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Abstract 

 

 

The aim of this paper is twofold. First it aims to compare several GARCH family models in order to 

model and forecast the conditional variance of German, Swiss, and UK stock market indexes. The 

main result is that all GARCH family models show evidence of asymmetric effects. Based on the 

“out of sample” forecasts I can say that for each market considered there is a model that will lead to 

better volatility forecasts. Secondly a long run relation between these markets was investigated 

using the cointegration methodology. Cointegration tests show that DAX30, FTSE100, and SMI 

indexes move together in the long term. The VECM model indicates a positive long run relation 

among these indexes, while the error correction terms indicate that the Swiss market is the initial 

receptor of external shocks. One of the main findings of this analysis is that although the UK, 

Switzerland and Germany do not share a common currency, the diversification benefits of investing 

in these countries could be very low given that their stock markets seem to move together in the 

lung term. 
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1. Introduction 

This work investigates several aspects of the German, Swiss and UK equity markets, namely the 

volatility phenomenon as well as the long term relations among these markets. Modelling and 

forecasting volatility has been broadly investigated in recent years: the main reason is that volatility 

is a measure of the risk connected with the financial markets, so trying to forecast it can be 

extremely useful in order to take good investment decisions
1
. On the other side volatility may 

negatively affect economic performance of advanced economies (Mala and Reddy, 2007) so it is 

useful to detect this phenomenon especially in advanced economies like German which is 

considered as the economic engine of Europe. Why extend this study particularly to the UK and 

Switzerland? We want to see if market volatility in these countries is quite similar to the German 

market although the UK has not adopted the Euro and Switzerland is not part of the European 

Union (EU). Given that the assumption of constant volatility is often violated in financial markets, 

one way to model such patterns is to allow the volatility to depend upon its history: time-varying 

volatility of financial markets returns can be described by GARCH (generalized autoregressive 

conditional heteroskedasticity) family models. So this methodology is going to be used in order to 

study the volatility phenomenon. The other aim of this study is to detect whether financial markets 

considered here are integrated. Fratzscher (2001) showed that countries adopting the Euro currency 

in January 1999, have benefited in terms of stronger financial integration  among their equity 

markets because of the elimination of currency risks among them. Is it possible to think of 

Germany, UK and Switzerland as having integrated financial markets given that they do not share 

either a common currency or membership to the EU regarding Switzerland? Before giving an 

answer to this question we need to define the concept of financial integration. There are different 

definitions of financial integration and among them, one in particular is based on long term relations 

among equity markets: if this long term trend among financial markets exists, then they are 

integrated. This last study will be conducted by using the cointegration methodology developed by 

Johansen and Juselius (1990). 

This paper is organised as follows. Section 2 provides a brief review of the empirical literature on 

both stock market volatility and integration. The econometric modelling is set out in detail in 

Section 3.  Section 4 describes the data and descriptive statistics on the three equity markets 

considered here.  Section  5 reports the results and Section 6 concludes. 

 

                                                
1
 As pointed out by Mala e Reddy (2007), stock market volatility has several negative implications, among them a 

negative effect on consumer spending. A fall in stock markets may reduce consumer confidence and thus drive down 

consumer spending. This could lead firms to reduce production as well as investors to sell stock and shares of those 

firms with a negative effect on the overall index.  



 3 

2. Empirical literature on volatility and financial integration 

This section aims to give some recent findings from the empirical literature relative to volatility and 

long term relations among financial markets. Only studies will be highlighted which used GARCH 

family models as well as cointegration methodology as an econometric framework in order to focus 

this paper on a well defined research field characterized by using this methodology. 

Many financial time series exhibit periods of unusually large volatility, follows by periods of 

relative tranquillity (Campbell et al., 1997). Such a phenomenon has been identified with the term 

“volatility clustering”. Another interesting phenomenon is that “bad news” seems to have a more 

pronounced effect on volatility than “good news”. This last phenomenon is also known in financial 

literature as “asymmetric volatility”. What does this mean precisely? This phenomenon has been 

stylized by financial literature with the term asymmetric volatility: in order to explain it, two main 

explanations have been proposed by current literature. Black (1976) sustained that equity firms tend 

to be more leveraged when their stock market values go down; an immediate effect is a growth of 

volatility. On the other hand another explanation about the negative relationship between returns 

and volatility is based on the so-called “volatility feedback effect". In other words if stock market 

volatility has a positive relation with the equity premium
2
, then stock prices should move in the 

opposite direction to the level of market volatility. In this way the volatility feedback can describe a 

negative relationship between volatility and market prices (Pindyck 1984, French et al. 1987, Kim 

et al. 2004). 

These considerations have led to the use of several time varying volatility models to estimate and 

forecast volatility. In its seminal paper, Engle (1982) proposed to model time varying conditional 

variance with Autoregressive Conditional Heteroskedasticity (ARCH) models where it is possible 

to simultaneously model the mean and the variance of a series. Bollerslev (1986) extended Engle’s 

work by developing Generalized ARCH (GARCH) models which may provide a parsimonious 

alternative to the higher order ARCH process.  Both ARCH and GARCH models capture volatility 

clustering, but they fail to model the asymmetric effect described above. In other words in these 

models negative and positive news produce the same impact on volatility, this is clearly difficult to 

accept given that financial markets show evidence of the above described asymmetric effect. In 

order to overcome these drawbacks, asymmetric volatility models have been developed
3
. 

 

                                                
2
 That is the excess return that an individual stock market provides over a risk-free rate. The risk-free rate in the market 

is often quoted as the rate on long-term bonds which are considered risk free because of the low chance that the 

government will default on its loans. 
3
 In these models “bad” and “good” news have a different impact on volatility. 
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Because of their symmetry, a big negative shock has the same impact on future volatility as a big 

positive shock of the same magnitude. An interesting extension has been towards asymmetric 

volatility models, in which good news and bad news have a different impact on future volatility 

(Verbeek, 2004). Nonlinear extensions of GARCH models such as the Exponential GARCH 

(EGARCH) model by Nelson (1991), the Asymmetric Power ARCH (PGARCH) model by Ding et 

al (1993), the Threshold GARCH (TGARCH) model by Glosten et al. (1994) and Zakoian (1994), 

have been widely used by the empirical literature in order to investigate the relationship between 

stock market returns and volatility. 

Koutmos  (1998) used a TGARCH model to investigate whether conditional variance responds 

asymmetrically to past information. His study considers nine industrialized countries: the results for 

the UK stock market show that there is asymmetric behaviour of the conditional variance since it 

rises proportionally more during market declines than during market increases. Chen et al. (2001) 

examined the relationship between stock market returns and volatility in nine international stock 

markets by using EGARCH techniques. Considering the UK and Switzerland stock market 

indexes
4
, results show evidence of asymmetry given that the leverage factor  is statistically 

significant. Faff et al.(2000) measured the leverage effect by the EGACH and TARCH models by 

using daily returns data on 32 UK industries. Their results show asymmetric effects in the 

conditional volatility of returns with respect to good and bad shocks. Bekaert and Wu (2000) 

examined asymmetric volatility, that is the negative correlation between return and conditional 

volatility,  in the Japanese stock market by using a multivariate GARCH-in-mean model. They 

found that asymmetry is an important feature of the Nikkey 225 index volatility, in other words the 

dominant cause of the asymmetry of the Japanese stock market is due to volatility feedback. Najand 

(2002) examined the ability of linear and non linear models to forecast daily S&P500 index  

volatility, empirical results show that EGARCH models seem to be the best ones for forecasting 

stock index price volatility. 

Jacobsen e Dannenburg (2003) investigated the volatility of stock returns for several European 

countries
5
 by using daily, weekly and bi-weekly financial series of stock market indexes. Relative to 

both the UK and German market indexes, results show that GARCH effects are present in the daily, 

weekly and by-weekly frequencies but not in the monthly data. Koulakiotis et al (2006) by using 

symmetric and asymmetric GARCH models, found that the relationship between stock market 

volatility and  the expected returns is not significant for the stock market of industrialized countries 

with the exception of the UK where the coefficient of the relationship between volatility and stock 

                                                
4 That study also considered Canada, France, Hong Kong, Italy, Japan, and the USA, but not the German index. 
5
 They considered France, Germany, Italy, the Netherlands, the United Kingdom and the United States. 
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price returns is -6.14
6
. However, Li et al. (2005)  found empirical evidence that the significance of 

that particular relationship depends on the way volatility is estimated by using EGARCH-M 

models. In fact, using a semiparametric specification of conditional variance, they show that after 

the 1987 stock market crash, the relationship between stock market returns and volatility is 

significant in 7 out of 12 international stock markets considered
7
,  specifically for Germany, the UK 

and Switzerland the coefficients are very high, respectively -18.81 (significant at 5% level), -19.19 

(5%) and -16.67 (5%). Alberg et al. (2008) estimated stock market volatility of the Tel Aviv Stock 

Exchange (TASE) by using the GARCH model and its asymmetric specifications. The main 

purpose of the study was to rank the forecasting ability of each model used. They found evidence 

that the forecasting performance of the EGARCH model is better than the GARCH, TGARCH and 

APARCH models. Floros (2008) used both symmetric and asymmetric GARCH family models for 

modelling volatility for two Middle East stock indices. He found strong evidence that the daily 

returns of the Egyptian CMA Index and the Israeli TASE-100 Index can be characterised by 

asymmetric GARCH models. All these empirical studies show both the importance of GARCH 

family models in evaluating relations between returns and stock market volatility as well as 

different approaches to model financial series by using series with high (daily) or low (monthly) 

frequencies to break down the sample data in sub-periods. This last approach may also be 

responsible for obtaining opposite results. 

The integration of stock markets has been extensively studied by empirical literature: cointegration 

methodology is one of the most common econometric frameworks used. The following review of 

empirical literature aims to point out some of the most recent findings from empirical analysis. 

Francis and Leachman (1998) found empirical evidence of a cointegration relationship among 

major stock indexes of the US, the UK, Germany and Japan (1998). In order to detect the short term 

dynamics of relations among these markets they use the results from a cointegration analysis in 

order to build an error correction model (ECM). ECM results indicate that changes in the returns in 

both the UK and German stock markets have a statistically significant effect on the US stock 

markets returns. Ng (2000) examined the influence of the US and Japanese equity markets to six 

Pacific-basin equity markets. She found that the Japanese and the US equity markets have little 

influence on these markets. One of the main explanations is that returns of the Pacific-Basin 

markets are strongly influenced by some local forces which seem to be unrelated to the major equity 

markets considered. Swanson (2003), using both the Engle-Granger (1987) and  the Johansen 

                                                
6
 This means that if stock price volatility increases by 1%, then the stock market returns will decrease by 6.14% with 

negative persistence. 
7 They considered stock market indexes of the following countries: Australia, Canada, France, Germany, Hong Kong, 

Italy, Japan , the Netherlands, Singapore, the United Kingdom, the United States, and Switzerland. 
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(1988) cointegration tests, showed the capacity of the US equity market to influence both the 

German and Japanese equity markets in a positive manner. Similar results about the influence of 

major financial markets toward smaller markets was pointed out by Cotter (2004) who used the 

Johansen and Juselius (1990) procedure. He found that the German, UK and USA equity markets 

strongly affect the Irish market but that the reverse effects are insignificant. Examining both short 

and long term relations between the US and several Central Europe equity markets by the Johansen 

cointegration tests (Johansen, 1988),  Gilmore and McManus (2002) found that these markets are 

not cointegrated with the US market indicating the existence of diversification benefits for short and 

long term investors. Ratanapakorn and Sharma (2002) investigated both the short-term and long-

term relationships among five regional indices before and after the 1997 Asian crisis. One of their 

results showed that, during the crisis, European market Granger caused the US market while this 

phenomenon was not present before that crisis. In other words these authors want to point out that 

during the Asian crisis period, globalization increased strongly making more evident links between 

international financial markets.  

Other papers have investigated the existence of a cointegration relations among indices in South 

East Asia. For example, Manning (2002), using the cointegration approach (which had been 

originally introduced by Johansen, 1988, Johansen and Juselius 1990, Johansen 1991) showed that a 

sample of Asian markets had converged before the 1997 Asian crisis: this process was abruptly 

interrupted by the following crisis.  

In all these studies however none investigated both the short run as well as the long run relationship 

among equity markets of the three European countries here considered after the introduction of the 

Euro in one of them. Given that the absence of a common currency may induce investors to 

diversify their financial investments, we may expect the absence of a long term relationship among 

these financial markets which have their own currencies. So the aim of the second part of the 

empirical work in this study is going to detect this relationship as well as analyzing the short term 

behaviour of these markets by using Johansen’s methodology. 

 

3. Econometric  methodology 

In conventional econometric models, the variance of the disturbance term is assumed to be constant. 

However figure 2 (see section 4) demonstrates that financial time series exhibit periods of large 

volatility, followed by periods of relative tranquillity. In such circumstances, the assumption of a 

constant variance (homoskedasticity) is inappropriate, so it is preferable to use models that allow 

the variance to depend upon its history. The seminal paper in this area is Engle (1982) which 

proposed the concept of autoregressive conditional heteroskedasticity (ARCH). In ARCH models 
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the variance of the error term at time t depends upon the squared error terms from the previous 

periods. A useful variant proposed by Bollerslev (1986) is the generalized GARCH (p,q) model, 

which can be written as: 
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Given that a GARCH (1,1) specification often performs very well (Verbeek, 2004), equation.1 can 

be written as 
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which has only three unknown parameters to estimate, non negativity of 2

tσ requires that ϖ , α  and 

β  are non negative. An important restriction to the GARCH specifications above is their symmetry. 

That is, a big negative shock has the same impact on future volatility as a big positive shock of the 

same magnitude. An interesting extension is towards asymmetric volatility models, in which good 

news and bad news have a different impact on future volatility. 

The tendency for volatility to decline when returns rise and to rise when returns fall is often called 

the leverage effect. The concept of the leverage effect is captured in figure 1, where “new 

information” is measured by the size of tε . If 0=tε , expected volatility ( )1+tt hE  is 0. On the other 

side figure 1 assumes that any news increases volatility; however, if the news is good (that is tε  is 

positive), volatility increases along line ab. If the news is “bad”, volatility increases along line ac. 

Since line ac is steeper than ab, a positive tε  will have a smaller effect on volatility than a negative 

shock of the same size. 

Figure 1 – The Leverage Effect 
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Asymmetric GARCH models have been developed in order to take into account the different effect 

of news on the volatility of stock market returns.  

Glosten, Jaganathan, and Runkle (1994) showed how to allow the effects of good and bad news to 

have different effects on volatility.  In a sense, 01 =−tε  is a threshold so that shocks greater than the 

threshold have different effects than shocks below the threshold. Consider the threshold-GARCH 

(TGARCH) specification for the conditional variance as: 

                                               2

1

2

11

2
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tttt

t d βσεγαεωσ                                                     (3) 

where 1−td  is a dummy variable that is equal to one if 01 <−tε  and is equal to 0 if .01 ≤−tε  In this 

model, good news, 01 >−tε  and bad news, 01 <−tε , have differential effects on the conditional 

variance, good news has an impact of 1α , while bad news ha an impact of γα + . So if 0>γ , 

negative shocks (bad news) will have larger effects on volatility than positive shocks (good news), 

and then we say that there is a leverage effect. 

Another model that allows for the asymmetric effect is the exponential GARCH (EGARCH) model 

(Nelson, 1991). The specification for the conditional variance is stated thus: 
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where the presence of leverage effects can be tested by the hypothesis that 0≠γ . The impact is 

asymmetric if 0≠γ . 

Taylor (1986) and Schwert (1989)  introduced the standard deviation GARCH model, where the 

standard deviation is modelled rather than the variance. This model, is generalized in Ding et al. 

(1993) with the Power ARCH specification (PGARCH). In the power ARCH model, the power 

parameter δ  of the standard deviation can be estimated rather than imposed, and the optional γ  

parameters are added to capture asymmetry of up to order r, so the standard deviation equation is 

stated thus: 

                                           ( )δδδ εγεασβωσ itiit
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where 0>δ , 1≤iγ  for i=1,…,r , 0=iγ  for all ri > , and pr ≤ . The symmetric model sets 0=iγ  

for all i. Note that if 2=δ  and 0=iγ  for all i, the PARCH  model is simply a standard GARCH 

specification. As in the previous models, the asymmetric effects are present if 0≠γ . 
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An alternative specification for the conditional volatility process is a component GARCH  

(CGARCH) model of Ding and Granger (1996) The conditional variance in the CGARCH (1,1) 

model is stated thus: 

                                                     ( ) ( )ϖσγϖεϖσ −+−+= −−
2

1

2

1

2

ttt a                                               (6) 

this shows mean reversion to ϖ , which is constant all the time. By contrast, the component model 

allows mean reversion to a varying level tm , modelled as: 
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where 2

tσ  is the volatility, while 
tm  is the time varying long run volatility. Equation 7 describes the 

transitory component, 
tt m−2σ , while equation 8 describes the long run component 

tm . An 

extension of CGARCH model is an Asymmetric component GARCH model (AGARCH) which 

combines the component model with the asymmetric TGARCH model. This specification which is 

going to be used in the next section, introduces asymmetric effects in the transitory equation and 

estimates models of the form: 

                                                                     
ttt xr επ +=                                                                 (9) 
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Where z represents the exogenous variables and d is the dummy variable indicating negative 

shocks, 0>γ  indicates the presence of transitory leverage effects in the conditional variance.  

In the second part of this study we tested for Cointegration between the FTSE100 index and the 

SMI index by examining the long-term equilibrium relationships between the UK and the 

Switzerland Stock market indexes. Cointegration is a long-term measure of diversification based on 

price data and is usually used in order to detect a degree of integration by measuring the stability of 

long-run relationships across financial markets (Richards, 1995). If there exists a linear combination 

of two nonstationary series integrated of order one, i.e. I(1), that is stationary., these series are 

called cointegrated series. Cointegration measure answers the question of a long-term common 

stochastic trend between a non-stationary time series. If non-stationary series x and y are both 

integrated of the same order and there is a linear combination of them that is stationary, they are 

called cointegrated series and the vector of this relationship is called the cointegrating vector. 

Accordingly, cointegrated series share a common stochastic trend. It follows that these two series 

will not drift apart too much, meaning that even if they may deviate from each other in the short 

term, they will revert to a long-term equilibrium. This fact makes cointegration a very powerful 
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approach for portfolio diversification purposes especially for the long term. Meanwhile, 

cointegration does not imply high correlation; two series can be cointegrated and yet have very low 

correlations. 

Two basic methodologies are evident for testing cointegration: the Engle-Granger and Johansen 

methodologies. The Engle-Granger (1987) methodology, based on OLS regression, is most suitable 

for bivariate settings
8
 where the choice of a dependent variable is not a question and it can identify 

only one cointegration vector while there can be more in multivariate analysis. This is why it was 

decided to use the Johansen cointegration methodology in this present work. This methodology was 

developed by Johansen (1988) who developed a maximum likelihood procedure which allows one 

to test for the number of cointegrating relations. Here only will be focused upon a few aspects, 

further details can be found in Johansen and Juselis (1990) and Johansen (1991). 

The starting point of the Johansen procedure is to estimate a vector autoregression (VAR) model 

using undifferenced data (Enders, 2004)  as well as selecting lag length p using the both the Akaike 

(AIC) and Schwarz (SC) information criterion, that is the following equation: 

                                                             tt

p

it YcY ε+∆+= −=� 11
                                                     (12) 

where tY  is a column vector of all the endogenous variables in the system (here the log price 

indexed), c is a vector of constants, 
tε  is a vector of innovations, and p is the number of lags of 

variables in the system.  

The second step involves the determination of the number of cointegrating relations in the VAR 

model identified above. In order to get this result, the Johansen methodology (1991) provides two 

statistics to determine the number of cointegration vectors: Trace and Maximum Eigenvalue 

statistics. Johansen and Juselius (1990) say that Trace statistic tests the null hypothesis of r 

cointegrating relations against the alternative of n cointegrating relations, where n is the number of 

variables in the system for r = 0,1,2,…, n-1. The Maximum Eigenvalue statistics tests the null 

hypothesis of r cointegrating relations against the alternative of r+1 cointegrating relations for 

r=0,1,2,…, n-1. In some cases Trace and Maximum Eigenvalue statistics may yields different 

results. 

                                                
8
 Engle and Granger (1987), building upon the representation theorem of Granger (1983), introduce a two-step 

procedure where first an ordinary least squares (OLS) regression is estimated on the integrated of order one data and 

then residuals of the regression are checked for stationarity. Granger’s representation theorem (1983) suggests that in a 

bivariate system I(1) series x and y, if lagged x improves the estimation of y, then x is said to Granger cause y. 

“Granger causality” suggests a lead-lag relationship between time series and there may be “Granger causality” between 

asset prices without the presence of a cointegrationg vector. However, cointegration analysis implies a Granger (1983) 

casual flow between the integrated assets.  

 



 11 

The third step is based on the Granger Representation Theorem, that is if the variables in the VAR, 

which represent the long-run dynamics between those variables, are found to be co-integrated, then 

there must exist an associated error-correction model (ECM), which can be built by imposing as 

restrictions the number of cointegration relations previously identified. In this way the VAR is 

transformed in a Vector Error Correction Model (VECM) which can be used in order to show any 

short-run dynamics between variables as well as to distinguish between the short-run and the long 

run relationship among the variables. The VECM representation of equation 12 is of the following 

form: 

                                                  tktjt

k

J

jt YYY εµαβ +++∆Γ=∆ −−

−

=

� '
1

1

                                         (13) 

 

with ∆  denoting the first difference operator, jΓ  are coefficient matrices (j = 1,2, …,k), β  is the 

cointegrating matrix of r cointegrating vectors 1β , 2β ,…, kβ , which represent estimates of the 

long-run cointegrating relationship between the variables in the system, while α  is the matrix of 

error coefficients that measure the speed at which the variables adjust to their equilibrium values. It 

must be pointed out that the value of the speed of adjustment is expected to be less than one in 

absolute terms in order to guarantee both the stability of the system and for the variables in the 

long-run regression to be co-integrated. The sign of adjustment parameters indicate the direction of 

the adjustment process. This means that if the system deviates from its long-term path, the sign and 

the magnitude of the adjustment parameter would indicate the direction of adjustment and speed at 

which the variables parameters adjust in the short-term in order to go back to its long-term 

equilibrium path. The Johansenn and Juselis methodology provides likelihood estimates of α  and 

'β  

4. Data 

The observation period goes from January 3, 1999 to September 23, 2008 for a total of 2447 

observations on the German stock market (i.e. DAX30), UK Stock market (i.e. the FTSE 100 Index) 

and the Swiss Stock Market (i.e. Swiss Market Index). All time series are closing prices obtained 

from Yahoo.Finance. The reason for using daily data is based on the consideration that lower 

frequency data (such as weekly or monthly) may lack part of the information relative to interactions 

between markets which are contained instead in daily data (Voronkova, 2004). Levels for each of 

the three stock market indexes are presented in figure 2. In this paper, returns of each stock market 

index (fig.3) have been computed using the prices log difference, that is  )ln()ln( 1−−= ttt PPr . Tab. 

1 shows the statistical characteristics of returns of each stock market index. The analysis reveals 
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that only the DAX30 index had a positive mean during the investigation period. The German stock 

market is the most volatile (with a standard deviation equals to 0.0153) while the British is least 

(standard deviation equals to 0.0116). The maximum return is observed for DAX (7,4%) while the 

minimum is observed for FTSE100 (5,9%). All daily returns have a negative skewness implying 

that the distribution has a long left tail. Stock market returns also exhibit an excess of kurtosis  

implying that returns do not follow a normal distribution. The last characteristic can be seen clearly 

in figure 4, which indicates quantiles of stock market returns with respect to normal distribution 

quantiles: we may also note that quantiles of returns do not lie along the red line, in other words 

these returns do not have a normal distribution. The Jarque-Bera test (tab. 1) confirms such a result 

by rejecting the null hypothesis of a normal distribution for index returns. These characteristics of 

the returns are in line with a set of stylized facts about financial series with have been pointed out 

by Pagan (1996).  

 
Table 1 – Summary statistics for daily returns 

Index N. obs Mean Maximum Minimum Std. Dev. Skewness Kurtosis 
Jarque-Bera 

Test 

p-

value 

Dax 2447 7.32e-05 0.075 -0.074 0.0153 -0.082 5.771 785.65 0.00 

Ftse100 2447 -3.73e-05 0.059 -0.056 0.0116 -0.145 5.439 615.074 0.00 

Smi 2447 -3.17e-05 0.064 -0.057 0.0119 -0.046 6.75 1440.4 0.00 

 

Table 2 reports the correlation coefficients between market index returns. Examination of the 

correlations reveal that FTSE100 and SMI indexes have higher pairwise correlation between each 

other
9
. 

 
Table 2 – Pairwise correlation matrix of stock market indexes 

 DAX30 FTSE100 SMI 

DAX30 1.00 - - 

FTSE100 0.897 1.00 - 

SMI 0.890 0.913 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
9 Correlations can show whether and how pairs of variables are related: it must be noted that high (low) correlations do 

not necessarily imply high (low) dependence.  
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Figure 2 – Daily data for the DAX30, FTSE100 and SMI indexes 
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Figure 3 – Returns for the DAX30, FTSE100 and SMI Stock market indexes  
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Figure 4 – Q-Q normal plot about return normal distribution of each index  
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5. Empirical results 

This section aims to show the main findings which have been obtained by using either GARCH 

family models as well as the cointegration analysis.  

5.1 Modelling Volatility 

In order to model and forecast volatility, the first 2300 observations for each stock market index 

were used for modelling, the last 147 observations where kept out of sample in order to be used for 

forecasting volatility. 
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For each conditional volatility model, we estimated ARMA(p,q) models, using the AIC and SC (see 

Appendix A). We chose the model with lower values. Sometimes these criteria gave different 

results, in that case we selected the model following the SC criterion because it usually indicates a 

more parsimonious one (Enders, 2004).  Considering the DAX index returns, the EGARCH model 

was estimated using a MA(1) model, TGARCH was modelled using an ARMA (1,1) model, 

AGARCH was estimated using a MA(1) model, finally PGARCH model was estimated using an 

ARMA (2,2) model. Considering the FTSE100 index returns, the EGARCH equation was modelled 

using a mean equation given by an AR (1) model. The TGARCH equation was estimated using an 

AR(1) model. An AR(1) was chosen to model the PGARCH model, finally an AR(2) was chosen to 

estimate the conditional mean equation of the AGARCH model. Moving to the SMI returns, the 

EGARCH equation was modelled with an AR(1), the TGARCH with an AR(1), the PGARCH with 

an AR(1) and finally the AGARCH with an ARMA(2,1). All models estimated are characterized by 

both mean and volatility equations. Here only volatility equations will be presented since we are 

interested in analysing specifically the conditional volatility results given by each conditional 

volatility equation. 

Table 3 reports the parameter estimates of all conditional volatility models defined in the previous 

section. Considering the DAX30 index, the EGARCH model shows a negative and significant γ  

parameter, this means that positive shocks generate less volatility than negative shocks (bad news). 

Also the TGARCH leverage effect is significant, in addition bad news has an impact of 0.139 (that 

is the sum of � and �). We may note in the case the TGARCH model that the estimate of � is 

smaller that the coefficients of γ , this implies that negative shocks do not have a great impact on 

conditional volatility than positive shocks of the same magnitude. Furthermore the PGARCH model 

confirms that asymmetric effects are present for DAX30 given that the coefficients of γ are positive 

and significant. Finally the AGARCH shows a transitory leverage effect (that is 0>γ )  which is 

statistically significant. 

For FTSE100 stock returns, the EGARCH model shows a negative and significant γ coefficient, 

indicating the existence of the leverage effect in returns during the sample period. Also the 

coefficient β  of lagged conditional variance is significantly positive and less than one, indicating 

that the impact of “old” news on volatility is significant: the magnitude of the coefficient is 

especially high for the FTSE100 Index, indicating a long memory in the variance.  

The results of the estimation of the AGARCH(1,1) model show the presence of transitory leverage 

effects ( 0>γ ) in the conditional variance. The sum of variables in the transitory equation will have 

an impact on the short run volatility, because that sum is greater than the unity, it means that in the 

short run there is no steady state. However, the estimates of the persistence in the long run 
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component (that is the sum of coefficients β , 1β , 2β ) give a value equal to 0.158, indicating that the 

long run component converges quickly to the steady state. Also for the TGARCH the leverage 

effect is positive, this means that negative shocks will have a greater impact on volatility than 

positive shocks. The results of the estimation of PGARCH(1,1) model indicate that the asymmetric 

effects are positive and significant. Moving to the Swiss Market Index, all GARCH family model 

coefficients of lagged conditional variance are positive, significant  and less than one for most 

specifications. Strong GARCH effects are apparent for EGARCH and PGARCH specifications. The 

EGARCH model indicates a negative and significant γ  parameter, showing the existence of the 

leverage effects. In the PGARCH and TGARCH specification the estimate of  α  is smaller than the 

estimate of γ , this means negative shocks do not have a greater impact on conditional volatility 

than positive shocks of the same magnitude. In addition bad news has an impact of 1.068 

(PGARCH) and 0.153 (TGARCH). In the AGARCH model, the coefficient γ  is greater than zero, 

indicating the presence of transitory leverage effects in the conditional variance. 

The Ljung-Box Q-statistics indicate that the autocorrelations of the residuals are not statistically 

significant  at the normal levels of significance for all GARCH family models estimated. 

 

Table 3 - Conditional volatility equations for GARCH family models 

DAX30 Stock Index returns 

 AGARCH(1,1) EGARCH(1,1) PGARCH(1,1) TGARCH(1,1) 

ω  0.0002*** 

(0.00) 

-0.313*** 

(0.00) 

3.17e-05 

(0.409) 

2.70E-06*** 

(0.00) 

β  -0.139*** 

(0.00) 

0.977*** 

(0.00) 

0.910*** 

(0.00) 

0.905*** 

(0.00) 

1β  0.113*** 

(0.00) 

- - - 

2β  -0.529*** 

(0.00) 

- - - 

α  0.988*** 

(0.00) 

0.154*** 

(0.00) 

0.074*** 

(0.00) 

0.020*** 

(0.00) 
γ  0.094*** 

(0.00) 

-0.084*** 

(0.00) 

0.534*** 

(0.00) 

0.119*** 

(0.00) 

Q-statistic (4) 3.643 

(0.303) 

3.562 

(0.313) 

- 1.742 

(0.418) 

Q-statistic (8) 10.367 

(0.169) 

11.946 

(0.102) 

8.4451* 

(0.077) 

8.577 

(0.199) 

Q-statistic (12) 11.908 

 (0.371) 

13.444 

(0.265) 

10.085 

(0.259) 

10.371 

(0.409) 

FTSE100 Stock Index Returns 

ω  6.41E-05 

(0.00) 

-0.240*** 

(0.00) 

0.0003 

(0.183) 

1.49E-06*** 

(0.00) 

β  -0.053*** 

(0.00) 

0.983*** 

(0.00) 

0.938*** 

(0.00) 

0.918*** 

(0.00) 

1β  0.166** 

(0.00) 

- - - 

2β  0.883*** 

(0.00) 

- - - 

α  0.992*** 0.105*** 0.061*** -0.0018 



 16 

(0.00) (0.00) (0.00) (0.845) 
γ   0.037*** 

(0.00) 

-0.111*** 

(0.00) 

0.999*** 

(0.00) 

0.134*** 

0.00 

Q-statistic (4) 3.361* 

(0.07) 

3.745 

(0.290) 

3.876 

(0.275) 

3.932 

(0.269) 

Q-statistic (8) 8.377 

             (0.21) 

5.059 

(0.653) 

5.086 

(0.649) 

5.156 

(0.641) 

Q-statistic (12) 19.01** 

(0.04) 

6.075 

(0.868) 

6.289 

(0.853) 

6.314 

(0.852) 

SMI Stock Index returns 

 AGARCH(1,1) EGARCH(1,1) PGARCH(1,1) TGARCH(1,1) 

ω  0.0002*** 

(0.00) 

-0.306*** 

(0.00) 

0.0004 

(0.197) 

2.11E-06*** 

(0.00) 

β  -0.135*** 

(0.00) 

0.975*** 

(0.00) 

0.924*** 

(0.00) 

0.908*** 

(0.00) 

1β  0.115*** 

(0.00) 

- - - 

2β  1.056*** 

(0.00) 

- - - 

α  0.992*** 

(0.00) 

0.104*** 

(0.00) 

0.068*** 

(0.00) 

-0.011 

(0.198) 
γ  0.155*** 

(0.00) 

-0.131*** 

(0.00) 

0.999*** 

(0.00) 

0.164*** 

(0.00) 

Q-statistic (4) 2.463 

(0.117) 

4.105 

(0.250) 

4.338 

(0.227) 

3.784 

(0.285) 

Q-statistic (8) 5.557 

(0.352) 

7.839 

(0.347) 

7.878 

(0.343) 

7.189 

(0.409) 

Q-statistic (12) 12.677 

(0.176) 

14.149 

(0.225) 

14.392 

(0.212) 

14.145 

(0.225) 

Note : For GARCH family model coefficients values in brackets are p-values. The Ljung-Box Q-statistic, Q(n), is a test 

statistic for the null hypothesis that there is no autocorrelation up to order n, value in brackets are p-values. 

 

One way of further examining the distributions of the residuals is to plot the quantiles. If the 

residuals are normally distributed, the points in the QQ plots should lie along a straight line
10

. The 

plots (fig.5) indicate that it is primarily great negative shocks that are driving the departure of 

normality for all GARCH models estimated. 

 

 

 

 

 

 

 

 

 

 

                                                
10

 The quantile-quantile (QQ) plot is a simple yet powerful tool for comparing two distributions (Cleveland, 1994). This 

view plots the quantiles of the chosen series against the quantile of another series or a theoretical distribution. If the two 

distributions are the same, the QQ plot should lie on a straight line. If the QQ plot does not lie on a  straight line, the 

two distributions differ along some dimensions. The pattern of deviation from linearity provides an indication of the 

nature of a mismatch. 
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Figure 5 – Quantile-Quantile (QQ) Plot 
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SMI Index 
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Finally, in order to test whether there are any remaining ARCH effects in the residuals a Lagrange 

Multiplier test (Engle, 1982) for autoregressive conditional heteroschedasticity (ARCH) in the 

residual was carried out
11

 : if the variance equation is correctly specified, there should be no ARCH 

in the standardized residuals. Results (tab.4) show little evidence of remaining ARCH effects for all 

models estimated with some exceptions for the PGARCH and TGARCH relative to DAX returns. 

Table 4 - Remaining ARCH effects 

DAX stock market returns  

 AGARCH(1,1) EGARCH(1,1) PGARCH(1,1) TGARCH(1,1) 

ARCH LM Test 
0.006 

(0.936) 

2.367 

(0.123) 

4.262 

(0.038) 

6.414 

(0.01) 

FTSE stock market returns 

 AGARCH(1,1) EGARCH(1,1) PGARCH(1,1) TGARCH(1,1) 

ARCH LM Test 
1.182 

(0.276) 

0.932 

(0.334) 

2.164 

(0.141) 

0.043 

(0.835) 

SMI stock market returns 

 AGARCH(1,1) EGARCH(1,1) PGARCH(1,1) TGARCH(1,1) 

ARCH LM Test 
1.961 

(0.161) 

1.439 

(0.230) 

1.631 

(0.201) 

2.968 

(0.084) 

Note: P-value in the parentheses 

 

                                                
11 The ARCH LM test is computed from an auxiliary test regression. To test the null hypothesis that there is no ARCH 

up to order q in the residual, we ran the following regression: t

q

s

tst vsee +��
�

�
��
�

�
−+= �

=1

2

0

2 ββ , where e is the 

residual. This is a regression of the squared residuals on a constant and lagged squared residual up to order q. The 

software used in this work, that is EViews5, reports two test statistics from this test regression. The F-statistic is an 

omitted variable test for the joint significance of all lagged squared residuals. The Obs*R-squared statistic is Engle’s 

LM statistic, computed as the number of observations times the R-squared from the test regression. Here we have 

reported only the Engle’s LM statistic. 
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5.2 Forecasting Volatility of Stock market returns  

In order to see how the estimated models might fit real data, we examined forecasts for out-of-

sample data by using the last 147 observation of each index market series. Since the actual volatility 

is unobserved, we will use the squared return series of each Market Index
12

 as a proxy for the 

realized volatility. A plot of the proxy against the forecasted volatility provides an indication of  the 

ability of GARCH models to track variations in market volatility (see figure 6). 

At this point it is necessary to evaluate the quality of each volatility model estimated. The GARCH 

family models to make accurate predictions of the volatility can be measured by the value of the 

coefficient of determination R
2
 coming from regressing squared returns on the volatility forecast, 

that is: 

                                                                   ttt ubhar ++= 22                                                         (14) 

This regression may be strongly influenced by extreme values of  2

tr . As pointed out by Hansen and 

Lunde (2001) in order to overcome these drawbacks, Pagan  and Schwert (1990) as well as Engle 

and Patton (2000) suggested the following regression: 

                                                                   ttt uhbar ++= 22 loglog                                               (15) 

this seems to be less sensitive to extreme values, because severe mispredictions are given less 

weight than is the case of eq. 14. 

In order to define the best model in terms of ability to forecast for each index, following the results 

(tab.5) of equation 15, we may that for the DAX30 index the TGARCH model seems to have a 

higher ability to forecast DAX30 volatility better. The PGARCH model seems to be the best model 

to forecast volatility of the FTSe100 index. While both EGARCH and PGARCH models could be 

used in order to forecast SMI index volatility. 

 

Table 5 – R2 coefficients for each GARCH family models estimated 

     

Index AGARCH EGARCH PGARCH TGARCH 

DAX30 0.1396 0.14750 0.1494 0.1568 

FTSE100 0.1155 0.1251 0.1264 0.1209 

SMI 0.1210 0.1362 0.1362 0.1304 

Note: Selected models by the coefficient of determination R
2
 are in bold 

 

 

 

 

 

                                                
12 The squared return series for DAX30 has been named as “Dlog_DAX30_sq”, for the FTSE100 Stock market index 

the variable takes the name “Dlog_FTSE100_sq”, and for the SMI the variable takes the name “Dlog_SMI_sq”. 
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Figure 6 – Forecasting volatility 
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FTSE100 Stock Market forecasted volatility 
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SMI Stock Market Index forecasted volatility 
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5.3 Cointegration analysis 

This section shows the results of the cointegration analysis by using the Johansen and Juselius 

methodology. The variables selected for the Cointegration analysis are presented in table 6.  

LDAX30, LFTSE100, and LSMI were transformed from indices: to arrive at the stationary 

variables, all variables are converted into natural logarithms and their first differences are taken: 

table 7 provides the summary statistics for the variables in their first differences. 

 

Table 6 – Definitions of variables and time series transformations 

Variables Definitions of variables 

LDAX30 
Natural logarithm of daily-end closing prices on the 

German DAX30 stock market index 

LFTSE100 
Natural logarithm of daily-end closing prices on the UK 

FTSE100 stock market index 

LSMI 
Natural logarithm of daily-end closing prices on the SMI 

stock market index 

Transformation Definitions of Transformations 

�LDAX30t = LDAX30t - LDAX30t - 1 Daily return on the German Stock market 

�LFTSE100t = LFTSE100t -LFTSE100t - 1 Daily return on the UK Stock market 

�LSMIt = LSMIt -LSMIt - 1 Daily return on the Swiss Stock market 
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Table 7 – Descriptive statistics 

Variables in first 

differences 
Mean Std Dev Minimum Maximum 

�LDAX30t 7.32e-05 0.0153 -0.0743 0.0755 

�LFTSEt -3.73e-05 0.0116 -0.0563 0.059 

�LSMIt -3.17e-05 0.0119 -0.0578 0.0648 

 

Cointegration requires the variables to be integrated of the same order. So, we test the variables for 

unit roots to verify their stationarity. We do this through the ADF test and  the Phillips-Peron test: 

these tests are applied to levels and first differences where the model includes a constant. The test 

results (tab.8) indicate that the null hypothesis cannot be rejected for each of the two price series. 

Then, unit root tests are performed on each of the price index series in log first differences: the null 

hypothesis can be rejected for each of the time series, this means that the series are integrated of 

order one. The finding that each price series is non-stationary implies that each of the observed 

markets is weakly efficient. 

 

Table  8 – Unit roots test on the Stock Market Indexes  

Unit Root test with intercept 

 ADF Test Phillips-Perron Test 

 t-statistic P-value t-statistic     P-value 

LDAX30 -1.234 0.661 -1.205 0.674 

LFTSE100 -1.367 0.599 -1.526 0.520 

LSMI -1.326 0.619 -1.415 0.576 

�DAX30 -51.182*** 0.00 -51.173*** 0.00 

�LFTSE       -11.20*** 0.00      -53.55*** 0.00 

�LSMI       -12.64*** 0.00     -49.36*** 0.00 
The null Hypothesis (Ho) for the ADF test is that the time series has a unit root, the same hypothesis is considered by the Phillip-Perron Test. The 

critical level for the ADF test and Philips-Perron Test: -3.43 (1%), -2.86%(5%), -2.56(10%). In the Phillip-Perron Test as a method of spectral 

estimate the Bartlett-Kernell was used (that is the default method given by the Eview5 software), while the width band used is that given by default 
(that is the Newey-West). The Akaike Information Crietria (AIC) has been used in the ADF in order to select the optimal number of lags: EViews5 

software gives a maximum lag equal to 26. One/Two/Three stars indicate that we reject the null hypothesis with the following significant levels: 10%, 

5% and 1%. 

 

According to the test results shown above, indexes are nonstationary on level but they become 

stationary when their first difference is taken. The second step of the Johansen-Juselius 

methodology  is to specify the appropriate lag length of the VAR system. AIC and SC select 

respectively a VAR(8) and a VAR (7), because SC usually selects the parsimonious one then a 

VAR (7) is chosen. 

The next step is to use Johansen cointegration tests in order to obtain the cointegration rank. The 

Trace Statistics (i.e. �trace) are detailed in table 9 for the various hypotheses. Since 47.599 exceeds 

the 5 percent critical value of the �trace statistic, it is possible to reject the null hypothesis of no 

cointegrating vectors and accepting the alternative of one or more cointegrating vectors. Since 

13.625 is less than 5 percent of the critical value of 15.494, we cannot reject the null hypothesis at 
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this significant level; so in this case the �trace  indicates no more than one cointegrating vector at the 5 

percent level. The Maximum Eigenvalue statistic (i.e. �max ) confirms the results of the �trace statistic. 

The primary finding obtained from the Johansen cointegration tests is that a stationary long-run 

relationship exists between the three European equity markets. Thus, there is a tendency for the 

FTSE100, DAX30 and SMI markets to move together in the long term. 

Table 9 – Results and critical values for the �trace and �max test 

Ho H1 �trace CV(trace, 5%) �max CV(max, 5%) 

r = 0 r > 0 47.599** 29.797 33.974** 21.131 

r � 1 r > 1 13.625 15.494 11.404 14.264 

r � 2 r > 2 2.221 3.841 2.221 3.841 

Note:  the Critical Value (i.e. CV) are taken from Osterwald-Lenum (1992), which differ slightly from those reported in 

Johansen and Juselius (1990). ** denotes rejection of the null hypothesis at the 5% level. 

 

The next step requires building a VECM model with the cointegration rank selected by the previous 

step.  

In order to evaluate the relationship between the German, Swiss and UK stock markets, several 

VECM models with  p = 1-12 as well as a constant were built: the lag lengths for the series in the 

VECM are determined according to the SIC and AIC. It was found that the model with p = 6 has the 

lowest SC, while the p = 8 model has the lowest AIC. Because SC usually selects the most 

parsimonious a VECM(6) model was chosen with cointegrating rank = 1. 

Normalizing cointegrating coefficients with respect to LDAX30, the cointegrating vector is given as 

�’ = (1.00, -1.041 , -0.60, -5.755). Results are shown in the equation below:  

 

                                     LDAX30 =  5.755 +1.041 LFTSE100 + 0.60 LSMI                                   (16) 

 

Since a double logarithmic functional form is used here, the coefficients in �’ can be interpreted as 

long-term elasticities. The coefficient on LSMI means that a 1% increase in the SMI index leads to, 

on average, a 0.60 increase in the DAX30 index, while if the FTSE100 index increases by 1% then 

the DAX30 increases by 1.041%. In the cointegration relationship both LFTSE100 and LSMI are 

also significant (with a t-statistic respectively equals to -3.72 and -2.53). Therefore the validity of 

this model is supported. We may conclude that the DAX30 index has a positive long-term 

relationship with both the Swiss as well as the UK stock markets. 

The error correction parameter is sometimes called the speed of adjustment and it indicates how 

quickly the economy moves back to the long run equilibrium after a shock. In table 10, we can see 

that the error correction term that is not significant belongs to the SMI index only. This means that 

this index is weakly exogenous to the system. The weak exogeneity of the index further implies that 
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the market is the initial receptor of external shocks. The adjustment back to equilibrium can be 

inferred from the signs and magnitude of the coefficients. The negative sign means that the 

respective index will pose shocks to the other indices in the observed region. In this sense, the 

DAX30 index will give the greatest negative impact on the other observed European markets, since 

it has the greatest error term coefficient. 

 

Table 10 -  VECM (6) estimated results 

Variables �LDAX30 �LFTSE100 �LSMI 

Error correction term � -0.016** 

(-5.348) 

-0.005** 

(-2.132) 

-0.002 

(-0.828) 

R-squared 0.159 0.114 0.023 

F-statistic 24.251 16.542 3.073 

Log likelihood 21915.17 

AIC -17.911 

SC -17.761 

Note: values in brackets are t-statistics, ** significant at 5% level for the null hypothesis of zero coefficients. 

 

The above results indicate that there is integration among equity markets of analysed countries 

although their differences were previously exposed. There are several potential financial and non 

financial sources which may explain this integration. Among the financial sources we may find the 

liberalisation of capital flow barriers among EU countries here analysed, anyway this explanation 

should be valid only relative to the UK and German stock markets given that these countries are 

members of the EU
13

 On the other hand, among other sources of financial integration that are not 

financial in nature we may find business cycle similarities among these countries which could lead 

to greater financial integration
14

. 

Although Germany is a member of the European Union as well as Euroarea, the UK is not a 

member of the Euroarea, Switzerland is not a member of the European Union, following our 

empirical results we may say that their financial markets are integrated as well as sharing a common 

trend in the long term. We may also note that  a strong financial integration among these markets 

means that there are fewer opportunities to diversify portfolios for those investors within these 

countries. In other words, because of financial integration, investors are not able to earn extra 

returns in the long term
15

. However, this last explanation has a point of weakness given that the 

                                                
13

 Cotter (2004) points out that driving forces of increasing equity market integrations can be considered as 

harmonisation of regulatory and market structures as well as the removal of capital control barriers. 
14

 Ragunathan et al. (1999) suggest that financial markets are more likely to be integrated in the expansionary phases of 

business cycle. In other words different economies may be more or less integrated depending on the business cycle 

phase they are experiencing. 
15

 As pointed out by Hardouvelis et al. (1999), since stock markets become more integrated and the diversification 

benefits tend to be reduced, investors may decide to shift the focus of diversification from a national level to an 

industrial level. In other words we may say that international competition shifts from a national level to an industrial 

level. 
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exchange rate risks among these countries is still present
16

 so the diversification benefits of 

investing in these countries could still be convenient given the different currency that they use 

(Hardouvelis et al, 1999). It could be interesting to detect how much the exchange rate is still 

important for investors who operate in advanced economies like those considered in the present 

work. Another point we need to emphasize this study is that negative shocks can be transmitted 

from larger markets (like the German and the British ones) toward a small market like the Swiss 

one. Policy makers, especially those of the European Union, should be concerned with the existence 

of integration among these markets because it could suggest that all these markets could be treated 

as a single market one. This means that regulatory legislation at a European Union level should take 

into account its effects on non Euroarea countries. 

 

6. Conclusion 

Stock returns show evidence of volatility clustering, that is great changes in returns tend to be 

followed by great changes and small changes by small changes. This means that the variance tends 

to change over time. In order to study this phenomenon, the goal of this paper was  modelling and 

forecasting volatility of several European stock market indexes as well as analysing the existence of  

long run relations among them. The stylized facts such the asymmetric effects of bad and good 

news were analyzed using GARCH family models which capture these characteristics. I used nine 

years of daily data on the DAX30, FTSE100, and SMI index to illustrate the existence of 

asymmetric effects as well as a long run relationship. Among the main results of this paper, we may 

point out that all GARCH family models show evidence of asymmetric effects. Considering 

EGARCH, PGARCH, and TGARCH, the estimated � coefficients are quite big near the typical 

value around 0.9; this means that old news has a quite persistent effect on volatility. On the other 

hand only for PGARCH and TGARCH models the sum of the coefficients � and � is less than one, 

implying that, although it takes a long time, the volatility process does return to its mean. Each 

model estimated has been used in order to forecast future volatility of each index. As suggested by 

Engle and Patton (2001) the R
2 

coefficient has been used in order to find the model that forecasts 

future volatility better for each index. Results from R
2 

coefficient evidence that the DAX30 index is 

forecasted better by a TGARCH model, the FTSE100 index volatility can be forecast specifically 

                                                
16

 Fratzscher (2001), points out that exchange rate uncertainty is one of the main reasons for the segmentation of 

financial markets. By adopting a common currency the Euro area countries have raised the degree of financial 

integration among them. On the other hand he suggests that a less volatile and predictable exchange rate may reduce the 

degree of market segmentation: so this could be one of the explanations of the integration among the financial markets 

considered in this study. It must be said that theory offers ambiguous conclusions about the relationship between 

exchange rate and international correlations among financial markets. One of these conclusions suggest that 

international correlation among financial market increases, when exchange rates are more volatile ( (Bodart and Reding, 

1999) 
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using a PGARCH model, while both EGARCH and PGARCH models can be used alternatively to 

forecast SMI index volatility. 

Cointegration analysis shows evidence of a long run relation between German, Swiss, and UK 

market indexes. The cointegration vector shows evidence that the DAX30 index has a positive long  

run relationship with both the Swiss and the UK stock markets. On the other hand the error 

correction parameters  are statistically significant for the DAX and the FTSE stock market index. 

For the SMI index the error correction term is not significant, this means that the Swiss market is 

the initial receptor of external shocks. These results have important implications for investors given 

that the long term relationship among these markets show that there are fewer opportunities to 

diversify portfolios within Germany, Switzerland and the UK, thus providing incentives to focus 

more on diversifying across sectors. Implications are also relevant for policy makers; financial 

integration among these markets means that Germany, Switzerland, and the UK stock index are 

interdependent and subject to spillovers resulting from endogenous and exogenous shocks. Such 

interdependence may require supervisors and market overseers to increasingly adopt a Euro-area 

approach when they are called to regulate these different stock markets. 
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Appendix A 

This appendix shows results of the estimated ARMA model which have been used to model the 

mean equation in GARCH family models. Models selected by the AIC and SC are in bold. 

 

Table 1A – DAX returns: estimates of the ARMA(p,q) model for the AGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -5.8739 -5.8728 0 - -5.8539 -5.8503 

1 -5.8737 -5.8762 -5.8750 1 -5.8538 -5.8537 -5.8500 

2 -5.8721 -5.8756 -5.8746 2 -5.8496 -5.8506 -5.8471 

 

Table 2A – DAX returns: estimates of the ARMA(p,q) model for the EGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -5.8909 -5.8907 0 - -5.8759 -5.8732 

1 -5.8909 -5.8932 -5.8923 1 -5.8759 -5.8757 -5.8723 

2 -5.8920 -5.8927 -5.8918 2 -5.8745 -5.8727 -5.8694 

 

Table 3A – DAX returns: estimates of the ARMA(p,q) model for the PGARCH mean equation, 1-2300 obs  

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -5.8944* -5.8955* 0 - -5.8770* -5.8756* 

1 -5.8944* -5.8969* -5.8960* 1 -5.8769* -5.8769* -5.7936* 

2 -5.8955* -5.8964* -5.8956 2 -5.8756* -5.8739* -5.8706 

*Convergence not achieved after 500 iterations 

 

Table 4A – DAX returns: estimates of the ARMA(p,q) model for the TGARCH mean equation, 1-2300 obs  

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -5.8937 -5.8907 0 - -5.8787 -5.8732 

1 -5.8938 -5.8964 -5.8923 1 -5.8788 -5.8789 -5.8723 

2 -5.8949 -5.8959 -5.8951 2 -5.8774 -5.8759 -5.8726 
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Table 5A – FTSE100 returns: estimates of the ARMA(p,q) model for the AGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4503 -6.4429 0 - -6.4303 -6.4274 

1 -6.4501 -6.4526 -6.4508 1 -6.4301 -6.4301 -6.4259 

2 -6.4529 -6.4523 -6.4529 2 -6.4304 -6.4274 -6.4225 

 

Table 6A – FTSE100 returns: estimates of the ARMA(p,q) model for the EGARCH mean equation, 1-2300 obs 

 AIC SC 

 q Q 

p 0 1 2 P 0 1 2 

0 - -6.4683 -6.4679 0 - -6.4533 -6.4504 

1 -6.4685 -6.4696* -6.4688 1 -6.4535 -6.4522* -6.4488 

2 -6.4696 -6.4688 -6.4695* 2 -6.4521 -6.4489 -6.4471* 

*Convergence not achieved after 500 iterations 

 

Table 7A – FTSE100 returns: estimates of the ARMA(p,q) model for the PGARCH mean equation, 1-2300 obs  

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4692 -6.4611 0 - -6.4517 -6.4436 

1 -6.4692 -6.4706 -6.4697 1 -6.4518 -6.4506 -6.4472 

2 -6.4707 -6.4704 -6.4706 2 -6.4507 -6.4479 -6.4456 

 

 

Table 8A – FTSE100 returns: estimates of the ARMA(p,q) model for the TGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4613 -6.4611 0 - -6.4463 -6.4436 

1 -6.4616 -6.4630 -6.4621 1 -6.4466 -6.4455 -6.4421 

2 -6.4623 -6.4628 -6.4626 2 -6.4448 -6.4428 -6.4401 
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Table 9A – SMI returns: estimates of the ARMA(p,q) model for the AGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4076 -6.4100 0 - -6.3876 -6.3875 

1 -6.4071 -6.4105 -6.4151 1 -6.3872 -6.3880 -6.3901 

2 -6.4112 -6.4144 -6.4090 2 -6.3888 -6.3895 -6.3815 

 

 

Table 10A – SMI returns: estimates of the ARMA(p,q) model for the EGARCH mean equation, 1-2300 obs 

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4415 -6.4407 0 - -6.4265 -6.4232 

1 -6.4418 -6.4419 -6.4419 1 -6.4269 -6.4254 -6.4219 

2 -6.4413 -6.4436 -6.4429 2 -6.4238 -6.4237 -6.4204 

 

Table 11A – SMI returns: estimates of the ARMA(p,q) model for the PGARCH mean equation, 1-2300 obs  

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4436 -6.4428 0 - -6.4261 -6.4228 

1 -6.4438 -6.4442 -6.4434 1 -6.4263 -6.4242 -6.4209 

2 -6.4433 -6.4455 -6.4446 2 -6.4233 -6.4231 -6.4197 

 

Table 12A – SMI returns: estimates of the ARMA(p,q) model for the TGARCH mean equation, 1-2300 obs  

 AIC SC 

 q q 

p 0 1 2 P 0 1 2 

0 - -6.4331 -6.4322 0 - -6.4181 -6.4148 

1 -6.4335 -6.4341 -6.4321 1 -6.4185 -6.4166 -6.4121 

2 -6.4331 -6.4355 -6.4347 2 -6.4156 -6.4155 -6.4122 
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