in job offers can be analyzed by applying queueing theory, 

which deals with issues related to waiting. The job offers correspond to the finite capacity of the 

queues, and employment corresponds to the workers in the queue. Given this, the relationship 

between job offers and employment is derived and introduced to the firms’ optimization problem. 

   In efficiency wage models, even if there is excess supply in the labor market, firms do not 

reduce wages because labor productivity depends positively on wages. The literature considers 

four types of models—the shirking, adverse selection, labor turnover, and gift exchange models. 

In the shirking model, firms pay higher wages to prevent workers from slacking because of the 

greater cost of lost income (e.g., Gomme, 1999; Martin and Wang, 2020; Shapiro and Stiglitz, 

1984). In the adverse selection model, firms hire the best workers by offering higher wages (Weiss, 

1980). In the labor turnover model, firms pay higher wages to reduce labor turnover and save on 

training and hiring costs (e.g., Campbell III, 1994; Salop, 1979; Stiglitz, 1974). In the gift 

exchange model, employees work harder in return for a higher pay from firms (e.g., Akerlof, 

1982; Collard and de la Croix, 2000; Danthine and Kurmann, 2004). This study extends the gift 

exchange model to simulate the behavior of job offers in response to a productivity shock. 

   Some studies investigate the labor market by applying a queueing system unlike the one used 

in this study. Deutsch and David (2020) assume that workers and jobs arrive at a system 

independently, and the job is assigned to a worker or discarded within a limited time. This job 
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assignment yields a higher (lower) gain if there is a match (mismatch) between the worker and 

the job offer. Deutsch and David (2020) analyze the optimal choices of workers in the system. 

Meanwhile, Feigin and Landsberger (1981) construct a model using an unemployment queue and 

discuss the stationary distribution of unemployment. Sattinger (2010) supposes that workers 

search and join queues at firms to acquire a job and considers the workers’ decision regarding 

which queues to enter. 

   This study uses the queueing theory to reveal the relationship between job offers and 

employment and shows that a large number of job offers leads to a significant increase in 

employment. It also shows that, at the same level of job offers, employment increases when more 

workers join the firm and/or fewer workers leave the firm. In the matching literature, many studies 

assume the Cobb–Douglas function in the matching function, such as Leduc and Liu (2016), 

Wesselbaum (2011), and Zanetti (2019). The matches depend on unemployed workers and job 

vacancies. The relationship between job offers and employment in this study shares a 

commonality with the matching function in that employment increases as labor demand increases. 

Based on numerical model simulations, this study also shows that substantial changes in job offers 

owing to productivity shocks do not necessarily increase employment variations. This is because 

the worker inflows and outflows influence only the reaction of job offers to the shock. The 

reactions are amplified when fewer workers join the firm and/or more workers leave the firm, 

though the employment fluctuations remain constant. In each model, the responses of the other 

variables to the shock are consistent with the reaction of a standard DGE model and an efficiency 

wage model, respectively. 

   This study makes the following contributions. First, it introduces the queueing system to 

construct macroeconomic frameworks that can analyze changes in job offers, showing how 

workers’ flows influence changes in job offers resulting from the shock. This provides important 

perspectives on labor market dynamics. Second, the numerical simulations predict how the 

balance between workers’ inflows and outflows influences the change in job offers. This indicates 

the need to examine both the change in job offers and workers’ flows when discussing economic 

policies. Suppose that workers’ flows change to fewer workers joining the firm and/or more 

workers leaving the firm. Then, employment may not increase significantly with the shock 

because of changes in workers’ flows. If we focus only on the changes in job offers without paying 

attention to the changes in workers’ flows, the resulting employment policy may be inadequate. 

   The remainder of this paper is organized as follows. Section 2 describes the relationship 

between job offers and employment according to the queueing theory. Section 3 analyzes the 

dynamics of the standard DGE model with a queueing system. Section 4 investigates the dynamics 

of the efficiency wage model with a queueing system. Finally, Section 5 concludes the study. 

 



 4 

2. Queueing system in the labor market 

In this section, we analyze the relationship between job offers and employment according to the 

queueing theory. Using Kendall’s notation, the system is classified as M/M/1 with finite capacity. 

We consider the situation that the firm offers jobs, and workers join the firm and leave after 

working for some time.  

 

 

Figure 1. Job offers and employment in the model 

 

   Figure 1 illustrates the relationship between job offers and employment. The firm makes 𝐽! 
job offers. We assume that the number of employees the firm hires cannot exceed that of 𝐽! job 

offers. Then, the maximum number of employees is the number of job offers, indicated by the 

size of the square in the figure. The number of workers in the square represents employees. The 

arrows indicate increases or decreases in the number of employees. The average employment 𝐿! 
is expressed as follows: 

   𝐿! = ∑ 𝑛𝑃"#!
"$% ,       (1) 

where 𝑛 is the number of employees, and 𝑃" is the probability of 𝑛 workers in the steady state. 

 

 

Figure 2. Transition diagram of the system 

 

   Using the queueing theory, 𝑃" can be derived. We assume that workers join the firm in a 

Poisson process at a constant 𝜆 > 0—the average number of workers joining the firm per unit of 

time. We also assume that workers leave the firm in a Poisson process at a constant 𝜇 > 0—the 

average number of workers leaving the firm per unit of time. In this case, the first worker to join 

the firm is not necessarily the first to leave. Suppose that a unit of time is 𝑇 ; then, 𝜆𝑇 
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employment contracts are signed within 𝑇.  Furthermore, 𝑇  is divided into 𝑁 ; then, the 

probability of joining the firm is 𝜆𝑇 𝑁⁄ . Replacing 𝑇 𝑁⁄  with a time interval ∆𝑠, the probability 

of increasing the number of employees by one is expressed as 𝜆∆𝑠. We assume that the interval 

is sufficiently small and that employment cannot be increased by more than one worker. Similarly, 

suppose that a unit of time 𝑇 is divided into 𝑁, and 𝜇𝑇 employment contracts are cancelled 

within 𝑇. Then, the probability of leaving the firm is 𝜇𝑇 𝑁⁄ . Thus, the probability of decreasing 

the number of workers by one is denoted by 𝜇Δ𝑠. 

   Figure 2 shows the change patterns in the number of employees. The number of employees is 

indicated in squares, and the arrows indicate increases or decreases in the number of employees. 

When the system is in a steady state, we derive 𝑃" by considering the following cases: (i) 𝑛 =0, (ii) 0 < 𝑛 < 𝐽!, and (iii) 𝑛 = 𝐽!. The upper transition in Figure 2 corresponds to case (i). We 

obtain 𝜆Δ𝑠𝑃% = 𝜇Δ𝑠𝑃& if 𝑛 = 0, where 𝜆Δ𝑠𝑃% is the probability of increasing the number of 

employees from 𝑛 = 0 and 𝜇Δ𝑠𝑃& is the probability of decreasing the number of employees 

from 𝑛 = 1. The equation is transformed as follows: 

   𝑃& = 𝜃𝑃%,        (2) 

where 𝜃 = 𝜆 𝜇⁄ , which is called traffic intensity in the queueing theory. Traffic intensity 

measures the relative imbalance between the inflow and outflow of workers. The middle transition 

in Figure 2 corresponds to case (ii). We obtain 𝜆Δ𝑠𝑃"'& + 𝜇Δ𝑠𝑃"(& = (𝜆Δ𝑠 + 𝜇Δ𝑠)𝑃" if 0 <𝑛 < 𝐽!. In this expression, 𝜆Δ𝑠𝑃"'& is the probability of increasing from 𝑛 − 1, 𝜇Δ𝑠𝑃"(& is 

the probability of decreasing from 𝑛 + 1, and (𝜆Δ𝑠 + 𝜇Δ𝑠)𝑃" is the probability of increasing 

and decreasing from 𝑛. The equation is transformed as follows: 

   𝑃"(& = (1 + 𝜃)𝑃" − 𝜃𝑃"'&.      (3) 

The lower transition in Figure 2 corresponds to case (iii).We obtain 𝜇Δ𝑠𝑃#! = 𝜆Δ𝑠𝑃#!'& if 𝑛 =𝐽!, where 𝜇Δ𝑠𝑃#! is the probability of decreasing from 𝐽! and 𝜆Δ𝑠𝑃#!'& is the probability of 

increasing from 𝐽! − 1. The equation is transformed as follows: 

   𝑃#! = 𝜃𝑃#!'&.        (4) 

   We derive the probability of 𝑛  by using Eqs. (2)–(4). First, 𝑃"  can be expressed as a 

function of 𝑃%. By substituting Eq. (2) into Eq. (3) with 𝑛 = 1 to eliminate 𝑃&, we obtain 𝑃) =𝜃)𝑃% . By substituting 𝑃) = 𝜃)𝑃%  into Eq. (3) with 𝑛 = 2 to eliminate 𝑃) , we obtain 𝑃* =𝜃*𝑃%. Similarly, we express 𝑃" as follows: 

   𝑃" = 𝜃"𝑃%.        (5) 

In Eq. (5), 𝑃#!'& = 𝜃#!'&𝑃%  when 𝑛 = 𝐽! − 1 . Using 𝑃#!'& = 𝜃#!'&𝑃%  to eliminate 𝑃#!'& 

from Eq. (4), we obtain 𝑃#! = 𝜃#!𝑃%. Therefore, Eq. (5) holds in 0 < 𝑛 ≤ 𝐽!. 
   Second, 𝑃% can be derived as a function of 𝐽! . It holds that the probabilities sum to one ∑ 𝑃"#!
"$% = 1 . By substituting Eq. (5) into ∑ 𝑃"#!

"$% = 1 , we obtain 𝑃%∑ 𝜃"#!
"$% = 1 . From ∑ 𝜃"#!

"$% = (1 − 𝜃#!(&) (1 − 𝜃)⁄ , 𝑃%∑ 𝜃"#!
"$% = 1 is transformed as follows: 
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   𝑃% = &'+

&'+"!#$
.        (6) 

   Finally, 𝑃" can be expressed as a function of 𝐽!. Using Eq. (6) to eliminate 𝑃% from Eq. (5), 

we obtain 𝑃" = 𝜃"(1 − 𝜃) (1 − 𝜃#!(&)⁄ . As 𝜃 approaches 1, both 𝜃"(1 − 𝜃) and 1 − 𝜃#!(& 

approach 0. By L’Hôpital’s rule, we obtain the following equations: 

   lim
+→&

+%(&'+)

&'+"!#$
= &

#!(&
. 

We obtain the probability of 𝑛 as follows: 

   𝑃" = >+%(&'+)&'+"!#$
for 𝜃 ≠ 1,

	 &

#!(&
for 𝜃 = 1,      (7) 

where 0 ≤ 𝑛 ≤ 𝐽!. 
   By substituting Eq. (7) into Eq. (1), we obtain the average employment as follows: 

   𝐿! = E+/&'(#!(&)+"!(#!+"!#$0(&'+)(&'+"!#$)
for 𝜃 ≠ 1,𝐽! 2⁄ for 𝜃 = 1.      (8) 

Eq. (8) expresses the relationship between job offers and average employment, as shown in Figure 

3. This indicates that a large number of job offers leads to increased employment. The 𝜃 

increases when more workers join the firm and/or fewer workers leave the firm, which is the case 

with larger 𝜆 and/or smaller 𝜇. At the same level of job offers, the larger 𝜃 brings about larger 

employment. In sections 3 and 4, we introduce the aforementioned relationship into the models 

and analyze the behavior of job offers in response to a productivity shock. 

 

 

Figure 3. Relationship between job offers and average employment 
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Liu (2016), Wesselbaum (2011), and Zanetti (2019). The number of matches is a function of 

unemployed workers and job vacancies. The relationship between job offers and average 

employment in this study is similar to the matching function in that employment increases as 

labor demand increases. 

 

3. A DGE model without unemployment 

In this section, we build a DGE model with a queueing system in the labor market. The economy 

consists of a representative household and firm. We also conduct a numerical analysis to 

investigate economic fluctuations and changes in job offers resulting from the productivity shock.  

 

3.1 Model 

The representative household maximizes the following utility function, which is the same as that 

assumed in Blanchard and Galí (2010): 

   ∑ 𝛽! G𝑙𝑜𝑔𝐶! − 𝜒 1!
$#&

&(2
M3

!$% , 

where 0 < 𝛽 < 1 is the discount factor, 𝜒 is the disutility from working, 1 𝜈⁄  is the Frisch 

elasticity of labor supply, 𝐶! is consumption, and 𝐿! is labor supply. 

   The household’s budget constraint is as follows: 

   𝐶! + 𝐼! = 𝑅!𝐾! +𝑤!𝐿!,       (9) 

where 𝐼! is investment, 𝑅! is the rental rate of capital, 𝐾! is capital, and 𝑤! is the wage rate. 

The law of motion for capital stock is as follows: 

   𝐾!(& = (1 − 𝛿)𝐾! + 𝐼!,       (10) 

where 0 < 𝛿 < 1 denotes the depreciation rate of capital. From Eqs. (9) and (10), the constraint 

can be expressed as follows: 

   𝐾!(& = (𝑅! + 1 − 𝛿)𝐾! +𝑤!𝐿! − 𝐶!.     (11) 

   The household maximizes its utility subject to Eq. (11). At the beginning of the first period, 𝐾% is given. The first-order conditions with respect to 𝐶!, 𝐿!, and 𝐾!(& are as follows: 

   
&

4!
= Λ!,        (12) 

   𝜒𝐿!2 = Λ!𝑤!,        (13) 

   1 = 𝛽 5!#$
5!

(𝑅!(& + 1 − 𝛿),      (14) 

where Λ! is the Lagrange multiplier. We impose the following transversality condition: 

   lim
!→3

𝛽!Λ!𝐾!(& = 0. 

From Eqs. (12) and (14), we obtain the following Euler equation: 
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4!#$
4!

= 𝛽(𝑅!(& − 𝛿 + 1).      (15) 

Using Eqs. (12) and (13), we obtain the following labor supply equation: 

   
6!
4!
= 𝜒𝐿!2.        (16) 

   The representative firm produces 𝑌! according to the following Cobb–Douglas production 

function: 

   𝑌! = 𝐴!𝐾!7𝐿!&'7,       (17) 

where 0 < 𝛼 < 1 is the capital share in production, and 𝐴!  is productivity. We assume that 

productivity follows a first-order autoregressive process: 

   𝑙𝑜𝑔𝐴! = 𝜌𝑙𝑜𝑔𝐴!'& + 𝜀!,       (18) 

where −1 < 𝜌 < 1 is the autoregressive parameter, and 𝜀! is the shock to productivity, which 

is set to 0 in the steady state. The business cycle literature assumes the same exogenous law of 

motion of productivity. As discussed in Eq. (8), we assume that 𝐿! is a function of the job offers. 

   The firm chooses 𝐾! and 𝐽! to maximize the following profit: 

   𝜋! = 𝐴!𝐾!7[𝐿(𝐽!)]&'7 − 𝑅!𝐾! −𝑤!𝐿(𝐽!). 
The first-order conditions for profit maximization are as follows: 

   𝑅! = 𝛼 8!
9!

,        (19) 

   𝑤! = (1 − 𝛼) 8!
1(#!)

.       (20) 

   The equilibrium in the goods market is as follows: 

   𝐶! + 𝐼! = 𝑌!.        (21) 

Eqs. (8), (10), and (15)–(21) describe the behavior of the variables 𝑌!, 𝐶!, 𝐼!, 𝐾!, 𝐿!, 𝐽!, 𝑅!, 𝑤!, and 𝐴!. 
 

3.2 Numerical analysis in the model 

Table 1 lists the parameters. The discount factor 𝛽 is set to 0.99, which is commonly used in the 

literature. Following Blanchard and Galí (2010), the inverse Frisch elasticity of labor supply 𝜈 

is set to 1.0. We suppose that the disutility of working 𝜒 is 1.0, as in Furlanetto (2011). The 

depreciation rate of capital 𝛿 is set to 0.025, which is in line with Chiarini and Piselli (2005), 

Lindé (2009), and Zanetti (2019). As in Collard and de la Croix (2000), the capital share in 

production 𝛼  is set to 0.36. The persistence of the shock in productivity 𝜌  is set to 0.95, 

following Lendvai et al. (2013). Suppose that 𝜀! = 0 and 𝐴! = 𝐴!'& = 𝐴 in the steady state. 

Then, we obtain the steady-state productivity 𝐴 = 1 from Eq. (18). We assume that a positive 

temporary shock to productivity occurs: Productivity increases by 1% in period 0, that is, 𝜀% is 
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set to 0.01, and the 𝜀! in the other periods are 0. Suppose that 𝜃 is set to 1.0 in the baseline 

simulation. In the sensitivity analysis, we also examine the cases where 𝜃 is 0.6, 0.8, and 1.2. 

Appendix A presents the steady-state values. 

 

  Table 1. Parameters in the standard dynamic general equilibrium model 

Parameters Value 𝛼 Capital share in production 0.36 𝛽 Discount factor 0.99 𝛿 Depreciation rate of capital 0.025 𝜃 Ratio between the inflow and outflow of workers 1.0 𝜌 Autoregressive parameter 0.95 𝜈 Inverse Frisch elasticity of labor supply 1.0 𝜒 Disutility from working 1.0 

 

 

Figure 4. Response to the productivity shock in the standard dynamic general equilibrium model 

Note: The horizontal and vertical axes represent time and percentage, respectively. The figure 

shows the percentage deviation of the variables from their steady-state values when the shock 

occurs. 

 

   Figure 4 shows the responses to the productivity shock. Productivity increases in period 0 and 

gradually returns to the steady state according to the first-order autoregressive process. The results 
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of the numerical simulations are in line with the results of a standard DGE model. Specifically, 

the results show that a positive temporary shock to productivity increases the output, consumption, 

investment, capital, employment, rental rate of capital, and wage rate. 

   The positive productivity shock increases the marginal products of capital and labor, which 

increases capital and employment and thereby, the output. To increase the labor input, a firm 

increases its job offers. The increase in demand for these inputs leads to an increase in the rental 

rate of capital and wage rate. Additionally, an increase in income leads to an increase in 

consumption and investment. When 𝜃 = 1, the same changes in job offers and employment are 

observed. 

   Figure 5 shows the response of job offers to the productivity shock. The numerical simulations 

show that a smaller 𝜃 amplifies the change in job offers in response to the productivity shock. 

Specifically, the response of job offers in period 0 is approximately 0.72%, 0.51%, 0.47%, and 

0.45% if 𝜃 is 0.6, 0.8, 1.0, and 1.2, respectively. When the ratio is small, fewer workers join 

and/or more workers leave the firm. In this situation, firms should increase their job offers to hire 

the necessary number of workers in response to the productivity shock. In this setting, the 

reactions of the other variables are not affected by the change in 𝜃. Therefore, substantial changes 

in job offers in response to the shock do not necessarily increase employment fluctuations. Firms 

increase job offers not only to employ a large number of workers but also to deal with the situation 

of a small 𝜃. Moreover, changes in job offers are larger than those in employment when 𝜃 < 1, 

whereas changes in job offers are smaller when 𝜃 > 1. 

 

 

Figure 5. Response of job offers in the standard dynamic general equilibrium model 

Note: The horizontal and vertical axes represent time and percentage, respectively. The figure 

shows the percentage deviation of job offers from the steady-state value when the shock occurs. 

The left- and right-hand sides of the figure show the periods from 0 to 200 and 0 to 10, respectively. 
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4. A DGE model with unemployment 

In this section, we analyze the efficiency wage model with the queueing system in the labor 

market. This framework is based on the gift exchange model by Collard and de la Croix (2000), 

which is extended to investigate the change in job offers. As in section 3, the economy consists 

of a representative household and firm. We explore the reaction of the DGE model to a positive 

temporary productivity shock. 

 

4.1 Efficiency wage model 

The representative household maximizes the following utility function: 

   ∑ 𝛽! ]𝑙𝑜𝑔𝐶! − 𝑑! _𝑒! − 𝜙 − 𝛾𝑙𝑜𝑔 c6!6!'d − 𝜓𝑙𝑜𝑔 c 6!
6!($

df)g3
!$% , 

where 0 < 𝛽 < 1 is the discount factor, 𝐶! is consumption, 𝑒! is effort; 𝑤! is the wage rate, 

and 𝑤!: is an alternative wage rate; the constant parameter 𝜙 denotes the effort level that the 

household is willing to provide, the constant parameter 𝛾 expresses the sensitivity of the effort 

to the ratio of the wage to the alternative wage, and the constant parameter 𝜓 is the sensitivity 

of the effort to the ratio of the wage to the previous wage. We assume that 𝑑!  is a dummy 

variable: 𝑑! = 1 if the worker is employed, and 𝑑! = 0 otherwise. If we assume 𝛾 = 0, then 

the employment in the steady state cannot be expressed parametrically. If we assume 𝜓 = 0, then 

the employment will remain constant over the business cycle. Tripier (2006) also assumes the 

same type of effort function. 

   The household’s budget constraint is as follows: 

   𝐶! + 𝐼! = 𝑅!𝐾! +𝑤!𝐿!,       (22) 

where 𝐼! is investment, 𝑅! is the rental rate of capital, 𝐾! is capital, and 𝐿! is labor supply. 

The law of motion for capital stock is as follows: 

   𝐾!(& = (1 − 𝛿)𝐾! + 𝐼!,       (23) 

where 0 < 𝛿 < 1 denotes the depreciation rate of capital. From Eqs. (22) and (23), we express 

the constraint as follows: 

   𝐾!(& = (𝑅! + 1 − 𝛿)𝐾! +𝑤!𝐿! − 𝐶!.     (24) 

   The household maximizes its utility subject to Eq. (24). It is assumed that 𝐾% is given. The 

first-order conditions with respect to 𝐶!, 𝑒!, and 𝐾!(& are as follows: 

   
&

4!
= Λ!,        (25) 

   𝑒! = 𝜙 + 𝛾𝑙𝑜𝑔 c6!
6!
'd + 𝜓𝑙𝑜𝑔 c 6!

6!($
d,     (26) 

   1 = 𝛽 5!#$
5!

(𝑅!(& + 1 − 𝛿),      (27) 
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where Λ! is the Lagrange multiplier. We impose the following transversality condition: 

   lim
!→3

𝛽!Λ!𝐾!(& = 0. 

From Eqs. (25) and (27), we obtain the following Euler equation: 

   
4!#$
4!

= 𝛽(𝑅!(& + 1 − 𝛿).      (28) 

   The representative firm produces 𝑌!, according to the following Cobb–Douglas production 

function: 

   𝑌! = 𝐴!𝐾!7(𝑒!𝐿!)&'7,       (29) 

where 0 < 𝛼 < 1 is the capital share in production, and 𝐴! is productivity. We suppose that 

productivity follows a first-order autoregressive process: 

   𝑙𝑜𝑔𝐴! = 𝜌𝑙𝑜𝑔𝐴!'& + 𝜀!,      (30) 

where −1 < 𝜌 < 1 is the autoregressive parameter, and 𝜀!  is the shock to productivity. As 

discussed in Eq. (8), we assume that 𝐿! is a function of 𝐽!. 
   The firm’s profit is expressed as follows: 

   𝜋! = 𝐴!𝐾!7[𝑒!𝐿(𝐽!)]&'7 − 𝑅!𝐾! −𝑤!𝐿(𝐽!). 
The firm chooses 𝐾!, 𝑤!, and 𝐽! to maximize profit, subject to Eq. (26): 

   𝑅! = 𝛼 8!
9!

,        (31) 

   𝐿(𝐽!) = (1 − 𝛼) 8!
;!
c<(=
6!
d,      (32) 

   𝑤! = (1 − 𝛼) 8!
1(#!)

.        (33) 

Using Eq. (32) to eliminate (1 − 𝛼)𝑌! [𝑤!𝐿(𝐽!)]⁄  from Eq. (33), we obtain the effort level as 

follows: 

   𝑒! = 𝛾 + 𝜓.        (34) 

The effort level depends only on the constant parameters. From Eqs. (26) and (34), the firm 

controls the wage rate such that the effort is constant over time. Eq. (34) corresponds to a 

transformation of the Solow condition in which the elasticity of effort with respect to the wage 

rate equals 1 as 𝑒(𝑤!) = 𝑒′(𝑤!)𝑤!. 
   We assume that the unemployment rate is 1 − 𝐿!. The alternative wage is assumed as follows: 

   𝑤!: = 𝑤!𝐿!,        (35) 

which is the average labor income. We assume that the unemployment compensation is zero. de 

la Croix et al. (2009) and Kaufman (2002) also discuss the alternative wage. 

   The equilibrium in the goods market is as follows: 

   𝐶! + 𝐼! = 𝑌!.        (36) 

The model consists of the variables 𝑌! , 𝐶! , 𝐼! , 𝐾! , 𝐿! , 𝐽! , 𝑅! , 𝑤! , 𝑤!: , 𝑒! , and 𝐴! . The 
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system of equations defining the model consists of Eqs. (8), (23), (26), (28)–(31), and (33)–(36). 

 

4.2 Numerical analysis in the efficiency wage model 

According to Collard and de la Croix (2000), we set the parameters, as displayed in Table 2. The 

parameter 𝜙 is set such that the steady-state value of employment 𝐿 is 0.9. From Eqs. (26), (34), 

and (35) in the steady state, we obtain 𝜙 = 𝛾(𝑙𝑜𝑔𝐿 + 1) + 𝜓. Suppose that 𝜃 is set to 1.0 in the 

baseline simulation. In the sensitivity analysis, we also examine the cases where 𝜃 is 0.6, 0.8, 

and 1.2. Suppose that 𝜀! = 0 and 𝐴! = 𝐴!'& = 𝐴 in the steady state. Then, the steady-state 

productivity 𝐴 = 1 is obtained from Eq. (30). We assume that a positive temporary shock to 

productivity occurs: Productivity increases by 1% in period 0, that is, 𝜀% is set to 0.01, and the 𝜀! in the other periods are 0. Appendix B presents the steady-state values. 

 

Table 2. Parameters in the efficiency wage model 

Parameter Value 𝛼 Capital share in production 0.36 𝛽 Discount factor 0.99 𝛿 Depreciation rate of capital 0.025 𝜃 Ratio between the inflow and outflow of workers 1.0 𝜌 Autoregressive parameter 0.95 𝜙 Effort level that the household is willing to provide 3.60518 𝛾 Sensitivity of the effort to the ratio of the wage to the alternative wage 0.9 𝜓 Sensitivity of the effort to the ratio of the wage to the previous wage 2.8 

 

   Figure 6 shows the responses to the productivity shock. The direction of changes in variables 

in response to the shock is similar to the reaction of the standard DGE model discussed in section 

3. The productivity increases in period 0 and gradually returns to the steady state, according to 

Eq. (30). The marginal products of capital and labor increase as a result of the positive 

productivity shock. The increase in the demand for capital and labor increases capital and 

employment, which increases the output. To increase the labor input, the firm increases its job 

offers. When 𝜃 = 1, the same changes in job offers and employment are observed. The increase 

in demand for capital leads to an increase in the rental rate of capital. Furthermore, the wage rate 

increases because the firm controls the wage rate such that the effort remains constant. When the 

firm does not increase the wage rate, the effort decreases by an increase in the alternative wage, 

as shown in Eqs. (26) and (35). An increase in income increases consumption and investments. 
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Figure 6. Response to the productivity shock in the efficiency wage model 

Note: The horizontal and vertical axes represent time and percentage, respectively. The solid lines 

represent the percentage deviations of the variables from their steady-state values when the shock 

occurs. 

 

 

Figure 7. Response of job offers in the efficiency wage model 

Note: The horizontal and vertical axes represent time and percentage change, respectively. The 

figure shows the percentage deviation of job offers from the steady-state value when the shock 

occurs. The left- and right-hand sides of the figure show the periods from 0 to 200 and 0 to 10, 

respectively. 

 

   Figure 7 shows the reaction of job offers to the productivity shock. The numerical simulation 

indicates that a smaller 𝜃  increases the change in job offers to the productivity shock: The 

response of job offers in period 0 is approximately 1.86%, 1.62%, 1.47%, and 1.41% if 𝜃 is 0.6, 

0.8, 1.0, and 1.2, respectively. Similar to the analysis in section 3, in this setting, the change in 𝜃 
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has no effect on the other variables. The small 𝜃 is caused by fewer workers joining the firm 

and/or more workers leaving the firm, which is the case with a smaller 𝜆 and/or a larger 𝜇. The 

firms should increase their job offers to employ the necessary number of workers in response to 

the productivity shock in this situation. The simulation shows that a substantial change in job 

offers in response to the shock does not necessarily lead to significant employment fluctuations. 

The results also show that changes in job offers are larger than those in employment when 𝜃 < 1, 

whereas changes in job offers are smaller when 𝜃 > 1. 

   The simulations indicate that we should examine both the change in job offers and the worker 

flows when discussing economic policies. If we observe only the change in job offers, even 

though 𝜃 is small, then we would anticipate that a significant change in job offers leads to 

significant employment fluctuations. If so, the economic policy may be inadequate in terms of 

reducing the unemployment rate. 

   Although the increase in productivity brings about an increase in employment in this study, 

Mandelman and Zanetti (2014) demonstrate the negative response of labor input to a positive 

productivity shock because of an increase in hiring costs through an increase in productivity. 

Moreover, Mumtaz and Zanetti (2016) indicate that a positive productivity shock makes the 

production of greater output possible with fewer labor inputs, which reduces employment. These 

studies’ findings are in line with the estimation results in Galí (1999). The models in sections 3 

and 4 should be extended to demonstrate the employment responses. 

 

5. Conclusions 

The introduction of the relationship between job offers and employment, according to the 

queueing system, into the macroeconomic models allows for an analysis of changes in job offers. 

The relationship indicates that job offers and worker flows influence employment. The models 

predict that changes in job offers in response to the productivity shock depend on the ratio between 

the inflow and outflow of workers. A small ratio between the inflow and outflow of workers gives 

rise to significant changes in job offers in response to the productivity shock. Moreover, the ratio 

of the inflow and outflow of workers influences only the reaction of job offers in response to the 

shock. Therefore, significant changes in job offers do not necessarily cause significant 

employment fluctuations. 

   The simulations indicate that both the change in job offers and workers’ flows need to be 

examined when discussing economic policies. If we focus only on the significant changes in job 

offers, notwithstanding the small ratio between the inflow and outflow of workers, we may 

anticipate a significant change in job offers to lead to significant employment fluctuations. The 

economic policy may be inadequate in terms of employment policy in such a situation. 

   Some issues remain to be addressed. The ratio determining the worker flows 𝜆 and 𝜇 is 
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assumed to be given. Such flows are influenced by household preferences, economic policies, and 

labor market institutions. Hence, it is crucial to examine their underlying decision mechanism. 

Although a positive productivity shock increases employment in this study, some studies 

demonstrate a negative response of labor input to a positive productivity shock. Given this, it is 

important to study the negative response of employment to a positive productivity shock. 

   Future studies can extend these models to study heterogeneous households and firms to 

demonstrate various changes in job offers and employment. By extending these models, the 

effects of change in labor market institutions (e.g., unemployment benefits and labor adjustment 

costs) on employment fluctuations can be analyzed. Future studies can also examine the impact 

of economic policies on job offers. 

 

Appendix A: Steady state in the standard dynamic general equilibrium model 

In the steady state, from Eqs. (8), (10), and (15)–(21), we obtain the following: 

   𝐿 = E+/&'(#(&)+"(#+"#$0(&'+)(&'+"#$)
for 𝜃 ≠ 1,𝐽 2⁄ for 𝜃 = 1,     (A1) 

   𝐼 = 𝛿𝐾,        (A2) 

   1 = 𝛽(𝑅 − 𝛿 + 1),       (A3) 

   
6

4
= 𝜒𝐿2 ,        (A4) 

   𝑌 = 𝐴𝐾7𝐿&'7 ,        (A5) 

   𝑙𝑜𝑔𝐴 = 𝜌𝑙𝑜𝑔𝐴,        (A6) 

   𝑅 = 𝛼 8

9
,        (A7) 

   𝑤 = (1 − 𝛼) 8
1
,        (A8) 

   𝐶 + 𝐼 = 𝑌.        (A9) 

Eqs. (A1)–(A9) show the steady-state values of the variables without subscripts. From Eq. (A6), 

we obtain 𝐴 = 1. From Eq. (A3), we obtain 𝑅 as follows: 

   𝑅 = 𝛽'& + 𝛿 − 1.       (A10) 

Using Eqs. (A5), (A10), and 𝐴 = 1, we transform Eq. (A7) as follows: 

   
9

1
= c>($(?'&

7
d ($

$()
.       (A11) 

Using Eq. (A5) and 𝐴 = 1, we transform Eq. (A8) as follows: 

   𝑤 = (1 − 𝛼) c9
1
d7.       (A12) 

By substituting Eq. (A11) into Eq. (A12) to eliminate 𝐾 𝐿⁄ , we obtain 𝑤. Using 𝐴 = 1, Eq. (A5) 
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can be transformed as follows: 

   
8

1
= c9

1
d7.        (A13) 

Using Eq. (A2) to eliminate 𝐼 from Eq. (A9) and multiplying 1 𝐿⁄ , we obtain the following: 

   
4

1
= 8

1
− 𝛿 9

1
.        (A14) 

Using Eqs. (A11) and (A13) to eliminate 𝐾 𝐿⁄  and 𝑌 𝐿⁄  from Eq. (A14), we obtain the 

following: 

   
4

1
= c>($(?'&

7
d ()

$() − 𝛿 c>($(?'&
7

d ($

$()
.     (A15) 

Multiplying both sides of Eq. (A4) by 𝐿, we obtain the following equation: 

   𝐿 = c6
@
d $

$#& c4
1
d ($

$#&
.       (A16) 

From Eqs. (A11), (A12), (A15), and (A16), we obtain 𝐿. By substituting 𝐿 into Eq. (A1), we 

obtain 𝐽. By substituting 𝐿 into Eqs. (A11) and (A15), we obtain 𝐾 and 𝐶, respectively. By 

substituting 𝐾 into Eq. (A2), we obtain 𝐼. By substituting 𝐾 and 𝐿 into Eq. (A5), we obtain 𝑌. 

 

Appendix B: Steady state in the efficiency wage model 

In the steady state, from Eqs. (8), (23), (26), (28)–(31), and (33)–(36), we obtain the following: 

   𝐿 = E+/&'(#(&)+"(#+"#$0(&'+)(&'+"#$)
for 𝜃 ≠ 1,𝐽 2⁄ for 𝜃 = 1,     (B1) 

   𝐼 = 𝛿𝐾,        (B2) 

   𝑒 = 𝜙 + 𝛾𝑙𝑜𝑔 c 6
6'
d,       (B3) 

   1 = 𝛽(𝑅 + 1 − 𝛿),       (B4) 

   𝑌 = 𝐴𝐾7(𝑒𝐿)&'7 ,       (B5) 

   𝑙𝑜𝑔𝐴 = 𝜌𝑙𝑜𝑔𝐴,        (B6) 

   𝑅 = 𝛼 8

9
,        (B7) 

   𝑤 = (1 − 𝛼) 8
1
,        (B8) 

   𝑒 = 𝛾 + 𝜓,        (B9) 

   𝑤: = 𝑤𝐿,        (B10) 

   𝐶 + 𝐼 = 𝑌.        (B11) 
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Eqs. (B1)–(B11) show the steady-state values of the variables without subscripts. From Eq. (B6), 

we obtain 𝐴 = 1. By substituting Eqs. (B9) and (B10) into Eq. (B3) to eliminate 𝑒 and 𝑤:, we 

obtain 𝑙𝑜𝑔𝐿 = (𝜙 − 𝜓) 𝛾⁄ − 1. From 𝑒𝑥𝑝(𝑙𝑜𝑔𝐿) = 𝐿, we transform 𝑙𝑜𝑔𝐿 = (𝜙 − 𝜓) 𝛾⁄ − 1 

as follows: 

   𝐿 = 𝑒𝑥𝑝 cA'=
<
− 1d.       (B12) 

Using Eq. (B12) to eliminate 𝐿 from Eq. (B1), we obtain 𝐽. From Eq. (B4), we obtain 𝑅 as 

follows: 

   𝑅 = 𝛽'& + 𝛿 − 1.       (B13) 

Using Eqs. (B7), (B9), and 𝐴 = 1 to eliminate 𝑌 𝐾⁄ , 𝑒, and 𝐴 from Eq. (B5), we obtain the 

following: 

   
9

1
= G B

7(<(=)$()
M ($$()

.       (B14) 

By substituting Eq. (B13) into Eq. (B14), we obtain the following: 

   
9

1
= G >($(?'&

7(<(=)$()
M ($$()

.       (B15) 

Using Eq. (B12) to eliminate 𝐿 from Eq. (B15), we obtain 𝐾. By substituting 𝐾 into Eq. (B2), 

we obtain 𝐼. By substituting Eq. (B9), Eq. (B12), 𝐴 = 1, and 𝐾 into Eq. (B5), we obtain 𝑌. 

Using Eq. (B9) and 𝐴 = 1 to eliminate 𝑒 and 𝐴 from Eq. (B5), we obtain the following: 

   
8

1
= (𝛾 + 𝜓)&'7 c9

1
d7.       (B16) 

From Eqs. (B8), (B15), and (B16), we obtain 𝑤. By substituting Eq. (B12) and 𝑤 into Eq. (B10), 

we obtain 𝑤:. Using Eq. (B11) to eliminate 𝐼 from Eq. (B2) and multiplying 1 𝐿⁄ , we obtain 

the following: 

   
4

1
= 8

1
+ 𝛿 9

1
.        (B17)  

From Eqs. (B12) and (B15)–(B17), we obtain 𝐶.  



 19 

References 

Akerlof, G.A., 1982. Labor contracts as partial gift exchange. Q. J. Econ. 97, 543–569. 

https://doi.org/10.2307/1885099. 

Blanchard, O., Galí, J., 2010. Labor markets and monetary policy: A New Keynesian model 

with unemployment. Am. Econ. J. Macroecon. 2(2), 1–30. https://doi.org/10.1257/mac.2.2.1. 

Cabo, F., Martín-Román, A., 2019. Dynamic collective bargaining and labor adjustment costs. J. 

Econ. 126, 103–133. https://doi.org/10.1007/s00712-018-0615-3. 

Campbell III, C.M., 1994. Wage change and the quit behavior of workers: Implications for 

efficiency wage theory. South. Econ. J. 61, 133–148. https://doi.org/10.2307/1060135. 

Chiarini, B., Piselli, P., 2005. Business cycle, unemployment benefits and productivity shocks. 

J. Macroecon. 27, 670–690. https://doi.org/10.1016/j.jmacro.2004.07.002. 

Collard, F., de la Croix, D., 2000. Gift exchange and the business cycle: The fair wage strikes 

Back. Rev. Econ. Dyn. 3(1), 166–193. https://doi.org/10.1006/redy.1999.0075. 

Danthine, J.P., Kurmann, A., 2004. Fair wages in a New Keynesian model of the business cycle. 

Rev. Econ. Dyn. 7(1), 107–142. https://doi.org/10.1016/j.red.2003.07.001. 

de la Croix, D., de Walque, G., Wouters, R., 2009. A note on inflation persistence in a fair wage 

model of the business cycle. Macroecon. Dyn. 13(5), 673–684. 

https://doi.org/10.1017/S1365100509080304. 

Deutsch, Y., David, I., 2020. Benchmark policies for utility-carrying queues with impatience. 

Queueing Syst. 95(10), 97–120. https://doi.org/10.1007/s11134-019-09642-x. 

Feigin, P., Landsberger, M., 1981. The existence and properties of a stationary distribution for 

unemployment when job search is sequential. J. Econ. Dyn. Control. 3, 329–341. 

https://doi.org/10.1016/0165-1889(81)90025-7. 

Furlanetto, F., 2011. Fiscal stimulus and the role of wage rigidity. J. Econ. Dyn. Control. 35, 

512–527. https://doi.org/10.1016/j.jedc.2010.11.004. 

Galí, J., 1999. Technology, employment, and the business cycle: Do technology shocks explain 

aggregate fluctuations? Am. Econ. Rev. 89(1), 249–271. https://doi.org/10.1257/aer.89.1.249. 

Gomme, P., 1999. Shirking, unemployment and aggregate fluctuations. Int. Econ. Rev. 40(1), 3–

21. https://doi.org/10.1111/1468-2354.00002. 

Goux, D., Maurin, E., Pauchet, M., 2001. Fixed-term contracts and the dynamics of labour 

demand. Eur. Econ. Rev. 45(3), 533–552. https://doi.org/10.1016/S0014-2921(00)00061-1. 

Hamermesh, D.S., Pfann, G.A., 1996. Adjustment costs in factor demand. J. Econ. Lit. 34(3), 

1264–1292. https://www.jstor.org/stable/2729502. 

Kaufman, B.E., 2002. Models of union wage determination: What have we learned since 

Dunlop and Ross? Ind. Relat. 41(1), 110–158. https://doi.org/10.1111/1468-232X.00238. 

Leduc, S., Liu, Z., 2016. Uncertainty shocks are aggregate demand shocks. J. Mon. Econ. 82, 



 20 

20–35. https://dx.doi.org/10.1016/j.jmoneco.2016.07.002. 

Lendvai, J., Raciborski, R., Vogel, L., 2013. Macroeconomic effects of an equity transaction tax 

in a general-equilibrium model. J. Econ. Dyn. Control. 37(2), 466–482. 

https://doi.org/10.1016/j.jedc.2012.09.010. 

Lindé, J., 2009. The effects of permanent technology shocks on hours: Can the RBC-model fit 

the VAR evidence? J. Econ. Dyn. Control. 33(3), 597–613. 

https://doi.org/10.1016/j.jedc.2008.08.011. 

Mandelman, F.S., Zanetti, F., 2014. Flexible prices, labor market frictions and the response of 

employment to technology shocks. Labour Econ. 26, 94–102. 

https://doi.org/10.1016/j.labeco.2013.11.004. 

Martin, C., Wang, B., 2020. Search, shirking and labor market volatility. J. Macroecon. 66, 1–

14. https://doi.org/10.1016/j.jmacro.2020.103243. 

Mitra, K., Evans, G.W., Honkapohja, S., 2019. Fiscal policy multipliers in an RBC model with 

learning. Macroecon. Dyn. 23(1), 240–283. https://doi.org/10.1017/S1365100516001176. 

Mumtaz, H., Zanetti, F., 2016. The effect of labor and financial frictions on aggregate 

fluctuations. Macroecon. Dyn. 20(1), 313–341. https://doi.org/10.1017/S1365100514000406. 

Salop, S.C., 1979. A model of the natural rate of unemployment. Am. Econ. Rev. 69(1), 117–

125. https://www.jstor.org/stable/1802502. 

Sattinger, M., 2010. Queueing and searching. https://dx.doi.org/10.2139/ssrn.1590998 (accessed 

8 November 2022). 

Shapiro, C., Stiglitz, J.E., 1984. Equilibrium unemployment as a worker discipline device. Am. 

Econ. Rev. 74(3), 433–444. https://www.jstor.org/stable/1804018. 

Stiglitz, J.E., 1974. Alternative theories of wage determination and unemployment in LDC’s: 

The labor turnover model. Q. J. Econ. 88(2), 194–227. https://doi.org/10.2307/1883069. 

Tripier, F., 2006. Sticky prices, fair wages, and the co-movements of unemployment and labor 

productivity growth. J. Econ. Dyn. Control. 30(12), 2749–2774. 

https://doi.org/10.1016/j.jedc.2005.09.002. 

Weiss, A., 1980. Job queues and layoffs in labor markets with flexible wages. J. Polit. Econ. 

88(3), 526–538. https://doi.org/10.1086/260884. 

Wesselbaum, D., 2011. Sector-specific productivity shocks in a matching model. Econ. Model. 

28, 2674–2682. https://doi.org/10.1016/j.econmod.2011.08.009. 

Zanetti, F., 2019. Financial shocks, job destruction shocks, and labor market fluctuations. 

Macroecon. Dyn. 23, 1137–1165. https://doi.org/10.1017/S1365100517000190. 


