MPRA
 Munich Personal RePEc Archive

Do Individual Investors Ignore Transaction Costs?

Anginer, Deniz and Han, Xue Snow and Yildizhan, Celim
World Bank, San Francisco State University, University of Georgia

19 May 2017

Online at https://mpra.ub.uni-muenchen.de/115401/
MPRA Paper No. 115401, posted 18 Nov 2022 09:42 UTC

Do Individual Investors Ignore Transaction Costs?

Deniz Anginer, Snow (Xue) Han, Çelim Yıldızhan*

October 2022

Abstract

Using close to 800,000 transactions by 66,000 households in the United States and close to $2,000,000$ transactions by 303,000 households in Finland, this paper shows that individual investors with longer holding periods choose to hold less liquid stocks in their portfolios. The relationship between holding periods and transaction costs is stronger among more financially sophisticated households. We confirm our findings by analyzing changes in investors' holding periods around exogenous shocks to stock liquidity. Our findings challenge the notion that individual investors ignore non-salient costs when making investment decisions and suggest that they are cognizant of cost of trading stocks.

JEL Classifications: G11, G12, G14
Keywords: individual investors; liquidity; transaction costs; investor attention; behavioral bias

[^0]
1. Introduction

In theoretical models of liquidity, investors' expected holding periods determine how transaction costs are priced in asset values. ${ }^{1}$ Long-term investors who can amortize trading costs over a longer expected holding period require a lower per-period return than investors with shorter expected holding periods. These models rely on the fundamental assumption that rational investors minimize per-period transactions costs on their investments. Counter to the idea in these theoretical models that investors understand and incorporate the impact of transaction costs in their investment decisions, findings in the behavioral finance literature suggest that individual investors tend to ignore non-salient costs when making investment decisions.

In this paper, we use trading records of households in the US and in Finland, to investigate whether individual investors are cognizant of costs of transacting securities when making investment decisions. Specifically, we examine if individual investors hold illiquid securities with high transaction costs longer as stipulated by theoretical models of liquidity pricing, or whether they ignore transaction costs as suggested by the prevalent findings in the behavioral finance literature.

Existing evidence suggests that individual investors ignore non-salient costs as they relate to mutual fund fees. Barber, Odean and Zheng (2005) show that individual investors pay attention only to the salient costs of mutual funds but ignore hidden operating costs. Consistent with these findings, Gil-Bazo and Verdu $(2008,2009)$ document that there is a negative relation between mutual funds' before-fee performance and the fees they charge to investors. Surveys also suggest

[^1]that retail investors do not understand all costs associated with investing in mutual funds (NASD Investor Literacy Survey 2003; Alexander, Jones, and Nigro, 1998). ${ }^{2}$

Besides mutual fund fees, there is also evidence that individuals do not pay attention to nonsalient costs in other domains. Hossain and Morgan (2006), using a field experiment, show that buyers in Ebay auctions ignore shipping costs when the price of the item being auctioned is much higher than shipping costs. Chetty, Looney and Kroft (2009) document that consumers underreact to taxes that are not salient. Similarly, Finkelstein (2009) finds that drivers are less aware of tolls paid electronically. These findings suggest that individual investors may not fully understand and incorporate non-salient transaction costs such as bid-ask spreads and price impact when trading.

Consistent with the notion that investors do not pay attention to non-salient costs, a number of studies have found that individual investors tend to overtrade and lose substantial amounts to transaction costs without any gain in performance. Barber and Odean (2000), for instance, show that while there is minor difference in the gross performance of individual investors who trade frequently and those who trade infrequently, the net returns after transaction costs for infrequent traders are about 7% higher per year than those for frequent traders. Barber and Odean (2000) attribute their findings to individual investors' overconfidence. Barber et al. (2009) and French (2008) confirm this finding. ${ }^{3}$

However, losses incurred by individual investors after accounting for transaction costs do not necessarily imply that these investors are not paying attention to transaction costs. First, investors

[^2]can trade for a variety of reasons other than information or behavioral biases. Investors may trade when they experience income shocks (Lynch and Tan 2011) or when they experience exogenous liquidity shocks (Huang 2003). Since we do not observe the full portfolios of individual investors, we can hardly infer motivations behind their trades. Second, even if most of the overtrading by individual investors could be attributed to overconfidence, it would still not be justified to claim that such investors do not pay attention to transaction costs.

In this paper, we directly test whether individual investors pay attention to transaction costs by examining the relationship between transaction costs and the holding periods of individual investors. Rather than focus on trading performance of households, we analyze if individual investors understand the trade-offs between holding periods and transaction costs. In doing so, our goal is not to offer an alternative setting to test the asset pricing implications of transaction costs. Rather, our focus in the paper is on the more specific question of if and how retail investors incorporate transaction costs in their investment decisions.

A number of papers examine the pricing impact of holding period as measured by turnover on stock returns (Atkins and Dyl 1997; Datar, Naik and Radcliffe 1998; and Hu 1997). While examining impact of average turnover is informative from an asset pricing perspective, it does not tell us how individual investors incorporate transaction costs in their investment decisions. Examining market averages can also mask large cross-sectional variation and skewness in holding periods of investors for the same stock. For instance, some stocks can be more heavily traded by institutional investors or market makers could be more active in some stocks than others. Some stocks may have thus a group of exceedingly long holding period owners, but high turnover among the smaller group of remaining investors.

We model investors' holding periods as a function of transaction costs using close to 800,000 transactions made by 66,000 households in the US, and 2,000,000 transactions made by 303,000 households in Finland. We use survival analyses and model investors' sell versus hold decisions at each point in time as a function of transaction costs using hazard regressions.

We find that transaction costs are an important determinant of investors' holding periods after controlling for various household and stock characteristics. We find that in the US a stock in the highest transaction cost decile (quintile) is 40% (20\%) less likely to be sold than a stock that has lower transaction costs but with similar firm and investor characteristics, consistent with the predictions of theoretical models of liquidity.

We check the validity of this finding by replicating our analyses with a transactions dataset from Finland, which serves as an "out-of-sample" verification. Almost identical to the US results, we find that an otherwise similar stock in the highest transaction cost decile in Finland is also 40\% less likely to be sold compared to a stock that has lower transaction costs. Since the data from Finland includes the complete transactions of all Finnish households between 1995 and 2003, the results suggest that our findings can be generalized to the full cross-section of households. Our results remain robust to controlling for firm and household specific effects, additional controls, and alternative measures of transaction costs.

We also find that households differ in how much attention they pay to the transaction costs of the securities they trade. We find that investors who are more financially sophisticated pay more attention to transaction costs. We follow Goetzmann and Kumar (2008) and assume that financial sophistication is correlated with education, occupation, and monetary resources available to an investor. We also use information contained in investors' trades to identify sophisticated investors. We classify households who have above median income, who hold technical and managerial
positions and who trade options, foreign securities and have short positions as financially more sophisticated. Our findings suggest that investor sophistication plays a role in how much attention investors pay to transaction costs. We confirm our findings on financial sophistication using data from Finland.

There is likely to be endogeneity in the relationship between holding periods and measures of transaction costs used in this paper. For instance, as trading interest in a stock increases the costs associated with trading that stock decreases. ${ }^{4}$ In order to address potential endogeneity concerns, we study investor behavior around two quasi-exogenous liquidity shocks.

First, we examine how holding periods change around stock split events. An extensive line of literature documents a significant reduction in transaction costs and increase in liquidity after a stock split. ${ }^{5}$ Consistent with the prior literature, we first verify that transaction costs decrease (stock liquidity increases) subsequent to stock splits in our sample period. We then show that investors' average holding period declines in response to the increase in liquidity following stock splits. Our results suggest that the holding period for a stock decreases by about 20 trading days after a stock-split. This finding is economically significant as the average holding period for individual investors is 207 trading days.

Second, we conduct an event study around the reduction in the minimum tick size for stocks priced between one and five dollars listed on the American Stock Exchange. On September 3,

[^3]1992, American Stock Exchange (AMEX) reduced its minimum price increment from $1 / 8^{\text {th }}$ of a dollar to $1 / 16^{\text {th }}$ of a dollar for stocks priced between $\$ 1$ and $\$ 5$. One of the motivations for this change was to reduce bid-ask spreads. Several papers document that both quoted and effective spreads declined after this change leading to lower transaction costs (Crack 1996; Ahn, Cao and Choe 1996).

We investigate the holding period decisions of investors for stocks impacted by the tick-size change. Specifically, we compare the differential impact of the rule change on the holding periods of investors in treated firms (AMEX stocks priced $\$ 1$ to $\$ 5$) to three control groups of firms. The first group contains all firms on AMEX that are priced $\$ 5$ or more, the second group contains firms that were priced between $\$ 1$ and $\$ 5$ but listed on the NYSE and NASDAQ exchanges and as a result were not affected by the tick size change, and the third group contains all non-affected stocks on the three major exchanges. In all three comparisons, we find that that the tick size reduction led retail investors to reduce their holding periods in treated firms in reaction to reduced transaction costs. We find that investors' likelihood of selling their impacted shares significantly increased around the tick size reduction. On average, investors were 16.7% more likely to sell an impacted stock (AMEX stock priced $\$ 1$ to $\$ 5$) in the six months subsequent to the tick size change rule, controlling for stock characteristics.

The remainder of this paper is organized as follows. Section 2 develops the hypotheses we evaluate in the paper. Section 3 describes the individual transaction datasets and the construction of the main variables used in this study. Section 4 reports our main results about the relationship between transaction costs and holding periods. Section 5 provides robustness tests to address concerns that holding periods are determined endogenously and also uses individual transactions from Finland as an out-of-sample test to verify US results. Section 6 concludes.

2. Hypotheses

A number of theoretical models link pricing of transaction costs to expected holding periods of investors. Amihud and Mendelson (1986) in a seminal paper develop a model where investors with different exogenous holding periods trade securities with fixed transaction costs. They show that transaction costs result in a clientele effect, where investors with longer holding periods choose to hold illiquid stocks in equilibrium. This equilibrium results from rational investors trying to minimize amortized transaction costs over their holding periods. In the model, the expected gross return becomes an increasing and concave function of relative transaction costs. Amihud and Mendelson find empirical support for this hypothesis using spreads and stock returns over the 1961 to 1980 time period.

While Amihud and Mendelson's (1986) model assumes that the holding periods of investors are exogenously determined, later studies have extended this model to incorporate dynamic decisions of investors and make holding periods endogenously determined. ${ }^{6}$ In models where the marginal utility from trading is low (Constantinides 1986, Vayanos 1998, Vayanos and Vila 1999, Heaton and Lucas 1996) investors respond to transaction costs by turning over their portfolio less frequently. These models predict a liquidity premium on asset prices significantly lower than transaction costs. But these models also predict unrealistically low levels of trading volumes as investors respond to higher transaction costs by lowering trading activity. In models where investors trade more frequently (Huang 2003, Lynch and Tan 2011, Lo, Mamaysky and Wang 2004) the resulting liquidity premium can be large. While these dynamic models differ in their assessments regarding how transaction costs are priced, they share a common assumption that

[^4]holding horizons are the outcome of optimal investor behavior, and that investors rationally trade off cost and benefits of delaying trades.

As dynamic models with endogenous trading horizons are more realistic in describing trading behavior of investors, we conduct our analyses at the transaction level to accommodate for potential variation in investors' holding periods across different assets. It is important to note that we also perform and report our tests with household fixed effects, whereby we assume that each household has a fixed baseline holding period, an assumption that is embedded in the Amihud and Mendelson (1986) model. As theoretical models predict that households' holding periods across various assets in their portfolios are positively related to transaction costs, our first hypothesis is:

H1: Holding periods of households across stocks are positively related to measures of transaction costs after controlling for investor and stock characteristics.

Previous studies have shown that, on average, households' stock investments perform poorly. Odean (1999), for instance, reports that individual investors' purchases under-perform their sales by a significant margin. However, other studies have shown that there exists a subset of retail investors who display greater financial sophistication and market understanding than the average retail investor. For instance, Coval, Hirshleifer, and Shumway (2005) document strong persistence in the performance of individual investors' trades and show that some skillful individual investors can earn positive abnormal profits across different periods. Ivkovic, Sialm and Weisbenner (2008) propose and empirically document that individual investors who hold more concentrated portfolios have better stock-picking skills that allow them to outperform other investors. ${ }^{7}$ Feng and Seasholes

[^5](2005) find that investors who are more sophisticated and possess more trading experience suffer less from the disposition effect bias.

Given that previous studies have documented heterogeneity in the performance and investment decisions of individual investors, we expect to find similar cross-sectional differences in the correlation between holding periods and transaction costs among households. In particular, we expect that individual investors who are more financially sophisticated make better decisions and pay closer attention to transaction costs. We follow the extant literature and assume that financial sophistication is correlated with education, occupation, and monetary resources available to an investor. We also use information contained in investors' trades to identify sophisticated investors. Our second hypothesis is:

H2: The correlation between holding periods and transactions costs is stronger for financially more sophisticated investors.

3. Data

3.1 Household Transactions and Demographics Information

This study uses two datasets to analyze the trading behaviors of households. The first dataset contains transactions for a subset of individual investors in the United States, while the second dataset contains transactions of all investors in Finland. The individual trade data for the United States come from a major U.S. discount brokerage house. It records the daily trades of 78,000 households from January 1991 to December 1996 and this is the same dataset as used in Barber and Odean (2000). ${ }^{8}$ A comparison of this dataset with Survey of Consumer Finances, IRS and TAQ data has shown it to be representative of U.S. individual investors (Ivkovic, Sialm, and Weisbenner 2008, Ivkovic, Poterba, and Weisbenner 2005, and Barber, Odean, and Zhu 2006).

[^6]We focus only on the common stock transactions of households in this study, which account for nearly two-thirds of the total value of household investments. We exclude from the current analysis investments in mutual funds, American Depositary Receipts (ADRs), warrants, and options.

Our final sample includes over 66,000 households with close to 800,000 transactions. The dataset includes for each transaction, the number of shares traded, the transaction price, and value of the position at market close. The dataset also includes demographic information for a smaller subsample of households, such as income, age, gender, occupation, and marital status.

To address concerns that our findings may be specific to the data and sample period we study, we repeat our analyses using an individual transaction dataset from Finland. This dataset comes from the central register in the Finnish Central Securities Depository (FCSD). The register officially records all the trades of all Finnish investors - both individual and institutional- daily from January 1995 to December 2003. Compared to the U.S. dataset, the Finnish dataset has better coverage as it includes the complete trading records of all market participants rather than a subset of market participants. For the purposes of this study, we ignore institutional trades and utilize only the trades of individual investors in Finland. Like the U.S. dataset, the Finnish dataset reports for each transaction, the number of shares traded, the trading price, and the daily closing price. We can also observe the initial holdings for each account at the beginning of the sample period, which allows us to keep track of the holdings of households daily. While the dataset reports demographic information, such as age and gender for a subset of investors, it does not include information about income, occupation, and marital status. A more detailed description of the Finnish dataset can be found in Grinblatt and Keloharju (2000, 2001). To calculate stock and firm characteristics for the Finnish stocks, we obtain data from Datastream.

We use the following investor characteristics in our analyses: investor age (Age), log of annual income in dollars (Log (Income)); a dummy variable that is equal to one if the trader is married (Married Dummy); a gender dummy that is equal to one if the trader is male (Male Dummy), a dummy to capture if the trader holds a technical or managerial position (Professional Dummy); a dummy that takes on the value of one if the trading account is a retirement account (Retirement Acct Dummy); and a dummy that equals one if the trader is retired (Retired Dummy).

We also identify certain trader characteristics from each household's trading history, and define the following control variables: Foreign Securities Dummy, equals one if the household has ever traded foreign securities; Option User Dummy is set to one if the household has ever traded options; and Short User Dummy, equals one if the household has ever held a short position. We also estimate the \log of the average total dollar value of each household's equity investments $L o g$ (Equity Portfolio Value). Finally, we estimate the concentration of each household's portfolio (Portfolio Concentration) computed as the sum of the squared value weights of each stock in a household's portfolio following Ivkovic et al. (2008).

3.2 Measures of Transaction Costs and Firm Controls

Transaction costs are multifaceted and are usually defined in terms of the costs and risks associated with trading financial securities. These costs incorporate price impact, asymmetric information, and inventory risk. A number of different measures of transaction costs have been proposed and used in the literature. Instead of relying on a single measure, we use several different measures commonly used in previous papers and can be estimated for both the U.S and Finland datasets.

The first measure is the Amihud illiquidity ratio (Illiq) from Amihud (2002), calculated as:

$$
\begin{equation*}
\text { Illiq }_{i, t}=\frac{1}{D_{i, t}} \sum_{d=1}^{D_{i, t}} \frac{\left|r_{i, d}\right|}{d v o l_{i, d}} \tag{1}
\end{equation*}
$$

Above, $r_{i, d}$ is the daily return for stock i in day $d . d v o l_{i, d}$ is the dollar volume for stock i in day d. $D_{i, t}$ is the number of trading days in month t. The Amihud measure is similar to Kyle's lambda and captures the price impact of trades over a specific time period. Following Acharya and Pedersen (2005), we adjust the Amihud measure as in the following to remove outliers and to make it stationary: AdjIlliq $_{i, t}=\min \left[0.25+30 \times\right.$ Illiq $\left._{i, t} \times M_{t-1}, 30\right]$, where M_{t-1} is the ratio of the capitalizations of the market portfolio at the end of the month $t-1$ to that of the market portfolio in July 1962. The higher the adjusted Amihud ratio, the more illiquid the stock is.

The second measure uses the proportion of trading days with zero returns (Zerofreq) to capture transaction costs. Following Lesmond, Ogden, and Trzcinka (1999), we compute the proportion of days with zero returns for each stock each year as Zerofreq. The higher the Zerofreq, the more illiquid the stock is.

We also compute a number of measures using intra-day trades for the U.S. sample. We use a 5-second delay to match trades with quotes and apply the same filters discussed in Hvidkjaer (2006). Effective Spread / Price is the difference between the transaction price and the quoted bidask midpoint scaled by transaction price. Relative Spread / Price is defined as the quoted bid-ask spread divided by transaction price, and Relative Spread / Mid is defined as quoted spread scaled by the bid-ask midpoint. Depth is defined as the midpoint of bid size and offer size (both in number of round lots). As depth tends to be skewed, we use $\log (1+$ depth $)$ in our analyses. To reduce potential endogeneity arising from contemporaneous measurement and to smooth out idiosyncratic changes, we use the 12-month moving average of each liquidity measure in our analyses.

Finally, we use actual trades of investors to measure realized transaction costs following Barber and Odean (2000). Specifically, we estimate closing price spread for purchases as the negative of the closing price from CRSP divided by the transaction price minus one. Closing price spread for sales is equal to the closing price from CRSP divided by the transaction price minus one. Closing price Spread $\%$ is set equal to the sum of purchase and sales closing price spreads. Commission \% is the amount charged by the brokerage for the trade scaled by the dollar value of the trade. In the analyses, we use the sum of commissions and spread (Closing price Spread + Commission \%).

We control for a number of firm characteristics in the analyses. These are firm size measured by \log of market capitalization (Size), book-to-market ratio (B / M), momentum calculated using returns over the past 12 months excluding the previous month (Momentum), idiosyncratic volatility (Ivol), maximum daily return over the past one month (MaxPrc), as well as the CAPM Beta (Beta). We also control for Unrealized Returns as (selling price - purchase price) / purchase price to capture potential disposition bias. In calculating Unrealized Returns, if a sale is never observed, and sale price is unavailable, we use the stock price at the last day of our sample period.

Table 1 reports summary statistics for stock and investor characteristics for the U.S. Panel A reports descriptive statistics for stocks that are traded by households in the dataset. For comparison, panel B provides descriptive statistics for the CRSP stock universe during the same sample period. Summary statistics are calculated by pooling annual stock-level observations from 1991 to 1996. Panel A and B show that the price, size, book-to-market ratio, and past returns for stocks in our sample are similar to those in the entire CRSP universe. For example, the median, $25^{\text {th }}$ percentile and $75^{\text {th }}$ percentile prices are the same for our sample of stocks and those in the CRSP universe. The average book-to-market ratio for our sample of firms is 0.78 , which is slightly higher than the
average book-to-market ratio of 0.72 for the CRSP universe, while the median is 0.57 for our sample and 0.55 for the CRSP universe. The average and median size of our sample firms are also slightly larger than those of the CRSP universe. Overall, the differences are insignificant, indicating that our sample of stocks are representative of the entire stock market during the sample period. The transaction costs measures are marginally lower in our sample compared to the larger CRSP universe.

Panel C reports the summary statistics for the US individual investor characteristics. Majority of the investors are in their 40s and 50s, with an average (median) age of 49.58 (48). 15% of the investors are retired. Only 10% of the primary US account holders for the transactions analyzed in this study are female, and 76% of the investors are married. 66% of the US individual investors in our transaction dataset hold technical or managerial positions. The mean (median) portfolio value is $\$ 80,342(\$ 22,952)$ for the households analyzed in this study, and the mean (median) annual income is $\$ 76,840(\$ 87,500)$ for these investors over the sample period. 14% of households have traded options, 22% have traded foreign securities, and 38% of the households have held a short position at some time over the sample period analyzed. The mean (median) US individual investor's portfolio concentration is .52 (.48), which roughly corresponds to holding two stocks with equal weights.

4. Transaction Costs and Holding Periods in the US

4.1 Holding Periods and Transaction Costs

In this section, we provide empirical evidence in support of the first hypothesis (H1). We begin by computing a holding period for each transaction in the dataset. The holding period for a transaction is defined as the number of trading days from the first purchase to the first sale of that
stock, following the approach of Seru, Shumway, and Stoffman (2010). ${ }^{9}$ This generates 799,469 holding period observations, with a median (mean) of 207 (550) trading days for retail investors in the United States.

We begin our analyses by sorting stocks into two broad transaction cost groups based on aggregate transaction cost measures each year. We calculate an aggregate transaction cost measure for each stock as the average of the three main standardized transaction cost measures utilized in this study, namely adjusted Amihud illiquidity measure, AdjIlliq, proportion of trading days with zero returns, Zerofreq, and Closing price Spread \% + Commission \%. One group consists of stocks in the highest transaction cost decile while the other group holds the rest of the stocks in the other nine deciles. We plot Kaplan-Meier survival probabilities for these two broadly defined groups of stocks in Figure 1. The x -axis shows the number of days that have passed since the purchase of a representative stock in each group, while the y-axis represents the probability that the investor will continue to hold this representative stock conditional upon no sale up to that point in time. The blue line plots the survival probability of a representative stock in the highest transaction cost decile, while the red line graphs the survival probability of a representative stock for the other nine deciles. In Figure 1.a, we plot survival probabilities for stocks in the U.S., while in Figure 1.b, we plot survival probabilities for stocks in Finland. Investors are significantly more likely to sell stocks with lower transaction costs as the survival probabilities are lower for these stocks. The figures provide preliminary evidence that holding periods are strongly related to measures of transaction costs.

[^7]We use a hazard model to analyze the relationship between holding periods and transaction costs controlling for the confounding effects of stock and investor characteristics. ${ }^{10}$ Specifically, we model investors' sell versus hold decision using a Cox proportional hazard model with timevarying, as well as static explanatory variables. The hazard model takes the following form:

$$
\begin{equation*}
h(t)=h_{0}(t) \exp \left(\beta^{\prime} X+\theta^{\prime} Z_{t}\right) \tag{3}
\end{equation*}
$$

The left-hand side variable, $h(t)$, is the hazard rate, the probability of selling a stock on day t conditional upon holding that stock until that point (t) in time. X is a vector of explanatory variables which are static and do not change over time (such as gender). Z_{t} represents a vector of timevarying covariates which can take on different values at different points in time (such as stock return). $h_{0}(t)$ is the baseline hazard rate and describes the hazard rate when the independent covariates are all equal to zero. Using the Cox (1972) estimator we can estimate coefficients on X and Z_{t} without specifying a baseline $h_{0}(t)$ hazard rate. Positions that are not closed by the end of the sample period are treated as censored observations.

We control for investor characteristics that are directly observable such as age, income, gender, marital status, employment status and occupation, as well as another set of less readily observable variables that are extracted from investors' initial positions and trades, such as the total wealth invested in their portfolios, as well as whether the individual investors ever short stocks, trade options, or trade foreign securities. We also control for size, book-to-market ratio, and momentum to account for investors' preferences for stocks with certain characteristics which are known to be associated with expected returns.

[^8]As there is also likely to be seasonality in purchases and sales, we further include calendar year and month dummies in the hazard regressions. Open stock positions, for instance, may be closed out in December for tax reasons. Finally, we use unrealized gains/losses as a control variable. Although momentum does capture the effect of past returns on trading decisions, unrealized gains and losses for each individual investor could be different based on the original purchase price.

Table 2 reports results from the hazard regressions. Following standard reporting conventions, we report hazard ratios instead of estimated coefficients. The hazard ratio is similar to the odds ratio estimated from a binary choice model and is defined as the ratio of two hazard rates when one explanatory variable is changed by one unit from zero holding all other variables constant. A hazard ratio of less than one would suggest that the explanatory variable reduces the probability of selling the stock. In contrast, a hazard ratio larger than one would suggest that a higher exposure to the explanatory variable would increase the likelihood of selling the stock, thus reducing the likelihood that the investor would continue holding on to the stock.

In Table 2, we report results using only the adjusted Amihud illiquidity ratio for all specifications. We provide results for alternative measures of transaction costs in Table 3. Column (1) of Table 2 shows that the estimated hazard ratio for the adjusted Amihud illiquidity ratio is 0.981 when we do not control for stock or investor characteristics. It is less than one and statistically significant, suggesting that the sale probability of a stock declines with higher transaction costs. Specifically, the average investor would be 9.3% less likely to sell a stock in the $75^{\text {th }}$ percentile in terms of illiquidity compared to a stock with median level of illiquidity using the
adjusted Amihud illiquidity ratios. ${ }^{11}$ This is equivalent to increasing the holding period by 23 trading days.

As households could have different preferences and potentially have different holding periods, we control for the heterogeneity across households within the hazard framework. We assume different baseline hazard rates for each household and estimate a model with partial likelihood stratification. The household level stratification allows for the possibility of each household to have a different baseline holding period, which is analogous to using household fixed effects in OLS regressions. Similarly, we use firm stratification to allow for the possibility that each stock has a different average holding period. In column (2) of Table 2 we calculate hazard ratios using firm and household stratifications to account for household and firm fixed effects. The estimated hazard ratio for the adjusted Amihud measure (AdjIlliq) is 0.973 and statistically significant, consistent with earlier results. Controlling for household and firm level fixed effects suggests that a one standard deviation increase in the adjusted Amihud illiquidity ratio would reduce the sale likelihood by 18.5%, equivalent to increasing the holding period by 47 trading days.

Controlling for heterogeneity among households and stocks leads to stronger results as the hazard ratio is reduced from 0.981 to 0.973 . To better understand the source of this variation we run a regression of holding periods on household and stock fixed effects. We find that household fixed effects explain about 35% of the cross-sectional variation in holding periods, while stock fixed effects explain about 18% of the variation. These results suggest that both household and

[^9]stock fixed effects influence holding periods and that households also differ in their baseline holding periods.

We examine in detail how specific stock and investor characteristics affect households' trading decisions. We add stock characteristics first in column (3) of Table 2, and then further control for investor characteristics and unrealized returns in column (4). Since demographic information is only available for a subset of investors in the dataset, the number of observations reported is lower in column (4). Our initial finding on transactions costs is unchanged with these additional controls. The loading on the AdjIlliq in column (3) is still less than one at 0.981 and statistically significant. The estimated hazard ratio for momentum is statistically significant and larger than one (1.135), which indicates that investors are more likely to sell recent winners. More specifically, a one standard deviation increase in the past 10-month momentum returns (from month-12 to month-2) would increase the probability of sale by 30.6%. The estimated hazard ratio for size is 0.649 and that for the book-to-market ratio is 0.681 , both of which are economically and statistically significant, suggesting that US individual investors tend to hold large and value stocks for longer periods. These hazard ratios would suggest that for each standard deviation increase in firm size investors are 10% less likely to sell the stock. Similarly for each standard deviation increase in book-to-market ratio they are 21.5% less likely to dispose of their holding.

In column (4) we control for Unrealized Returns, to account for the impact of disposition effect - the tendency of individual investors to hold on to losing stocks for too long and to sell winners too quickly on our results. Our basic inferences regarding the impact of transaction costs on retail investors' holding periods are unaffected when we control for unrealized returns along with trader demographics and trade characteristics. The estimated hazard ratio on Adjllliq is 0.975 , comparable to our findings in the initial three columns. The coefficient on Unrealized Returns is
statistically significant and greater than one (1.134), suggesting that retail investors are more likely to sell shares that have higher unrealized returns. This finding is consistent with the disposition bias documented in the literature.

It is possible that day traders choose liquid stocks to minimize transaction costs, which would be consistent with our main hypothesis. However, if day traders trade stocks based on some unobservable characteristics that are correlated with transaction costs, then we may have an omitted variables problem. To address this potential problem, we repeat our analyses by including stock fixed effects and obtain results consistent with our main findings. For robustness, we repeat our main analyses by excluding holding periods less than two-days. Specifically, in column (5) we repeat our analyses in column (4) by excluding holding periods of one-day and two-days. We find that our main findings are unaffected by this restriction. ${ }^{12}$

It is possible that individual investors may care more about the trading costs incurred at the time of purchase rather than at the time of sale. To better understand whether there is an asymmetry in how purchase and sale transaction costs incurred are incorporated in holding period decisions, we investigate the impact of buy and sell transactions separately. Following Odean (2000) for each trade we calculate the closing price spread for purchases and sales separately. These results are reported in the Appendix section A.3. in Table A3. We repeat the analyses for Finland and report the relevant results in the Appendix section A. 4 in Table A4. The coefficients on the purchase and sale transaction costs are similar in magnitude. Overall, these results are consistent with investors incorporating transaction costs incurred both at the time of purchase and at the time of sale.

For robustness, we also control for additional variables that prior studies have shown to affect individual investor trading decisions. Prior studies have shown that individual traders tend to buy

[^10]attention grabbing stocks. ${ }^{13}$ To control for investor attention, we add stock characteristics that are positively correlated with investor attention to our baseline hazard regression. The stock characteristics we use are idiosyncratic volatility (Ivol), maximum daily return over the past one month (MaxPrc), and CAPM Beta (Beta). The hazard regression results with these controls are reported in column (6) of Table 2 . We show that Beta and Ivol have statistically significant hazard ratios of greater than one, 1.111 and 2.807 , respectively, while the estimated hazard ratio on MaxPrc is almost one and statistically insignificant. These results are consistent with investors trading attention-grabbing stocks more frequently. The estimated hazard ratio in column (6) for AdjIlliq remains significant at 0.977 and is similar in magnitude to the hazard ratio reported in column (4). We conduct an alternative analysis in Table A1 in the Appendix section A.1. Specifically, we rank all stocks by the Amihud illiquidity ratio and create a dummy variable (Adjllliq Dum) that takes on a value of one if stock belongs to the highest illiquidity quintile. The use of the dummy variable makes it easier to interpret our results in Tables 2 and 3.

We repeat our analyses using six alternative measures of illiquidity described earlier, namely, Zerofreq, Closing price Spread + Commission (\%), Effective Spread/Price (\%), Relative Spread/Price (\%), Relative Spread/Mid (\%) and Log (1+depth). In Panel A of Table 3 we repeat our analysis conducted in column (1) of Table 2 using these alternative measures. All estimated hazard ratios in columns (1) through (6) are less than one and statistically significant. Our results are qualitatively similar regardless of the illiquidity measure we use. The economic significance levels of these variables are also similar to those using the adjusted Amihud measure. For example,

[^11]the estimated hazard ratio for Closing price Spread + Commissions $\%$ reported in column (2) is 0.945. This suggests that a one standard deviation increase in Closing price Spread + Commissions $\%$, would lead to a 15.37% reduction in the average household's sale likelihood, which is equivalent to increasing the holding period by 39 trading days.

In Panel B of Table 3, we replicate the analysis conducted in column (4) of Table 2 using the six alternative measures of illiquidity. Our main finding holds across different measures of illiquidity as evidenced by highly statistically significantly hazard coefficients of less than one for all specifications. Loadings on firm characteristics are also similar to our main finding using the adjusted Amihud measure. Coefficient on Size is significant and less than one as is the coefficient for B / M while the coefficients on Momentum and Unrealized Returns are both statistically significant and greater than one.

Most importantly, after controlling for all demographic variables, trade characteristics as well as stock characteristics, our main finding remains robust: the average holding period for illiquid securities is significantly longer than the average holding period for the rest of the securities in our sample, suggesting that households understand the implications of transaction costs on asset returns in the cross-section of equities and act rationally in their trades to reflect this.

4.2 Investor Sophistication

In this section, we investigate the impact of heterogeneity across households on the relationship between transaction costs and holding periods of investors. We provide empirical evidence in support of our second hypothesis (H2).

Following Goetzmann and Kumar (2008), we assume that financial sophistication is correlated with education and resources available to each investor. We create a sophistication measure based on household and trade characteristics. Specifically, we use seven criteria to construct our
sophistication measure. The sophistication measure (Sophistication) increases by one with each of the seven criteria being met. The criteria include: if the investor has income greater than $\$ 75 \mathrm{~K}$; if the investor works in a technical or managerial position (Professional Dummy =1); if the investor is ranked among the top 25% of all investors in terms of total equity holdings; if the investor has ever traded an option (Option User Dummy $=1$); if the investor has ever traded in foreign securities (Foreign Securities Dummy =1), and if the investor has ever shorted any equity (Short User Dummy $=1$); and if the investor' portfolio concentration is greater than 0.48 , the median investor's level of portfolio concentration. The last criterion is based on findings in Ivkovic, Sialm and Weisbenner (2008), who propose and empirically document that investors who hold more concentrated portfolios are financially more sophisticated as they possess informational advantages that allow them to outperform investors with diversified portfolios. The value of Sophistication ranges from a minimum of 0 for the least sophisticated investors to a maximum of 7 for the most sophisticated investors.

We sort and put investors into three groups based on their sophistication scores. Group 1 includes those investors with sophistication scores between 0 and 2, Group 2 is for investors whose sophistication scores are between 3 and 5, while Group 3 contains the most sophisticated investors with scores of 6 or 7 . We then run separate hazard regressions for each of these three sophistication groups and examine how the relationship between transaction costs and holding periods change among investors with different levels of sophistication. Since many of the demographic variables as well as trade characteristics are used to calculate the sophistication score, these variables are not included as independent variables in our analyses in Table 4. Columns (1) to (3) of Table 4 report the estimated results for the least sophisticated group of households, second sophistication group, and the most sophisticated group of households, respectively.

We find that the coefficient on the adjusted Amihud illiquidity measure, AdjIlliq, is less than one for all sophistication groups and highly statistically significant. The estimated hazard ratios monotonically decrease from 0.984 for Group 1 to 0.975 for Group 2, and to 0.948 for Group 3 which contains the most sophisticated households. The estimated hazard ratio for Adjllliq is 0.984 in column (1), indicating that an investor in the least sophisticated group would be 0.921 as likely to sell the stock in the 75th percentile of AdjIlliq as a stock with a median AdjIlliq. This would make her 7.9% less likely to sell. Similarly, the estimated hazard ratios for AdjIlliq in columns (2) and (3) would suggest that retail investors in Group 2 would be 0.884 as likely and those in Group 3 would be 0.762 as likely to sell the stock in the 75 th percentile of AdjIlliq as a stock with median Adjilliq. In other words, retail investors in the second sophistication group would be 11.6% less likely to sell while those in the most sophistication group would be 23.8% less likely to sell, when transaction costs increase. Overall, these results are consistent with our second hypotheses $(H 2)$ that financially more sophisticated investors pay closer attention to the impact of transaction costs when they trade.

5. Robustness

In this section, we conduct three additional analyses to show that our results are robust to potential endogeneity and selection concerns. If our transaction cost measures are related to certain unobserved variables which affect holding periods, then our results could suffer from an omittedvariables problem. To address this concern, we study two quasi-exogenous shocks to transaction costs. First, we use stock split events as quasi-exogenous shocks to transaction costs and examine investors' holding period decisions around stock split events in section 5.1. Second, we conduct an event study around the American Stock Exchange reduction of the minimum tick size from $1 / 8^{\text {th }}$ of a dollar to $1 / 16^{\text {th }}$ of a dollar for stocks priced between one to five dollars in 1992 and investigate
the impact of this change on investors' holding period decisions and report our findings in Section 5.2.

The third robustness test is meant to address potential selection issues with the US sample. The transaction-level dataset used in the US captures only a fraction of the US households' trades during certain years and hence may be insufficient to evaluate our main predictions. To address this criticism, we repeat our main analyses in section 5.3 utilizing another dataset which covers individual investors' complete trading records in Finland. Using an additional dataset from another country provides us with an "out-of-sample" test of our main findings.

5.1 Stock Splits

An extensive literature documents a significant reduction in transaction costs and improved liquidity subsequent to stock splits (Schultz 2000, Desai, Nimalendran, and Venkataraman 1998, Kryzanowski and Zhang 1996, Conroy, Harris, and Benet 1990). The literature also documents a positive abnormal return reaction on the split announcement day for splitting firms and documents that post-split performances of splitting firms are statistically indistinguishable from those of similar non-splitting firms in the long-run (see for instance, Byun and Rozeff 2003).

We first verify empirically that stock splits indeed increase liquidity and reduce transaction costs. We identify a total of 3,586 stock splits that took place in the US between 1991 and 1996 for our sample. We remove reverse splits and splits that have a split factor of less than 0.25 (717 in total). Our final sample includes 2,869 forward split events. ${ }^{14}$

To examine how transaction costs change following stock splits, we regress the monthly transaction cost measure (AdjIlliq) on a time-period indicator, After-Split Dummy which equals

[^12]one if a month falls within the six-month, nine-month or twelve-month period subsequent to the split event, and zero otherwise. We examine how transaction costs change within a certain period subsequent to stock splits, as we expect the effect of splits on transaction costs to decline over time.

Table 5 presents the results. In columns (1) and (2), we report results for the 6-month event window. In columns (3) and (4) we report results for the 9 -month event window, and finally in columns (5) and (6) we report results for the 12-month event window. Regressions reported in columns (2), (4) and (6) include stock level controls for size, book-to-market, and momentum.

We find that the estimated coefficient on the After-Split Dummy is always negative and statistically significant, suggesting that transaction costs, proxied by the adjusted Amihud Illiquidity ratio, AdjIlliq, decrease after stock splits. For example, in column (2), we observe that the coefficient on the After-Split Dummy is -0.186 after controlling for stock characteristics. Considering that the median US stock has an adjusted Amihud illiquidity ratio of 1.36 (from Table 1 Panel B), the estimated - 0.186 coefficient on the After-Split Dummy suggests that transaction costs decrease by about 14% for the median stock after a split. Likewise, the estimated coefficient reported in column (4) (-0.248) suggests that transaction costs decrease by about 18% within nine months after a split.

If investors hold illiquid securities for longer periods, then the reduction in transaction costs after stock splits should lead to shorter holding periods. In other words, the likelihood of selling the splitting stock should increase following a split event. We next examine individuals' trading behavior over the same 6 -, 9 - and 12-month periods after a split event using a dynamic hazard regression framework.

To construct the appropriate dataset for the dynamic hazard regression, we split the duration of a position into multiple periods. ${ }^{15}$ The first period covers the time period before the split event. In this first period (pre-event), we assign a value of zero to the After-Split Dummy. The second part is the time period from the split until the end of the event window of interest (i.e., three windows with lengths of 6, 9 and 12 months). For the second period, After-Split Dummy takes on a value of one. The third period corresponds to the time-period after the split window (post-event), during which the After-Split Dummy takes on a value of zero. ${ }^{16}$

Since it is possible for transactions to be open even after 6, 9, 12 months after a split, this setup ensures that After-Split Dummy will only equal one when a sale event falls within the event window, and as time elapses to the post-event window period, the After-Split Dummy will switch back to 0 . The After-Split Dummy captures the marginal impact of stock splits on sale decisions over a distinct event horizon. Since the baseline hazard rate in the Cox regression model captures the increasing probability of a sale as time passes, the After-Split Dummy captures the marginal impact of being in the split window period on the probability of a sale, and does not simply capture a mechanical relationship due to the fact that probability of a sale increases as time passes on.

Table 6 reports the estimated results of dynamic hazard regressions. All the regression models control for stock characteristics - size, book-to-market, and momentum, as well as calendar year and month effects. It is possible that split-event returns may lead to second-order effects that may influence investors' trading decisions. To control for the impact of post-split returns, we calculate split-event ruturns for each period and control for these returns in models (2), (3), (5), (6), (8) and

[^13](9) in the table. Finally, we account for the possibility that stock splits may lead to clientele effects: forward (reverse) splits may attract clienteles that prefer lower-priced (higher-priced) equities. Columns (3), (6) and (9) address the clientele issue by controlling also for stock prices at the time of sale. If no sale takes place until the end of the dataset, then we use the last observed stock price.

Given the reduction in transaction costs subsequent to stock splits, we expect households to be more likely to reduce their holding periods, and thus we expect the estimated hazard ratio on the After-Split Dummy to be greater than one in all specifications. We find that the estimated hazard ratio for the After-Split Dummy is greater than one and statistically significant at the 1% level for all specifications in Panel A of Table 6. The estimated hazard ratio for the After-Split Dummy in model (1) is 1.087 , indicating that investors are 8.7% more likely to sell a stock in the six months after its split, controlling for other stock characteristics. Our results are robust across different event windows: the hazard ratio on the After-Split Dummy takes on a statistically significant value of 1.096 for the nine-month window analysis in column (4), and 1.111 for the 12 -month window analysis in column (7). These results suggest that investors are 8.7% to 11.1% more likely to sell their stock holding within the first year after the split, which is equivalent to reducing the average holding period by about 20 trading days.

Next, we repeat our analyses conducted in Panel A of Table 6 for reverse-splits. Reverse splits are much rarer compared to forward splits. Panel B of Table 6 reports the estimated results of the dynamic hazard regression using reverse-split events instead of forward split events. All regression models in the table control for calendar year and month specific effects as well as for stock characteristics - size, book-to-market, momentum. Models (2), (3), (5), (6), (8), and (9) further control for post reverse-split returns, while models (3), (6) and (9) control for stock price values at the time of sale to account for potential clientele effects. Given the increase in transaction costs
after reverse stock splits, we would expect households to increase their holding periods, and thus we would expect the estimated hazard ratio on the After-R-Split dummy to be less than one. In all specifications, we find that the estimated hazard ratio for the After-R-Split dummy is less than one and economically and statistically highly significant. For example, the estimated hazard ratio for the After-R-Split dummy in model (1) is 0.491 , indicating that investors are 50.9% less likely to sell a stock in the six months after its reverse split. In Panel B, we exclude forward splits from our analyses as including them would artificially strengthen our findings. As such, our findings directly compare the impact of reverse splits with respect to those firm-year-months where the firm does not experience any split event.

5.2 AMEX Tick Size Change

On September 3, 1992, American Stock Exchange (AMEX) reduced its minimum price increment from $1 / 8^{\text {th }}$ of a dollar to $1 / 16^{\text {th }}$ of a dollar for stocks priced between $\$ 1$ and $\$ 5$. One of the motivations for this change was to reduce bid-ask spreads. A number of papers document that both quoted as well as effective spreads have declined subsequent to this change (Crack 1996; Ahn, Cao and Choe 1996). This quasi-exogenous shock to transaction costs presents us with another opportunity to assess our main hypothesis and address potential endogeneity issues.

To investigate the impact of this event, we use a similar approach as we have used above to examine the impact of stock splits on investors' holding periods. We examine event windows of 6 months, 9 months, and 12 months after the implementation of the new tick size rule. We create a dummy variable (After-AMEX tick change dummy) that takes on a value of one if a month falls within the 6 -month, 9 -month or 12-month period.

Unlike splits, which are staggered over time, the AMEX tick size change event occurred at a single point in time. To control for potential confounding market-wide factors, we compare the
change in the affected stocks that were priced $\$ 1$ to $\$ 5$ listed on AMEX to three groups of control stocks. That is, in addition to calculating the change in the holding period for stocks affected by the tick change (i.e., treated) before and after the event, we also calculate the change in holding period for non-affected stocks (i.e., control) during the same time period. We then compare the change in the holding period for treated firms to the change in holding period for non-treated (control) firms. The first control group contains firms that were priced between $\$ 1$ and $\$ 5$ but listed on the NYSE and NASDAQ exchanges and as such were not affected by the tick size change, the second group contains all firms on AMEX that are priced $\$ 5$ or more, and the third group contains all non-affected stocks on the three major exchanges.

The dynamic hazard regression results controlling for stock characteristics are reported in Table 7. Panels A, B and C report results for 6-, 9- and 12-month event windows, respectively. The coefficient reported under the row heading "Treated" is from the hazard regression on the interaction of the Treated group indicator with the After-AMEX tick change dummy, Treated*After-AMEX tick change dummy, while the coefficient reported under the row heading "Control" refers to the coefficient from the hazard regression on the interaction of the Control group indicator with the After-AMEX tick change dummy, Control* After-AMEX tick change dummy. The row with the header "Treated - Control" reports the difference in hazard rates between these two sets of interaction variables. In columns (1) of Panels A, B, and C, we focus only on firms listed on AMEX that were priced between $\$ 1$ and $\$ 5$ which were directly impacted by the tick-size rule change. Specifically, we investigate the holding period decisions of investors for these impacted stocks and find that investors' likelihood of selling their impacted shares significantly increased after the tick size reduction. For example, in Panel A, we observe that the estimated hazard ratio for the After-AMEX tick change dummy in model (1) is 1.167, indicating
that investors were 16.7% more likely to sell an impacted stock (AMEX stock priced $\$ 1$ to $\$ 5$) in the 6-month period after the tick-size change. Results are qualitatively similar in Panels B and C, using 9-month (1.164) and 12-month (1.125) event windows, respectively. For impacted stocks, this is roughly equivalent to a reduction of 30 trading days in the average holding period subsequent to the tick-size rule change.

In columns (2) through (4) for Panels A, B, and C, we investigate the differential impact of the tick-size rule change on investors' holding periods of impacted stocks (i.e., AMEX stocks with prices between $\$ 1$ and $\$ 5$) as well as those of different sets of control firms. The regression includes controls for size, book-to-market, momentum, and unrealized returns. In column (2), we use stocks that are similarly priced (with prices between $\$ 1$ to $\$ 5$) but listed on the NYSE and NASDAQ exchanges that were no affected by the tick size change as control firms. We find that sale probabilities of investors in treated stocks increase significantly by $18.7 \%, 20.5 \%$ and 17.4% respectively in Panels A, B and C after the tick size change. However, sales probabilities of stocks priced similarly but listed on NYSE and NASDAQ instead increase by much smaller magnitudes, specifically, $6.7 \%, 12.6 \%$, and 14.1% respectively in 6,9 , and 12 months after the event. The differences between the coefficients in columns (2) of Panels A, B and C for treated and control groups are always statistically significant at the 1% level with meaningful economic differences.

In column (3), we compare the differential impact on holding periods for treated firms vs. all other AMEX unaffected stocks. Similarly, we find that sale probabilities of retail investors in treated stocks increase by 12.5%, throughout Panels A, B, and C, while sale probabilities of the rest of AMEX stocks only increase by 2.6%. 3.7%, and 3.4% during the 6,9 , and 12 -month windows, respectively. The differences in increases of sales probabilities are again significant both economically as well as statistically across the three event windows.

Finally, in column (4), we investigate the differential impact of the tick-size change on retail investors' holding periods for treated firms vs. all other non-treated stocks (including all stocks on NYSE and NASDAQ, as well as AMEX stocks that are priced greater than \$5). We find that sale probabilities of retail investors in treated stocks increase by $11.8 \%, 12.9 \%$ and 9.4% respectively, while those for control stocks only increase by $1 \%, 7.3 \%$, and 4.3% for the 6,9 , and 12 -month windows. The differences in increases of sales probabilities between treated and control stocks again are significant both economically and statistically across all three windows. Overall, we find that the tick size reduction leads retail investors to reduce their holding periods in affected firms in reaction to reduced transaction costs, consistent with our main hypothesis.

5.3 Finland Transactions

There may be sample selection concerns as the U.S. sample covers only a subset of individual investors. To address this concern, we replicate our analyses using transaction-level data from Finland, which covers complete trading records of all individual investors between 1995 and 2003.

Like the U.S. dataset, the Finnish dataset reports for each transaction, the number of shares traded, the trading price, and the daily closing price. There are approximately two million transactions with available information from 303,235 households over the sample period. We can also observe the initial holdings for each account at the beginning of the dataset, allowing us to keep track of the total holdings of all households daily. For a subsample of investors, there is additional demographic information, such as age and gender. However, unlike for the US, we do not have information about income, occupation, and marital status.

Table 8 reports summary statistics for stock and investor characteristics for Finland. Summary statistics are calculated by pooling annual observations over the 1995-2003 time period. All liquidity measures are calculated as described in section 3.2. The results show that our main
transaction cost measure - adjusted Amihud ratio (AdjIlliq) - is positively skewed with a mean of 10.61, and a smaller median of 6.21 . Other transaction cost measures show a similar pattern. For example, Zerofreq has a mean of 21.90% and a median of 20.64%. Finally, we estimate Closing price Spread (\%) following Barber and Odean (2000). The mean Closing price Spread (\%) is 0.083 while the median is close to 0 . Size is also positively skewed, with the average market capitalization approximately 10 times as large as the median one.

The average (median) investor age is 39.5 (40). About 33% of the primary account holders are female. The mean (median) household stock portfolio value is $10,823(2,079)$ Euros in Finland. The mean (median) portfolio concentration is $0.20(0.17)$, roughly corresponding to holding five stocks with equal value weights of $20 \% .4 \%$ of households have traded options at least once and less than one percent of the households in Finland have ever held a short position during the 19952003 time period. This is not surprising since Bris, Goetzmann, and Zhu (2007) suggest that short selling became legal in Finland in 1998 but that tax laws inhibit would-be short sellers.

We use a similar framework to the one we utilize for the US to test the validity of hypotheses (1) and (2) for Finnish investors. We run the same hazard regression, modeling the conditional probability that a stock is sold controlling for stocks' transaction costs, firm characteristics, available investors' demographic information as well as trade-related characteristics. Consistent with standard reporting convention, we report estimated hazard ratios from the hazard regressions instead of estimated hazard coefficients in Table 9.

Results estimated from transaction-level Finnish dataset in Panel A of Table 9 are remarkably similar to our findings in the US. In the baseline model in column (1), the hazard ratio of the adjusted Amihud illiquidity measure (Adjllliq) is 0.984 , less than one and statistically significant. This indicates that if transaction costs (AdjIlliq) increase by one standard deviation (10.25), the
investor is 15.2% less likely to sell that stock. As the median (mean) holding period for Finland investors are 100 (387) trading days, this means that the representative investor's holding period will increase by an additional 18 trading days. We obtain comparable results using Zerofreq in column (2), and the Closing price Spread (\%) in column (3). After we control for household and firm specific effects using stratification in column (4), the estimated hazard ratio on the adjusted Amihud illiquidity measure (AdjIlliq) is still less than one (0.976) and statistically significant. This coefficient indicates that with one standard deviation increase in Adjllliq, the representative investor is 22% less likely to sell compared to before, leading to an increase in her holding period by 28 trading days.

To explore how stock, investor and trade characteristics affect holding periods, we include additional controls in the regressions reported in columns (5) and (6) of Table 9. Controlling for stock characteristics - Size, B / M, Momentum and Unrealized Returns, in addition to household specific effects in column (5) yields a statistically significant less than one hazard ratio (0.979) on the adjusted Amihud illiquidity measure (AdjIlliq). We further control for both investor and stock characteristics available in the dataset in column (6). The estimated hazard ratio for the adjusted Amihud illiquidity measure (AdjIlliq) is statistically significant at 0.988 , suggesting that the average investor is 11.6% less likely to sell a stock when the stock's transaction cost increases by one standard deviation, leading to an increase in the representative investor's holding period by 14 trading days.

The hazard ratios for investor characteristics are also quite similar to those for the U.S. sample. Specifically, the hazard ratio for age is less than one, implying that older investors have lower turnover. In contrast, the hazard ratio for the male dummy is larger than one, suggesting that male investors tend to have shorter holding periods and trade more frequently. The hazard ratios for all
trade-related variables are larger than one, suggesting that investors who trade options, who invest more capital in the stock market, and who concentrate their investments in a fewer number of securities have shorter holding periods, consistent with our findings in the U.S. data.

The loadings on stock characteristics are also similar to those in the U.S. except for size. Similar to U.S. investors, Finnish investors are also more likely to sell past winners, while holding value stocks for longer periods. Unlike in the U.S., investors in Finland prefer to hold smaller firms for longer periods. Altogether, results in Panel A of table 9 are similar to our U.S. findings reported in Table 2. Individual investors in Finland are also cognizant of and pay attention to transaction costs when they make trading decisions.

In Table 9 Panel B, we further investigate heterogeneity in the relationship between transaction costs and holding periods. In particular, we examine if financially more sophisticated investors pay more attention to transaction costs. As in the U.S. analysis, we assume that financial sophistication is correlated with education and resources available to each investor. We construct a similar sophistication measure. Sophistication score increases by one when one of the following three criteria are met: if the investor is ranked among the top 25% based on the amount of capital invested in the stock market; if the investor has experience trading options (i.e, Option User Dummy $=1$), or if the investor's portfolio concentration is above that of the median investor. ${ }^{17}$ Since the Finland transaction data doesn't provide information regarding investors' income, their professions, or whether the investor has ever traded any foreign securities, we exclude these criteria in the construction for the Finnish sophistication measure. Our sophistication measure for Finland ranges from a minimum of zero for the least sophisticated investors to a maximum of three for the most sophisticated investors.

[^14]We then divide Finnish investors into two subgroups based on their financial sophistication. Group 1 is comprised of the less sophisticated Finnish investors with Sophistication Score values of 0 or 1, while Group 2 includes the more sophisticated investors in Finland with Sophistication Score values of 2 or 3. Column (1) of Panel B in Table 9 reports that the hazard ratio of the Amihud illiquidity measure (AdjIlliq) for Group 1 is 0.992 and column (2) reports that the hazard ratio of AdjIlliq for Group 2 investors is 0.987 . Both hazard ratios are statistically significant, and less than one. The hazard ratio for the more sophisticated investors is smaller in magnitude compared to the hazard ratio for the less sophisticated investors. These results suggest that the Finnish investors who are more sophisticated hold stocks with higher transaction costs for a longer period of time than less sophisticated investors, consistent with more financially sophisticated investors paying greater attention to transaction costs compared to their less sophisticated peers. In both columns we control for Size, B/M, Momentum, Unrealized Returns, Age and Male Dummy. Using alternative transaction cost measures, including the proportion of zero return days, Zerofreq, as well as actual transaction costs, Closing Price Spread (\%), generates comparable results. Overall, these findings suggest that our findings in the U.S. are unlikely to be driven by the specific sample of investors and the time period we study.

6. Conclusion

This paper investigates how the trading decisions of 66,000 households in the U.S. and 303,000 households in Finland are influenced by transaction costs. Two main conclusions follow from our analyses. First, we show that transaction costs are an important determinant of investment decisions of individual investors. Consistent with theoretical models of investor behavior, households rationally reduce the frequency with which they trade illiquid securities subject to high transaction costs. This finding is robust to controlling for household and stock characteristics.

Second, we show that there is cross-sectional variation in the relationship between holding periods and transaction costs across households. Particularly, the relationship between transaction costs and holding periods is stronger among more sophisticated investors.

To address endogeneity and selection concerns, we study how investors' holding periods change around quasi-exogenous changes in transaction costs. We find that investors shorten their holding periods after stock split events in response to stock liquidity increases. We also document similar declines in holding periods after an exogenous reduction in tick size for stocks priced under \$5 at AMEX in 1992.

Our findings challenge the notion that individual investors ignore non-salient costs when making investment decisions. We show that individual investors are cognizant of at least one particular type of non-salient cost, namely the cost of trading stocks, revealing a unique aspect of their rationality.

References

Acharya, V. V., and L. H. Pedersen, 2005, "Asset pricing with liquidity risk," Journal of Financial Economics, 77, 375-410

Ahn, H. J., C.Q. Cao, and H. Choe, 1996, "Tick Size, Spread, and Volume," Journal of Financial Intermediation 5(1), 2-22

Alexander, G., J. Jones, and P. J. Nigro, 1998, "Mutual fund shareholders: characteristics, investor knowledge, and sources of information," Financial Services Review 7, 301-316

Allison, P. D., and N. A. Christakis, 2006, "Fixed-effects methods for the analysis of nonrepeated events," Sociological Methodology, 36, 155-172

Amihud, Y., 2002, "Illiquidity and stock returns: Cross-section and time series effects," Journal of Financial Markets, 5, 31-56

Amihud, Y. and H. Mendelson, 1986, "Asset pricing and the bid-ask spread," Journal of Financial Economics, 17, 223-249

Atkins, A. B., and E. A. Dyl, 1997, "Transactions Costs and Holding Periods for Common Stocks," Journal of Finance 52(1), 309-325

Bali, T. G., N. Cakici, and R. F. Whitelaw, 2011, "Maxing out: Stocks as lotteries and the crosssection of expected returns," Journal of Financial Economics 99(2): 427-446

Bali, T. G., R. F. Engle, and Y. Tang, 2016, "Dynamic Conditional Beta is Alive and Well in the Cross Section of Daily Stock Returns," Management Science 63(11): 3531-3997

Barber, B. M., Y. Lee, Y. Liu, and T. Odean, 2009, "Just How Much Do Individual Investors Lose by Trading?" Review of Financial Studies, 22 (2): 609-632

Barber, B. M., Y. Lee, Y. Liu, T. Odean and K. Zhang, 2020, "Learning, Fast or Slow" Review of Asset Pricing Studies, 10 (1): 61-93

Barber, B. M., and T. Odean, 2000, "Trading is hazardous to your wealth: the common stock investment performance of individual investors," The Journal of Finance, 55, 773-806

Barber, B. M., and T. Odean. 2001, "Boys will be boys: Gender, overconfidence, and common stock investment," The Quarterly Journal of Economics, 116 (1): 261-292

Barber, B. M., T. Odean, and L. Zheng, 2005, "Out of sight, out of mind: The effects of expenses on mutual fund flows," Journal of Business, 78, 2095-2119

Barber, B. M., T. Odean, and N. Zhu, 2006, "Do noise traders move markets?" Working Paper, UC Davis

Bris, A., W. Goetzmann, and N. Zhu, 2007, "Efficiency and the Bear: Short Sales and Markets Around the World," The Journal of Finance, 62: 1029-1079

Byun, J., and M. S. Rozeff, 2003, "Long-run performance after stock splits: 1927 to 1996," The Journal of Finance 58, 1063-1085

Chetty, R., A. Looney, and K. Kroft, 2009, "Salience and Taxation: Theory and Evidence," American Economic Review, 99(4): 1145-77.

Choi, N., M. Fedenia, H. Skiba, and T. Sokolyk, 2017, "Portfolio concentration and performance of institutional investors worldwide," Journal of Financial Economics, 123, 189-208

Christakis, N.A. and P. D. Allison, 2006, "Mortality after the Hospitalization of a Spouse," New England Journal of Medicine, 354, 719-730

Conroy, Robert M., Robert S. Harris, and Bruce A. Benet, 1990, "The effects of stock splits on bid-ask spreads," The Journal of Finance 45, 1285-95

Constantinides, G. M., 1986, "Capital market equilibrium with transaction costs," Journal of Political Economy, 94, 842-862

Coval, J. D., D. A. Hirshleifer, and T. Shumway, 2005, "Can individual investors beat the market?" Working Paper, University of Michigan

Cox, D., 1972, "Regression Models and Life-Tables," Journal of the Royal Statistical Society, Series B (Methodological), 34 (2): 187-220

Cox, D., and D. Oakes, 1984, Analysis of survival data, Chapman and Hall, London; New York
Crack, T., 1996, "Tinkering with ticks: Choosing minimum price variation for US equity markets," working paper, University of Otago

Datar, V. T., N. Y. Naik, and R. Radcliffe, 1998, "Liquidity and stock returns: An alternative test," Journal of Financial Markets 1(2): 203-219

Desai, Anand S, M Nimalendran, and S Venkataraman, 1998, "Changes in Trading Activity Following Stock Splits and Their Effect on Volatility and the Adverse- Information Component of the Bid-Ask Spread," Journal of Financial Research 21,159-83

Feng, L., and M. S. Seasholes, 2005, "Do investor sophistication and trading experience eliminate Behavioral biases in financial markets?" Review of Finance, 9, 305-351

Finkelstein, A., 2009, "E-ztax: Tax Salience and Tax Rates," Quarterly Journal of Economics, 124 (3): 969-1010

French, Kenneth R., 2008, "Presidential Address: The Cost of Active Investing," The Journal of Finance, 63(4), 1537-1573

Gil-Bazo, J., and P. Ruiz-Verdu, 2008, "When cheaper is better: Fee determination in the market for equity mutual funds," Journal of Economic Behavior \& Organization 67 (3), 871-885

Gil-Bazo, J., and P. Ruiz-Verdu, 2009, "The relation between price and performance in the mutual fund industry," The Journal of Finance 64 (5), 2153-2183

Goetzmann, W. N., A. Kumar, 2008, "Equity portfolio diversification," Review of Finance 12(3): 433-463

Grinblatt, M., and M. Keloharju, 2000, "The investment behavior and performance of various investor types: a study of Finland's unique dataset," Journal of Financial Economics 55(1): 43-67

Grinblatt, M., and M. Keloharju, 2001, "What makes investors trade?" The Journal of Finance, 56, 589-616

Hasbrouck, J., 2004, "Liquidity in the Future Pits: Inferring Market Dynamics from Incomplete Data," Journal of Financial and Quantitative Analysis 39(2): 305-326

Hasbrouck, J., 2009, "Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data," The Journal of Finance 64(3): 1445-1477

Heaton, J., and D. J. Lucas, 1996, "Evaluating the Effects of Incomplete Markets on Risk Sharing and Asset Pricing," Journal of Political Economy 104(3): 433-487

Hossain, T., and J. Morgan. 2006, "Plus Shipping and Handling: Revenue (Non) Equivalence in Field Experiments on eBay," B.E. Journals in Economic Analysis and Policy: Advances in Economic Analysis and Policy, 6(2): 1-27.

Hu, S., 1997, "Trading Turnover and Expected Stock Returns: The Trading Frequency Hypothesis and Evidence from Tokyo Stock Exchange," working paper, National Taiwan University

Huang, M., 2003, "Liquidity shocks and equilibrium liquidity premia," Journal of Economic Theory, 109, 104-129

Hvidkjaer, S., 2006, "A Trade-Based Analysis of Momentum," The Review of Financial Studies 19(2): 457-491

Ivkovic, Z., C. Sialm, and S. J. Weisbenner, 2008, "Portfolio concentration and the performance of individual investors," Journal of Financial and Quantitative Analysis 43(3): 613-655

Ivkovic, Z., J. Poterba, and S. J. Weisbenner, 2005, "Tax-Motivated Trading by Individual Investors," American Economic Review, 95(5): 1605-1630

Kryzanowski, L., and H. Zhang, 1996, "Trading Patterns of Small and Large Traders around Stock Split Ex-dates," The Journal of Financial Research 19(1): 75-90

Kumar, A., 2009, "Who Gambles in the Stock Market," The Journal of Finance 64(4): 1889-1933
Lakonishok, Josef, and Baruch Lev, 1987, "Stock Splits and stock dividends: Why, who and when," Journal of Finance 42, 913-932

Lesmond, D. A., J. P. Ogden, and C. A. Trzcinka, 1999, "A New Estimate of Transaction Costs," Review of Financial Studies 12 (5): 1113-1141

Lin, D.Y. and L.J. Wei, 1989, "The robust inference for the cox proportional hazards model," Journal of the American Statistical Association, 84, 1074-1078

Lo, A. W., H. Mamaysky, and J.Wang, 2004, "Asset prices and trading volume under fixed transaction costs," Journal of Political Economy, 112, 1054-1090

Lynch, A. W., and S. Tan, 2011, "Explaining the magnitude of liquidity premia: The roles of return predictability, wealth shocks and state dependent transaction costs," Journal of Finance 66(4): 1329-1368

Odean, T., 1999, "Do investors trade too much?" American Economic Review, 89, 1279-1298.
Roll, R., 1984, "A simple implicit measure of the effective bid-ask spread in an efficient market," Journal of Finance, 39, 1127-1139

Schultz, Paul, 2000, "Stock Splits, Tick Size, and Sponsorship," Journal of Finance 55,429-50
Seru, A., T. Shumway, and N. Stoffman, 2010, "Learning by trading", Review of Financial Studies 23 (2): 705-73

Vayanos, D., 1998, "Transactions costs and asset prices: A dynamic equilibrium model," Review of Financial Studies, 11, 1-58

Vayanos, D., and J.C. Vila, 1999, "Equilibrium interest rate and liquidity premium with transaction costs," Economic Theory, 13, 509-539

Figure 1: Survival Probabilities for Stocks in the United States and Finland

Figure 1a plots Kaplan-Meier survival probabilities for two groups of stocks held by households in the United States over the 1991-1996 time period. We calculate aggregate illiquidity measure for each stock as the average of three standardized transaction cost measures, namely AdjIlliq, Zerofreq, and Closing price Spread + Commission (\%). All variables are defined in previous tables. Illiquid stocks in the figure are stocks that belong to the top decile based on their aggregate illiquidity measure. The blue line depicts the probability of holding onto these illiquid stocks, and the red line represents the probability of holding all the rest of stocks.

Figure 1b plots Kaplan-Meier survival probabilities for two groups of stocks held by households in Finland over the 1995-2003 time period. We calculate aggregate illiquidity measure for each stock as the average of three standardized transaction cost measures, namely AdjIlliq, Zerofreq, and Spread (\%). All variables are defined in previous tables. Illiquid stocks in the figure are stocks that belong to the top decile based on their aggregate illiquidity measure. The blue line depicts the probability of holding onto these illiquid stocks, and the red line represents the probability of holding all the rest of stocks.

Table 1: Summary Statistics of Stock and Investor Characteristics in the US

Table 1 reports descriptive statistics for stock and investor characteristics in the US. Summary statistics are calculated by pooling annual observations over the 1991-1996 time period. Price is the annual average of daily closing prices. Market Cap is the average market capitalization in millions of US dollars. B/M is the book-to-market ratio. Past Returns ($-12,-2$) is a proxy for momentum and measures cumulative returns during the past 10 month starting at month -12 and ending two months prior. Adjllliq is the adjusted Amihud illiquidity ratio. Zerofreq is the proportion of zeroreturn days which reports the percentage of zero-return days within a year. All liquidity measures are annual averages as defined in the text. Closing price spread is calculated as the purchase price divided by the closing price on the day of the transaction minus one, and then multiplied by minus one. Commission is calculated as the commission paid divided by the value of the purchase. Effective spread and relative spread are calculated using TAQ data. Effective spread / Price is defined as transaction price subtract bid-ask midpoint then multiplied by two and scaled by price. Relative spread / Price is defined as NBBO quoted spread divided by price, and Relative spread/ Mid is defined as quoted spread scaled by the bid-ask midpoint. Depth is defined as the midpoint of bid size and offer size (both in number of round lots). Panel A reports the characteristics only for stocks that have observed individual investor transactions in the dataset, while Panel B reports the stock characteristics of the CRSP universe during the same period. As closing price spread and commission are calculated using transaction level data. We can only compute them for stock included in our transaction database, but not for the entire CRSP stock universe. Panel C reports the characteristics of investors included in the dataset. Age in 1996 is the biological age of the investor in 1996. Married Dummy is a dummy variable that equals one for married traders. Male Dummy is a dummy variable that equals one if head of the household is a male. Professional Dummy is a dummy variable and is equal to one for traders that hold either technical or managerial positions. Retired Dummy is a dummy variable that is equal to one for traders who already retired. Retirement Acct Dummy is a dummy variable that equals one if the transaction takes place in a retirement account such as a $401(\mathrm{k})$. Portfolio Concentration is calculated as the sum of squared value weights of each stock in a household's portfolio. Equity Portfolio Value reports the average total dollar value of a household's equity portfolio. Income is annual self-reported income in thousands of dollars. Option User Dummy is a dummy variable that equals one if a trader has traded options at least once over the entire sample period. Foreign Securities Dummy is a dummy variable that equals one if a trader has traded any foreign assets, including ADRs, foreign stocks, or foreign mutual fund, at least once over the entire sample period. Short User Dummy is a dummy variable that equals one if an investor has shorted any security at least once over the entire sample period.

	Mean	P25	Median	P75	Std. Dev
Panel A:	Sample		Stock Characteristics		
Price (\$)	20.51	4.75	11.88	23.50	308.55
Market Cap (\$M)	896.11	25.14	87.91	364.45	4182.50
B/M	0.71	0.30	0.57	0.91	0.63
Past Returns (-12, -2)	0.25	-0.10	0.08	0.30	2.11
Adjllliq	5.04	0.36	1.18	6.26	7.49
ZeroFreq	7.14%	0.00%	4.86%	10.42%	8.80%
Closing price Spread \% +	2.12	0.53	1.69	3.37	2.95
Commission (\%)					
Effective Spread/ Price (\%)	1.84	0.52	0.90	1.72	3.25
Relative Spread/ Price (\%)	2.95	0.98	1.56	2.83	4.69
Relative Spread/Mid (\%)	2.92	0.98	1.56	2.82	4.48
Log (1+depth)	3.25	2.61	3.20	3.87	0.94
	Mean	P25	Median	P75	Std. Dev

Panel B:	CRSP Stock Characteristics						
Price (\$)	20.19	4.75	11.88	23.25	298.71		
Market Cap (\$M)	850.68	23.20	80.63	336.22	4057.39		
B/M	0.72	0.30	0.56	0.91	0.63		
Past Returns (-12, -2)	0.24	-0.10	0.08	0.29	2.12		
AdjIlliq	5.56	0.38	1.36	7.55	7.92		
ZeroFreq	7.53%	0.00%	4.86%	11.11%	9.25%		
Effective Spread/ Price (\%)	2.51	0.66	1.10	2.12	4.37		
Relative Spread/ Price (\%)	3.91	1.12	1.74	3.34	6.45		
Relative Spread/Mid (\%)	3.85	1.12	1.74	3.33	6.22		
Log (1+depth)	3.69	3.05	3.60	4.24	1.07		
	Investor Characteristics						
Panel C:	49.58	40	48	58	12.40		
Age in 1996	0.76	1	1	1	0.43		
Married Dummy (1=married)	0.90	1	1	1	0.30		
Male Dummy (1=male)	0.66	0	1	1	0.47		
Professional Dummy	0.15	0	0	0	0.36		
Retired Dummy	0.39	0	0	1	0.49		
Retirement Acct Dummy	0.52	0.28	0.48	0.73	0.28		
Portfolio Concentration	80,342	8,900	22,952	62,087	313,568		
Equity Portfolio Value (\$)	76.84	45	87.5	112.5	33.19		
Income (\$K)	0.14	0	0	0	0.34		
Option User Dummy	0.22	0	0	0	0.42		
Foreign Securities Dummy	0.38	0	0	1	0.49		
Short User Dummy							

Table 2: Impact of Transaction Costs on Households' Holding Periods in the US, hazard analysis

This table examines the impact of transaction costs on individual investors' holding periods in the US between 1991 and 1996 using a hazard model framework. The conditional probability of sale is the dependent variable. Independent variables include the adjusted Amihud illiquidity ratio; firm characteristics; a set of demographic controls; as well as a variety of trade variables. Proxies for transactions costs (Adjlliq) are averaged over the previous 12 months before each sale transaction. B / M or book-to-market ratio is computed as the ratio of previous year-end book value to the most recent market capitalization. Momentum is the cumulative returns over the ten-month period from month -12 to month -2 . Stock characteristics are calculated at the beginning of the month when a sale takes place. Unrealized returns are calculated using the price differentials observed at the time of closing of the position and the time of purchase, divided by initial investment made at the time of purchase. For positions not closed at the end of the sample period, we assume the price at the last day of our sample period as the closing price. Age refers to the age of the head of the household. Income is the total self-reported annual income. Married Dummy is a dummy variable that equals one if the investor is married. Male Dummy is equal to one if the head of the household is a male. Professional Dummy is one for investors who hold technical or managerial positions, and Retired Dummy is equal to one for investors who already retired. Retirement Acct Dummy equals one if the transaction account is a retirement (IRA or Keogh) account. Trade variables for each individual investor are derived from all the transactions he/she executes during the sample period. Short User Dummy equals one if an investor executed at least one short sale during the sample period. Option User Dummy is one if an investor ever traded options. Foreign Securities Dummy is set to one if an investor traded at least once any foreign assets, including ADRs, foreign stocks or foreign mutual funds during the sample period. Log (Equity Portfolio Value) is the logarithmic value of the household's average total equity holdings. Portfolio Concentration is defined as in Ivkovic, Sialm and Weisbenner (2008) and is equal to the sum of squared value weights of each stock in a household's portfolio. Panel B investigates if investor sophistication affects investors' cognizance of transaction costs. Investor sophistication is presumed to cumulatively increase with each of the following criteria met: if the investor has an income higher than $\$ 75 \mathrm{~K}$; if the investor is ranked among the top 25% of all investors based on equity holdings at any point in time during the sample period; if the investor holds either technical or managerial positions and as such is considered a professional; if the investor traded options at least once during the entire sample period; if the investor has ever held any short positions during the sample period; if the investor has ever traded foreign securities, including ADRs, foreign stocks or mutual funds; and if the investor's portfolio is more concentrated than the median investor's, i.e. if the investor's portfolio concentration is greater than 0.48 . The most sophisticated investors in the US have a Sophistication score of seven (7), while the least sophisticated have a Sophistication score of zero (0). Calendar month dummies (not reported) are twelve dummy variables that equals one if the sale transaction happens during the specific month. Year dummies (not reported) equal one for the year during which a transaction happens. Clustered robust standard errors are calculated at the household level. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$, respectively.

Table 3: Alternative Transaction Costs on Households' Holding Periods in the US, hazard analysis
This table examines the impact of transaction costs on individual investors' holding periods in the US between 1991 and 1996 using a hazard model framework. In both Panels A and B, the conditional probability of sale is the dependent variable. Independent variables include seven alternative measures of illiquidity in both Panels A and B. In Panel B independent variables also include a set of firm characteristics, demographic controls, as well as trade variables. Proxies for Transaction costs are averaged over the previous 12 months before each sale transaction. Zerofreq, and Adjllliq are defined as in Table 1. Spread is calculated as the purchase price divided by the closing price on the day of the transaction minus one, and then multiplied by minus one. Commission is calculated as the commission paid divided by the value of the purchase. Effective spread and Relative spread are calculated using TAQ data. Effective spread / Price, Relative spread / Price, Relative spread/ Mid, and Depth are also defined in Table 1. As depth tends to be skewed, we use $\log (1+$ depth $)$ in our data. All of the control variables are as defined in Table 2. Calendar month dummies (not reported) and Year dummies (not reported) are included in all specifications. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*}$, **, and ${ }^{* * *}$, respectively.

Panel A: Basic Hazard Regression for Alternative Measures of Transaction Costs

	(1)	(2)	(3)	(4)	(5)	(6)
Illiquidity measure	ZeroFreq	Closing price Spread $\%+$ Commission $(\%)$	Effective Spread/Price $(\%)$	Relative Spread/Price $(\%)$	Relative Spread/Mid $(\%)$	Log $(1+$ depth $)$
Illiquidity	$0.322^{* * *}$	$0.945^{* * *}$	$0.988^{* * *}$	$0.993^{* * *}$	$0.993^{* * *}$	$0.916^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm stratification	No	No	No	No	No	No
Household stratification	No	No	No	No	No	No
Calendar month dummies	Yes	Yes	Yes	Yes	Yes	Yes
Calendar year dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	766,168	778,052	616,825	616,825	616,825	536,772
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Panel B: Comprehensive Hazard Regression for Alternative Measures of Transaction Costs						
	(1)	(2)	(3)	(4)	(5)	(6)
Illiquidity measure	Zerofreq	$\begin{aligned} & \text { Closing } \\ & \text { price Spread } \\ & + \\ & \text { Commission } \\ & (\%) \\ & \hline \end{aligned}$	Effective Spread/Price (\%)	Relative Spread/Price (\%)	Relative Spread/Mid (\%)	Log (1+depth)
Illiquidity	$0.246^{* * *}$	0.950 ***	$0.958^{* * *}$	$0.973^{* * *}$	$0.972^{* * *}$	$0.969^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Size	$0.956^{* * *}$	$0.946^{* * *}$	$0.926^{* * *}$	$0.927^{* * *}$	$0.926^{* * *}$	$0.947^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
B/M	$0.986^{* * *}$	$0.983^{* * *}$	$0.969^{* * *}$	$0.970^{* * *}$	$0.970^{* * *}$	$0.985^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Momentum	$1.107^{* * *}$	$1.096^{* * *}$	1.111***	$1.110^{* * *}$	$1.110^{* * *}$	$1.118^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Unrealized Returns	$1.159 * * *$	1.189***	$1.198{ }^{* * *}$	$1.200^{* * *}$	$1.200^{* * *}$	$1.228^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Age	$0.997^{* * *}$	0.995***	$0.996^{* * *}$	$0.995^{* * *}$	$0.996^{* * *}$	$0.996^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Log (Income)	$0.999^{* * *}$	$0.928^{* * *}$	$0.996^{* * *}$	$0.998^{* * *}$	$0.998^{* * *}$	$0.999^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Married Dummy	0.954**	$0.964^{* * *}$	$0.946^{* * *}$	$0.946^{* * *}$	$0.946^{* * *}$	$0.949^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Male Dummy	$1.112^{* * *}$	$1.109^{* * *}$	$1.133^{* * *}$	$1.132^{* * *}$	$1.132^{* * *}$	$1.120^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Professional Dummy	1.018*	$1.021^{* *}$	1.023^{*}	1.023**	1.023^{*}	$1.036^{* * *}$
	0.092	0.046	0.051	0.05	0.051	0.005
Retirement Acct Dummy	$0.883^{* * *}$	0.909***	$0.901^{* * *}$	$0.900^{* * *}$	$0.900^{* * *}$	$0.898{ }^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Retired Dummy	$1.074^{* * *}$	1.082***	$1.086^{* * *}$	$1.086^{* *}$	$1.086^{* *}$	$1.102^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Foreign Securities Dummy	$1.239^{* * *}$	$1.237^{* *}$	1.251***	$1.251^{* * *}$	1.251***	1.251***
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Option User Dummy	1.490 ***	$1.433^{* *}$	$1.536^{* * *}$	$1.536^{* * *}$	$1.536^{* * *}$	$1.543^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Short User Dummy	$1.994^{* * *}$	$1.928^{* * *}$	$1.993^{* * *}$	1.995***	$1.994^{* * *}$	$2.008^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Log (Equity Port. Value)	$1.000^{* * *}$	1.071***	$1.001^{* * *}$	$1.001^{* * *}$	$1.000^{* * *}$	$1.000^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Portfolio Concentration	$2.611^{* * *}$	$3.083^{* * *}$	$2.681^{* * *}$	$2.682^{* * *}$	$2.682^{* * *}$	$2.782^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Firm stratification	No	No	No	No	No	No
Household stratification	No	No	No	No	No	No
Calendar month dummies	Yes	Yes	Yes	Yes	Yes	Yes
Calendar year dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	113,336	111,353	88,933	88,933	88,933	78,894
Wald test	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001

Table 4: Transaction Costs and Holding Periods for Investors of Various Sophistication

This table examines how the impact of transaction costs on individual investors' holding periods in the US differ across investors with various sophistication levels. Investor sophistication is presumed to cumulatively increase with each of the following seven criteria met: if the investor has an income higher than $\$ 75 \mathrm{~K}$; if the investor is ranked among the top 25% of all investors based on equity holdings at any point in time during the sample period; if the investor holds either technical or managerial positions and as such is considered a professional; if the investor traded options at least once during the entire sample period; if the investor has ever held any short positions during the sample period; if the investor has ever traded foreign securities, including ADRs, foreign stocks or mutual funds; and if the investor's portfolio is more concentrated than the median investor's, i.e. if the investor's portfolio concentration is greater than 0.48 . The most sophisticated investors in the US have a sophistication score of 7, while the least sophisticated have a sophistication score of 0 . We categorize all households into three subsamples based on their sophistication. Group 1 includes the least sophisticated investors whose sophistication scores are between 0 and 2; Group 2 is for investors whose sophistication scores are between 3 and 5; and Group 3 contains the most sophisticated investors whose sophistication scores are 6 or 7 . We then estimate hazard ratios based on the most comprehensive models utilized in Tables 2 and 3 for each group, respectively. The conditional probability of sale is the dependent variable. Independent variables include adjusted Amihud illiquidity ratio (Adjllliq as defined in Table 2), stock characteristics, as well as demographic controls. All variables are as defined in Tables 2 and 3. Since we use Income, Professional Dummy, Short User Dummy, Option User Dummy, Foreign Securities Dummy, Log (Equity Portfolio Value), as well as Portfolio Concentration to calculate Sophistication, these variables are not included as independent variables in the analyses. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the 10%, 5% and 1% levels are denoted by *, **, and ***, respectively.

Sophistication Group	(1)	(2)	(3)
Sophistication Score	$0,1,2$	$3,4,5$	6,7
AdjIlliq	$0.984^{* * *}$	$0.95^{* * *}$	$0.948^{* *}$
	$<.0001$	$<.0001$	0.011
Size		Stock Characteristics	
	$0.797^{* * *}$	$0.677^{* * *}$	$0.750^{* * *}$
B/M	$<.0001$	$<.0001$	$<.0001$
	$0.93^{* * *}$	$0.846^{* * *}$	$0.793^{* * *}$
Momentum	$<.0001$	$<.0001$	$<.0001$
	$1.083^{* * *}$	$1.11^{* * * *}$	$1.102^{* * *}$
Unrealized Returns	$<.0001$	$<.0001$	$<.0001$
	$1.131^{* * *}$	1.013	1.011
	$<.0001$	0.294	0.828
Age		Demographic Variables	
	$0.998^{* * *}$	$0.998^{* * *}$	$0.981^{* * *}$
Married Dummy	0.002	$<.0001$	$<.0001$
	$0.949^{* * *}$	$0.883^{* * *}$	$0.795^{* * *}$
Male Dummy	$<.0001$	$<.0001$	$<.0001$
	$1.093^{* * *}$	$1.116^{* * *}$	1.119
Retirement Acct Dummy	$<.0001$	$<.0001$	0.181
Retired Dummy	$0.870^{* * *}$	$0.877^{* * *}$	$0.777^{* * *}$
	$<.0001$	$<.0001$	$<.0001$
Firm stratification	$1.104^{* * *}$	$1.294^{* * *}$	$1.650^{* * *}$
Household stratification	$<.0001$	$<.0001$	0.001
Calendar month dummies	Yes	Yes	Yes
Calendar year dummies	No	No	No
Observations	Yes	Yes	Yes
Wald test	Yes	Yes	Yes
	81,685	76,894	8,215
	$<.0001$	$<.0001$	$<.0001$

Table 5: Change in Transaction costs around Stock Splits

This table reports the changes in transaction costs for splitting stocks in the US around their ex-split dates. The final sample includes 1,850 forward stock splits during our sample period with a split factor larger than or equal to 0.25 . We estimate an OLS regression of stock transaction costs on a time period indicator - After-Split Dummy, controlling for size, book-to-market, and momentum. The dependent variable is the monthly adjusted Amihud illiquidity ratio (AdjIlliq). Size, book-to-market, and momentum are estimated monthly. We look at the changes in transaction costs in specific event windows, namely 6,9 and 12 months after stock splits. The time period indicator - After-Split Dummy equals to one for splitting stocks in months that fall within the specified event window subsequent to the splits, otherwise zero. Each coefficient reported below for the After-Split Dummy comes from an individual OLS regression. For brevity, the coefficients for size, book-to-market and momentum are excluded. For each event window, we first report OLS results without firm controls and followed by results with firm controls in the adjacent columns. P-values are reported below each estimated coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*}$, ** , and ${ }^{* * *}$, respectively.

Window	6-months		9-months		12-months	
	(1)	(2)	(3)	(4)	(5)	(6)
After-Split	$-0.193^{* * *}$	$-0.186^{* * *}$	$-0.250^{* * *}$	$-0.248^{* * *}$	$-0.293^{* * *}$	$-0.289^{* * *}$
Dummy	$<.0001$	$<.0001$				
Stock Controls	No	Yes	No	Yes	No	Yes
Observations	31,652	27,703	47,271	40,488	62,744	52,484
Adj. R	0.005	0.044	0.008	0.046	0.011	0.048

Table 6: Impact of US Stock Splits on Holding Period Decisions

This table examines the impact of stock splits on individual investors' holding period decisions. It reports the estimated hazard ratios from dynamic hazard regressions in the US where the conditional probability of sale is the dependent variable. We employ three different event windows as defined before, specifically $6-, 9-$, and 12 -month after stock splits. For each stock-holding position, we need to have one observation for every day starting from the very first day the position is open, up to and including the day the stock is sold, or in cases where sales of stocks are not observed, until the last day of our sample period. To efficiently estimate such a huge panel of data with likelihood function, we follow Allison and Christakis (2006) and split duration period into multiple periods (i.e., pre-event, event, and post-event period). For each period there are multiple observations where the After-Split Dummy either equals 0 or 1 ; it is only the last observation with a distinct After-Split Dummy value for each period that matters in the estimation. Thus, we keep the last observation for each period with a distinct After-Split Dummy value. To address the concern that the results might be driven by post-split returns, we calculate returns for each period accordingly and control for these returns in models (2), (4), and (6) in the table. Finally, we account for the possibility that stock splits may lead to clientele effects: forward (reverse) splits may attract clienteles that prefer lower-priced (higherpriced) equities. Columns (3), (6) and (9) address the clientele issue by controlling for time-varying values of stock prices. Our analyses study three distinct periods surrounding stock splits. The first period covers the time-period from purchasing the share until the split event. In this period (pre-event), After-Split Dummy equals to zero, and returns are calculated as the buy-and-hold returns from the start of the position until one day before the split events or the close of the position, whichever happens first. The second period is the time period from the split until the end of the event window of interest (i.e., 6,9 or 12 months). After-Split Dummy is equal to 1 in this period and returns during this period are estimated using the buy-and-hold returns starting from the split date till either the close of the position or the end of the event window, whichever happens first. The third period corresponds to the time period after the event window (post-event), for which After-Split Dummy equals to zero again, and returns are calculated as the buy-and-hold return starting from end of the event window till the position close. For positions not closed at the end of our sample period, we use the stock price on the last day of our sample period as the closing price and calculate the post-event window return. In Panel A, we report results for forward splits whereas in Panel B we report results for reverse-splits. After-Split Dummy (After-R-Split Dummy) is a dummy variable used for forward (reverse) splits. We report estimated hazard ratios on the After-Split Dummy (After-R-Split Dummy) in Panel A (in Panel B). In all specifications, we control for size, book-to-market and momentum as defined previously, as well as time specific effects with calendar year and month dummies. For brevity, estimated hazard ratios for stock characteristics and calendar year and month dummies are not reported. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*}$, ${ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: Impact of Stock Splits on Holding Period Decisions									
Window	6-months			9-months			12-months		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
After-Split Dummy	$1.087^{* * *}$	1.101***	1.104***	$1.096{ }^{* * *}$	$1.104^{* * *}$	$1.114^{* * *}$	1.111***	$1.124^{* * *}$	$1.123^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<.0001
Observations	760,463	760,109	750,670	761,790	760,153	760,072	762,710	762,207	762,156
Stock controls	Yes								
Split Return Control	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Stock Price Control	No	No	Yes	No	No	Yes	No	No	Yes
Calendar month dummies	Yes								
Calendar year dummies	Yes								
Wald test	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001

Panel B: Impact of Reverse Stock Splits on Holding Period Decisions									
Window	6-months			9-months			12-months		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
After-R-Split Dummy	$0.491^{* * *}$	0.485***	$0.480^{* * *}$	$0.543^{* * *}$	$0.544^{* * *}$	$0.535^{* * *}$	0.628***	$0.626^{* * *}$	$0.536^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Observations	386,490	386,230	374,001	387,461	386,836	374,314	387,197	386,843	374,353
Stock controls	Yes								
Split Return Control	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Stock Price Control	No	No	Yes	No	No	Yes	No	No	Yes
Calendar month dummies	Yes								
Calendar year dummies	Yes								
Wald test	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001

Table 7: Holding Period Changes around September 3rd, 1992, AMEX Tick Size Changes

This table examines the impact of AMEX tick size changes on Sept. $3^{\text {rd }}, 1992$, on individual investors' holding period decisions. It estimates changes in hazard ratios using dynamic hazard regressions. The treated group consists of AMEX stocks priced between $\$ 1$ and $\$ 5$ on the day the tick size change was implemented. We estimate the differential impact of this rule change on the holding period decisions in treated stocks versus stocks that were not impacted. For this purpose, we employ three alternative control groups in the difference-in-differences hazard analysis we conduct. Model (1) focuses only on stocks for which the tick size changed on September $3^{\text {rd }}, 1992$ (the treatment group) and simply investigates the change in the likelihood of sale after the implementation of the tick size rule change compared to before the implementation of the rule change. Model (2) uses stocks priced between $\$ 1$ and $\$ 5$ but listed on NYSE or NASDAQ in the control group. Model (3) uses all other stocks listed on AMEX that are priced above $\$ 5$ as the control group. Model (4) includes all stocks that are not in the treated group in the control group: this includes all stocks listed on NYSE and NASDAQ, as well as stocks in AMEX that are priced above $\$ 5$. The conditional probability of sale is the dependent variable, and we employ three different event windows as defined before: 6, 9, and 12 subsequent to September $3^{\text {rd }}$, 1992. We follow Allison and Christakis (2006) and separate the sample period into multiple sub-periods (i.e., pre-event, event, and post-event period). Specifically, the first period covers the time period from purchasing the share until the tick size change. In this period (pre-event), After-AMEX tick change dummy equals to zero. The second period is the time period from Sept $3^{\text {rd }}, 1992$, until the end of the event window of interest (i.e., 6,9 and 12 months). In the second period After-AMEX tick change dummy is equal to 1 . The third period corresponds to the time-period after the event (post-event window), for which After-AMEX tick change dummy equals zero again. We estimate the hazard ratio of the AfterAMEX tick change dummy for the treated group as well as for the control groups, and then examine if the difference between the two estimated hazard ratios for the treatment group vs. the control group is significant. We report the hazard ratios and corresponding pvalues for all models. In all our analyses, we control for size, book-to-market, momentum, and unrealized returns. In all specifications, we use firm stratification to account for firm specific factors. The table reports the estimated hazard ratios on the After-AMEX tick change dummy for the treated firms and untreated /control firms. Panels A, B, and C document the estimated results for the 6-, 9-, and 12 -month event windows, respectively. For brevity, estimated hazard ratios for stock characteristics are not reported. P-values are reported below each coefficient. We further report the Chi-square (chi2) and p-value corresponding to testing the difference between the hazard ratios of the After-AMEX tick change dummy for the treated group vs. the control group. Statistical significance at the 10%, 5% and 1% levels are denoted by ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: 6 Month Analysis				
Control Group	(1)	(2)	(3)	(4)
	None	NYSE \& NASDAQ stocks priced [1,5]	AMEX Stocks Priced >\$5	All stocks
After-AMEX tick change dummy				
Treated	1.167**	$1.187^{* * *}$	$1.125^{* * *}$	$1.118^{* * *}$
	0.037	<. 0001	<. 0001	<. 0001
Control		1.067**	$1.026^{* * *}$	$1.010^{* * *}$
		<. 0001	<. 0001	0.005
Treated - Control (chi2)		1025.09	11.32	28.75
p-value		<. 0001	0.0008	<. 0001
Stock controls	Yes	Yes	Yes	Yes
Firm stratification	Yes	Yes	Yes	Yes
Observations	8,279	63,612	31,979	755,378
Wald test	<. 0001	<. 0001	<. 0001	<. 0001

Panel B: 9 Month Analysis

(1)
(2)
(3)
(4)

Control Group	None	 NASDAQ stocks priced [1,5]	AMEX Stocks Priced $>\$ 5$	All stocks
	After-AMEX tick change dummy			
Treated	$1.164^{* *}$	$1.205^{* * *}$	$1.125^{* * *}$	$1.129^{* * *}$
Control	0.014	$<.0001$	$<.0001$	$<.0001$
Treated - Control (chi2)		$1.126^{* * *}$	$1.037^{* *}$	$1.073^{* * *}$
p-value	$<.0001$	0.041	$<.0001$	
Stock controls	535.59	3.92	4.96	
Firm stratification	Yes	Yes	Yes	0.001
Observations	8,343	Yes	Yes	0.026
Wald test	$<.0001$	64,017	Yes	Yes

Panel C: 12 Month Analysis
(1) (2)
(2)
(3)
(4)

Control Group	None	

AMEX Stocks Priced >\$5

All stocks priced [1,5]

	After-AMEX tick change dummy			
Treated	$1.125^{* *}$	$1.174^{* * *}$	$1.125^{* * *}$	$1.094^{* * *}$
	0.029	$<.0001$	$<.0001$	0.001
Control		$1.141^{* * *}$	1.034	$1.043^{* * *}$
		0.001	0.18	$<.0001$
Treated - Control (chi2)		1108.91	3.16	4.41
p-value	$<.0001$	0.0704	0.0357	
Stock controls		Yes	Yes	Yes
Firm stratification	Yes	Yes	Yes	Yes
Observations	8,398	64,346	32,303	767,109
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Table 8: Summary Statistics of Stock and Investor Characteristics in Finland

This table reports descriptive statistics for stock and investor characteristics in Finland. Summary statistics are calculated by pooling annual observations over the 1995-2003 time-period. We report the mean, median, standard deviation, as well as the $25^{\text {th }}$ and $75^{\text {th }}$ percentile values for all variables used in the study. All transaction costs measures are annual averages and are defined in the text. Price is the annual average of the daily closing prices. Market Cap is the average market capitalization in millions of Euros. AdjIlliq is the adjusted Amihud illiquidity ratio. Zerofreq is zero-return frequency which reports the percentage of zero-return days. Following Barber and Odean (2000), closing price spread $\%$ for sales is equal to the closing price from CRSP divided by the transaction price minus one. Similarly, closing price spread \% is set equal to the sum of purchase and sales closing price spreads. Size is the market value of equity. Age in 1995 is the biological age of the investor in 1995. Male Dummy ($1=$ male) is a dummy variable that equals one for male traders. Portfolio concentration is defined as in Ivkovic, Sialm and Weisbenner (2008) and is calculated as the sum of squared value weights of each stock in a household's portfolio. Equity Portfolio Value is the annual average market value of an investor's portfolio in Euros using daily closing prices. Option User Dummy is a dummy variable that equals one for traders that have traded options at least once over the entire sample period.

Summary Statistics for Finland	Mean				
	P25	Median	P75	Std. Dev	
	Stock Characteristics				
Price (€)	12.61	2.69	7.67	16.4	11.20
Market Cap (€M)	1132	33	125	498	8414.34
AdjIlliq	10.61	1.07	6.21	20.12	10.25
Zerofreq	21.90%	13.50%	20.64%	27.75%	13.42%
Closing Price Spread (\%)	0.083	-2.93	0	3.25	5.52
	Investor Characteristics				
Age in 1995	39.5	27	40	52	18.48
Male Dummy (1=male)	0.67	0	1	1	0.47
Portfolio Concentration	0.20	0.09	0.17	0.27	0.18
Equity Portfolio Value $(€)$	10,823	1,341	2,079	5,292	80,125
Option User Dummy	0.04	0	0	0	0.18

Table 9: Impact of Liquidity on Households' Holding Periods in Finland, hazard analysis

This table examines the impact of stock liquidity on individual investors' holding periods in Finland using a hazard model framework similar to the one used in Table 2 for the US data. Panel A reports estimated hazard ratios from hazard regressions where the conditional probability of sale is the dependent variable. Independent variables include transaction cost measures: the adjusted Amihud illiquidity ratio, (alternatively Zerofreq or Closing Price Spread \%); firm characteristics; a set of demographic controls; trade variables; as well as the interactions of our proxy for transactions costs with investor characteristics. Proxies for transactions costs (AdjIlliq and Zerofreq) are calculated over the previous 12 months prior to the sale transaction. We estimate closing price spread for purchases as the negative of the closing price from CRSP divided by the transaction price minus one. Following Barber and Odean (2000), closing price spread for sales is equal to the closing price from CRSP divided by the transaction price minus one. Similarly, closing Price Spread $\%$ is set equal to the sum of purchase and sales closing price spreads. Size is the market value of equity. B/M is computed as the ratio of previous year-end book value to the most recent market capitalization. Momentum is the cumulative return over the period between month -12 to month 2. All stock characteristics are calculated at the beginning of the month that a sale takes place. Demographic variables include age and gender. Age is the biological age of the head of the household. Male Dummy is one if the head of the household is male. Trade variables for each investor are derived from all the transactions carried out by each specific investor in the dataset. Option User Dummy equals one if an investor has ever traded options at least once over the course of the sample period. Log (Equity Portfolio Value) is the logarithmic value of the household's total equity holdings. Concentration is defined as in Ivkovic, Sialm and Weisbenner (2008) and is equal to the sum of squared value weights of each stock in a household's portfolio. Year Dummies are dummy variables that equal one if the sale transaction takes place during that particular year. Calendar month dummy is equal one if a sale takes place during that particular month. For brevity, estimated hazard ratios on the year and month dummy variables are not reported. Panel B investigates if sophistication affects an investor's attention to transaction costs. A Finnish investor's sophistication is presumed to cumulatively increase with each of the following three criteria met: if the household is ranked among the top 25% of all investors based on equity holdings at any point in time during the sample period; if the investor's portfolio is more concentrated than the median investor's; if the investor has ever traded options at least once during the entire sample period. The most sophisticated investors in Finland have a Sophistication score of 3, while the least sophisticated have a Sophistication score of 0 . We divide investors into two sub-groups based on their sophistication. Group 1 includes the least sophisticated investors whose sophistication scores are between 0 and 1 ; and Group 2 includes the most sophisticated investors whose sophistication scores are either 2 or 3 . We then re-estimate our hazard model framework separately for Groups 1 and 2. Since we use sophistication dummies such as Option User Dummy, Log (Equity Portfolio Value), as well as Portfolio Concentration in constructing the two sub-groups, these covariates are not used as independent variables in the regressions. We also control for size, B / M, momentum, as well as calendar year and month specific effects. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Statistical significance at the $10 \%, 5 \%$ and 1% levels is denoted by ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: Impact of Transaction Costs on Individual Traders' Holding Period Decisions in Finland, Hazard Analysis						
	(1)	(2)	(3)	(4)	(5)	(6)
	AdjIlliq	Zerofreq	Closing Price Spread (\%)	AdjIlliq	Adjılliq	AdjIlliq
Illiquidity measure	$0.984^{* * *}$	$0.105^{* * *}$	$0.986^{* * *}$	$0.976^{* * *}$	$0.979 * * *$	$0.988^{* * *}$
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Size					$1.000^{* * *}$	$1.000^{* * *}$
					<. 0001	<. 0001
B/M					$0.963^{* * *}$	$0.996^{* * *}$
					<. 0001	<. 0001
Momentum					$2.178 * * *$	$1.008^{* * *}$
					<. 0001	<. 0001
Unrealized Returns					$1.000^{* * *}$	1.000^{*}
					<. 0001	0.068
Age						$0.996^{* *}$
						<. 0001
Male Dummy						$1.341^{* * *}$
						<. 0001
Option User Dummy						$1.890^{* * *}$
						<. 0001
Log (Equity Portfolio Value)						$1.118^{* * *}$
						<. 0001
Portfolio Concentration						4.106***
						<. 0001
Firm stratification	No	No	No	Yes	No	No
Household stratification	No	No	No	Yes	Yes	No
Calendar year/month dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2,304,232	2,304,232	1,804,860	2,304,232	1,722,183	$\begin{gathered} 1,522,71 \\ 6 \end{gathered}$
Wald test	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001

Panel B: Impact of Sophistication on Attention to Transaction Costs in Finland		
Sophistication Group	(1)	(2)
Sophistication Score	0,1	2,3
AdjIlliq	$0.992^{* * *}$	$0.987^{* * *}$
	$<.0001$	$<.0001$
		Stock Characteristics
Size	$0.999^{* * *}$	$0.999^{* * *}$
	$<.0001$	$<.0001$
B/M	$0.925^{* * *}$	$0.965^{* * *}$
	$<.0001$	$<.0001$
Momentum	$2.087^{* * *}$	0.977
	$<.0001$	0.598
Unrealized Returns	$1.000^{* * *}$	$1.000^{* * *}$
	$<.0001$	$<.0001$
		Demographic Variables
Age	$0.996^{* * *}$	$0.990^{* * *}$
	$<.0001$	$<.0001$
Male Dummy	$1.374^{* * *}$	$1.271^{* * *}$
	$<.0001$	$<.0001$
Firm stratification	No	No
Household stratification	No	No
Calendar year/month dummies	Yes	Yes
Number of Observations	809,296	395,442
Wald test	$<.0001$	$<.0001$

Appendix

A.1. Holding Period Decisions for Equities that are in the Most Illiquid Quintile

In Table A1, we rank all stocks by the Amihud illiquidity ratio and create a dummy variable (AdjIlliq Dum) that takes on a value of one if stock belongs to the highest illiquidity quintile. This makes it easier to interpret our results. The hazard ratios corresponding to the dummy variables have an intuitive interpretation. They indicate the probability of a sale (conditional upon no sale up to that point) given that the underlying stock belongs to the highest illiquidity group divided by the probability of a sale given that the stock does not belong to that group. We find that a stock in the highest illiquidity group is approximately 0.8 times as likely (20% less likely) to be sold as a stock not belonging to that group. In alternative specifications in Models I through IV, we control for investor characteristics, stock characteristics and in some cases use household stratification to control for household specific effects. In all specifications we obtain quantitatively and qualitatively similar results. The average investor is cognizant of liquidity and pays attention to the transaction costs of the stocks she trades.

Table A1: Hazard Regressions with Transaction Costs Dummy in the US

This table reports hazard ratios from the holding period regressions where the conditional probability of sale is the dependent variable for the US sample. Independent variables consist of a transaction's costs measure and a set of investor demographic and trade variables. AdjIlliq Dum is a dummy variable that takes on a value equal to one if a stock in the dataset is in the highest quintile ranked by the adjusted Amihud illiquidity ratio calculated over the previous 12 months prior to a transaction. Independent variables include firm characteristics; a set of demographic controls; as well as a variety of trade variables. B/M or book-tomarket ratio is computed as the ratio of previous year-end book value to the most recent market capitalization. Momentum is the cumulative returns over the ten-month period from month -12 to month -2 . Stock characteristics are calculated at the beginning of the month when a sale takes place. Unrealized returns are calculated using the price differentials observed at the time of closing of the position and the time of purchase, divided by initial investment made at the time of purchase. For positions not closed at the end of the sample period, we assume the price at the last day of our sample period as the closing price. Age refers to the age of the head of the household. Income is the total self-reported annual income. Married Dummy is a dummy variable that equals one if the investor is married. Male Dummy is equal to one if the head of the household is a male. Professional Dummy is one for investors who hold technical or managerial positions, and Retired Dummy is equal to one for investors who already retired. Retirement Acct Dummy equals one if the transaction account is a retirement (IRA or Keogh) account. Trade variables for each individual investor are derived from all the transactions he/she executes during the sample period. Short User Dummy equals one if an investor executed at least one short sale during the sample period. Option User Dummy is one if an investor ever traded options. Foreign Securities Dummy is set to one if an investor traded at least once any foreign assets, including ADRs, foreign stocks or foreign mutual funds during the sample period. Log (Equity Portfolio Value) is the logarithmic value of the household's average total equity holdings. Portfolio Concentration is defined as in Ivkovic, Sialm and Weisbenner (2008) and is equal to the sum of squared value weights of each stock in a household's portfolio. Panel B investigates if investor sophistication affects investors' cognizance of transaction costs. Investor sophistication is presumed to cumulatively increase with each of the following criteria met: if the investor has an income higher than $\$ 75 \mathrm{~K}$; if the investor is ranked among the top 25% of all investors based on equity holdings at any point in time during the sample period; if the investor holds either technical or managerial positions and as such is considered a professional; if the investor traded options at least once during the entire sample period; if the investor has ever held any short positions during the sample period; if the investor has ever traded foreign securities, including ADRs, foreign stocks or mutual funds; and if the investor's portfolio is more concentrated than the median investor's, i.e. if the investor's portfolio concentration is greater than 0.48 . The most sophisticated investors in the US have a Sophistication score of seven (7), while the least sophisticated have a Sophistication score of zero (0). Calendar month dummies (not reported) are twelve dummy variables that equals one if the sale transaction happens during the specific month. Year dummies (not reported) equal one for the year during which a transaction happens. Clustered robust standard errors are calculated at the household level. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{* * *}$, and ${ }^{* * *}$, respectively.

Hazard Regressions with Transaction Costs Dummy					
	(1)	(2)	(3)	(4)	
AdjIlliq Dum	$0.866^{* * *}$	$0.772^{* * *}$	$0.818^{* * *}$	$0.794^{* * *}$	
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	
Firm Characteristics	No	No	Yes	Yes	
Demographic Variables	No	No	No	Yes	
Trade Variables	No	No	No	Yes	
Household stratification	No	Yes	Yes	No	
Firm stratification	No	Yes	Yes	Yes	
Calendar month dummies	Yes	Yes	Yes	Yes	
Calendar year dummies	Yes	Yes	Yes	Yes	
Observations	799,469	799,469	589,794	115,147	
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	

A.2. Controlling for the impact of day-traders on our findings

To address the possibility that our results are driven by day traders, we repeat our analyses excluding holding periods of 1 day as well as 1 and 2 days in our sample. The results are reported in Table A2 below. Panel A reports results excluding 1 day holding periods and Panel B reports results excluding 1 and 2-day holding periods. Overall, our results are similar to those reported earlier.

Table A2: Controlling for the impact of day-traders

This table examines the impact of transaction costs on individual investors' holding periods in the US using a hazard model framework. To reduce the potential impact day traders and day trading have on our results, we exclude holding periods of one-day in Panel A, and exclude holding periods of one- and two-days in Panel B. In both Panels A and B, the conditional probability of sale is the dependent variable. Proxies for transactions costs is adjusted Amihud illiquidity ratio (AdjIlliq) as defined in Table 2. Other independent variables include a set of firm characteristics, demographic controls, as well as trade variables. All of the control variables are also defined as in Table 2. Calendar year and month dummies (not reported) are included in all specifications. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*}$, ${ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: Excluding one-day trades

	(1)	(2)	(3)	(4)
AdjIlliq	$0.982^{* * *}$	$0.979^{* * *}$	$0.980^{* * *}$	$0.982^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes
Demographic Variables	No	No	No	Yes
Trade Variables	No	No	No	Yes
Household Stratification	No	Yes	Yes	No
Firm Stratification	No	Yes	Yes	Yes
Calendar year/month dummies	Yes	Yes	Yes	Yes
Observations	793,182	793,182	585,274	114,021
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Panel B: Excluding one-day and two-day trades				
	(1)	(2)	(3)	(4)
AdjIlliq	$0.982^{* * *}$	$0.979^{* * *}$	$0.979^{* * *}$	$0.982^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes
Demographic Variables	No	No	No	Yes
Trade Variables	No	No	No	Yes
Household effects	No	Yes	Yes	No
Firm fixed effects	No	Yes	Yes	Yes
Calendar year /month dummies	Yes	Yes	Yes	Yes
Observations	783,500	783,500	578,126	113,061
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$

A.3. Impact of Transaction Costs at the time of Purchase or Sale on Holding Period Decisions in the United States

In the paper we examine the impact of average transaction costs on households' holding period decisions. Our measures are meant to capture both buy and sell related costs. Although we do not have a specific hypothesis, as the reviewer points out it is indeed possible that individual investors may care more about the trading costs incurred at the time of purchase rather than at the time of sale. In order to better understand whether there is an asymmetry in how purchase and sale transaction costs incurred are incorporated in holding period decisions, we investigate the impact of buy and sell transactions separately in the hazard regression.

In particular, following Odean (2000) for each trade we calculate the closing price spread for purchases and sales separately. SprBuy is the spread for purchases whereas SprSell is the spread for sales. SprSell is calculated as (closing price from CRSP / actual sale price)-1 while SprBuy is calculated as -1^{*} (closing price from CRSP / actual buy price)-1. We run our main hazard specification using the two transaction costs separately. We report the results in Table A3.

Panel A of Table A3 uses Sprbuy, while Panel B uses SprSell. In column (1) of Panel A, we show that the estimated hazard ratio for SprBuy is 0.992 without controlling for stock or investor characteristics. It is less than one and statistically significant, suggesting that the sale probability of a stock declines with higher transaction costs calculated at the time of the purchase. This would mean that an individual investor that acquires a more illiquid stock is more likely to continue holding that stock. Controlling for heterogeneity among households, and stocks leads to stronger results as the hazard ratio is reduced in all specifications in columns (2) through (6), to as low as 0.963 in column (4) suggesting that a one standard deviation increase in SprBuy would lead up to 11% reduction in the subsequent sale likelihood. These results are consistent with our analyses in Tables 2 and 3 in the paper, confirming that investors' holding periods are longer for stocks with higher transaction costs incurred at the time of the purchase. In Panel B of Table A3, we use transaction costs at the time of the sale, (SprSell), and confirm earlier results reported in Panel A as well as results reported in Tables 2 and 3 from the paper.

Table A3: Impact of Buy / Sell Transaction Costs on Holding Period Decisions

This table examines the impact of transaction costs measured at the time of purchase and sales on individual investors' holding periods in the US between 1991 and 1996 using a hazard model framework. In both Panels A and B, the conditional probability of sale is the dependent variable. Panel A uses transaction costs realized at the time of purchase. Sprbuy is estimated following Odean (1999) as -1^{*} (closing price from CRSP-actual buy price)- 1 and captures the transaction costs of stocks at the time of purchase. Panel B uses transaction costs realized at the time of the sale, which is also estimated following Odean (1999) as (closing price from CRSP-actual sale price)-1. Other independent variables include a set of firm characteristics, demographic controls, as well as trade variables. All of the control variables are as defined in Table 2. Calendar year and month dummies (not reported) are included in all specifications. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Wald test is used for each additional set of regressors. P-values are reported below each coefficient. Statistical significance at the $10 \%, 5 \%$ and 1% levels are denoted by ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: Impact of Buy related Transaction Costs on US Households'						
	(1)	(2)	(3)	(4)	(5)	(6)
SprBuy	$0.992^{* * *}$	$0.966^{* * *}$	$0.985^{* * *}$	$0.963^{* * *}$	$0.985^{* * *}$	$0.987^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes	Yes	Yes
Demographic Variables	No	No	No	No	Yes	Yes
Trade Variables	No	No	No	No	Yes	Yes
Household Stratification	No	Yes	No	Yes	No	No
Firm Stratification	No	Yes	No	No	No	Yes
Calendar year/month dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	778,052	778,052	575,111	575,111	111,353	111,353
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Panel B: Impact of Sell related Transaction Costs on US Households' Holding Period Decisions

	(1)	(2)	(3)	(4)	(5)	(6)
SprSell	$0.997^{* * *}$	$0.993^{* * *}$	$0.993^{* * *}$	$0.992^{* * *}$	$0.988^{* * *}$	$0.986^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes	Yes	Yes
Demographic Variables	No	No	No	No	Yes	Yes
Trade Variables	No	No	No	No	Yes	Yes
Household Stratification	No	Yes	No	Yes	No	No
Firm Stratification	No	Yes	No	No	No	Yes
Calendar year/month dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	530,214	530,214	399,945	399,945	80,003	80,003
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

A.4. Impact of Transaction Costs at the time of Purchase (Sale) on Holding Period Decisions in Finland

In Panels A and B of Table A4, we repeat similar analyses to those conducted in Panels A and B of Table A3 using the individual level trading data from Finland instead of the individual level trading data from the US. We find results consistent with our findings in the US.

Table A4: Impact of Buy / Sell Transaction Costs on Holding Period Decisions, Finland
This table examines the impact of transaction costs on individual investors' holding periods in Finland using a hazard model framework as above. In both Panels A and B, the conditional probability of sale is the dependent variable. Panel A use SprBuy to measure transaction costs captured at the time of purchase, while Panel B use SprSell to measure transaction costs realized at the time of sales. Both SprBuy and SprSell are defined as in Table A3. Independent variables include firm characteristics; a set of demographic controls; as well as trade variables. All variables are defined as in Table 9 of the paper. We further control for calendar year and month dummies. For brevity, estimated hazard ratios on the year and month dummy variables are not reported. Robust standard errors are adjusted as in Lin and Wei (1989). Ties are handled using the Efron procedure. Statistical significance at the $10 \%, 5 \%$ and 1% levels is denoted by ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$, respectively.

Panel A: Impact of Buy related Transaction Costs on Finnish Households'						
	(1)	(2)	(3)	(4)	(5)	(6)
SprBuy	$0.986^{* * *}$	$0.963^{* * *}$	$0.987^{* * *}$	$0.962^{* * *}$	$0.987^{* * *}$	$0.986^{* * *}$
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes	Yes	Yes
Demographic Variables	No	No	No	No	Yes	Yes
Trade Variables	No	No	No	No	Yes	Yes
Household Stratification	No	Yes	No	Yes	No	No
Firm Stratification	No	Yes	No	No	No	Yes
Calendar year/month dummies	Yes	Yes	Yes	Yes	Yes	Yes
N Observation	$1,804,860$	$1,804,860$	$1,440,182$	$1,440,182$	865,758	865,758
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Panel B: Impact of Sell related Transaction Costs on Finnish Households' Holding Period Decisions						
	(1)	(2)	(3)	(4)	(5)	(6)
SprSell	$0.998^{* * *}$	0.999	$0.995^{* * *}$	$0.998^{* *}$	$0.995^{* * *}$	$0.998^{* * *}$
	$<.0001$	0.168	$<.0001$	$<.0001$	$<.0001$	$<.0001$
Firm Characteristics	No	No	Yes	Yes	Yes	Yes
Demographic Variables	No	No	No	No	Yes	Yes
Trade Variables	No	No	No	No	Yes	Yes
Household Stratification	No	Yes	No	Yes	No	No
Firm Stratification	No	Yes	No	No	No	Yes
Calendar year/month dummies	Yes	Yes	Yes	Yes	Yes	Yes
N Observation	$1,727,388$	$1,727,388$	$1,271,717$	$1,271,717$	823,468	823,468
Wald test	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

[^0]: * Deniz Anginer, Simon Fraser University, deniz_anginer@sfu.ca. Snow (Xue) Han, San Francisco State University, hanx @sfsu.edu. Çelim Yıldızhan, Koç University, celim@ku.edu.tr. The authors thank Jussi Keppo, Jeff Netter, Paolo Pasquariello, Bradley Paye, Annette Poulsen, Nejat Seyhun, Tyler Shumway, Noah Stoffman, Uday Rajan, seminar participants at the Ross School of Business at the University of Michigan, Terry College of Business at the University of Georgia, Erasmus Liquidity Conference, Tel Aviv University Finance Conference and the Western Finance Association meetings for comments and suggestions. We thank Jussi Keppo for providing us with the Finnish dataset. All errors are our own. This paper is based on an earlier draft titled "Liquidity Clienteles."

[^1]: ${ }^{1}$ See for instance, Amihud and Mendelson (1986), Constantinides (1986), Vayanos (1998), Vayanos and Vila (1999), Heaton and Lucas (1996), Huang (2003), Lynch and Tan (2011), and Lo, Mamaysky and Wang (2004).

[^2]: ${ }^{2}$ For example, only 21% of the retail investors that responded to NASD Investor Literacy Survey (2003) knew the meaning of a "no load" mutual fund.
 ${ }^{3}$ Barber et al. (2020), using the complete transaction history of all investors in Taiwan, China, find that individual investor losses due to transaction costs equal 2.2% of GDP, without any gain in performance. French (2008) finds that, each year, investors spend about 0.67% of the aggregate value of the market on transaction costs, again without any gain in performance. He estimates the capitalized cost of active investing to be at least 10% of the total market capitalization.

[^3]: ${ }^{4}$ We should note, however, that the baseline or the average transaction costs of a given stock is likely to change slowly over time and is likely to be stable during short time periods in the absence of corporate events. For instance, the liquidity level of a penny stock would increase with increased trading interest, but it is not likely to achieve the same level of liquidity of a large cap stock purely based on investor interest or attention.
 ${ }^{5}$ For example, Schultz (2000) shows that the number of trades, especially the number of small trades, increases significantly after stock splits. Desai, Nimalendran, and Venkataraman (1998) find that both informed trades and noise trades increase after stock splits. Kryzanowski and Zhang (1996) show that absolute trading volumes of Canadian stocks increase subsequent to stock splits. Conroy, Harris, and Benet (1990) also show a significant reduction in the absolute bid-ask spread following stock splits.

[^4]: ${ }^{6}$ See for instance, Constantinides (1986), Vayanos (1998), Vayanos and Vila (1999), Heaton and Lucas (1996), Huang (2003), Lynch and Tan (2011), Lo, Mamaysky and Wang (2004).

[^5]: ${ }^{7}$ Supporting the positive correlation between portfolio concentration and investment performance, Choi et al. (2017) find that institutions with more concentrated portfolios earn higher risk-adjusted returns in international equity markets.

[^6]: ${ }^{8}$ For a more detailed description of this dataset please refer to Barber and Odean $(2000,2001)$.

[^7]: ${ }^{9}$ We obtain similar results by alternatively defining the holding period as the number of trading days from the first purchase until the day when all outstanding positions are closed as in Feng and Seasholes (2005).

[^8]: ${ }^{10}$ The hazard model framework has been used in the past by Seru, Shumway and Stoffman (2010) as well as Feng and Seasholes (2005) to model holding periods of individual investors.

[^9]: ${ }^{11}$ The median adjusted Amihud illiquidity ratio is 1.18 while its $75^{\text {th }}$ percentile is 6.26 for our sample stocks. Moving from the median stock to the $75^{\text {th }}$ percentile stock would result in an increase of 5.08 in the adjusted Amihud illiquidity ratio. As the hazard ratio for the adjusted Amihud ratio (Adjilliq) is 0.981 , an investor would be $\exp (\ln (0.981) * 5.08)=0.907$ as likely to sell the stock in the $75^{\text {th }}$ percentile of adjusted Amihud illiquidity as a stock with median adjusted Amihud illiquidity. This makes it 9.3% ($=1-0.907$) less likely to sell.

[^10]: ${ }^{12}$ In Appendix A.2, we repeat the analyses for all specifications removing one day and two days holding periods.

[^11]: ${ }^{13}$ Barber and Odean (2008) document that individual investors tend to buy attention-grabbing stocks, such as stocks with extreme one-day returns, which is also supported by Bali, Cakici, and Whitelaw (2011). Bali, Engle, and Tang (2016) show that stocks with high conditional betas are also attention grabbing and attract individual investors. In another related paper Kumar (2009) shows that individual investors prefer lottery-like stocks.

[^12]: ${ }^{14}$ For robustness, we repeat our analyses by further removing 1,019 forward splits that coincide with the distribution of cash-dividends within a $[-30,+30]$ days window around the split event. When we use the remaining 1,850 "pure" forward splits we obtain results that are qualitatively and quantitatively similar.

[^13]: ${ }^{15}$ Our approach follows that of the seminal paper titled "Mortality after the Hospitalization of a Spouse" by Christakis and Allison (2006).
 ${ }^{16}$ In the rare instances where there are multiple splits before a transaction is closed, the After-Split dummy will be one during the post-split window but will switch back to zero after each post-split event window.

[^14]: ${ }^{17}$ Since a small percentage of Finnish households have ever held short positions, we do not include this variable in the construction of our sophistication measure.

