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Abstract 

We consider the time-series records of the market trade values and volumes as the origin of 

the asset price stochasticity and describe random price properties through statistical moments 

of the market trade values and volumes. The market-based price probability differs from the 

conventional price probability proportional to number of trades at price p. We show that the 

market-based price probability results no correlations between n-th degrees of price and trade 

volume but doesn’t cause statistical independence of price and trade volume. We derive the 

market-based correlation between price and squares of the trade volumes. Time-series 

records of the market trade values and volumes allow assess only finite number m of 

statistical moments and define first m price statistical moments. Approximations of the price 

characteristic function that match first m price statistical moments generate approximations of 

the market-based price probability. That approach unifies description of the asset price, 

returns, inflation and their volatilities as functions of the market trade values and volumes 

statistical moments. That describes the case when investor’s market trades impact asset price 

probability. Market-based approach uncovers vital fault of the Value-at-Risk (VaR) as most 

conventional hedging tool. We show that accuracy of VaR assessment at horizon T is 

determined by precision of predictions of the market trade values and volumes statistical 

moments and depends on accuracy of macroeconomic forecasting. The market-based 

approach to price probability establishes direct economic ties between the asset pricing, 

market stochasticity and economic theory. 
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1. Introduction 

 The desires to predict the price for the next day, month or year are as old as market 

trade. Investors and traders for decades seek for reliable and precise price forecasts. 

However, it became clear that exact price guesses as well as tomorrow fortune forecasts are 

too fickle and variable. Exact price predictions for the next time term were replaced by set of 

probable price values. Centuries of asset pricing research (Dimson and Mussavian, 1999) 

track price probability up to Bernoulli's studies 1738, but possibly, Bachelier (1900) was one 

of the most influential paper that outlines probabilistic character of the price behavior and 

forecasting. “The probabilistic description of financial prices, pioneered by Bachelier.” 

(Mandelbrot, et al., 1997). “in fact the first author to put forward the idea to use a random 

walk to describe the evolution of prices was Bachelier.” (Shiryaev, 1999). During last century 

the endless number of studies discussed asset pricing models and described different 

hypothesis, laws and properties of a random asset price (Kendall and Hill, 1953; Muth, 1961; 

Sharpe, 1964; Fama, 1965; Stigler and Kindahl, 1970; Black and Scholes, 1973; Merton, 

1973; Tauchen and Pitts, 1983; Mackey, 1989; Friedman, 1990; Cochrane and Hansen, 1992; 

Campbell, 2000; Heaton and Lucas, 2000; Cochrane, 2001; Poon and Granger, 2003; 

Andersen et.al., 2005a; 2005b; 2006; Cochrane, 2005; Wolfers and Zitzewitz, 2006; DeFusco 

et.al., 2017; Weyl, 2019; Cochrane, 2022). Rigorous mathematical treatments of stochastic 

description and probabilistic modelling of asset price can be found in (Shiryaev, 1999; 

Shreve, 2004). We referred only a negligible part of endless studies on asset pricing.  

Asset price dynamics is under impact of multiple factors that cause irregular or random price 

change during almost any time interval. That generates studies of price variations and 

dependence on market (Fama, 1965; Tauchen and Pitts, 1983; Odean, 1998; Poon and 

Granger, 2003; Andersen et.al., 2005b; DeFusco et.al., 2017), macroeconomic (Cochrane and 

Hansen, 1992; Heaton and Lucas, 2000; Diebold and Yilmaz, 2008), business cycles (Mills, 

1946; Campbell, 1998), expectations (Muth, 1961; Malkiel and Cragg, 1980; Campbell and 

Shiller, 1988; Greenwood and Shleifer, 2014), trading volumes (Karpoff, 1987; Campbell 

et.al., 1993; Gallant et.al., 1992; Brock and LeBaron, 1995; Llorente et.al., 2001) and many 

other factors that for sure impact price trends and fluctuations. The line of factors and 

references can be continued (Goldsmith and Lipsey, 1963; Andersen et.al., 2001; Hördahl 

and Packer, 2007; Fama and French, 2015). 

 In this paper we consider the asset price probability density function (PDF). It seems 

to be one of the most common and well-studied issues of financial economics. Almost all 
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standard probability distributions (Forbes, et.al., 1992; Walck, 2011) were tested to check 

how they can model, describe and predict price PDF. A lot was done but it is twice 

interesting to have a fresh look at the traditional matter. Indeed, since Bachelier (1900) the 

joint efforts of economists and statisticians were directed to uncover the “correct” model of 

price PDF and its change. May be credibility and domination of Bachelier and his famous 

followers focus research not to that side? 

 Conventional treatment (Shiryaev, 1999) of random price p(ti) time-series during the 

averaging interval Δ is based on frequency of trades at price p. Properties of a random 

variable are described by PDF or by set of statistical moments. If mp – number of trades at 

price p and N- total number of trades during Δ then probability P(p) of price p is assessed as: 𝑃(𝑝) ~ 𝑚𝑝𝑁      (1.1) 

Price n-th statistical moments E[pn(ti)] are determined as math expectations E[..] of pn(ti): 𝐸[ 𝑝𝑛(𝑡𝑖)] =  1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1     (1.2) 

That conventional frequency-based description of price (1.1; 1.2) as a random variable during 

Δ serves as ground for almost all asset-pricing models.  

 We don’t critique notable studies but remind that the asset price is not a single, main 

and independent issue of economics and finance. Asset pricing is woven deeply into 

relations, laws and properties of the economics and finance. We demonstrate that the price 

probability determined by market stochasticity could take form far from (1.1; 1.2) and that 

results in significant distinctions valuable for investors and financial markets. We consider 

the asset price PDF problem as a result of market trades and not as a standing separately 

question. We take price determined by each market trade at time ti by trade value C(ti), trade 

volume U(ti) and trade price p(ti) those match simple relations: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (1.3) 

 However, trivial equation (1.3) establishes important requirement on the PDF of time-

series that match (1.3). Indeed, PDF of the time-series of the trade value C(ti), volume U(ti) 

and price p(ti) those match (1.3) cannot be determined independently. Given probabilities of 

the trade value and volume (1.3) determine the price probability that can be different from 

(1.2; 1.3). Given random properties of the market trade value C(ti) and volume U(ti) 

completely determine random properties of the market price p(ti). 

 That market-based approach to asset price probability establishes direct economic 

relations between stochasticity of the market trade value and volume on one hand and 

randomness of the market price on the other hand. Actually, we replace the problem: what is 
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the “correct” form of the price probability determined by (1.2; 1.3) - by a different one. We 

consider how approximate description of the random market trade value and volume can 

approximate stochastic properties of the market price, but we don’t study the specific 

properties of the market trade value and volume probabilities. In some sense our market-

based description of the random price complements conventional assumption used by most 

asset pricing models (Cochrane, 2001, p.15): “the investor can freely buy or sell as much of 

the payoff xt+1 as he wishes, at a price pt”. This assumption states that any investor’s trades 

don’t impact market price probability. Such assumption is reasonable for a single investor 

who trades minor, negligible asset values and volumes to compare with market turnover. 

However, it is the investors, traders, market makers establish the market price. It is records of 

their market trade values and volumes determine random price properties. Big trades of 

investors make significant impact on market price. To take into account impact of investor’s 

big trades on random price properties we consider price n-th statistical moments 

p(t;n)=E[pn(ti)] determined by n-th statistical moments of market trade value 

C(t;n)=E[Cn(ti)] and volume U(t;n)=E[Un(ti)]. N-th statistical moments of trade value C(t;n) 

and trade volume U(t;n) with growth of n describe growing impact of big trades as n-th 

degree trade value Cn(ti) and volume Un(ti). We describe asset price stochasticity during the 

averaging time interval Δ by price n-th statistical moments and introduce them as n-th degree 

of price pn(ti) weighed average by n-th degree of trade volume Un(ti) – generalization of the 

well-known volume weighted average price (Berkowitz et.al., 1988; Buryak and Guo,  2014; 

Busseti and Boyd, 2015; CME Group, 2020; Duffie and Dworczak, 2021). That definition of 

price n-th statistical moment equals ratio of sums of n-th degrees of trade values ΣCn(ti) 

during interval Δ to sums of n-th degrees of trade volumes ΣUn(ti) or equals ratio of n-th 

statistical moments of trade value C(t;n) to n-th statistical moments of trade volume U(t;n). 

That uncovers dependence of price statistical moments and price probability on the size of 

market trades and indicates impact of investor’s big trades on price probability. Usage of 

market-based price probability model asset pricing beyond the conventional assumption: “the 

investor can freely buy or sell as much of the payoff xt+1 as he wishes, at a price pt” 

(Cochrane, 2001, p.15). 

 In Sec.2 we describe how stochasticity of the market trade value and volume 

determine random properties of the asset price. In Sec. 3 and 4 we briefly consider 

consequences of our results on description of random properties of returns and inflation, asset 

pricing models and Value-at-Risk (VaR) as most conventional risk management tool. Sec. 5 – 

Conclusion. We assume that our readers are familiar with standard issues of asset pricing 
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theory, probability theory, statistical moments, characteristic functions and etc. This paper for 

sure, is not for novices and we propose that readers already know or able find on their own 

definitions and explanations of the notions, terms and models that are not given in the text. 

2. Market-based price probability 

 Let us consider the time-series of the market transactions with selected asset at 

moments ti, i=1,…. Economic analysis of time-series has a long history and references 

(Davis, 1941; Anderson, 1971; Cochrane, 2005; Diebold, 2019) indicate author’s preferences 

only. We take that time-series records describe the value C(ti), volume U(ti) and price p(ti) of 

transaction at time ti. The times ti of the time-series records introduce the initial time division 

of the time axis. We study random properties of market trade using time-series records of 

performed transactions only. Thus, all possible factors those impact asset pricing are already 

imprinted into the time-series records of the market trade value C(ti) and volume U(ti). Let us 

study how stochasticity of the trade value C(ti) and volume U(ti) (1.3) determine the 

randomness of the price p(ti). For simplicity we take that transactions are performed at times 

ti multiple of small interval ε: 𝑡𝑖 = 𝜀 ∙ 𝑖  ;   𝑖 = 0, 1, 2, …     (2.1) 

 Time-series (2.1) establish time axis division multiple of ε. We study the market trade 

during time horizon T and assume that initial time division ε<<T. Precise time division ε<<T 

results irregular random time-series and of little help for modelling price at long time horizon 

T. Description of market price at horizon T that can equal weeks, months or years requires 

aggregation of the initial market time-series during some reasonable time interval Δ that takes 

intermediate value (2.2): 𝜀 <  ∆ < 𝑇      (2.2) 

 Time-series of the trade value C(ti), volume U(ti) and price p(ti) aggregated or 

averaged during the interval Δ result time-series with time axis division multiple of Δ. For 

simplicity let take the interval Δ multiple of ε for some n as: ∆= 2𝑛 ∙ 𝜀    ;   𝑁 = 2𝑛 + 1  ;    𝜀 ≪ ∆ ≪ 𝑇   (2.3) 

Aggregation of time-series of the trade value C(ti), volume U(ti) and price p(ti) during Δ 

generates corresponding time-series at moments tk and results time axis division multiple of Δ 𝑡𝑘 = ∆ ∙ 𝑘    ;   ∆𝑘= [𝑡𝑘 − ∆2 ; 𝑡𝑘 + ∆2]     ;     𝑘 = 0, 1, 2, …    (2.4) 

Let us take that each member of time-series of the trade value C(tk) at time tk (2.4) is 

determined by aggregation or averaging of time-series C(ti) during Δk (2.4). Total trade value 

C(tk) and total trade volume U(tk) during Δk are determined as  
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𝐶(𝑡𝑘) =  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1         ;          𝑈(𝑡𝑘) =  ∑ 𝑈(𝑡𝑖)𝑁𝑖=1    (2.5) 𝑡𝑘 − ∆2 ≤  𝑡𝑖  ≤ 𝑡𝑘 + ∆2     (2.6) 

Due to our assumption (2.3) there are N=2n+1 members of time-series C(ti) or U(ti) in each 

time interval Δk. Let us consider time-series of the market trade value C(ti) and volume U(ti) 

as random variables during Δk (2.4). We determine the mean trade value C(tk;1) and mean 

volume U(tk;1) at time tk averaged during Δk using conventional frequency-based approach to 

probability similar to (1.1; 1.2) :  𝐶(𝑡𝑘; 1) = 𝐸[𝐶(𝑡𝑖)] =  1𝑁 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1     ;     𝑈(𝑡𝑘; 1) = 𝐸[𝑈(𝑡𝑖)] =  1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1  (2.7) 

We use E[..] to denote mathematical expectation. We underline that mean values of market 

trade (2.7) are determined during the interval Δk (2.2-2.4). Different choice of the interval Δ 

(2.2) may result in different average trade value and volume (2.7). 

 Probabilities of the trade value C(ti) and volume U(ti) during Δk (2.6) are determined 

in a conventional way (Shiryaev, 1999; Shreve, 2004). Probability of trade value P(C) and 

volume P(U) are proportional to frequency of trades at value C and trades at volume U. If 

there are mc trades at value C and mu trades at volume U during Δk (2.6) then, due to (2.3) 

probabilities P(C) and P(U) are assessed as: 𝑃(𝐶) ~ 𝑚𝑐𝑁    ;    𝑃(𝑈) ~ 𝑚𝑢𝑁     (2.8) 

Further we note conventional approach to probability (1.1; 2.8) as the frequency-based in 

contrary to the market-based definition of the price probability below. Statistical moments of 

the market trade value C(ti) and volume U(ti) for ti during Δk (2.4; 2.6) are assessed as usual: 𝐶(𝑡𝑘; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1    ;    𝑈(𝑡𝑘; 𝑛) =  1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1   ;  𝑛 = 1, …     (2.9) 

For n=1,2,… statistical moments (2.9) completely determine the trade value C(ti) and volume 

U(ti) as random variables during Δk (2.4). 

 Now let us consider random properties of the market price determined by 

stochasticity of market trade value and volume. As the mean price p(tk;1) or price 1-st 

statistical moment we take volume weighted average price (VWAP) that was introduced 

more than 30 years ago and is widely used now (Berkowitz et.al., 1988; Buryak and Guo,  

2014; Busseti and Boyd, 2015; CME Group, 2020; Duffie and Dworczak, 2021). During the 

time interval Δk (2.6) VWAP p(tk;1) takes form: 𝑝(𝑡𝑘; 1) = 𝐸[𝑝(𝑡𝑖)] =  1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1    (2.10) 

Using (1.3; 2.9) obtain equivalent form of VWAP p(tk;1) (2.10): 
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𝑝(𝑡𝑘; 1) = 𝐸[𝑝(𝑡𝑖)] =  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = ∑ 𝐶(𝑡𝑖)𝑁𝑖=1∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡𝑘;1)𝑈(𝑡𝑘;1)  (2.11) 

Relations (2.11) demonstrate that VWAP or 1-st price statistical moment p(tk;1) equals the 

ratio of total value ΣC(ti) during Δk (2.6) to total volume ΣU(ti) during Δk (2.6), or equally 

ratio of 1-st statistical moments of the trade value C(tk;1) to 1-st statistical moments of the 

trade volume U(tk;1) during Δk (2.6). These simple relations help us determine price n-th 

statistical moments p(tk;n) = E[pn(ti)]. 

 Actually, just one VWAP p(tk;1) (2.10; 2.11) is not sufficient to define properties of 

price as a random variable during Δk (2.4; 2.6). To define random price properties one should 

determine n-th statistical moments for n=1,2,3,…. Let us take n-th degree of (1.3) and obtain: 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)    ;   𝑛 = 1,2,3, …   (2.12) 

We extend VWAP (2.10) based on (1.3) and using (2.12) introduce price n-th statistical 

moments p(tk;n) = E[pn(ti)] for n=1,2,… as: 𝑝(𝑡𝑘; 𝑛) = 𝐸[𝑝𝑛(𝑡𝑖)] =  1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1   (2.13) 

Hence, due to (2.5; 2.9; 2.12) obtain that relations (2.13) equal: 𝑝(𝑡𝑘; 𝑛) = 𝐸[𝑝𝑛(𝑡𝑖)] =  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛)  (2.14) 

Relations (2.14) define price n-th statistical moment p(tk;n) as the ratio of total sum of n-th 

degree of trade values ΣCn(ti) during Δk (2.6) to total sum of n-th degree of trade volumes 

ΣUn(ti) during Δk (2.6), or equally as ratio of n-th statistical moments of the trade value 

C(tk;n) to n-th statistical moments of the trade volume U(tk;n) (2.9). Relations (2.13; 2.14) for 

all n determine price statistical moments p(tk;n) and hence determine properties of price as a 

random variable during Δk (2.4; 2.6). 

 Let us explain and justify the reasons in favor of our definition (2.13; 2.14) of the 

market-based price statistical moments p(tk;n). Relations (1.3; 2.12) mean that random 

properties of the time-series of trade value C(ti), volume U(ti) and price p(ti) during Δ (2.6) 

are interdependent. Hence, given random properties of the market trade value C(ti) and 

volume U(ti) time-series should determine random properties of the asset price p(ti). 

However, current agent’s habits, beliefs and traditions consider the price p(ti) as independent 

random variable regardless to stochasticity of trade value C(ti) and volume U(ti) time-series. 

As we mentioned above, such approximation of random price corresponds with conventional 

assumption (Cochrane, 2001) that any market deals of investor don’t’ impact market price. 

That assumption may be valid only for negligible size of market trades performed by investor 

to compare with market turnover during Δ. It is obvious, that description of big trades and 
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description of market price as a whole must take into account the size of investor’s market 

transactions, the size of trade value C(ti), volume U(ti). Thus conventional approximate 

description of the random market price p(ti) based on frequency-based P(p) probability (1.1) 

should be complemented by description of random price properties as the result of market 

trade stochasticity.  

 To approximate random price properties during the averaging interval Δk (2.4) we 

determine price n-th statistical moments p(tk;n)=E[pn(ti)] through n-th statistical moments of 

market trade value C(tk;n) and volume U(tk;n) (2.9) that match (2.12). One can easy obtain 

that n-th statistical moments of the trade value C(tk;n) and volume U(tk;n) as well as sums of 

n-th degrees of trade values ΣCn(ti) and volumes ΣCn(ti) during Δk (2.6) with growing n more 

and more take into account the size of each big trade value Cn(ti) and volume Un(ti). Thus 

relations (2.13; 2.14) project impact of big trades performed by investor on price statistical 

moments p(tk;n). Conventional VWAP introduces dependence of p(tk;1)=E[p(ti)] (2.10; 2.11) 

on math expectations E[C(ti)] and E[U(ti)] of equation (1.3) or (2.12) for n=1 . We take the 

similar interrelations (2.14) between math expectations of terms in (2.12) for all n=2,3,… 

Conventional VWAP p(tk;1) (2.10; 2.11) based on (1.3) or (2.12) for n=1 have sense of ratio 

of sum of all trade values ΣC(ti) to sum of all trade volumes ΣU(ti) during Δ. Our definitions 

of price n-th statistical moments p(tk;n) use equation (2.12) and determine math expectation 

of n-th degrees of price E[pn(ti)] (2.13; 2.14) for all n=2,3,.. similar to (2.11) as ratio of sum 

of all n-th degrees of values ΣCn(ti) to sum of all n-th degrees of volumes ΣUn(ti) during Δ. 

We simply extend VWAP from (1.3) to (2.12) for all n=2,3,4,… The set of n-th statistical 

moments (2.13; 2.14) for all n=1,2,3... completely describes price as a random variable 

during Δ and establishes direct dependence between statistical moments of the market trade 

value and volume and statistical moments of the market price.  

 Let us underline that definition of the VWAP p(tk;1)=E[p(ti)] (2.11) hides important 

consequences. Actually, VWAP relations (2.11) result in zero correlations between time-

series of the price p(ti) and volume U(ti) during Δk (2.4). Indeed, from (1.3; 2.7; 2.11) obtain:  𝐸[𝐶(𝑡𝑖)] = 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] = 1𝑁 ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1  ≡ 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1 ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 ≡𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]     (2.15) 

Hence (2.15) causes no correlations between time-series of market price and trade volume: 𝑐𝑜𝑟𝑟{𝑝𝑈} = 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)] = 0  (2.16) 

Zero correlation (2.15; 2.16) between VWAP and trade volume is a result of the price 

averaging procedure (2.7; 2.10; 2.11). Actually, numerous studies “observe” correlations 
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between price and trading volume (Tauchen and Pitts, 1983; Karpoff, 1987; Gallant et.al., 

1992; Campbell et.al., 1993; Llorente et.al., 2001; DeFusco et.al., 2017). That underlines the 

different approaches to price averaging procedure. We repeat that usage of VWAP states no 

correlations between volume and price.  

It is obvious that definitions of price n-th statistical moments p(tk;n)=E[pn(ti)] during Δk 

(2.13; 2.14) as n-th price degree pn(ti) weighed by n-th degree of the trade volume Un(ti) 

result in zero correlations between time-series of the n-th degree of the price pn(ti) and trade 

volume Un(ti). Using (2.9; 2.12; 2.13) one can easy obtain for all n=1,2,3,…  𝐸[𝐶𝑛(𝑡𝑖)] = 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] =  1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ≡ 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ∙  1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ≡ 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] ≡ 𝑝(𝑡𝑘; 𝑛)𝑈(𝑡𝑘; 𝑛)  (2.17) 

Hence, for all n correlations corr{pnUn} between time-series of n-th degree of price pn(ti) and 

trade volume Un(ti) during Δk (2.6) equal zero: 𝑐𝑜𝑟𝑟{𝑝𝑛𝑈𝑛} = 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] − 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] = 0 (2.18) 

Zero correlations (2.18) provide a different way for derivation of price statistical moments 

p(tk;n). Indeed, from (2.14) follows: 𝐶(𝑡𝑘; 𝑛) = 𝑝(𝑡𝑘; 𝑛)𝑈(𝑡𝑘; 𝑛)    (2.19) 

Relations (2.9; 2.19) define price n-th statistical moments p(tk;n) during Δk (2.6) that can be 

derived directly form (2.12) and zero correlations (2.18). Taking math expectation of (2.12): 

 𝐶(𝑡𝑘; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] = 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] = 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] = 𝑝(𝑡𝑘; 𝑛)𝑈(𝑡𝑘; 𝑛)      (2.20) 

Thus zero correlations (2.18) can be treated as consequences of the definition (2.14) and as 

assumptions for deriving (2.19; 2.20) as mathematical expectation of (2.12). 

 The choice of price averaging procedure between the frequency-based and the 

market-based approaches determines different random properties of price. However, zero 

correlations (2.18) don’t cause statistical independence between the trade volume and price 

random variables. As example, we derive correlation corr{pU2} between time-series of 

market price p(ti) and squares of trade volumes U2(ti) during Δk (2.6): 𝐸[𝑝𝑈2] = 𝐸[𝑝]𝐸[𝑈2] + 𝑐𝑜𝑟𝑟{𝑝𝑈2} = 𝐸[𝐶𝑈] = 𝐸[𝐶]𝐸[𝑈] + 𝑐𝑜𝑟𝑟{𝐶𝑈} 𝑐𝑜𝑟𝑟{𝑝𝑈2} = 𝐸[𝐶𝑈] − 𝑝(𝑡𝑘; 1)𝑈(𝑡𝑘; 2) = 𝑐𝑜𝑟𝑟{𝐶𝑈} − 𝑝(𝑡𝑘; 1)𝜎2(𝑈) (2.21) 

Thus correlations between time-series of price p(ti) and squares of trade volume U2(ti) can be 

positive only if high positive correlations corr{CU} between trade value C(ti) and volume 

U(ti) are bigger then mean price p(tk;1) multiplied by trade volume volatility σ2(U): 𝑐𝑜𝑟𝑟{𝑝𝑈2} > 0  ⇔  𝑐𝑜𝑟𝑟{𝐶𝑈} > 𝑝(𝑡𝑘; 1)𝜎2(𝑈) > 0    𝜎2(𝑈) = 𝑈(𝑡𝑘; 2) − 𝑈2(𝑡𝑘; 1)     
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Otherwise correlations are always negative: corr{pU2} <0. Correlation corr{CU} between 

trade value C(ti) and volume U(ti) time-series is assessed using conventional frequency-based 

approach (2.9): 𝑐𝑜𝑟𝑟{𝐶𝑈} = 𝐸[𝐶𝑈] − 𝐸[𝐶]𝐸[𝑈] = 1𝑁 ∑ 𝐶(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 − 𝐶(𝑡𝑘; 1)𝑈(𝑡𝑘; 1)   

 It is well known, that the set of n-th statistical moments of a random variable for all 

n=1,2,… determines its characteristic function as Taylor series (Shephard, 1991; Shiryaev, 

1999; Shreve, 2004; Klyatskin, 2005). Price characteristic function F(tk;x) as Taylor series at 

moment tk takes form: 𝐹(𝑡𝑘; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!∞𝑖=1 𝑝(𝑡𝑘; 𝑛) 𝑥𝑛    (2.22) 𝑝(𝑡𝑘; 𝑛) = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹(𝑡𝑘; 𝑥)|𝑥=0   (2.23) 

Market-based asset price characteristic function F(tk;x) (2.22; 2.23) depends on set of n-th 

statistical moments of the market trade value C(tk;n) and volume U(tk;n) and the price PDF 

also depends on market trade statistical moments (2.9). Any predictions of the market-based 

asset price PDF at horizon T should match forecasts of n-th statistical moments of the market 

trade value and volume at same horizon T.  

 However, exact expressions of the market trade value and volume probability density 

functions (PDF) are unknown. Any records of market trade time-series for any given time 

interval Δk (2.4) permit assess only finite number m of the market trade statistical moments 

C(tk;n) and U(tk;n), n=1,2,…m. Hence, one can operate by finite number m of price statistical 

moments p(tk;n) only. Finite number m of price statistical moments describes approximations 

of the price characteristic function Fm(tk;x). Let us take m-approximations of the price 

characteristic function Fm(tk;x) (2.24; 2.25) that generate m-approximations of the price 

probability measure ηm(tk;p) (2.26; 2.27) (Olkhov, 2021b): 𝐹𝑚(𝑡𝑘; 𝑥) = exp {∑ 𝑖𝑗𝑗!𝑚𝑗=1  𝑎𝑗  𝑥𝑗 − 𝑏 𝑥2𝑛}      ;     𝑚 = 1,2, . . ;   𝑏 ≥ 0;   2𝑛 > 𝑚 (2.24) 

In (2.24) b=0 can be zero if and only if m is even and imam in (2.24) is negative. For each 

approximation Fm(tk;x) terms aj , j=1,..m in (2.24) depend on price statistical moments p(tk;j), 

j≤m and match relations (2.25). The term bx2n >0 doesn’t impact relations (2.25) but ensures 

integrability of approximation Fm(tk;x) of characteristic function and existence of the 

approximation of the price probability measures ηm(tk;p) as Fourier transforms (2.26). 

Uncertainty of the coefficient b≥0 and degree 2n of x2n, 2n>m in (2.24) illustrates well-

known fact that m statistical moments don’t define characteristic function and probability 

measure of a random variable precisely. Expressions (2.24) present the set of approximations 
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Fm(tk;x) of the price characteristic functions with different b≥0 and 2n>m and corresponding 

set of approximations of the price probability measures ηm(tk;p) those match (2.25; 2.26). 𝑝(𝑡𝑘; 𝑛) = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹𝑚(𝑡𝑘; 𝑥)|𝑥=0   ;   𝑛 ≤ 𝑚  (2.25) 

Such m-approximation Fm(tk;x) of the characteristic function reproduces first m price 

statistical moments (2.23) and generates m-approximation of the PDF ηm(tk;p) at moment tk 

during the interval Δk (2.4): 𝜂𝑚(𝑡𝑘; 𝑝) = 1√2π ∫ 𝑑𝑥 𝐹𝑚(𝑡𝑘; 𝑥) exp(−𝑖𝑥𝑝)   (2.26) 𝑝(𝑡𝑘; 𝑛) = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛) = ∫ 𝑑𝑝 𝑝𝑛𝜂𝑚(𝑡𝑘; 𝑝)    ;     𝑛 ≤ 𝑚    

For n=2 approximation of the price characteristic function F2(tk;x) takes simple form (2.27). 𝐹2(𝑡𝑘; 𝑥) = exp {𝑖 𝑝(𝑡𝑘; 1)𝑥 − 𝜎𝑝2(𝑡𝑘)2 𝑥2}   (2.27) 

 Fourier transform (2.26) of F2(tk;x) generates simple Gaussian distribution η2(tk;p) with the 

market-based asset price volatility σp
2(tk): 𝜂2(𝑡𝑘; 𝑝) =  1(2𝜋)12𝜎𝑝(𝑡𝑘) exp {− (𝑝−𝑝(𝑡𝑘;1))22𝜎𝑝2(𝑡𝑘) }   (2.28) 

𝜎𝑝2(𝑡𝑘) = 𝐸[(𝑝(𝑡𝑖) − 𝑝(𝑡𝑘; 1))2] = 𝑝(𝑡𝑘; 2) − 𝑝2(𝑡𝑘; 1) = 𝐶(𝑡𝑘;2)𝑈(𝑡𝑘;2) − 𝐶2(𝑡𝑘;1)𝑈2(𝑡𝑘;1)  (2.29) 

We underline that Gaussian approximation of the asset price probability measure (2.28) 

depends on second statistical moments of the market trade value C(tk;2) and volume U(tk;2). 

Prediction of Gaussian price probability η2(tk;p) (2.28) at horizon T requires forecasts of the 

second statistical moments of the market trade value and volume (2.9) at the same horizon T. 

 Approximations F4(tk;x) (2.30-2.33) match first four price statistical moments for 

different b>0, 2n>4, (Olkhov, 2021b). Approximations F4(tk;x) depend on the price volatility 

σp
2(tk) (2.29), price skewness Sk(p) (2.31) and price kurtosis Ku(p) (2.32) 𝐹4(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎𝑝2(𝑡𝑘)2 𝑥2 − 𝑖 𝑎36 𝑥3 + 𝑎424 𝑥4 − 𝑏𝑥2𝑛}  ;   2𝑛 > 4 (2.30) 𝑎3 = 𝐸 [(𝑝 − 𝑝(𝑡; 1))3] = 𝑆𝑘(𝑝)𝜎𝑝3(𝑡𝑘)   (2.31) 𝐾𝑟(𝑝)𝜎𝑝4(𝑡𝑘) = 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))4]   (2.32) 𝑎4 = [𝐾𝑟(𝑝) − 3]𝜎𝑝4(𝑡𝑘)    (2.33) 

It is important that the market-based price volatility σp
2(tk) (2.29) depends on second 

statistical moments of the market trade value C(tk;2) and volume U(tk;2) (2.9) (Olkhov, 

2020). Usage of the market-based approach to price probability opens the way for description 

of market-based price autocorrelations (Olkhov, 2022a; 2022b). 
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 Our consideration of the price statistical moments p(tk;n) through statistical moments 

of the market trade value C(tk;n) and volume U(tk;n) complement well-known description of 

the random variable determined as difference of two random variables. Indeed, taking 

logarithm of (1.3) one easy obtains that logarithm of price ln(p) equals logarithm of the trade 

value ln(C) minus logarithm of the trade volume ln(U). That case is described in many 

probability introductory notes (Papoulis and Pillai, 2002; p.181) and we refer there for 

details. However, time-series records of market trades allow assess only finite number of 

statistical moments and don’t identify the exact form of the trade value C and volume U PDF 

as well as joint PDF of ln(C) and ln(U) that are required to derive log price PDF (Papoulis 

and Pillai, 2002; p.181). At that point usage of our approximate description of price random 

properties using the market-based price statistical moments (2.13; 2.14; 2.19) is more 

justified and preferable. Below we present some consequences of usage market-based price 

statistical moments (2.13; 2.14) as approximate description of price random properties during 

the averaging interval Δk (2.6). 

3. Returns and inflation  

 The market-based asset price statistical moments permit describe statistical properties 

of returns via statistical moments of the market trade value and volume. Actually, returns 

r(t1,t2) are determined as 𝑟(𝑡1, 𝑡2) = 𝑝(𝑡2)−𝑝(𝑡1)𝑝(𝑡1) = 𝑝(𝑡2)𝑝(𝑡1) − 1   (3.1) 

Let’s take price index d(t1,t2) (3.2) as: 𝑝(𝑡2) = 𝑝(𝑡1)𝑑(𝑡1, 𝑡2)    (3.2) 𝑟(𝑡1, 𝑡2) = 𝑑(𝑡1, 𝑡2) − 1    (3.3) 

In Sec.2 we already derived the market-based asset price statistical moments p(tk;n) (2.19). 

We use the same approach to assess the market-based n-th statistical moments of the price 

index d(t1,t2) (3.2). We shall consider two simple cases. First, to describe returns we assume 

that the index d(t1,t2) (3.2) is determined with respect to the fixed price p(t1) and consider 

statistical properties of the price index by time t2 averaged during the interval Δk (2.4). In the 

second case we model inflation and consider random properties of the index d(tk,t2) with 

respect to collective price level averaged during Δk taking price level p(t2) as random during 

interval Δk+m (2.4). Our model doesn’t describe details of returns and inflation but displays 

dependence of returns of inflation on randomness of the market trade value and volume.  

1-st case - Returns.  
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 Relations (3.1) define returns r(t1,t2) at moment t2 with price p(t2) with respect of 

previous moment t1 with price p(t1). Price p(t2) is unpredictable and one assesses average 

returns r(t1,t2) or its volatility taking price p(t2) as random variable during the averaging 

interval Δk. As usual one considers return’s irregular time-series as initial data to assess 

statistical moment of returns, using conventional frequency-based probability of returns. 

However, assessments of returns on large asset sizes those propose big market deals that 

could impact market price during averaging interval Δ result that agents should consider 

market-based probability of returns determined by statistical moments of random market 

trade value and volume. We derive market-based assessment of returns statistical moments 

based on price statistical moments (2.13; 2.14). Consider (2.9; 2.19; 3.2) and for the n-th 

statistical moments of the price index d(t1,tk;n) averaged by t2 during Δk (2.4) obtain: 𝑑(𝑡1, 𝑡𝑘; 𝑛) ≡ 𝐸[𝑑𝑛(𝑡1, 𝑡2)]    (3.4) 𝑑(𝑡1, 𝑡𝑘; 𝑛)𝑝𝑛(𝑡1) = 𝑝(𝑡𝑘; 𝑛) = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛)   (3.5) 

E[...] – math expectation during Δk (2.4). From (3.4; 3.5) obtain expressions for n-th 

statistical moments of returns r(t1,tk;n): 𝑟(𝑡1, 𝑡𝑘; 𝑛) ≡ 𝐸[𝑟𝑛(𝑡1, 𝑡2)]    (3.6) 𝑟(𝑡1, 𝑡𝑘; 𝑛) = 𝐸[(𝑑(𝑡1, 𝑡2) − 1)𝑛]    (3.7) 

Due to (3.4; 3.5; 3.7) n-th returns statistical moment r(t1,tk;n) is a simple sum of m-th 

statistical moments of the price index d(t1,tk;m), m≤n: 𝑟(𝑡1, 𝑡𝑘; 𝑛) = ∑ (−1)(𝑛−𝑚) 𝑛!𝑚!(𝑛−𝑚)!𝑛𝑚=0 𝑑(𝑡1, 𝑡𝑘; 𝑚)  ;   𝑑(𝑡1, 𝑡𝑘; 0) = 1  (3.8) 

Due to (3.5) returns n-th statistical moments r(t1,tk;n) can be presented through the market 

trade value and volume statistical moments (3.9):  𝑟(𝑡1, 𝑡𝑘; 𝑛) = ∑ (−1)(𝑛−𝑚) 𝑛!𝑚!(𝑛−𝑚)!𝑛𝑚=0 𝑝−𝑚(𝑡1) 𝐶(𝑡𝑘;𝑚)𝑈(𝑡𝑘;𝑚)    ;    𝐶(𝑡𝑘;0)𝑈(𝑡𝑘;0) = 1  (3.9) 

or equally through price n-th statistical moments (see (3.5)). In particular, one can easy derive 

relations (3.11) between the price volatility σp
2(tk) (2.29), price p(t1) at moment t1 and 

volatility of returns σr
2(t1,tk) (3.10)  𝜎𝑟2(𝑡1, 𝑡𝑘) = 𝑟(𝑡1, 𝑡𝑘; 2) − 𝑟2(𝑡1, 𝑡𝑘; 1) ≡ 𝐸 [(𝑟(𝑡1, 𝑡2) − 𝑟(𝑡1, 𝑡𝑘; 1))2] (3.10) 𝜎𝑝2(𝑡𝑘) = 𝑝2(𝑡1) 𝜎𝑟2(𝑡1, 𝑡𝑘)    (3.11) 

2-d case - Inflation.  

 Inflation is determined as ratio of collective price level of goods or services averaged 

during time interval Δk+m with respect to same price level averaged during earlier interval Δk. 

The interval Δk can be equal week, month, quarter or year. Assessment of inflation’s price 
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level takes into account collective values and volumes of market trade of goods, services etc. 

(Fox, et al., 2017). Large trade values and volumes impact assessment of inflation and hence 

should conduct the market-based assessment of inflation based on random properties of 

collective trade values and volumes. Let us consider collective market trade values and 

volumes that model the price level in a way similar to Sec.2. Let us take “instantaneous” 

inflation In(ti;tk) of price level p(ti) during averaging interval  Δk+m  similar to (3.1):  𝐼𝑛(𝑡𝑖, 𝑡𝑘) = 𝑝(𝑡𝑖)𝑝(𝑡𝑘;1) − 1      

Then inflation n-th statistical moments In(tk+m,tk;n) averaged during interval Δk+m take form: 𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 𝑛) = 𝐸[𝐼𝑛𝑛(𝑡𝑖, 𝑡𝑘)] = 𝐸[( 𝑝(𝑡𝑖)𝑝(𝑡𝑘;1) − 1)𝑛]  (3.12) 

From (2.14) obtain: 𝑝(𝑡𝑘+𝑚;𝑛)𝑝𝑛(𝑡𝑘;1) = 𝐶(𝑡𝑘+𝑚;𝑛)𝐶𝑛(𝑡𝑘;1)  𝑈𝑛(𝑡𝑘;1)𝑈(𝑡𝑘+𝑚;𝑛)     

Hence from (3.12) obtain n-th statistical moment of inflation In(tk+m,tk;n): 𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 𝑛) = ∑ (−1)𝑗 𝑛!𝑗!(𝑛−𝑗)!𝑛𝑗=0 𝑝(𝑡𝑘+𝑚;𝑛−𝑗)𝑝𝑛−𝑗(𝑡𝑘;1)       𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 𝑛) = ∑ (−1)𝑗 𝑛!𝑗!(𝑛−𝑗)!𝑛𝑗=0 𝐶(𝑡𝑘+𝑚;𝑛−𝑗)𝐶𝑛−𝑗(𝑡𝑘;1)  𝑈𝑛−𝑗(𝑡𝑘;1)𝑈(𝑡𝑘+𝑚;𝑛−𝑗)   

Let us introduce trade value index c(tk+m;n|tk,1) (3.13) as ratio of trade value n-th statistical 

moment C(tk+m;n) (2.9) averaged during the interval Δk+m to n-th degree of mean trade value 

C(tk;1) (2.7) averaged during the earlier interval Δk. The similar meaning has trade volume 

index u(tk+m;n|tk,1) (3.13): 𝑐(𝑡𝑘+𝑚; 𝑛|𝑡𝑘; 1) = 𝐶(𝑡𝑘+𝑚;𝑛)𝐶𝑛(𝑡𝑘;1)     ;     𝑢(𝑡𝑘+𝑚; 𝑛|𝑡𝑘; 1) = 𝑈(𝑡𝑘+𝑚;𝑛)𝑈𝑛(𝑡𝑘;1)   (3.13) 

Using (3.13) inflation n-th statistical moments In(tk+m,tk;n) take form: 𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 𝑛) = ∑ (−1)𝑗 𝑛!𝑗!(𝑛−𝑗)!𝑛𝑗=0  𝑐(𝑡𝑘+𝑚;𝑛−𝑗|𝑡𝑘;1)𝑢(𝑡𝑘+𝑚;𝑛−𝑗|𝑡𝑘;1)   (3.14) 

Mean inflation In(tk,tk+m;1) during Δk+m with respect to time term Δk takes form: 𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 1) = 𝑝(𝑡𝑘+𝑚;1)𝑝(𝑡𝑘;1) − 1  = 𝐶(𝑡𝑘+𝑚;1)𝐶(𝑡𝑘;1)  𝑈(𝑡𝑘;1)𝑈(𝑡𝑘+𝑚;1) − 1  (3.15) 

Volatility of inflation σ2
In(tk+m,tk) during Δk+m with respect to time term Δk 𝜎𝐼𝑛2 (𝑡𝑘+𝑚, 𝑡𝑘) = 𝐼𝑛(𝑡𝑘+𝑚, 𝑡𝑘; 2) − 𝐼𝑛2(𝑡𝑘+𝑚, 𝑡𝑘; 1)    𝜎𝐼𝑛2 (𝑡𝑘+𝑚, 𝑡𝑘) = 𝐶(𝑡𝑘+𝑚;2)𝐶2(𝑡𝑘;1)  𝑈2(𝑡𝑘;1)𝑈(𝑡𝑘+𝑚;2) − 𝐶2(𝑡𝑘+𝑚;1)𝐶2(𝑡𝑘;1)  𝑈2(𝑡𝑘;1)𝑈2(𝑡𝑘+𝑚;1)    

Volatility of inflation σ2
In(tk+m,tk) (3.16) takes form alike to returns volatility σr

2(t1,tk) (3.11):  𝜎𝑝2(𝑡𝑘+𝑚) = 𝑝2(𝑡𝑘; 1)𝜎𝐼𝑛2 (𝑡𝑘+𝑚, 𝑡𝑘)    (3.16) 
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However, volatility σ2
p(tk) in (3.11) describes price fluctuations of selected asset but volatility 

σ2
p(tk+m) (3.16) describes fluctuations of collective price level that assesses inflation. It is 

reasonable that volatility of inflation σ2
In(tk+m,tk) during Δk+m with respect to Δk equals the 

ratio of price volatility σ2
p(tk+m) during Δk+m to square of mean price p2(tk,1) during Δk. The 

trade value index c(tk+m;n|tk,1) (3.13) and trade volume index u(tk+m;n|tk,1) (3.13) describe 

growth of the market trade value and volume during the interval Δk+m with respect to Δk. 

Market trade is important indicator of the economic growth and development. Relations 

(3.13-3.16) link description of asset returns and inflations with economic growth during 

selected time intervals Δk and Δk+m (2.4). We leave further investigation of above relations 

between economic growth and market trade indexes for future. 

4. Asset pricing and value-at-risk 

Asset-pricing 

 Most asset-pricing models deal with prices averaged by some probability (Cochrane, 

2001; Campbell, 2002). Predictions of the price probability at certain time horizon T play the 

core role for the assessments of price forecasts at horizon T. Asset pricing when assumption: 

“the investor can freely buy or sell as much of the payoff xt+1 as he wishes, at a price pt” 

(Cochrane, 2001, p.15) – is not valid, requires taking into account impact of large market 

deals as well as investor’s trades on price statistical moments and thus on price probability. 

We introduce market-based approach that approximates the impact of market trade value and 

volume during averaging interval Δk (2.4) on price statistical moments and price probability. 

Introduction of the market-based price probability determined by statistical properties of the 

market trade value and volume (2.19 - 2.23) makes predictions of the price PDF one of the 

core problems of macroeconomics and finance. Indeed, any prediction of the price PDF at 

time horizon T for the given averaging interval Δk (2.4) requires forecasting of the market 

trade value and volume probabilities at the same horizon T and during the same Δk (2.4). In 

simple words, to predict price PDF one should forecast the market trade values and volumes 

probabilities during the interval Δk (2.4) at horizon T. That causes forecasting economic and 

financial factors those impact market trade at horizon T: supply and demand, production 

function and investment, economic development and growth and etc. Introduction of the 

market-based price probability ties up prediction of asset price probability with problems of 

forecasting of market trade, economic development and growth. One should take into account 

basic relations (2.19-2.23) those determine price statistical moments through statistical 

moments of the market trade value and volume. Approximations (2.24-2.27) that take into 
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account first 2,3,4 statistical moments should check how forecasts of approximate price 

probability match predictions of the market trade value and volatility statistical moments. 

Value-at-risk 

 Approximate predictions of the asset price probability determine accuracy and 

reliability of Value-at-Risk (VaR) – one of the most widespread tool for hedging risk of the 

market price change. Economic ground of VaR was developed more than 30 years ago 

(Longerstaey and Spencer, 1996; CreditMetrics™, 1997; Choudhry, 2013). “Value-at-Risk is 

a measure of the maximum potential change in value of a portfolio of financial instruments 

with a given probability over a pre-set horizon” (Longerstaey and Spencer, 1996). 

Nevertheless the great progress in VaR performance since then, the core features of VaR 

remain the same. To assess VaR at horizon T one should estimate integral of the left tail of 

the returns or price PDF predicted at horizon T to project “potential change in value of a 

portfolio of financial instruments with a given probability over a pre-set horizon”. Such 

assessment limits the possible capital loss due to market price variations for selected time 

horizon T for given probability. VaR is used by largest banks and investment funds to hedge 

market price change of their AUM and portfolios valued at billions USD. Thus, banks and 

funds should consider impact of their large trades on market price probability. Hence, largest 

banks and investment funds should take into account and follow market-based approximation 

of price and returns probability. 

 Usage of any VaR version requires predictions of returns PDF at horizon T. As we 

show above, returns probability and returns statistical moments are completely determined by 

asset price probability and price statistical moments (3.1-3.14) and thus by market trade 

statistical moments (2.9; 3.9). Prediction of returns probability almost equals prediction of the 

asset price probability (3.5; 3.8). In Sec.2 we show that the market-based asset price 

probability and price statistical moments are determined by statistical moments of market 

trade value and volume. In other words: VaR as method to hedge large AUM from risks of 

market price change is based on prediction of price probability at horizon T and hence 

depends on forecasts of the market trade value and volume statistical moments at the same 

horizon T (Olkhov, 2021a). The accuracy of VaR assessment at horizon T is determined by 

accuracy of forecasting the market trade value and volume statistical moments. The more 

statistical moments of market trade are predicted, the higher accuracy of prediction of market 

trade PDF, the higher accuracy of prediction of price statistical moments and PDF. Simply 

put: VaR assessment almost equals prediction of market trade PDF. However, imaginable 

exact forecast of the market trade value and volume statistical moments or PDF at horizon T 
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would provide for that lucky man a unique opportunity to manage and beat the market alone. 

That is much more profitable then any VaR assessments. One who will succeed in exact 

prediction of the market PDF will forget about VaR assessments and will enjoy beating the 

market alone! However, there still remains a “negligible” problem – how exactly predict the 

market trade PDF? It is a good issue for further research.  

 Accuracy of any assessments of VaR at horizon T is reduced by the accuracy of 

predictions market trade value and volume statistical moments at horizon T. That arises the 

problem of accuracy of any price PDF predictions in compare with accuracy of market trade 

probability forecasts. Further research may help establish economic ground and introduce 

possible limits on reliability of usage of VaR based on the market-based price probability.  

5. Conclusion 

 The asset price probability plays the core role in macroeconomics and finance. 

Introduction of the market-based approximation of price PDF through the statistical moments 

of the market trade value and volume establishes the unified description of the price 

statistical moments, price indices and returns statistical moments and ties up predictions of 

the price and returns probabilities with forecasting the market trade value and volume 

statistical moments. That approach describes the case when investor’s trades as well as large 

deals of other market participants, impact random properties of the asset price during the 

averaging interval Δ. We approximate price statistical moments and price probability by 

statistical moments of the market trade value and volume. It helps study bounds of reliability 

of Value-at-Risk determined by the accuracy of forecasting of the market trade probability. 

Investigation of the market trade value and volume PDF and prediction of their statistical 

moments are the problems for future.   
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