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Abstract

We study how misperceptions of others’ tastes influence beliefs, demand, and prices in a market

with observational learning. Consumers infer the commonly-valued quality of a good based on

the quantity demanded and price paid by other consumers. When consumers exaggerate the de-

gree to which others’ tastes resemble their own, such “taste projection” leads to erroneous and

disparate quality perceptions across consumers (i.e., “quality is in the eye of the beholder”). In

particular, a consumer’s biased estimate of the good’s quality is negatively related to her own

taste. Moreover, consumers’ quality estimates are increasing in the observed price, even when

the price would have no influence on the beliefs of rational consumers. These biased beliefs

result in perceived valuations that exhibit too little dispersion relative to rational learning and a

demand function that is excessively price sensitive. We then analyze how a sophisticated mo-

nopolist optimally sets prices when facing short-lived taste-projecting consumers. Projection

leads to a declining price path: the seller uses an excessively high price early on to inflate future

buyers’ perceptions (e.g., creating “hype”), and then lowers the price to induce a larger-than-

rational share to buy. When consumers can instead time their purchase, projection causes late

buyers to under-appreciate selection effects, thereby exposing them to systematic disappoint-

ment. A final application examines how projection of risk preferences distorts portfolio choice

when learning from asset prices.

JEL Classification: D42; D82; D83; D91.

Keywords: Social Learning; Dynamic Pricing; Projection Bias; False-Consensus Effect.

*For helpful comments, we thank Benjamin Bushong, Rahul Deb, Erik Eyster, Simone Galperti, Alessandro Lizzeri,

Nima Haghpanah, Matthew Rabin, Larry Samuelson, Joshua Schwartzstein, Sevgi Yuksel and the audiences at the

Australasian Local Economic Theory Seminar (ALETS), the 2021 Australasian Economic Theory Workshop at the

University of Sydney, UTS, UCSB, Purdue, University of Queensland, Florida State, Boston College, Università degli
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1 Introduction

We often use the popularity of a product to assess its quality. We may naturally expect, for instance,

that a new electric car has better performance when more people buy it, that a new health trend

provides greater benefits when more of our friends adopt it, or that an investment has a higher ex-

pected return when our colleagues flock to it. Indeed, a large theoretical and empirical literature has

emphasized how observational learning shapes the adoption of new products, spanning consumer

goods, entertainment, insurance plans, agricultural technologies, and financial products.1

But how does social learning operate when people don’t fully appreciate how others’ preferences

differ from their own? In all the examples above, choices are not driven purely by perceptions of a

commonly-valued quality, but also depend on idiosyncratic tastes and motives. For instance, some

consumers driving electric vehicles might have a distinct desire to reduce their carbon footprints;

and some people investing in cryptocurrencies might be more risk tolerant than others. Yet, do

consumers and investors properly account for the fact that others’ choices reflect private informa-

tion as well as their tastes? Long-standing literatures in psychology on social projection and the

false-consensus effect, along with mounting evidence from economics, suggest the answer is no.

In particular, people often exaggerate the degree to which others’ tastes are similar to their own

(Ross et al., 1977; Marks and Miller, 1987; Krueger and Clement, 1994; Engelmann and Strobel,

2012; Orhun and Urminsky, 2013). For example, those with specific tastes for certain consumer

products tend to overestimate how many share these tastes. Such misperceptions also arise when

evaluating others’ risk preferences (Faro and Rottenstreich, 2006), political preferences (Delavande

and Manski, 2012), and taste for effort (Bushong and Gagnon-Bartsch, 2021). Moreover, a recent

meta-analysis (Bursztyn and Yang, 2021) demonstrates that misperceptions of others are widespread

in the field, underlining the importance of further understanding their market implications.

In this paper, we analyze how such “taste projection” distorts consumers’ beliefs, market de-

mand, and prices in a dynamic social-learning environment where consumers’ valuations for a

product have both a common and private component. The common component—the product’s

intrinsic quality—is initially unknown to (some) consumers, who try to infer it from the quantity

demanded by others at a given price. While each consumer knows the private component of their

valuation (i.e., their idiosyncratic taste for the product), they wrongly “project” this onto others:

they exaggerate how similar others’ tastes are to their own. We show that taste projection leads

consumers to systematically mislearn a product’s quality. We characterize how these biased beliefs

depend on an individual’s own taste and the observed price, and how they ultimately shape mar-

ket demand. Furthermore, we analyze the optimal pricing strategy of a sophisticated seller who is

aware of consumers’ projection. The seller will use a high-to-low price path to inflate consumers’

1For a review, see Mobius and Rosenblat (2014).
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beliefs, thereby inducing projectors to buy even when they should not. More broadly, we contribute

to a recent literature studying biased social learning among individuals who hold misperceptions of

others (e.g., Gagnon-Bartsch, 2016; Frick et al., 2020; Bohren and Hauser, 2021). While most of

this literature focuses on the convergence of long-run beliefs in settings resembling the canonical

models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), we instead

examine how taste projection in particular interacts with the market environment (e.g., prices) to

shape biased learning and how this, in turn, affects a seller’s incentives and consumer welfare.

Our implications are particularly relevant for markets where consumers with heterogeneous

tastes actively rely on others’ choices to guide their own—e.g., those with prominent best-seller

lists or a tendency to trend on social media. For instance, consider the health and wellness industry,

where new products—whose quality is ex-ante uncertain and difficult to ascertain—are routinely

introduced; e.g., novel workout equipment, “innovative” fitness classes, or “revolutionary” dietary

regimens. Consumers’ willingness to pay for such products and services is of course influenced

by (perceptions of) their potential health benefits. Yet, consumers might differ in their idiosyncratic

tastes for exercise or a particular diet. For a concrete example, consider Inês and Peter who are inde-

pendently contemplating whether to enroll in a fitness program touting some of these new products.

Inês has an active lifestyle and enjoys hiking. Peter, instead, is not very active, and his physician

has encouraged him to get in shape. While they have different tastes for fitness, both would be

more willing to join the program the stronger is their belief in its potential health benefit (i.e., its

“quality”); Peter, however, would need to perceive a larger benefit than Inês.

Suppose that Inês and Peter each see an article reporting the number of people who joined the

program in the past six months. Projection will lead them to draw different inferences about the

program’s potential benefits based on this number because, fixing the true benefit, Inês expects to

see a higher number than Peter. Inês, projecting her love of fitness onto others, will find the take-up

rate disappointingly low; conversely, the number of adopters will look very high to Peter. Hence,

they draw conflicting conclusions despite observing exactly the same signal—inferred quality is “in

the eye of the beholder.” In particular, Inês, who likes exercise, forms a more pessimistic inference.

Taste projection therefore induces consumers with a stronger idiosyncratic taste for a product to

inadvertently be more critical when judging its popularity. By contrast, Peter becomes too eager

to join the program, exaggerating its benefits and potentially over-consuming in various ways (e.g.,

enrolling in unnecessary classes or subscribing to an unproven diet plan).

Moreover, because Inês and Peter’s inferences are negatively related to their idiosyncratic taste,

their (perceived) total valuations for the program will be too similar. Although the difference be-

tween these valuations should be driven solely by the difference in their private values, Inês’s pes-

simistic inference deflates her total perceived valuation, whereas the opposite holds for Peter’s.

Hence, taste projection is self-fulfilling: because buyers believe that idiosyncratic tastes are less
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dispersed than they actually are, they will draw divergent inferences about the common value in a

way that results in total (perceived) valuations that are indeed less dispersed.

While the direction of Inês’s and Peter’s misperceptions will depend on their specific tastes, a

perhaps more subtle implication of taste projection is that they will each form inferences that are

increasing in the program’s price, irrespective of their taste. Indeed, because projectors underesti-

mate the heterogeneity in others’ valuations, they both believe market demand is more elastic than it

really is. Therefore, although they correctly predict the take-up rate to decrease with the program’s

price, they expect to see even fewer patrons than what a rational consumer would predict as the

price increases. To rationalize this higher-than-expected demand, they will conclude the quality is

higher when the price is higher. More broadly, projectors systematically overestimate the quality of

a product when they see others buying it at a price they themselves are not initially willing to pay:

they over-attribute these purchases to positive information rather than differences in tastes. Hence,

projection provides a simple yet novel explanation for why quality perceptions are often swayed by

prices.2

The properties of misinference described above create new incentives for a seller that would not

arise under rational learning. First, the fact that perceived quality is increasing in the observed price

introduces a “belief-manipulation effect”: in a dynamic setting, a monopolist will set high prices

early on to inflate future consumers’ beliefs about the value of its product. This holds even when

consumers think the seller does not have an informational advantage, and hence it is not driven

by classical signaling motives. Second, the fact that projectors’ perceived valuations are excessively

similar introduces an “elasticity effect”: the demand of projectors is more elastic than that of rational

agents, and thus a slight reduction in the current price has an enhanced effect on attracting new

consumers. Together, these effects imply that a monopolist’s optimal pricing strategy follows a

declining path. The seller uses high prices in earlier periods to inflate later consumers’ quality

perceptions (i.e., creating “hype”), and then reaps the benefits of such manipulation by lowering the

price to induce adoption among a larger-than-rational share of these consumers.3

We present our model in Section 2. In each period n, a new generation of consumers enters the

market and decides whether or not to adopt a product with an uncertain quality, ω ∈ R, at a price pn.

Each consumer i’s valuation for the product is increasing in both ω and their private value, or “taste,”

ti. Some consumers observe a signal s correlated with ω while others are uninformed and rely on so-

2A large literature, primarily in marketing, has documented a positive relationship between prices and perceived

quality; see Monroe (1973) and Rao and Monroe (1989) for early reviews of the literature and Völckner and Hofmann

(2007) for a more recent one. This perceived relationship emerges even in settings where the true relationship between

price and quality is weak or non-existent (see, e.g., Gerstner, 1985 and Broniarczyk and Alba, 1994) and is strengthened

in settings where, as in our model, people observe others’ purchase decisions (Yan and Sengupta, 2011).
3In this way, we provide a novel explanation for why advertising high previous prices can be particularly effective

at encouraging consumers to buy at a new lower price. This stands in contrast to other explanations based on salience

(e.g,. Bordalo et al., 2013, 2020) or intrinsic “tastes for bargains” (e.g., Jahedi, 2011; Armstrong and Chen, 2020), and

it arises even when prices do not rationally signal quality (as in, e.g., Bagwell and Riordan, 1991; Taylor, 1999).
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cial learning to estimate ω. In particular, we assume that individuals observe the quantity demanded

and price from the previous round. We focus on a setting with a continuum of consumers acting

in each period, which allows rational observers to perfectly infer their predecessors’ signal. This

provides a simple environment to study the effects of taste projection, since any learning failures

arise from projection itself rather than rational frictions to information aggregation.

Our model of taste projection adapts Gagnon-Bartsch et al.’s (2021a) more general model to our

setting. Individuals hold misspecified models about the distribution of tastes: private values are in

fact independently drawn from a distribution F , yet an individual with private value ti mistakes F

for a distribution F̂ (·|ti) that is overly concentrated around his own value, ti. Specifically, individual

i perceives the private value of individual j as t̂j = αti + (1− α) tj; that is, a convex combination

of his own value and individual j’s true value.4 The parameter α measures the extent of this bias,

where α = 0 corresponds to the rational benchmark. We close the model with a solution concept

in which individuals are naive about their own bias and that of others, but are otherwise rational.

Hence, each individual i believes he faces an environment in which all players agree that private

values are distributed according to F̂ (·|ti).

Before analyzing the dynamic model, we begin in Section 3 by studying a static model. The

purpose is twofold. First, it allows us to simply demonstrate comparative statics that are fundamental

to understanding how biased beliefs evolve in the dynamic case. Furthermore, since the static model

can be seen as the steady-state of our dynamic model, this analysis establishes that these comparative

statics are not merely short-run effects, but are also robust steady-state phenomena. The steady-state

analysis reflects the logic of a rational-expectations equilibrium (Grossman, 1976; Grossman and

Stiglitz, 1980), albeit with agents forming diverse and misspecified expectations. In equilibrium,

uninformed agents form beliefs about ω that are consistent with the observed quantity demanded

(given their misspecified models), and this observed demand is in turn consistent with the adoption

decisions of agents holding those beliefs.

As previewed by our example, taste projection has three main effects in this static equilibrium.

First, an agent’s perceived quality is negatively related to his taste. To those with high private

values—who wrongly believe the good is very attractive to others—demand will appear rather weak.

They therefore infer low quality. To those with low private values—who wrongly believe the good

is unattractive to others—demand will appear surprisingly strong. They infer high quality. Second,

each agent’s perceived quality is increasing in the price. The fact that projectors underestimate the

heterogeneity in valuations leads to a simple implication central to studying the economics of taste

projection: a projecting agent’s conjectured demand curve is a counter-clockwise rotation of the

true one. As a result, projectors exaggerate the local elasticity in demand. If the price were to

increase, then the quantity demanded would fall by less than what a projector would predict under

4This approach is an interpersonal analogue of Loewenstein, O’Donoghue and Rabin’s (2003) model of in-

trapersonal projection bias in which an individual exaggerates the similarity between his future and current tastes.
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the beliefs he formed at the original price. Hence, projectors’ beliefs about quality must increase

to compensate for this less-than-predicted drop in quantity demanded. Third, projecting agents’

perceived total valuations are less dispersed than under rational learning. Although a buyer with a

high private value (i.e., a “high type”) perceives a greater benefit from adoption than a low type, the

wedge between these perceptions is diminished relative to the rational benchmark.

How would a profit-maximizing monopolist set prices over time to exploit these biases? We turn

to this question in Section 4, where we analyze our dynamic model. As an initial result building

from the intuition above, we show that consumers’ demand overreacts to a price change: a price cut

attracts too many consumers since it moves the margin into the region of types who overestimate

quality, whereas a price hike excludes too many for the opposite reason.

More generally, projection induces an intertemporal link in the seller’s pricing incentives that

is absent under rational inference. In our simple environment, the optimal strategy under rational

learning is to continually charge the static monopoly price. With projection, however, the seller

prefers a decreasing price path. This results from a balancing of the effects described above in the

static model, which analogously emerge in the dynamic case. On the one hand, since demand over-

reacts to price changes, undercutting the previous price would attract a magnified mass of consumers

in the current period. On the other hand, increasing the current price boosts the perceived quality

of future consumers at the cost of forgoing current sales. The seller’s pricing strategy optimally

balances these effects by setting an inflated initial price above the static monopoly price and then

gradually reducing it. High initial prices inflate future consumers beliefs, while also providing scope

to reduce prices over time and hence capitalize on consumers’ overreaction to price cuts.5

Our analysis of optimal pricing first considers the two-period case. There, we show that a high

initial price followed by a low subsequent price is a general feature of our model. We also show

that the seller’s profit is increasing in the degree of projection and discuss how projection affects

consumer welfare. Although the expansion of sales in the second period can shrink the traditional

deadweight loss associated with monopoly pricing, projection can introduce new forms of ineffi-

ciency. Since low types tend to overestimate quality, they are systematically lured into buying even

when they should not. Indeed, the seller’s manipulative pricing scheme induces excessive take-up

among uninformed buyers, consistent with notions of herding or bandwagon effects. Moreover,

when projection is sufficiently strong, even consumers with negative valuations can be induced to

buy the good. We then consider longer horizons, focusing on the particularly tractable case of uni-

formly distributed tastes. There, we show that a declining price path—with an initial price above

5This manipulating role of high initial prices is reminiscent of other signaling strategies discussed in the marketing

literature. For instance, Stock and Balachander (2005) show that a monopolist might choose to make a product scarce in

order to signal its quality to uninformed consumers; similarly, Miklós-Thal and Zhang (2013) argue that in the early life

of a product, “demarketing” strategies that discourage consumers (e.g., limited advertising, understocking inventory)

can raise the product’s perceived quality. Compared to this literature, we emphasize a different mechanism through

which restraining initial sales via high prices can inflate later consumers’ quality perceptions.
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the rational monopoly price—emerges for a horizon of any arbitrary length.

Section 5 considers three extensions of our model. First, we consider a two-period setting with

“long-lived” consumers who can buy in either period, and show that projectors still over-adopt the

good even when the price is fixed. A selection effect naturally emerges, where high types buy early

and uninformed low types delay in order to glean information from initial adopters. Projectors who

delay under-appreciate this selection effect, since they underestimate the taste difference between

early adopters and themselves. Thus, they overestimate quality when observing high initial demand,

which causes too many to buy and generates systematic disappointment among those who do. Em-

pirical studies showing that second-wave consumers tend to display greater dissatisfaction suggest

that this may stem from selection neglect (e.g., Li and Hitt, 2008; Dai et al., 2018); our model

provides a specific mechanism explaining why consumers may under-appreciate these selection ef-

fects. Second, we revisit the static equilibrium from Section 3 but allow for multi-unit demand.

Since perceived quality is negatively related to taste, projectors with a strong taste for the product

will under-consume while those with a weak taste will over-consume. Thus, all projectors experi-

ence inefficiencies, and those with more esoteric tastes suffer more. Finally, we show how these

results extend to a setting where agents only observe the price and not others’ actions. We consider

a canonical portfolio-choice problem where traders learn about the expected return of a risky asset

based on its equilibrium price (e.g., Grossman, 1976; Grossman and Stiglitz, 1980) but project their

idiosyncratic taste for risk. Traders who are more risk averse become overly optimistic about the

expected return and hold too much of the asset (relative to the optimal portfolio), while traders who

are less risk averse become overly pessimistic and hold too little.6

Section 6 concludes by discussing some additional applications of our framework. We sus-

pect that taste projection may have important consequences for how people value their information

sources. For instance, suppose that individuals entertain the possibility that others are biased in fa-

vor of a particular option (e.g., a brand or politician), supporting it regardless of their information.

Even when such blind support is absent in reality, projectors are prone to think it exists. For exam-

ple, a projector who realizes that she despises an option will see far too many people supporting it.

To explain this discrepancy, she may come to believe that others’ support stems from some ulterior

motive, neglecting that it may come from mere differences in taste. Such skepticism of others’ mo-

tives may lead people to discredit others’ actions, which may shed light on why some factions are

unmoved by others’ actions even when they reveal valuable information.

Related Literature

We contribute to a recent literature that explores how specific behavioral biases, along with more

general forms of model misspecification, interfere with social learning. Much of this literature

6Bastianello and Fontanier (2021) examine other forms of model misspecification in this context.
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examines the convergence of long-run beliefs in environments similar to the sequential “herding”

models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), identifying

when long-run beliefs may converge on a false state of the world or fail to converge at all. For

instance, Eyster and Rabin (2010), Bohren (2016), and Gagnon-Bartsch and Rabin (2021) examine

how neglecting the redundancy of information in others’ actions can lead society to grow convinced

of a false state. Bohren and Hauser (2021) and Frick et al. (2021) provide frameworks for study-

ing the convergence of beliefs under a wide range of misspecified models. Closer to the specific

error we study, Frick et al. (2020) shows that when agents share a common misperception of the

type distribution, even small amounts of misspecification can cause incorrect learning almost surely.

Gagnon-Bartsch (2016) considers a simple variant of taste projection with two types who hold con-

flicting misperceptions, showing how it can cause different types to grow confident in distinct states

or generate beliefs that perpetually cycle. In contrast, instead of asking whether or not information

aggregates in the long-run, we study the comparative statics of projectors’ erroneous beliefs in cases

where they necessarily mislearn. Moreover, unlike the papers above, we focus on market outcomes

in a context where prices explicitly influence agents’ beliefs, and we examine how a sophisticated

seller would optimally use prices to strategically distort those beliefs.

In this way, we similarly contribute to an IO literature on pricing in the presence of observational

learning, as this literature has largely concentrated on rational inference.7 This literature primarily

considers settings with frictions to information aggregation, analyzing how the seller’s optimal be-

havior either alleviates or intensifies these frictions. For instance, Bose et al. (2006, 2008) consider

a pure common-value environment with a long-lived monopolist who, in each period, sells to an

uninformed, short-lived buyer. Buyers learn about the common value based on the history of prices

and their predecessors’ purchase decisions. Information aggregates slowly because there is a single

buyer in each period with a discrete signal, and the monopolist maximizes profits by setting prices

that reveal as much information as possible.8 Using a similar setting, Parakhonyak and Vikander

(2021) show that a monopolist may want to strategically create product scarcity in order to trigger a

“buying herd.” More similar to our setup, Caminal and Vives (1996, 1999) consider a model with a

continuum of short-lived consumers who are privately but imperfectly informed about the quality of

two competing products. Consumers in a later generation don’t observe past prices, but try to infer

a product’s quality from its market share in the previous period; the presence of “noisy” traders

prevents learning from happening immediately in their model. Differently from us, because con-

sumers cannot see the previous price, sellers set low introductory prices to boost sales in an attempt

to convince buyers that their quality is high.9

7There is a similar finance literature on sequential trading and social learning; see Welch (1992), Chemmanur

(1993), Avery and Zemsky (1998), and Goldstein and Guembel (2008).
8Bhalla (2013) shows that Bose et al.’s (2008) qualitative results extend to cases with multiple buyers per period.
9More recently, articles incorporating observational learning with consumer search have also emerged; see Kircher
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The literature described above mainly focuses on cases where the seller does not have an infor-

mational advantage over buyers, and we follow in this tradition. However, another related strand of

the IO literature examines how a privately informed seller can signal the quality of its good through

prices and other means. While we do not analyze such signaling, some of our predictions resemble

those from this literature.10 For instance, Bagwell and Riordan (1991) analyze a monopolistic mar-

ket with a mix of informed and uninformed consumers (like us), and show that high and declining

prices can signal higher quality to uninformed consumers when the high-quality seller has a suffi-

ciently high cost. In contrast, our mechanism generates quality perceptions that are increasing in

price even when a seller’s quality is not tightly linked to their costs. Furthermore, since consumers

in their model are rational, the seller’s price beyond the first period is never lower than the static

monopoly price, whereas in our model it can be.11 Taylor (1999) considers a two-period model with

private and common values where a seller is privately informed about the quality of its house, and

short-lived consumers try to learn this quality from its time on the market. The seller’s optimal price

path is declining due to an incentive to signal jam: a higher first-period price sends a less nega-

tive signal when the house is not sold. At a broader level, relative to both strands above, we differ

by considering a setting that neutralizes the informational frictions that impede rational learning

(e.g., incomplete learning, search costs, or classical signaling motives) in order to isolate how taste

projection itself interferes with learning.

Our modeling approach is related to others in which players misperceive the link between others’

types and behavior (e.g., Eyster and Rabin 2005; Esponda 2008; Jehiel and Koessler 2008; Madarász

2021). In particular, Madarász (2012) formalizes “information projection” in which players exag-

gerate the extent to which their private information is known by others. Our paper differs from

Madarász (2012, 2021) both because we focus on (i) projection of preferences rather than informa-

tion and (ii) an environment with observational learning. There is also a small but growing theoreti-

cal literature studying the implications of taste projection and the false-consensus effect in domains

different from ours.12 For instance, Goeree and Grosser (2007) examine how a false-consensus

effect can lead to inefficient election outcomes. Frick et al. (2019) show how the false-consensus ef-

fect may arise when agents neglect the assortative nature of matching when interacting with others.

Gagnon-Bartsch et al. (2021a) study how projection of private values can lead to overbidding and

inefficient allocations in auctions.

and Postlewaite (2008), Hendricks et al. (2012), Mueller-Frank and Pai (2016), and Garcia and Shelegia (2018).
10Although placed in the first strand, Caminal and Vives (1996) consider an extension with signaling.
11The optimal price path with signaling can also be increasing if consumers learn about quality or their idiosyncratic

tastes from repeat purchases, as in Milgrom and Roberts (1986) and Judd and Riordan (1994). In such cases, the seller

may use introductory offers to induce learning and repeat purchases. We focus on a setting without repeat purchases.
12Although we focus on the projection of preferences, the term “false-consensus effect” is also used to describe

situations where people exaggerate the prevalence of their beliefs or actions. For other models capturing these alternative

forms of projection, see Williams (2013), Rubinstein and Salant (2016), Jimenez-Gomez (2019), and Wang (2020).
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2 Model

In this section, we introduce the basic features of the environment we study and present our model

of taste projection. Subsequent sections examine projection in various contexts (e.g., static versus

dynamic settings). We will describe the specific features of those settings in each section, and we

introduce their common core here.

2.1 Environment

Preferences. Agents attempt to learn the commonly-valued quality of a good, denoted by ω ∈ R,

based on others’ purchase decisions. Each individual i’s total valuation for the good derives from

both the common value, ω, and a private value (or “taste”), denoted by ti ∈ T ≡ [t, t] ⊆ R. For

simplicity, we assume individual i’s total valuation for the good is u(ω, ti) = ω + ti; we discuss at

various points how our results extend to more general utility functions. Adopting the good at price

p yields a payoff of u(ω, t) − p, while rejecting it yields a payoff normalized to zero. We allow T

to include values such that some types may have a negative valuation for the good; this lets us show

how projection may lead to inefficient adoption.

Private values are i.i.d. across individuals with a CDF F : T → [0, 1]. We assume that F

admits a smooth, positive density f ≡ F ′ and an increasing hazard rate. In our formulation of

taste projection detailed below, we assume each agent has a misspecified model of F , treating it as

excessively concentrated around his own taste relative to the true distribution.

Actions and Timing. A sequence of consumers decide whether to buy the good. In each period

n ∈ {1, ..., N}, a unit mass of new agents with tastes independently drawn from F enters the

market. They simultaneous choose once-and-for-all whether to buy at price pn ≥ 0 and then exit.

These choices maximize each agent’s expected utility given their subjective beliefs over ω. Let dn

denote the resulting quantity demanded in period n.

Information Structure. Agents begin with a non-degenerate common prior over ω and also have

private information about ω. We primarily focus on a simple signal structure: there is a single signal

in the economy and, in each period, a fraction of agents observe its realization, s ∈ R. Let ω̄(s) ≡

E[ω|s] denote the Bayesian posterior expectation of ω conditional on s and the common prior. We

assume the signal has a continuous CDF G(·|ω) that obeys the (strict) Monotone Likelihood Ratio

Property in ω so that ω̄(s) is strictly increasing in s. Informed agents will thus take actions based on

ω̄(s) and uninformed agents try to infer ω̄(s) from these actions.

We also assume that ω̄(s) has full support on R. This simplifies the analysis by guaranteeing

that projectors will draw a coherent Bayesian inference from any possible market outcome (i.e.,

they will never observe outcomes that their model deems impossible). This signal structure is con-

sistent, for instance, with the familiar Gaussian structure where the signal and prior are both nor-
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mally distributed. While it is useful to keep that example in mind, our results hold more generally.

Additionally, we assume the signal structure is common knowledge.13

This “single-signal” structure is sufficient to study several features of misinference due to taste

projection, and we therefore focus on it unless explicitly noted otherwise. For the sake of robust-

ness, Appendix A shows that the main effects of projection on beliefs continue to emerge in two

richer structures: (i) “fully heterogeneous signals,” where each agent observes a distinct indepen-

dent signal; (ii) “heterogeneous signals across periods,” where all agents acting within each period

n observe a common signal, Sn
iid
∼G(·|ω), that is unobserved by agents acting in other periods.

Social Learning. We assume that each Generation n ≥ 2 observes the price and quantity pair

from the previous generation, (pn−1, dn−1). They use this data to infer their predecessors’ beliefs

over ω. Since we assume ω̄(s) has full support on R, any observed pair (p, d) is uniquely rationalized

by a feasible value of ω̄(s) whenever d ∈ (0, 1), although the value that rationalizes the data will

differ across projectors with differing misspecified models. Moreover, as we describe in our specific

applications, the fact that a continuum of consumers act in each period implies that the behavior

of a preceding generation perfectly reveals ω̄(s) in the rational equilibrium (via the law of large

numbers).14 Correct social learning is therefore immediate in the rational benchmark of our setup.

Taste projecting agents will nevertheless mislearn: since they have misspecified models, they will

extract biased signal estimates.

Prices. Throughout our analyses, we consider two cases regarding the origin of prices. First, we

sometimes consider exogenously determined prices (e.g., a price-taking seller) and describe beliefs

as a function of those fixed prices. Second, we consider a profit-maximizing monopolist who sets a

price pn at the start of each period n. In the latter case, we assume the seller has a constant marginal

cost normalized to zero and, importantly, is aware of consumers’ projection bias, setting prices to

exploit it. Additionally, the seller observes s prior to period 1 but does not have any private infor-

mation about ω beyond that of the informed buyers. Since the settings we consider always allow

rational uninformed agents to extract s from their predecessors’ actions, this assumption guarantees

that the seller and rational agents effectively have symmetric information.15 In this way, we neutral-

13We assume individuals have correct perceptions of the signal structure in order to isolate the effects of taste pro-

jection from other biases. In particular, individuals project tastes but not information. Taste projection will, however,

distort an individual’s perception of others’ information.
14This environment is somewhat similar to models of sequential observational learning with common preferences in

which a single agent acts in each period and takes a continuous action (e.g., Lee, 1993; Eyster and Rabin, 2010). In

the rational equilibrium of these models, an agent can perfectly deduce a predecessors’ beliefs based on their action. In

our setup, an individual agent’s action does not reveal their information in the rational equilibrium, but the aggregate

behavior of agents acting in a single period does reveal their collective information.
15As we discuss further below, uninformed agents who do not directly observe s think they can perfectly extract s

form the market outcome they observe, regardless of the seller’s chosen price. Thus, although the seller and some buyers

might have asymmetric information ex ante, buyers expect symmetric information at the interim stage. This expectation

is correct for rational buyers. And projecting buyers who misinfer s still think (albeit wrongly) that they share common

information with the seller at the interim stage.
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ize classical motives for the seller to use prices as signals about ω, which allows us to isolate pricing

dynamics that arise entirely due to taste projection.

As such, our focus is on agents drawing inference from demand rather than prices per se. Agents

in period n ask themselves what signal s best predicts a quantity demanded equal to dn−1 when the

price is pn−1, but do not attempt to draw any inference about s based on the seller’s particular choice

of price. While this assumption is admittedly strong, it helps simplify and focus our analysis.16 Yet,

this assumption does not imply that consumers completely ignore prices when drawing inference.

Indeed, the price is essential for interpreting aggregate demand—conditional on s, observers reason-

ably expect fewer sales when pn−1 is higher. Put differently, agents in our model infer from others’

reaction to prices, rather than the chosen price itself. Additionally, the environment we consider is

conducive to this assumption since agents believe that dn−1 alone is sufficient to reveal s once they

know pn−1, regardless of why pn−1 was chosen.17 And perhaps most importantly, we suspect that

the basic effects of projection on beliefs that we analyze would continue to hold if projectors drew

inferences exclusively based on the realized price; Section 5.3 and Appendix B verify this for some

specific cases.

2.2 Taste Projection

Gagnon-Bartsch et al. (2021a) provide a general model of taste projection that is applicable to a wide

range of Bayesian games. Here, we present that model and extend it to our particular inferential

context. Broadly, the model assumes that each agent’s own idiosyncratic taste t has undue influence

on their perceived distribution of others’ tastes: they misperceive F to be F̂ (·|t), which—relative to

the true distribution—overweights the likelihood of values near t. Agents are also naive about this

bias: each agent neglects that they (and others) misperceive the distribution.

First, we briefly review the motivating evidence (for further discussion, see Gagnon-Bartsch

et al., 2021a). Several strands of research suggest that people systematically mispredict others’

preferences. A large literature in psychology studies “social projection” and the “false-consensus

effect”: the tendency for people to perceive their own tastes and attitudes as more common than they

really are. The seminal study by Ross et al. (1977)—along with numerous studies that followed—

find a positive correlation between subjects’ own stated preferences and their estimates of others’

16We are not unique in this approach. As noted in our discussion of the related literature, most existing papers on

pricing in markets with observational learning either abstract from cases in which the seller uses prices to signal private

information or impose other simplifying assumptions.
17As emphasized by Gagnon-Bartsch et al. (2021b), subjectively rational inattention (with respect to an agent’s

misspecified model) may lead an agent to “channel his attention” toward seemingly sufficient data to update his beliefs,

while forgoing careful attention to other aspects of the data (e.g., pricing strategy). Indeed, when the seller’s cost is

subject to noise that is unobserved by buyers—and hence the seller’s strategy cannot perfectly reveal her information—

then our results are “attentionally stable” in the sense of Gagnon-Bartsch et al. (2021b): under their solution concept,

an agent in our model will not confront data that deems his misspecified model as false relative to the true model.
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preferences across many domains (e.g., art, sports, wine, consumer products, politics, risk).18 While

this correlation may be rational when there is uncertainty about others’ preferences (Dawes, 1989,

1990; Prelec, 2004), later studies suggest that these perceptions reflect a systematic bias, whereby

subjects weight their own preference too heavily relative to information about others’ preferences

when making predictions about others (e.g., Krueger and Clement, 1994). In incentivized ex-

periments, Engelmann and Strobel (2012) and Ambuehl et al. (2021) similarly find that a false-

consensus bias remains if subjects must exert minimal effort to view information about others’

choices. Preference misperceptions therefore appear robust even in settings with ample opportunity

to observe others, where rational explanations due to limited information are tenuous.19

There is also evidence that people project their transient preference states onto others.20 For

instance, Van Boven and Loewenstein (2003) find that subjects asked to predict whether others

would prefer food or water made predictions that were strongly biased in the direction of their own

exercise-induced thirst. Bushong and Gagnon-Bartsch (2021) show that workers in a real-effort

experiment project their sense of fatigue onto others when predicting others’ willingness to work.

Additionally, Van Boven et al. (2000) and Van Boven et al. (2003) show that sellers who experience

an endowment effect project their high valuation of a good onto the valuations of potential buyers,

causing sellers to set inefficiently high prices. Our model captures a similar intuition, yet we focus

on buyers projecting their own valuations onto other buyers when learning from their actions.

Our model of taste projection channels Loewenstein et al.’s (2003) model of intrapersonal pro-

jection bias by assuming that each agent i perceives the private value of any other agent j’s as closer

to his own than it really is. For simplicity, we take a convex-combination approach: i believes j’s

private value is t̂j(ti) ≡ αti + (1− α)tj for some α ∈ [0, 1). The parameter α captures the “degree

of projection”: α = 0 is the rational benchmark, while α → 1 represents the extreme case where an

agent believes that others share his exact taste. For tractability, we assume the degree of projection

is identical across agents.

Perceptions of the Taste Distribution. The convex-combination specification above implies that

18Marks and Miller (1987) document the false-consensus effect in 45 studies published in the decade following Ross

et al. (1977), and Mullen et al. (1985) find robust evidence of the effect in a large meta-study. More recently, Bursztyn

and Yang (2021) find that correlations consistent with the false-consensus effect are widespread in a meta-analysis of

economics field studies. Evidence on the false-consensus effect also spans a broad range of domains, including political

preferences (e.g., Brown, 1982), preferences over income redistribution (e.g., Cruces et al., 2013), and risk preferences

(e.g., Faro and Rottenstreich, 2006).
19Delavande and Manski (2012) show that survey respondents demonstrate a false-consensus bias with respect to

preferences over political candidates in both the 2008 U.S. presidential election and 2010 U.S. congressional election.

Moreover, respondents continue to exaggerate the similarity between their own and others’ preferences even after the

release of poll results, further indicating that rigidity of (mis)perceptions despite abundant contrary information.
20This represents an interpersonal analogue of intrapersonal projection bias, whereby people exaggerate the degree

to which their future tastes will resemble their current tastes (Loewenstein et al., 2003). Several recent studies within

economics document such a bias (see, e.g., Conlin et al., 2007; Simonsohn, 2010; Acland and Levy, 2015; Busse et al.,

2015; Chang et al., 2018; Augenblick and Rabin, 2019).
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agent i’s perception of others’ private values is described by the random variable

T̂ (ti) ≡ αti + (1− α)T, (1)

where T ∼ F is the true random variable describing private values. Hence, each agent i perceives a

distribution of tastes that, relative to reality, is overly concentrated around his own taste, ti.
21

This formulation of projection pins down the perceived distributions held by projecting agents,

{F̂ (·|t)}t∈T , in terms of the true distribution, F , and the projection parameter, α. Each agent per-

ceives a distribution with the same shape as F , but with the probability mass compressed around

his own value. The support of this distribution is also compressed when T is bounded: Equation

(1) implies that an agent with type t has a perceived support of T̂ (t) ≡ [t(t), t(t)] ⊂ T , where

t(t) ≡ αt+ (1− α)t and t(t) ≡ αt+ (1− α)t.22 Moreover, this type’s perceived CDF is

F̂ (x|t) = Pr
(
T̂ (t) ≤ x

)
=





0 if x < t(t)

F
(
x−αt
1−α

)
if x ∈ [t(t), t(t)]

1 if x > t(t).

(2)

These perceived distributions inherit our assumptions on F : each F̂ (·|t) admits a smooth, positive

density and an increasing hazard rate.23 Going forward, let Ê[·|t] denote expectations with respect

to type t’s model, F̂ (·|t), and let E[·] denote expectations with respect to the true distribution, F .

As described in Gagnon-Bartsch et al. (2021a), the family of perceived distributions exhibits

several intuitive properties which will be useful for our analysis.

Observation 1. Consider a projecting agent with an arbitrary private value t ∈ T .

1. Self-Centered Mean: The agent believes the mean private value is Ê[T |t] = αt+(1−α)E[T ].

2. Underestimated Variance: The agent believes the variance in private values is (1−α)2Var[T ].

21Gagnon-Bartsch et al. (2021a) discusses how this approach naturally extends to cases where players are not

symmetric—and thus values are not identically distributed—and to cases where values are correlated. Since we fo-

cus on settings with i.i.d. types, we forgo these elaborations.
22Our results do not hinge on misperceptions of the support per se. All of our qualitative results would hold with

perceived distributions that are approximately the same as Equation (1), yet slightly modified to have support T . For

instance, an agent with private value t could believe that others’ private values are drawn from T̂ (ti) with probability

1 − ε, and from T̃ ∼ U(t, t) with probability ε. For ε sufficiently small, this distribution has the same support as the

true one, yet leads to the same qualitative conclusions delivered by our simpler approach.
23We similarly denote type t’s perceived density of valuations by f̂(·|t), which is obtained by differentiating (2):

f̂(x|t) =

(
1

1− α

)
f

(
x− αt

1− α

)
for x ∈ T̂ (t).
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3. Ordered Misperceptions: The agent’s perceived distribution first-order stochastically domi-

nates (FOSD) that of any projecting agent with private value t′ < t.

4. Rotation Property: The agent’s perceived distribution is a counterclockwise rotation of the

true distribution: F̂ (x|t) < F (x) if x < t; F̂ (x|t) > F (x) if x > t; and F̂ (t|t) = F (t).

To give an example, suppose that in reality T ∼ U(t, t). Our model implies that an agent

with private value t still thinks T is uniform, but compressed around t; namely, T̂ (t) ∼ U(αt +

(1 − α)t, αti + (1 − α)t). For a visual example, Figure 1 considers normally-distributed values

and shows the perceived CDFs and PDFs of two agents with different tastes. The perceived CDF

of the high-value agent first-order stochastically dominates that of the low-value agent, and both

perceived distributions are less dispersed than the true one. Furthermore, the perceived distributions

are counter-clockwise rotations of F , and the degree of this rotation will increase with α.

(a) Perceived CDFs for various t’s (b) Perceived PDFs for various t’s

Figure 1: Perceived CDFs and PDFs of agent’s with private values tL and tH > tL.

Higher-Order Beliefs. We assume each projector is naive about his bias: he neglects that he

and others mispredict the distribution of tastes and therefore fails to appreciate that others form dis-

crepant perceptions of this distribution. An agent with private value t thus believes that (i) all others

think that private values are distributed according to F̂ (·|t), and (ii) this mutual perception is com-

mon knowledge. In essence, people imagine they are playing a game with common knowledge of

the environment when in fact perceptions are heterogeneous across players. Our naivete assumption

is motivated by the idea that people who are ignorant about their own projection bias are likely not

carefully attending to others’ projection bias.24 Naivete differentiates our model from rational mod-

24Although studies on the false-consensus effect rarely elicit second-order beliefs, the few that do, e.g. Egan et al.

(2014), find that people greatly overestimate how many share their second-order beliefs, which suggests naivete. Of

course, our assumption of complete naivete is likely an oversimplification; in the domain of information projection,

Danz et al. (2018) find evidence of partial naivete.
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els in which an agent’s own taste influences his beliefs about others’ tastes; e.g., correlated private

values or uncertainty about F . However, as detailed in Gagnon-Bartsch et al. (2021a), our frame-

work naturally extends to these settings as well: in such cases, a projector is aware of heterogeneous

priors, but does not fully appreciate the dispersion in those priors.

Solution Concept. Aside from misperceptions about F (and about others’ misperceptions of

F ), we assume projecting agents are otherwise rational and believe their opponents are rational.

Each player maximizes his expected payoff according to his distorted beliefs and the presumption

that others share his misspecified model. Therefore, each Player i plays a BNE strategy of the

“perceived game” in which F̂ (·|ti) is indeed the commonly-known taste distribution. We call the

resulting profile of strategies a Naive Bayesian Equilibrium (NBE).

Our application of this concept slightly modifies the definition in Gagnon-Bartsch et al. (2021a)

due to differences in the environment. We first present the formalism from Gagnon-Bartsch et al.

(2021a) applied to a symmetric game to elucidate how we adapt it. Suppose the true symmetric

game under consideration is Γ with an action space A ⊆ R. Let Γ(F̂ ) denote that same game when

the type distribution is F̂ instead of F ; all other elements of Γ
(
F̂
)

are identical to Γ. A player with

type t thinks the game is Γ
(
F̂ (·|t)

)
and presumes that players will follow a BNE of Γ

(
F̂ (·|t)

)
. Let

σ̃(·|t) denote a symmetric pure strategy profile within the perceived game Γ(F̂ (·|t)).

Definition 1. A symmetric strategy profile σ̂ : T → A is a symmetric Naive Bayesian Equilibrium

(NBE) of Γ if, for all t ∈ T , there exists a symmetric strategy profile σ̃(·|t) : T̂ (t) → A that is a

BNE of Γ
(
F̂ (·|t)

)
and σ̂(t) = σ̃(t|t).

To provide some intuition, each player with taste t introspects about others’ behavior within his

perceived game, and this process leads him to a conjectured BNE strategy profile, σ̃(·|t), of that

game.25 He then follows the strategy prescribed by this conjectured equilibrium; i.e., he takes action

σ̃(t|t). A NBE is the strategy profile that emerges when each player engages in this reasoning.

In our setting, new agents enter each period and decide whether to buy after observing their

predecessors’ choices. Importantly, an agent’s action has no direct effect on the payoff of any other

agent, aside from the information it reveals. As such, a full equilibrium concept is not needed to

close our model—a concept describing how individuals best respond to inferences from others’

behavior is sufficient. We assume that players form these inferences according to a NBE. Each ob-

server with taste t thinks the sequence of generations is playing a BNE in which F̂ (·|t) is common

knowledge. Thus, any player i in Generation n ≥ 2 thinks that each player in any previous Gen-

eration k < n took the action that maximized her expected utility, where that expectation was with

respect to i’s erroneous model (due to naivete). Player i consequently thinks that the behavior he

25Because F̂ (·|t) inherits our assumptions on F , existence of such a BNE in the perceived game Γ(F̂ (·|t)) follows

from the existence of a BNE in the original game Γ.
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observes, dn−1, represents the aggregate behavior of a generation with tastes distributed according

to F̂ (·|ti) who best respond to the beliefs they formed under i’s model given their information.

Note that a BNE strategy in this setting is just a map σ from (t, ω̂, p) to a binary purchase

decision, where ω̂ is the agent’s expectation of ω and p is the price. A projecting player correctly

understands another player’s strategy conditional on (t, ω̂, p). However, the aggregate behavior

that the projecting player observes depends on the distribution of t and ω̂ in the market. He thus

misinterprets aggregate behavior due to two mistakes about these distributions: (i) he misperceives

the distribution of types, t, acting in the market; and (ii) he mispredicts others’ quality expectations,

ω̂, since he neglects that those with different types employ inferential strategies different from his.

3 Static Case

We begin by showing how taste projection distorts beliefs in a static model, which can be interpreted

as the steady-state equilibrium of the dynamic model we consider in the next section. This analysis

allows us to establish a few key implications of mislearning due to taste projection before moving to

the more complex dynamic setting; it also demonstrates that the comparative statics that arise in the

dynamic context robustly emerge in the steady-state as well. Namely, an agent’s perceived quality

is (i) decreasing in his private taste, and (ii) increasing in the price. As a further implication, the

perceived total valuations of agents in equilibrium are excessively similar to one another, leading to

a market demand that would overreact to price changes.

The setup mirrors the environment from Section 2.1. A continuum of potential buyers with unit

mass face a fixed price p. Each agent’s total valuation for the good is u(ω, t) = ω + t (although our

results here apply more generally).26 A fraction λ of the agents privately observe the realization of

S ∼ G(·|ω) and the remaining fraction 1− λ do not. The “uninformed agents”—those who do not

observe the signal—attempt to extract this information from the equilibrium level of demand.

3.1 Steady-State Equilibrium and Comparative Statics on Perceptions

The steady-state equilibrium follows a logic similar to a rational-expectations equilibrium (e.g.,

Grossman, 1976; Grossman and Stiglitz, 1980), except agents wrongly use their misspecified models

to extract signals. More specifically, suppose the fraction of agents who buy is d ∈ [0, 1]. Each

uninformed agent follows an inference rule that maps d into an expectation over ω, and then buys the

good if their expected valuation given this expectation exceeds p. In equilibrium, agents’ inferences

about ω must be consistent with the observed quantity demanded, and this quantity must in turn be

consistent with agents’ inferences.

26Our proofs of Propositions 1 and 2 in Appendix C establish these results for more general utility functions.
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We now derive the equilibrium more concretely. Informed agents base their buying decisions

entirely on s, as they know there is nothing more to learn. Thus, an informed agent with taste t buys

if ω̄(s) + t ≥ p, and the demand among informed agents is DI(p; ω̄(s)) ≡ Pr [ω̄(s) + T ≥ p] =

1 − F (p− ω̄(s)). Reflecting our interest in states where consumers should rationally take hetero-

geneous actions, we say that the pair (p, s) admits interior demand when DI(p; ω̄(s)) ∈ (0, 1).

Uninformed agents infer ω̄(s) from the aggregate quantity demanded, d. To build intuition,

we first describe agents’ inferences in the rational benchmark. Let ω̂(d) denote the inferred value of

ω̄(s) upon observing d. Demand among the uninformed is thus Pr[ω̂(d)+T ≥ p] = 1−F (p−ω̂(d)),

and the total demand is

d = λ ·
(
1− F

(
p− ω̄(s)

))
︸ ︷︷ ︸
Demand among the informed

+(1− λ) ·
(
1− F

(
p− ω̂(d)

))
︸ ︷︷ ︸

Demand among the uninformed

. (3)

We require that ω̂(d) is Bayes-rational given an agent’s model. Hence, in the rational benchmark—

where players share common knowledge of F—the unique symmetric inference rule is ω̂(d) =

p−F−1(1−d). When following this rule, the observed quantity demanded d is such that uninformed

agents infer ω̂(d) = ω̄(s) and hence mimic the buying decisions of the informed agents. This follows

from the fact that, in equilibrium, d reveals the marginal type. For instance, if 30% of the market

buys at p, then the marginal buyer has a private value at the 70th percentile of F . Thus, rational

uninformed agents who observe d simply choose to buy if their taste is above the 70th percentile and

decline otherwise. This strategy leads uninformed buyers to act exactly as they would if they too

were informed.

This strategy of identifying others’ information off of the inferred marginal type leads projectors

astray since their distorted perceptions of F cause them to misinfer the marginal valuation. More

specifically, a projecting agent thinks the market is in the rational equilibrium described above,

and draws inferences following that logic. They do so, however, using their misspecificed model. A

buyer with taste ti thinks the demand function among informed agents is D̂I(p; ω̄(s)|ti) ≡ 1−F̂
(
p−

ω̄(s)|ti
)
. Furthermore, naivete about projecting implies that he thinks others share his perception of

F—and hence of the demand function—and thus he thinks that others will draw the same inference

from the quantity demanded as him. Thus, an agent with taste ti thinks the rational symmetric

inference rule is ω̂(d|ti) and that, in equilibrium, ω̂(d|ti) must satisfy

d = λ ·
(
1− F̂

(
p− ω̄(s)|ti

))

︸ ︷︷ ︸
Perceived demand among the informed

+(1− λ) ·
(
1− F̂

(
p− ω̂(d|ti)|ti

))

︸ ︷︷ ︸
Perceived demand among the uninformed

. (4)
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An agent with taste ti therefore comes to believe the value of ω̄(s) is

ω̂(d|ti) = p− F̂−1(1− d|ti).
27 (5)

This inferential strategy would correctly extract others’ information if agent i’s misspecified model

were correct—that is, if it were indeed true that T ∼ F̂ (·|ti) and that agents shared this belief.

Furthermore, F̂−1(1 − d|ti) → F−1(1 − d) for all ti as α → 0, and hence each agent’s inference

collapses to the common rational inference as projection vanishes.

Notice that the misinference described above involves two distinct errors. One stems from an

error in first-order beliefs: agent i’s conjectured equilibrium condition (Equation 4) wrongly posits

that tastes are distributed according to F̂ (·|ti) instead of F . Additionally, due to naivete, agent i’s

erroneous second-order beliefs cause him to think others draw the same inference as him, ω̂(d|ti),

since he neglects that others employ discrepant models.

In truth, the demand among uninformed agents arises from each type of agent acting on their

distinct equilibrium inference. The equilibrium quantity demanded is then the value of d solving

d = λ ·DI (p; ω̄(s)) + (1− λ) · Pr[ω̂(d|T ) + T ≥ p]︸ ︷︷ ︸
Demand from Uninformed Agents

, (6)

where ω̂(d|t) is given by (5) for each t ∈ T . This equilibrium quantity, call it d∗, pins down the

profile of agents’ perceptions of ω̄(s). We denote this profile by ω̂(t); that is, ω̂(t) = ω̂(d∗|t). The

following proposition establishes that a unique equilibrium exists whenever (p, s) admits interior

demand and characterizes two central properties of misinference under taste projection.28

Proposition 1. Suppose λ ∈ (0, 1) and consider (p, s) that admits interior demand. For any α > 0,

there exists a unique equilibrium profile of beliefs, and it has the following properties:

1. ω̂(t) is strictly decreasing in t. Moreover, there exists an interior type t̃ such that agents with

t > t̃ underestimate ω while those with t < t̃ overestimate ω.

2. For each type t ∈ T , the perception ω̂(t) is strictly increasing in p.

Part 1 of Proposition 1 establishes that quality perceptions are inversely related to tastes. If agent

i has a high private taste, he expects that others do too and exaggerates the fraction of people who

would buy at price p and belief ω̄(s). Accordingly, the demand he observes at price p is weaker

than he would expect from consumers with belief ω̄(s), and he rationalizes this lower-than-expected

demand by inferring that the signal is lower than it truly is. Conversely, if agent i has a low private

27Since agents with the same taste have the same model of others’ preferences, they will make identical inferences.
28Appendix A shows that these properties extend to richer signal structures.
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taste, then he infers that the signal is higher than it truly is. In other words, the interpretation of a

good’s popularity is in the eye of the beholder.

Where is the divide between types who overestimate quality and those who underestimate it?

As noted above, inference in this setting stems from identifying the valuation of the marginal con-

sumer. The nature of projectors’ misinference can thus be understood from how they misidentify

the marginal type. Suppose that in equilibrium a fraction z of consumers turn down the good. The

marginal type thus has a private value t∗ at the zth percentile of the taste distribution. An uninformed

consumer tries to deduce t∗ since this would reveal ω̄(s) via the indifference condition t∗ = p−ω̄(s).

However, a projector misperceives the private value at each percentile other than his own. To see

this, let t̂(z|ti) be the perceived type at the zth percentile according to an agent with taste ti, and let

t∗(z) denote the true type. From (2), this value solves

z = F̂ (t̂(z|ti)|ti) = F

(
t̂(z|ti)− αti

1− α

)
⇒ t̂(z|ti) = αti + (1− α)t∗(z). (7)

Reflecting the idea that projectors think others’ values are compressed around their own, type ti’s

perception of the type at the zth percentile is shifted toward his own. This recasts the intuition

from above: those with high private values overestimate the marginal type, and thus underestimate

the good’s quality; those with low private values do the opposite. Furthermore, this means that

a projector who is at the zth percentile himself—who has a taste matching that of the informed

marginal type—is the unique type who infers ω̄(s) correctly. To summarize: (i) ω̂(t∗) = ω̄(s) where

t∗ = p − ω̄(s) is the rational marginal type; (ii) ω̂(t) < ω̄(s) for all agents with t > t∗; and (iii)

ω̂(t) > ω̄(s) for all agents with t < t∗. It is worth nothing that, in equilibrium, agents’ perceived

total valuations, ω̂(t) + t, are still increasing in t even though ω̂(t) is decreasing in t; we return to

this point in Proposition 2.

Part 2 of Proposition 1 shows that agents form higher perceptions of the common value when

p is higher, irrespective of their private taste. This stems from the fact that projectors underesti-

mate the heterogeneity in others’ private values. A projector therefore underestimates the fraction

of types who would remain in the market at a higher price. Thus, if the price were to increase, a

projector would see more remain than expected. To rationalize this discrepancy, a projector must

infer a higher quality than he would have at the original, lower price. Figure 2 depicts this intuition.

First, note that a projector’s inferred quality ω̂ is such that their perceived demand function given

ω̂, D̂(·; ω̂|t), passes through the observed outcome, (d, p). As the price increases from p′ to p′′, the

observed quantity demanded adjusts along the true demand curve, D(·; ω̄(s)). The new quantity,

however, is inconsistent with the projectors’ demand curve that rationalized the outcome at p′: since

a projector underestimates heterogeneity, their perceived demand curve is a counter-clockwise rota-

tion of D(·; ω̄(s)) (see Johnson and Myatt, 2006) and is thus more price elastic. Hence, to rationalize
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Figure 2: True and Perceived Equilibrium Demand Functions.

the observed demand at price p′′, the projector will form a higher expectation of ω, consistent with

an outward shift of his perceived demand curve.

Another intuition for this result comes from the discussion above about identifying the marginal

type. The farther a type is from the margin, the more distorted is his perception of the marginal

type. Thus, a high type who is above the margin at price p will be closer to the margin after a small

price increase. Since this high type originally underestimates ω, he will underestimate ω by less if

the price increases. A similar logic holds for those below the margin at price p: they will be farther

from the margin after a price increase, and hence they will subsequently overestimate ω by more. In

other words, the higher is the true marginal type, the higher is each projector’s perception of ω.

While the results of Proposition 1 hold more generally, they are particularly transparent when

u(ω, t) = ω + t.29 In this case,

ω̂(t) = (1− α)ω̄(s) + α(p− t). (8)

The degree of projection, α, drives both the positive distortionary effect of p and the negative dis-

tortionary effect of an individual’s taste. Furthermore, an uninformed agent’s perceived total value

of the good is ω̂(t) + t = (1− α)(ω̄(s) + t) + αp. Thus, as α increases, a projector’s idiosyncratic

taste t has less influence on their perceived valuation. Importantly, this implies that the perceived

values among uninformed agents exhibit less variation than they would under rational inference.

29In addition to holding for more general utility functions, these results hold for additional signal structures as well.

We discuss this in more detail in Appendix A.
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Proposition 2. Suppose λ ∈ (0, 1) and consider (p, s) that admits interior demand. For any α > 0,

the (mis)perceived valuations of agents in the steady-state have diminished variance relative to the

rational benchmark.

Proposition 2 reveals a sense in which taste projection is self-fulfilling: when agents initially

believe that idiosyncratic tastes are more similar than they really are, their distorted inferences lead

to perceived valuations that are, in fact, more similar than they ought to be. In other words, the

agents’ initial misperception of the environment generates data that confirms that misperception.

This result also suggests caution when measuring heterogeneity in consumers’ preferences.

When social learning shapes consumers’ valuations, their stated willingness to pay will underesti-

mate the true heterogeneity in valuations if they suffer from projection bias. Furthermore, measuring

the degree of taste projection in markets must also account for this endogeneity problem: while it

may appear that there is low variance in valuations and that consumers correctly believe that there

is low variance, the low apparent variance in valuations may be caused by consumers’ erroneous

beliefs about others and the distortionary effect they have on learning.

Proposition 2 additionally implies that demand among misinformed consumers will overreact

in the short run to a change in price. That is, if consumers use their perceptions of ω̂(t) formed in

an equilibrium with price p to decide whether they should buy at a new price p′, then the demand

response to this price change will exceed the rational benchmark. For an intuition, recall that pro-

jecting consumers who are above the margin at price p underestimate ω. Thus, relative to rational

consumers, they are less willing to continue buying after a price increase. Similarly, projecting con-

sumers who are initially below the margin overestimate ω, and thus they are too willing to buy after

a price reduction. We return to this point when analyzing dynamic pricing (Section 4).

3.2 Optimal Monopoly Pricing

Taste projection in this setting does not distort the quantity demanded: in equilibrium, the same set

of consumers adopt the good regardless of whether they are rational or suffer from taste projection.

As noted above, this happens because the type with a taste matching that of the rational marginal

type learns correctly and is therefore still marginal under projection. Thus, even though projection

causes almost all types to mislearn ω, a profit-maximizing monopolist in this market would set the

rational monopoly price regardless of whether she faces rational consumers or taste projectors.

The reason why projection does not affect behavior here is an artifact of the particular setting.

Although this setting is ideal for developing intuitions on why and how projection distorts beliefs,

the following sections show that relaxing particular features will cause biased beliefs to directly

influence market outcomes. Namely, this happens with dynamic pricing or multi-unit demand.
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4 Dynamic Case

We now turn to the dynamic setup introduced in Section 2. Section 4.1 first presents some prelim-

inary observations describing how beliefs and aggregate behavior evolve under an arbitrary price

path. Section 4.2 then analyzes dynamic monopoly pricing. Although we consider a setting where

the optimal dynamic price is constant under rational learning, projection will induce an optimal

price path that starts higher than the rational benchmark and declines over time.

Our dynamic setup closely mirrors the static model. In each period n = 1, 2, . . . , N , a unit

mass of new consumers with tastes independently drawn from F enters the market. Each consumer

in Generation n makes a once-and-for-all decision whether to adopt the good at price pn and then

exits; dn denotes the fraction of these consumers who adopt. In each generation n ≥ 2, (i) all

individuals observe the price and aggregate demand from the previous generation, (pn−1, dn−1), and

(ii) a fraction λ ≤ 1 privately observe s. Thus, 1 − λ uninformed consumers in each generation

n ≥ 2 engage in social learning while the informed consumers simply follow the signal.

In period 1, consumers must make decisions based solely on their private information. To sim-

plify matters, we assume all consumers in period 1 observe s. There are two interpretations of this

assumption: (i) early consumers have greater access to information than later consumers (e.g., initial

advertising or “hands-on” promotions spread information more widely early on); (ii) the market be-

gins in the steady-state equilibrium derived in Section 3. Under the second interpretation, our results

here describe the short-run dynamics of beliefs and behavior when price changes move the market

out of the steady state. This assumption also simplifies the analysis by ensuring that the seller does

not have an informational advantage over buyers, thereby neutralizing any incentive for the seller to

use prices to signal quality (see the discussion at the end of Section 2.1).30

Rational learning is straightforward. Since a continuum of agents act in each period, the aggre-

gate demand from the previous period perfectly reveals the signal when there is common knowledge

of F (and of rationality). While agents learn immediately in rational benchmark, projectors do not:

they wrongly extract the signal as if it were common knowledge that T ∼ F̂ (·|ti).

4.1 Preliminary Observations

We first describe how beliefs evolve under an arbitrary price path. We begin by characterizing the

beliefs and behavior of uninformed consumers in period 2 upon observing (p1, d1).

In period 1, aggregate demand is equal to the rational benchmark: d1 = DI(p1; ω̄(s)) = 1 −

30While the assumption that all consumers in Generation 1 are privately informed simplifies the analysis in various

ways, it does not significantly influence the results. For instance, if a fraction λ < 1 of consumers observe s in each

period n = 1, 2, . . . and face a fixed price, then the environment corresponds to the dynamic analog of the static model

in Section 3: as n → ∞, beliefs and behavior converge to the steady-state values described in Section 3.
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F (p1 − ω̄(s)).31 In period 2, an individual with taste t thinks that when buyers in period 1 have

expectations equal to ω̂, their demand is

D̂I(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F

(
p1 − ω̂ − αt

1− α

)
. (9)

This individual will then infer a value of ω̂ that solves D̂(p1; ω̂|t) = d1. Denoting this value by

ω̂2(t), the previous condition yields

ω̂2(t) = (1− α)ω̄(s) + α(p1 − t). (10)

Notice that the misinferences among observers in this dynamic context exhibit the same steady-

state properties described in Propositions 1 and 2 from the static case, above. Indeed, (10) exactly

matches the steady-state perceptions derived in Equation (8). These perceptions are decreasing in

an observer’s taste, increasing in the price, and give rise to perceived total valuations that exhibit too

little heterogeneity relative to the rational benchmark.

Building on that final point, we can show that the demand function of uninformed types in pe-

riod 2 is locally more elastic with respect to p2 than the rational one (Johnson and Myatt, 2006).

More specifically, it is a counter-clockwise rotation of the demand function of informed types,

and the rotation point is the market outcome from the previous period, (p1, d1). Notice that if we

let ω̄2 ≡ (1 − α)ω̄(s) + αp1 denote the “taste-independent” (mis)perception of ω̄(s) among con-

sumers in period 2, then (10) implies that each uninformed consumer i’s perceived total valuation is

u (ω̂2(ti), ti) = ω̄2 + (1− α)ti. The demand among uninformed consumers in period 2 is thus

DU(p2; ω̄2) ≡ Pr [u (ω̂2(T ), T ) ≥ p2] = 1− F

(
p2 − ω̄2

1− α

)
. (11)

By contrast, under rational inference, this demand would match that of informed consumers; i.e.,

DI(p2; ω̄(s)) = 1 − F (p2 − ω̄(s)). It is clear that α > 0 implies that DU(p2; ω̄2) is more sensitive

to p2 than demand among rational observers with those same beliefs (see Figure 3). The rationale

builds from intuitions developed in the static case: in period 2, perceptions of ω̄(s) are declining in

consumers’ private values, and the buyer with a private value equal to that of the marginal type from

period 1, denoted t∗1, is the unique uninformed type who infers ω̄(s) correctly. Those with private

values above t∗1 see a weaker demand in period 1 than anticipated in state ω̄(s) and consequently

underestimate ω. If p2 > p1, then only those types with overly pessimistic beliefs will be served in

period 2, and the quantity demanded will thus fall below the rational benchmark at p2. In contrast,

those with t < t∗1 see a stronger demand than anticipated in state ω̄(s) and overestimate ω. If

31This follows from our assumption that all consumers in period 1 are informed.
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p2 < p1, then those with overly optimistic beliefs will be served—the marginal type will be among

this contingent—and hence the quantity demanded will exceed the rational benchmark.

p

d2

DI(p2; ω̄(s))

DU(p2; ω̄2)

p1

d1

Figure 3: Demand Functions of the Informed and Uninformed in Period 2.

Now we analyze how beliefs and aggregate behavior evolve over time. Generation 3 forms their

quality expectations based on the quantity demanded in period 2, which is

d2 = D(p2; ω̄2; ω̄(s)) ≡ λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2). (12)

While misinference among Generation 2 stemmed directly from misunderstanding others’ tastes

(i.e., an error in first-order beliefs), the misinference among Generation 3 also includes a “social

misinference” effect stemming from naivete about others’ projection. Namely, individuals neglect

that their predecessors failed to reach consistent beliefs. Since uninformed consumers expect to ex-

tract s form their predecessors’ behavior, an individual in period 3 accordingly thinks that the unin-

formed consumers in period 2 consistently and correctly inferred s and are thus now informed. This

presumption is false: projectors in period 2 draw distinct, type-dependent beliefs (as in Equation

10). Nevertheless, a naive observer in Generation 3 with taste t thinks period-2 demand is deter-

mined by the function D̂I(p2; ω̂|t) in (9)—she does not realize that it derives from a composition of

demand functions as in (12). This observer then infers a value of ω̂ that solves d2 = D̂I(p2; ω̂|t),

which we denote by ω̂3(t). As with Generation 2, if we let ω̄3 denote the taste-independent part of

ω̂3(t), then we can write ω̂3(t) = ω̄3 − αt. Aggregate demand among Generation 3 then follows the

same form as Generation 2: d3 = D(p3; ω̄3, ω̄(s)) where D is as defined in (12).

A similar logic unfolds in each period n ≥ 2. The perceived quality among uninformed agents
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in Generation n can be written in terms of a taste-independent component, denoted by ω̄n, which

we refer to as the aggregate biased belief in period n.

Lemma 1. In each period n = 2, . . . , N , the quality that an uninformed agent with taste t expects

is ω̂n(t) = ω̄n − αt, where ω̄n is independent of t. Thus, the sequence of aggregate biased beliefs,

(ω̄n), is a sufficient statistic for each type’s belief over time.

Despite a continuum of types forming distinct beliefs from each observation, Lemma 1 implies that

we can account for this infinite-dimensional process by studying the evolution of the unidimen-

sional sequence, (ω̄n). Since this sequence describes the path of uninformed consumers’ beliefs, the

quantity demanded in each period n, dn, is determined by the functional form in (12):

D(pn; ω̄n, ω̄(s)) = λ
[
1− F (pn − ω̄(s))

]
︸ ︷︷ ︸

Informed Demand

+(1− λ)

[
1− F

(
pn − ω̄n

1− α

)]

︸ ︷︷ ︸
Uninformed Demand

. (13)

However, an uninformed consumer in period n+ 1 then thinks dn is determined by

D̂(pn; ω̄n+1) ≡ 1− F

(
pn − ω̄n+1

1− α

)
.32

Furthermore, ω̄n+1 must be consistent with dn for all n ≥ 2; that is, dn = D̂(pn; ω̄n+1). Hence, the

law of motion describing the process (ω̄n) is characterized by the equality

D̂(pn; ω̄n+1) = D(pn; ω̄n, ω̄(s)), (14)

starting from the initial condition of ω̄2 = (1− α)ω̄(s) + αp1.

Before turning to the optimal price path given this belief process, we describe outcomes under

two natural scenarios: (i) a constant price, and (ii) a single change in price. First, if the price is fixed

at p (e.g,. the market is in a competitive equilibrium or other frictions mandate a fixed price), then

ω̄n = ω̄2 for all n > 2. Beliefs remain constant over time, and the quantity demanded in each period

matches the rational benchmark at price p. Intuitively, since the type in Generation 2 who learns

correctly has a private value equal to the rational marginal type, this type will again be marginal

given that the price is constant. Hence, Generation 2 demands the same quantity as Generation

1. Since Generation 3 then observes the same quantity as Generation 2 did, they draw the same

inference. This result reflects the notion that our dynamic process can be viewed as starting from

the steady-state: when the price stays constant, the system remains fixed.

On the other hand, when the price changes, aggregate demand will initially overreact and then

32More precisely, an uninformed consumer in period n+1 with taste t thinks dn is determined by D̂I(pn; ω̂n+1(t)|t)
as in (9). Applying the fact that ω̂n+1(t) = ω̄n+1 − αt yields the expression here.
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slowly converge back to the rational level given the new price. The logic is similar to the reason why

demand among the uninformed in Generation 2 is excessively sensitive to p2 (e.g., the discussion

around Figure 3). For instance, suppose the price permanently drops in period 2. All uninformed

types with a private value below the marginal type from Generation 1 overestimate ω; hence, relative

to the rational benchmark, a larger measure of those who were originally submarginal buy once the

price drops. A similar overreaction occurs if the price instead increases.

Proposition 3. Let α > 0 and λ ∈ (0, 1). Suppose there exists a period n∗ ≥ 1 such that pn = p for

n ≤ n∗, and pn = p̃ 6= p for all n > n∗. Consider s such that both (p, s) and (p̃, s) admit interior

demand, and let d̃ denote the quantity demanded at price p̃ under rational learning.

1. Initial Overreaction: If p̃ > p, then dn < d̃ for all n > n∗. If instead p̃ < p, then dn > d̃ for

all n > n∗.

2. Convergence to Rational Equilibrium: |dn − d̃| is decreasing in n and limn→∞ |dn − d̃| = 0.

Social learning under taste projection therefore offers a novel explanation for temporary overreaction

to price changes, thereby complementing other existing, yet conceptually distinct, explanations. For

instance, a change in the price could momentarily increase attention or salience to the price shortly

thereafter (Bordalo et al., 2013, 2020). Or consumers with a “taste for bargains” may experience ad-

ditional elation when buying the good at a price below some reference level (e.g., the previous price),

thereby leading more to buy while the new price still feels like a “deal” (Jahedi, 2011; Armstrong

and Chen, 2020).

4.2 Optimal Monopoly Pricing

We now analyze how a sophisticated seller optimally sets prices over time when facing taste-

projecting consumers. The seller chooses a sequence of prices (p1, . . . , pN) to maximize

Π ≡ p1D
I(p1; ω̄(s)) +

N∑

n=2

pnD(pn; ω̄n, ω̄(s)) (15)

subject to the dynamic constraint in (14) for all n ≥ 2.33 In order for the next generation to draw a

well-defined inference from quantity demanded, we require that the seller serves a positive fraction

of consumers in each period. We operationalize this by imposing a price ceiling that is arbitrarily

close to the valuation of the highest informed type: p̄ ≡ ω̄(s) + t− κ for some κ > 0.34

33For simplicity, we abstract from the seller discounting future profits. All of our results would continue to hold if

the seller exponentially discounted future profits with a discount factor δ ∈ (0, 1).
34This price ceiling will have little effect on projectors’ beliefs and behavior since projectors can never be induced to

have a willingness to pay above the highest informed type. The price ceiling is also not consequential for our qualitative
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Let p∗n denote the seller’s profit-maximizing price in period n. Under rational learning, all con-

sumers will correctly infer s, and the seller essentially faces an identical market of informed con-

sumers in each period. Let pM denote the static optimal monopoly price when facing informed

consumers. The price path in the rational benchmark (i.e., α = 0) is to simply charge p∗n = pM for

all n. As we emphasize below, this is not so when facing projecting consumers (i.e., α > 0).

Our analysis first considers the two-period case, which will be sufficient for showing how prices

influence and respond to the key features of taste-projectors’ erroneous beliefs. We then consider

longer horizons. Unlike in the two-period case, projectors in later rounds form beliefs after observ-

ing the irrational behavior of projectors who acted previously. While this difference introduces a

richer set of incentives for the seller’s pricing strategy, we show that the optimal price path still starts

high and gradually declines.

4.2.1 Two-Period Model

Taste projection among consumers introduces dynamic pricing incentives for the seller. Since the

current price inflates the beliefs of consumers in later periods, the seller may benefit from increasing

today’s price—at the cost of losing immediate sales—in order to increase perceptions and demand

among future consumers. Notably, projection induces these dynamic interpendencies even in set-

tings, such as ours, where there is no temporal link in pricing in the rational model.

The benefit from such manipulation is clearly suggested by the distorted beliefs formed in Gen-

eration 2, as described in (10). The private value of the marginal type in Generation 1 determines

the threshold in the taste distribution where ω̂2(t) switches from overestimating quality to underesti-

mating it. As this threshold is increasing in p1, a higher p1 will result in a larger share of individuals

in Generation 2 who overestimate quality. But is it worthwhile for the seller to forego sales today in

order to boost demand in the future?

The answer is unambiguously yes. To provide intuition, consider two pricing strategies: (i)

constant pricing, where p1 = p2 = pM and (ii) declining prices such that p1 = pM + ǫ and p2 =

pM − ǫ for some ǫ > 0. The first strategy generates profits identical to the rational benchmark.

While the second strategy generates diminished sales in period 1 relative to the rational benchmark,

it generates a disproportionate expansion in period 2. This happens because the demand curve

in Generation 2 is a counter-clockwise rotation around p1 of the demand curve from the previous

generation. Locally, a small reduction of p2 below pM leads to a greater expansion in period-2 sales

compared to the contraction of period-1 sales induced by a commensurate increase of p1 above pM .

This follows from the fact that those who were previously submarignal hold inflated perceptions;

results: the optimal price path still involves an inflated price in period 1 and a subsequent price reduction regardless of

whether p1 is at the ceiling or not. Furthermore, for every value of α, there exists a value λ̄ such that λ > λ̄ guarantees

an interior solution to the seller’s problem, rendering the ceiling irrelevant.
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hence, a price cut attracts an exaggerated share of consumers (as in Proposition 3). As a result,

the profits gained in period 2 more than offset those lost in period 1.35 This intuition holds more

generally.

Proposition 4. Suppose λ < 1 and consider any s such that (pM , s) admits interior demand.

1. For any α > 0, we have p∗1 > pM and p∗1 > p∗2.

2. The seller’s profit under the optimal price path is increasing in α and decreasing in λ.

Intuitively, as α increases, there is greater scope to manipulate beliefs, thereby increasing the

seller’s profit above the rational benchmark. The seller’s profit is instead decreasing in λ: with fewer

uninformed agents in the market, it becomes more costly to deviate from the rational-benchmark

price. Additionally, although p∗1 always exceeds pM (i.e., the rational-benchmark price), the rela-

tionship between p∗2 and pM depends on the degree of projection. When α is low and projectors’

beliefs are only mildly distorted by p1, the seller optimally chooses p2 < pM in order to induce a

large share of overoptimistic types to buy. When α is high and beliefs are strongly distorted by p1,

then even a p2 > pM can induce these types to buy.

Pricing under projection clearly harms consumers in period 1 since p∗1 > pM . But it also harms

some consumers in period 2: beliefs are manipulated in a way that induces some consumers to buy

at a price they would refuse under rational learning. While some of this harm to consumers’ surplus

simply represents a transfer to the seller, sufficiently strong projection can also induce consumers

with truly negative valuations to adopt the good. Such adoption is clearly inefficient.

Proposition 5. Suppose λ < 1 and consider any s such that (pM , s) admits interior demand.

1. Under the profit-maximizing price path, there exists a positive measure of types who buy and

overpay: for these types, ω̄(s) + t < p2.

2. If there exist types with truly negative valuations, i.e., ω̄(s) + t < 0, then there exists a

threshold α̃ such that for α > α̃ the profit-maximizing price path induces inefficient adoption:

there exists an interval of types t who buy despite ω̄(s) + t < 0.

Another interpretation of this proposition is that the seller’s optimal pricing scheme always induces

excessive take-up among uninformed buyers, consistent with familiar notions of herding or band-

wagon effects in markets. It is straightforward to show that the marginal uninformed type in period

2, t̂2, is strictly below the marginal informed type, t∗2, and the interval of uninformed types who

wrongly adopt the good has measure t∗2 − t̂2 =
α

1−α
[p∗1 − p∗2] > 0.

35By similar logic, choosing p2 > p1 is particularly costly for the seller, as this would exclude optimistic consumers

while targeting just the pessimistic ones.
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To elucidate the welfare effects of projection and other comparative statics more concretely,

consider the case where T is uniform on [t, t]. This generates linear demand curves; the (interior)

demands of informed agents (in either period) and uninformed agents (in period 2) are

DI
(
p; ω̄(s)

)
=

ω̄(s) + t− p

t− t
and DU(p; ω̄2) =

ω̄2 + (1− α)t− p

(1− α)(t− t)
, (16)

respectively, where ω̄2 = (1− α)ω̄(s) + αp1. It is straightforward to show that the interior solution

is such that p∗1 > pM > p∗2. Moreover, p∗n → pM for both n = 1, 2 as either α → 0 or λ → 1.

Intuitively, as either the distortion in beliefs or the fraction of agents with distorted beliefs vanishes,

the seller’s problem converges to the rational monopoly problem.
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Figure 4: Optimal price and quantity demanded in each period as a function of α.

Panel (a) of Figure 4 shows how each p∗n changes with α in the uniform case.36 As α increases,

p1 has a stronger positive effect on the beliefs of Generation 2, and hence p∗1 increases in α. By

contrast, p∗2 is not monotone in α. Since the consumers who would be submarginal at p∗1 are those

with inflated beliefs, p∗2 will necessarily fall below p∗1. Moreover, when α is small, the perceived

valuations of consumers in Generation 2 exhibit near-rational levels of variation, so a reduction in

p2 will not attract many more buyers than it would under rational learning. Hence, there is little

benefit in deviating from the rational monopoly price. But as α increases, perceived valuations

become more clustered around ω̄2, meaning that a price drop will attract a bigger proportion of the

market and will thus be more profitable. This explains why p∗2 initially decreases in α. However,

36In this example, t = 10, t = −10, ω̄(s) = 0, and λ = 0. We plot outcomes for α ≤ 2/3 since this is the region

that admits an interior solution (shown in the figure). For α > 2/3, we necessarily have a corner solution at which the

seller sets p1 at the price ceiling (see footnote 34).
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once α is sufficiently large—and thus beliefs are substantially inflated due to a high p∗1—the seller

can capture a significant fraction of the market with a smaller deviation from pM .

p
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Consumers’ Loss Due to Erroneous Adoption

Efficiency Loss from Erroneous Adoption

Figure 5: Demand functions in Period 2 (for both informed and uninformed agents).

Turning to welfare in the uniform case, it is immediate that projection harms consumers in

Generation 1 since p∗1 > pM . In Generation 2, however, projection can positively or negatively effect

consumers, depending on their type. Informed consumers clearly benefit from projection when p∗2 <

pM since they face a lower price. The welfare effects for uninformed consumers are more subtle.

Figure 5 shows the demand curves among informed (blue) and uninformed consumers (red) in period

2. The demand curve among informed consumers, DI(p; ω̄(s)), reflects the rational valuation of

the marginal buyer for any level of market coverage d. The demand curve among uninformed

consumers, DU(p; ω̄2), instead reflects the willingness to pay of the marginal consumer given d.

Thus, for any d, the vertical distance between the red and blue curves shows the wedge between the

marginal uninformed consumer’s willingness to pay and his true valuation. Manipulative pricing

under projection causes a range of uninformed types to buy the good when they should, in fact,

abstain given p∗2: the rational level of demand at p∗2 is dI2, yet a market of projectors would demand

a quantity d2 > dI2. Projectors’ consumer surplus is no longer simply the area below their demand

curve and above the price, since all consumption beyond dI2 involves overpaying. Instead, projectors’

surplus is the area above p∗2 yet below their valuation curve (the area in blue) minus the area below
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p∗2 yet above their valuation curve (the area in red)—the latter area represents a loss to consumers.

From a broader welfare perspective, projection can actually increase total surplus so long as the

degree of projection is not too high. This follows from the fact that the total quantity demanded

across both periods can be higher under projection than the rational benchmark. This reduces the

traditional deadweight loss due to monopoly pricing. However, this inflated level of sales can some-

times be detrimental to total surplus, since sufficiently strong projection can induce consumers who

have truly negative valuations to buy the good (as in Proposition 5). Such adoption is clearly in-

efficient. Figure 5 depicts a case where this inefficiency emerges; it is represented by the dark red

triangle. Figure 6 shows how total surplus and total quantity demanded (across periods) change in

the uniform example as a function of α; total surplus begins to fall once sales have expanded to the

point that those with negative valuations are lured into buying.37
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Figure 6: Total surplus and and quantity demanded across both periods.

4.2.2 Arbitrary Horizon

We now demonstrate how our declining-price result extends beyond N = 2. Namely, we show that

the initial price is inflated above the static monopoly price, and prices gradually decline thereafter.

This result follows from a novel trade-off the seller faces in any given period (except for the first or

last one). On the one hand, lowering the current price allows the seller to reap high current sales

by exploiting the inflated beliefs generated by high prices in previous periods. On the other hand,

keeping the price high and restraining current sales helps maintain inflated beliefs further into the

future. This inter-temporal trade-off results in a declining optimal price path.

37Figure 6 considers the same parameter values as Figure 4.
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For this analysis, we continue to focus on the case in which private values are uniformly dis-

tributed over [t, t], and we restrict attention to interior cases where it is never optimal to serve the

lowest type (which amounts to assuming t is sufficiently low).38 Equation (14) implies that the

aggregate biased beliefs evolve according to

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n. (17)

Building from this recursive structure of beliefs, the following lemma shows how the aggregate

belief in Generation n depends on each previous price.

Lemma 2. Suppose (pk, s) admits interior demand for all k ≤ n. The aggregate belief in period n

is ω̄n = (1− α)ω̄(s) + αp̃n−1, where p̃n−1 is a weighted average of past prices:

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑

k=2

λ(1− λ)n−1−kpk. (18)

Since the weights on all past prices in (18) sum to one (by virtue of being a weighted average), the

overall effect of past prices on ω̄n is always equal to α. Notably, however, more recent prices tend

to carry more weight on the current belief than earlier ones.

The “stock variable” p̃n−1 captures the sway of past prices on current beliefs. As such, the

features of the optimal price path are illuminated by re-writing the demand for Generation n in

terms of p̃n−1 rather than ω̄n. From (13) and Lemma 2, demand in period n as a function of each

previous price is

D(pn; p̃
n−1, ω̄(s)) =

(1− α)
(
t+ ω̄(s)

)
+ α(1− λ)p̃n−1 − (1− λα)pn

(1− α)(t− t)
. (19)

Given the objective function in Equation (15), we then arrive at the following first-order condition

for the price in a non-terminal period n ≥ 2:

pn =
1

1− λα

(
(1− α)pM +

α(1− λ)

2

[
p̃n−1 +

N∑

k=n+1

pk
∂p̃k−1

∂pn

])
, (20)

where we’ve used the fact that pM =
(
t+ ω̄(s)

)
/2 when (pM , s) admits interior demand. The final

sum in Equation (20) highlights the intertemporal incentives in pricing. Namely, the seller has a

greater incentive to inflate the current price in order to manipulate future consumers’ beliefs when:

(i) the current period is earlier in the horizon, and thus influences a greater number of subsequent

38 With uniform tastes, our usual assumption that (pM , s) admits interior demand is equivalent to ω̄(s) + t > 0 and

ω̄(s) < t− 2t. It is never optimal to serve the lowest projecting type if we also have (1− α)ω̄(s) + αp̄ < t− 2t.
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generations, and (ii) the current price has a stronger effect on any future generation’s beliefs (i.e.

when ∂p̃k−1

∂pn
= λ(1− λ)k−1−n is larger). This leads to an optimal price path that declines over time.

Proposition 6. Suppose λ ∈ (0, 1). Consider any α > 0 and any s such that (pM , s) admits interior

demand.

1. The initial price is inflated: p∗1 > pM .

2. The optimal price path is declining: For all n ≥ 2, we have p∗n < p∗n−1.

As discussed above, this result follows from the seller balancing the trade-off between exploiting

consumers’ current beliefs by undercutting the previous price versus manipulating the beliefs of

future consumers by maintaining a high current price. While our model introduces a clear incentive

to initially inflate the price and then drop it, it does not predict occasional sales where the price

temporally drops and then returns to a high level. Rather, we predict a gradual decline in prices,

which is consistent with the pricing pattern observed for novel products (e.g., a new smartphone

or a new fitness program), where consumers are uncertain about the product’s quality; see Bayus

(1992), Krishnan et al. (1999), Jain et al. (1999), Nair (2007), and Liu (2010).
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Figure 7: Example Price path for N = 20 for various degrees of projection. The example assumes

t = 10 and ω̄(s) = 0.

Figure 7 provides an example of the optimal price path for N = 20 for different degrees of

projection. Intuitively, the extent to which prices deviate from the monopoly price increases when

α is high, since in this case prices have more sway on beliefs. Although it’s not captured in Figure
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7, a similar intuition holds as λ decreases: deviating from the monopoly price is less costly when

there are fewer informed agents.

This declining price path has natural implications for the path of aggregate beliefs and demand,

as well. Since the current aggregate belief is a convex combination of the previous belief and price,

a declining price path implies that beliefs also decline over time: later generations of consumers

perceive a lower quality, on average, than earlier generations. Additionally, the quantity demanded

in periods with distorted beliefs (i.e., for period 2 onward) is “U -shaped”: the inflated price in

the first period leads Generation 2 to demand an aggregate quantity above the rational benchmark.

However, as the price levels off near the rational monopoly price, the aggregate demand converges

to the rational monopoly level.39 Finally, near the end of the horizon—once there is little remaining

incentive to maintain high prices to manipulate future generations—the seller will lower the price

below pM , which again leads to significantly more sales than the rational monopoly benchmark.

5 Extensions and Further Applications

In this section, we discuss further implications of taste projection when we relax our assumptions

that consumers (i) are short lived and (ii) have unit demand. We also consider how projection distorts

portfolio choice in an application where agents learn from asset prices.

5.1 Endogenous Timing: Underappreciation of Selection Effects

Section 4 showed how high-to-low pricing can induce “short-lived” low-valuation projectors to ex-

cessively adopt the good. We now show that such over-adoption can arise even if the price is fixed

when “long-lived” consumers can choose when to buy the good. Thus, the idea that projection

causes uninformed consumers to be overly influenced by earlier purchases is not limited to settings

with changing prices. To demonstrate the logic, we consider a two-period model. Uninformed

consumers with low private values defer their decisions until the second period in order learn from

the quantity demanded by early-adopters. But since they fail to appreciate the difference in tastes

between themselves and those with an incentive to adopt early, they treat high initial demand as an

overly-optimistic signal about the good’s quality. As such, they systematically over-consume and

face greater disappointment relative to the rational benchmark.

More broadly, this application speaks to the empirical finding that late adopters exhibit greater

disappointment with a product, as reflected by declining consumer reviews (e.g., Li and Hitt, 2008;

Dai et al., 2018). In particular, we argue that taste projection provides a specific mechanism for why

39This reflects the fact that aggregate demand in the steady state of our model matches the aggregate demand under

rational learning (Section 3). Hence, when the price is near constant for many periods, the resulting quantity demanded

converges to the rational level given that (near) constant price; see Proposition 3.
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selection effects may be under-appreciated in this particular context: while projectors understand

that there is selection across periods, they systematically underestimate the strength of this effect.

We consider a two-period variant of our dynamic model from Section 4. Instead of assuming a

new mass of consumers in each period, there is a single group of consumers with unit demand who

can buy in either period 1 or 2 (or not at all). We focus on the case where the price p is fixed across

periods. We additionally assume T is uniform to ease exposition, but the logic will transparently

generalize. Finally, as above, a fraction λ of consumers observe s while 1− λ are uninformed.

Informed agents buy in period 1 or never, since they have nothing to learn from delaying; they

buy immediately if ω̄(s) + t ≥ p.40 Uninformed agents with low private values may defer their

purchase decision to period 2 in order to learn from those adopting in period 1. Specifically, an

uninformed agent buys in period 1 if ω̄0 + t ≥ p, where ω̄0 reflects the expected quality among

uninformed agents.41 Otherwise, they observe the quantity demanded in period 1, form an updated

expectation ω̂, and then buy in period 2 if ω̂ + t ≥ p.

The quantity demanded in period 1 is d1 = λD(p; ω̄(s)) + (1 − λ)D(p; ω̄0) where D(p;ω) =

1 − F (p − ω). As usual, a projecting agent in period 2 with taste t updates their belief to ω̂2(t),

which is the value ω̂ that fits their model to the observed outcome: ω̂ solves d1 = λD̂(p; ω̂|t) +

(1 − λ)D̂(p; ω̄0|t), where D̂(p;ω|t) = 1 − F̂ (p − ω|t). To state our result, we impose some con-

venient technical assumptions to ensure that there are well-defined marginal types in period 2 under

both rational inference and projection, denoted by t∗2 and t̂2, respectively. Namely, suppose that

D(p; ω̄0) ∈ (0, 1), D̂(p; ω̄0|t) > 0, and d1 ≤ λ + (1− λ)D̂(p; ω̄0|t). The first condition means that

an interior fraction of uninformed agents delay. The final two conditions mean that all projectors

expect an interior fraction to delay and the observed demand is consistent with their models; this

happens when λ is sufficiently large compared to α.

Proposition 7. Consider the setup above. Suppose (p, s) admits interior demand and λ > α > 0.

1. Suppose informed agents have positive information about the good; i.e., ω̄(s) > ω̄0. (i) The

quantity demanded in period 2 exceeds the rational benchmark, and the range of types who

suboptimally adopt,
[
t̂2, t

∗
2

]
, is increasing in both α and ω̄(s)−ω̄0. (ii) There exists a threshold

value t̃ > t∗2 such that all types t ∈
[
t̂2, t̃
]

will, on average, receive lower quality than they

expect; i.e., t < t̃ implies E[ω − ω̂2(t)|s] < 0.

2. Suppose informed agents have negative information about the good; i.e., ω̄(s) < ω̄0. Then

there is zero demand in period 2, as in the rational benchmark.

40This relies on a mild (unmodeled) assumption that delaying consumption is costly to consumers, or that indiffer-

ence is broken in favor of buying sooner rather than later.
41Our conclusions in this application would not change if ω̄0 were to depend on p—which might naturally occur if p

partially signals quality—so long as informed consumers have additional information that is not revealed by p.
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Proposition 7 stems from projectors underestimating the natural selection effect that emerges in

such environments: consumers who decide to buy in period 1 tend to have higher private values than

those who delay. Those who delay are aware of this selection effect, but they underestimate it. Since

the delayers systematically underestimate the private values of those with stronger tastes than them,

they over-attribute observations from period 1 to quality rather than this difference in tastes. When

d1 is stronger than expected, delayers become too optimistic and too many of them buy—they are

subsequently disappointed by the quality they receive. When d1 is weaker than expected, delayers

become too pessimistic and don’t buy. However, they would not buy based on this bad news even

if rational: since they were unwilling to buy with belief ω̄0, they are only willing to buy in period

2 if they receive good news. Hence, projection generates an asymmetric bias in behavior, leading

to over-adoption among delayers, but not under-adoption. Additionally, insofar as unmet quality

expectations drive negative product reviews, the fact that over-adoption is coupled with systematic

disappointment suggests that high initial reviews for a product will too frequently be followed by

negative reviews (Li and Hitt, 2008; Papanastasiou et al., 2015; Dai et al., 2018).

5.2 Static Case with Multi-Unit Demand

We now revisit the static equilibrium from Section 3 but allow for consumers to have multi-unit

demand. As before, consumers still form type-dependent beliefs that are negatively related to their

tastes. In contrast to that previous case, however, projectors now fine-tune their actions to their

erroneous beliefs. Thus, all projecting types will generically consume a sub-optimal amount in

equilibrium, leading to potentially large inefficiencies. In particular, since perceptions are negatively

related to tastes, high types underconsume while low types overconsume.42

For simplicity, we consider the familiar case of quadratic utility (see, e.g., Judd and Riordan,

1994; Caminal and Vives, 1996), where a consumer’s valuation for x units of the good is given by

u(x;ω, t) = (ω + t)x− x2/2. A consumer with a quality expectation of ω̂ facing a per-unit price of

p then demands a quantity x∗(p; ω̂, t) = ω̂ + t− p if ω̂ + t− p ≥ 0 and x∗(p; ω̂, t) = 0 otherwise.

As in Section 3, a fraction λ of consumers observe s and form a quality expectation of ω̄(s).

The remaining fraction 1 − λ form this expectation based on the aggregate demand (and price

p). The steady-state equilibrium is analogous to the one defined above: uninformed agents make

inferences that are consistent with the observed quantity demanded and their misspecified model,

and the resulting quantity is consistent with those beliefs. More specifically, let ω̂(t) be type t’s

quality expectation in equilibrium; this type will then demand x∗
(
p; ω̂(t), t

)
units. The aggregate

42Although this is straightforward given our earlier results on biased perceptions, it is nevertheless important to verify

whether projection indeed creates steady-state inefficiencies—the reason such inefficiencies were absent in Section 3

was an artifact of the unit-demand structure.
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demand in equilibrium is thus

d = λ ·

∫

T

x∗
(
p; ω̄(s), t

)
dF (t)

︸ ︷︷ ︸
Informed Demand

+ (1− λ) ·

∫

T

x∗
(
p; ω̂(t), t

)
dF (t)

︸ ︷︷ ︸
Uninformed Demand

. (21)

Since uninformed agents expect that all types reach a common and correct expectation of ω in equi-

librium, each ω̂(t) is the value that predicts quantity d under type t’s model given the presumption

that all types have inferred this same value.

Proposition 8. Suppose λ ∈ (0, 1) and consider (p, s) that admits positive aggregate demand among

informed consumers. For any α > 0, there exists a unique equilibrium profile of beliefs, ω̂(t), and it

has the following properties:

1. Quality perceptions are negatively related to tastes: ω̂(t) is strictly decreasing in t.

2. Relative to the rational benchmark, demand along the extensive margin increases: the lowest

uninformed type who buys a positive quantity is lower than the lowest type who buys a positive

quantity in the rational benchmark.

3. Relative to the rational benchmark, high types demand too little and low types demand too

much: there exists an interior threshold type t̃ such that t > t̃ implies that x∗
(
p; ω̂(t), t

)
<

x∗
(
p; ω̄(s), t

)
and t < t̃ implies that x∗

(
p; ω̂(t), t

)
> x∗

(
p; ω̄(s), t

)
.

4. More extreme types exhibit greater inefficiency:
∣∣x∗
(
p; ω̂(t), t

)
− x∗

(
p; ω̄(s), t

)∣∣ is strictly

increasing in |t− t̃|.

The intuition for Part 1 of Proposition 8 is identical to the unit-demand case. However, con-

sumers now tailor their individual demand to their idiosyncratic beliefs. This underlies Part 2: since

high types are typically underwhelmed by the observed demand, they consume too little; low types

instead consume too much. In this sense, consumption along the intensive margin is reduced, since

projection reduces the quantity demanded among the high types who consume the most. But con-

sumption along the extensive margin increases (Part 3). That is, the set of types who consume the

good in equilibrium expands: some low types who would entirely abstain under rational inference

are now persuaded to use the product. Parts 2 and 3 together imply that, relative to the rational

benchmark, consumption is spread more thinly across a wider range of buyers.

The logic behind these results is quite transparent as α → 1. In this case, observers think there

is essentially no heterogeneity in tastes, and that aggregate demand derives from all individuals con-

suming roughly the same quantity. From a projector’s point of view, the average quantity demanded

is then a near perfect signal about how much he himself should consume—he should consume that
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same amount, since he is just like everybody else. Thus, in equilibrium, the difference in consump-

tion across types narrows, while the set of types who consume expands.

Finally, among the segment of consumers who adopt in equilibrium, those with types closer to

the extremes make worse decisions (Part 4). Intuitively, these types are farther from the average

buyer, and thus their mental model provides a worse interpretation of the data. A truly average

projecting consumer is fairly accurate when she imagines that most people share her tastes. But

those with more esoteric tastes form a more distorted world view when assuming their tastes are

typical. Proposition 8, along with the results of Section 4, reveal that where the burden of projection

falls depends on the demand structure: with single-unit demand, it is only low types who can be

manipulated into inefficiently adopting a product; with multi-unit demand, the burden primarily

falls on extreme types, either high or low.

5.3 Inference from Price and Portfolio Choice

In our final application, we consider a setting where agents observe only the market price and not

others’ actions. This allows us to demonstrate that taste projection continues to distort perceptions

about a commonly-valued feature in similar ways even when agents draw inferences from prices

alone. In showing this, we also shed light on how taste projection may influence asset markets.

Specifically, we analyze a canonical portfolio-choice problem where traders learn about the

expected return of a risky asset based on its equilibrium price. Similar to the classical models of

Grossman (1976) and Grossman and Stiglitz (1980), we consider a competitive rational-expectations

equilibrium of a market in which traders exchange a risky asset for a riskless one over one period.

As in the standard setup, we assume that traders have constant absolute risk aversion and face a

Gaussian information structure. However, traders differ in their degree of risk aversion and project

their taste for risk onto one another. For brevity, the details and formal analysis are in Appendix B.1.

The basic results mirror those above: traders who are less risk tolerant become overly optimistic

about the expected return and hold too much of the risky asset (relative to the optimal portfolio),

while traders who are more risk tolerant become overly pessimistic and hold too little.

We also show that projection puts downward pressure on the market-clearing price. This stems

from the fact that, relative to less risk-tolerant traders, the individual demands of more risk-tolerant

ones are more sensitive to their expectations over the risky asset’s return. Thus, the perceptions

formed by these traders have greater influence on the market price. And since these perceptions

tend to be overly-pessimistic, the market price under projection drops below the rational-benchmark

price. Of course, this conclusion relies on our assumption that all traders have the same degree of

projection. If, for instance, the risk-tolerant traders tend to be institutional investors who do not

suffer from projection, then the overly-optimistic perceptions of the risk-averse traders may inflate

the price above the rational benchmark.
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6 Conclusion

Evidence suggests that people often misperceive others’ tastes, attitudes, and motives by exagger-

ating the similarity between others and themselves. In this paper, we have examined some basic

market implications that arise when consumers interpret market data through the lens of these mis-

perceptions. In contexts where consumers aim to learn the commonly-valued quality of a product

from others’ demand, we showed that projection leads to systematically distorted beliefs. Namely,

projecting consumers will form estimates of the quality that are negatively related to their tastes,

and these estimates are increasing in the product’s price. These misinferences create new pricing

incentives for a monopolistic seller: in a dynamic setting, the seller will charge high initial prices

to inflate future consumers’ beliefs and then will gradually lower the price to capitalize on these

distorted beliefs. Projection also has implications for efficiency. For instance, either the seller’s

manipulative pricing or a failure to appreciate selection effects can lead projectors to over-adopt a

good even when such adoption is inefficient under rational learning. It is worth emphasizing that our

statements about efficiency implicitly disregard externatlities; indeed, projection could be beneficial

from a social-welfare perspective when large-scale adoption is a critical objective (e.g., adoption of

clean-energy technologies). We leave this analysis for future work.

There are several other potential applications of our framework. As discussed above, projection

leads to lower dispersion in consumers’ valuations and hence to a counter-clockwise rotation of the

market demand curve. Johnson and Myatt (2006) study how demand rotations influence various

features of a monopolist’s marketing strategies. In this sense, the insights from Johnson and Myatt

(2006) should apply to a market with projectors. For instance, in a setting where the seller engages

in second-degree price discrimination by offering a menu of multi-unit bundles, they show that a

counter-clockwise rotation of the demand curve can lead the seller to prefer a smaller menu. Thus,

a seller should have a similar preference when facing projecting consumers versus rational ones.

Finally, projection may also distort an individual’s perception of her information sources in

various ways. For instance, consider an individual who is uncertain about the variance in signals

conditional on ω and updates her belief over this value after consuming the good and learning ω.

This belief revision will depend on the deviation between ω and her expectation, ω̂(t). Since ω̂(t)

is typically biased, projectors will, on average, perceive greater deviations between the realized

quality and their expectations, leading them to overestimate the variance in signals. Thus, projectors

may come to underweight valuable information. Alternatively, suppose consumers entertain the

possibility that others may be biased in favor of a particular option (e.g., a particular brand, author,

or politician), supporting it even when they know it has low quality. If a projector forms beliefs

about whether such a bias exists ex post, she will be predisposed to think others are systematically

biased against options that suit her tastes. This is because the observed popularity of the option will

be inconsistent with a projector’s misspecified model once she learns its true quality. For example,
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a projector who realizes that she dislikes an option will observe a stronger demand than expected;

she may therefore conclude that others’ support stems from some ulterior motive, neglecting that it

may come from mere differences in tastes. Such skepticism of others’ motives may lead people to

discredit others’ actions, which may shed light on why some groups are unmoved by others’ actions

even when they reveal valuable information.

References
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Appendix

A Alternative Signal Structures

In this appendix, we show that our key comparative statics emerge in settings with richer hetero-

geneity in private information. We also note a few additional implications that emerge in these

settings.

A.1 Fully-Heterogeneous Private Signals

In this section, we consider the case in which each agent receives a private signal correlated with

ω. We show that a projector’s inferred quality upon observing the aggregate quantity demanded by

these privately informed agents is still: (i) negatively related to her taste; and (ii) positively related

to the price that predecessors paid. We will show this in a two-period model similar to Section 4.

As in the main text, suppose that individuals share a common prior over ω with support R.

In each generation n = 1, 2, individual i observes the realization of a private signal Si,n that is

correlated with ω. We assume that signals are i.i.d. across all individuals in both periods, and

that no signal realization perfectly reveals ω. Let Zi,n ≡ E[ω|Si,n] denote a consumer’s “private

belief”—their expected quality conditional on their signal and the prior. We work directly with the

distribution of Zi,n conditional on ω rather than conditional distributions over signals. As such, let

Z(ω) denote the random variable representing individuals’ private beliefs conditional on ω. We

assume that Z(ω) can be expressed as Z(ω) = m(ω) + Y for some strictly increasing function m
and a random variable Y that is independent of ω (and T ) and has a log-concave density.43 This

implies that consumers’ interim valuations for the good in period 1 are distributed according to

V (ω) ≡ m(ω) + Y + T . Let H(·;ω) denote the CDF of V (ω). In period 1, individuals act on their

private signals alone. Thus, the demand function in period 1 is D1(p;ω) ≡ 1−H(p1;ω).
Fixing the true quality ω, we are interested in the inferred quality of consumers in period 2 upon

observing d1 = D(p1;ω) and price p1. Let ω̂(t; p1) denote the quality inferred by a consumer with

taste t.

Proposition A.1 (Comparative Statics in the Heterogeneous-Signal Model). Consider the signal

structure of Section A.1. Fix ω, and consider any p1 such that demand in period 1 is interior (i.e.,

d1 ∈ (0, 1)). For any α > 0, the inferred quality of a projector with type t who observes d1 is: (i)

decreasing in t (ii) increasing in p1.

The proof, presented below, follows a similar logic to the graphical argument in Figure 2. Since

a projector thinks interim valuations are less dispersed than they truly are, her perceived demand

curve intersects the true demand curve at a point where the perceived demand curve has a greater

price elasticity. Thus, to explain a market outcome at a higher price, the projector must consider

a demand curve that is shifted outward relative to the initial perceived demand. This outward shift

corresponds to a higher perceived quality. The key difference between this case and the one con-

sidered in the main text is that the observed quantity demanded now results from both variation in

consumers’ tastes and variation in their signals. We therefore make use of results on the “dispersion

43This structure nests the familiar Gaussian structure noted in the main text, but is also more general.
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ordering” of convolutions of log-concave random variables to prove that the perceived and true de-

mand curves continue obey a single-crossing property crucial to the logic depicted in Figure 2 even

when consumers’ have disperse private information.

Proof of Proposition A.1. Fix ω, and consider any p1 such that the quantity demanded in period 1

is interior (i.e., d1 ∈ (0, 1)). We examine how ω̂(t; p1) varies in t and p1. Note that ω̂(t; p1) is the

value of ω̂ that solves D̂1(p1; ω̂|t) = D1(p1;ω), where D̂1(p1; ω̂|t) is type t’s misperceived demand

function: D̂1(p1; ω̂|t) = 1− Ĥ(p; ω̂|t) where Ĥ(·; ω̂|t) is the CDF of V̂ (ω̂|t) ≡ m(ω̂) + Y + T̂ (t).

Hence ω̂(t; p1) is the value of ω̂ that solves L(ω̂; t, p1) ≡ D̂1(p1; ω̂|t)−D1(p1;ω) = 0.

Part 1: The Effect of t on Perceived Quality. By the Implicit Function Theorem (IFT):

∂ω̂(t; p1)

∂t
= −

∂L(ω̂; t, p1)

∂t

(
∂L(ω̂; t, p1)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(t;p1)

. (A.1)

Notice that, for any p1 that generates interior demand and any t, ∂
∂ω̂
L(ω̂; t, p1) =

∂
∂ω̂
D̂1(p1; ω̂|t) >

0 given our mild assumption that demand is increasing in quality (i.e., m is a strictly increasing

function). Thus

sgn

(
∂ω̂(t; p1)

∂t

)
= sgn

(
−
∂L(ω̂; t, p1)

∂t

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (A.2)

Note that

−
∂L(ω̂; t, p1)

∂t
= −

∂

∂t
D̂1(p1; ω̂|t) < 0. (A.3)

This follows from the fact that t′ > t implies that V̂ (ω̂|t′) first-order stochastically dominates V̂ (ω̂|t)

since in this case T̂ (t′) first-order stochastically dominates T̂ (t); accordingly, Ĥ(p; ω̂|t) is decreas-

ing in t and thus D̂1(p; ω̂|t) is increasing in t.
Part 2: The Effect of p on Perceived Quality. Invoking the IFT again, the discussion following

(A.1) implies that

sgn

(
∂ω̂(t; p)

∂p

)
= sgn

(
−
∂L(ω̂; p)

∂p

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (A.4)

Note that

−
∂L(ω̂; p)

∂p
=

∂

∂p
D1(p;ω)−

∂

∂p
D̂1(p; ω̂|t). (A.5)

With downward-sloping demand functions, the previous expression is positive when evaluated at

ω̂(t; p1) iff ∣∣∣∣
∂

∂p
D1(p1;ω)

∣∣∣∣ <
∣∣∣∣
∂

∂p
D̂1(p1; ω̂(t; p1)|t)

∣∣∣∣ ; (A.6)

that is, iff the perceived demand function is locally more price sensitive at the original market out-

come than the true demand function.

Since ω̂(t; p1) is a state in which type t’s perceived demand curve intersects the true demand

curve at the observed market outcome (d1, p1) (i.e., D̂1(p1; ω̂(t; p)|t) = d1 = D1(p1;ω)), a sufficient

condition for Condition (A.6) is that for any arbitrary ω̂, D̂1(·; ω̂|t) crosses D1(·;ω) at most once and

does so from above. That is, there exists at most one price p∗ such that D̂1(p
∗; ω̂|t) = D1(p

∗;ω),

and p∗ is such that D̂1(p
∗; ω̂|t) < D1(p

∗;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω) for all

47



p < p∗. (Note that the demand curves in Figure 2 are drawn, as usual, with p on the y-axis; from

that perspective, the previous condition implies that the perceived demand curve crosses the true one

from below.)

To complete the proof, we prove the sufficient condition above: for any arbitrary ω̂ and t, there

exists at most one price p∗ such that D̂1(p
∗; ω̂|t) = D1(p

∗;ω), and p∗ is such that D̂1(p
∗; ω̂|t) <

D1(p
∗;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω) for all p < p∗. Given that D1(p;ω) = 1 −

H(p; ω̂) and D̂1(p; ω̂|t) = 1 − Ĥ(p; ω̂|t), it suffices to show that Ĥ(p|ω̂; t) crosses H(p|ω) at most

once and does so from below (i.e., there exists at most one price p∗ such that Ĥ(p|ω̂; t) < H(p;ω)

if p < p∗ and Ĥ(p|ω̂; t) > H(p;ω) if p > p∗).

We prove this using the concept of dispersive ordering defined by Shaked (1982) and Shaked

and Shanthikumar (2007). For any arbitrary random variables X and Y with CDFs FX and FY , we

say that X is less dispersed than Y , denoted X ≤disp Y , if F−1
X (b) − F−1

X (a) ≤ F−1
Y (b) − F−1(a)

whenever 0 ≤ a ≤ b ≤ 1. By Theorem 2.1 of Shaked (1982), X ≤disp Y iff FX crosses FY at most

once and does so from below. Thus, it suffices to show that V̂ (ω̂; t) ≤disp V (ω), which is equivalent

to T̂ (t) + Z(ω̂) ≤disp T + Z(ω). Since Z(ω) = m(ω) + Y , the previous condition is equivalent

to T̂ (t) +m(ω̂) + Y ≤disp T +m(ω) + Y , where m(ω̂) and m(ω) are constants given that we are

conditioning on ω and ω̂. As noted in Comment 3.B.2 of Shaked and Shanthikumar (2007), the order

≤disp is location invariant, meaning that T̂ (t) +m(ω̂) + Y ≤disp T +m(ω) + Y ⇔ T̂ (t) + Y ≤disp

T + Y . Since Y has a log-concave density and is independent of T and T̂ (t), Theorem 3.B.8 of

Shaked and Shanthikumar (2007) implies that T̂ (t) + Y ≤disp T + Y if T̂ (t) ≤disp T . Thus, to

complete the proof it suffices to show that T̂ (t) ≤disp T . Again by Theorem 2.1 of Shaked (1982),

this holds so long as F̂ (·|t) crosses F only once and does so from below. This is true by Part 4 of

Observation 1, completing the proof. �

A.2 Heterogeneous Signals Across Periods

In this section, we consider the structure in which each generation of consumers observes a distinct

signal. All consumers in each Generation n observe the same signal realization, which we denote

by sn. We assume that sn is i.i.d. for all n. Furthermore, sn is “quasi-public”: it is observed by

all agents within Generation n, but not by agents in any other generation.44 As in the main text

(and the previous appendix section), we again show that the perceived quality of each agent in each

Generation n ≥ 2 is: (i) negatively related to their taste; and (ii) positively related to the price that

predecessors paid.

Setup. Agents in Generation n attempt to infer the posterior beliefs of agents in period n − 1
from their quantity demanded. If agents are rational, then all agents in each generation hold a

common expectation over ω. Let ω̃n−1 denote this rational expectation among Generation n− 1 for

n ≥ 2. Agents in Generation n can then perfectly extract ω̃n−1 from the observed market coverage

in Generation n− 1 (assuming this value is interior).

To make matters concrete, we consider the familiar Gaussian information structure: ω ∼ N(ω̄0, ρ
2),

44If generations consisted of a single agent, this structure would resemble the canonical sequential herding model

(e.g., Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000).
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and sn ∼ N(ω, η2). Rational updating then takes the form

ω̃n = γnsn + (1− γn)ω̃n−1, where γn =
1

n+ η2/ρ2
. (A.7)

As the updating process in A.7 suggests, a rational Generation n will combine their own signal, sn,

with the inferred posterior belief of Generation n− 1, ω̃n−1, to reach their posterior estimate of ω.

With projection, an agent in Generation n thinks he can perfectly extract the posterior expectation

of ω held by the previous generation, but does so incorrectly. As usual, his incorrect inference will

depend on his taste, t. Denote this (mis)extracted value of ω̃n−1 by ω̂n−1(t). The projector will then

use A.7 to form a posterior estimate of γnsn + (1− γn)ω̂n−1(t). Below, we analyze how projectors’

beliefs evolve within this structure.

We first consider how beliefs evolve within the first few periods. For simplicity, we normalize

ω̄0 = 0. Since Generation 1 does not observe others, their is no scope for mislearning in period 1.

Hence, agents in Generation 1 share a common (rational) estimate of ω equal to ω̃1 = γ1s1. Thus,

an agent buys iff ω̃1 + ti ≥ p1 ⇔ ti ≥ p1 − ω̃1, and hence demand in period 1 is

D1(p1; ω̃1) = 1− F (p1 − ω̃1). (A.8)

Distorted Beliefs in Generation 2. An agent in Generation 2 with taste t thinks that, conditional

on Generation 1 holding a posterior expectation of ω̂, their demand is given by

D̂1(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F

(
p1 − ω̂ − αt

1− α

)
. (A.9)

This agent wrongly infers that the posterior expectation in Generation 1 is the value of ω̂ that solves

D(p1; ω̃1) = D̂(p1, ω̂|t), which we denote by ω̂1(t). Hence,

ω̂1(t) = (1− α)ω̃1 + α(p1 − t). (A.10)

This misperception is identical to the one formed by agents in Generation 2 of the baseline model in

the main text (see Equation 10). Furthermore, given that ω̃1 = γ1s1, the preceding equation implies

that an agent with taste t misinfers the signal to be

ŝ1(t) = (1− α)s1 +
1

γ1
α(p1 − t). (A.11)

An immediate implication of (A.10) and (A.11) is that, under projection, an observer underweights

the true information of the previous generation. Moreover, they wrongly put weight on irrelevant

factors (i.e., the price and their own taste), and this erroneous weight is larger when signals are less

precise relative to the prior (i.e., when γ1 is smaller). There is a straightforward intuition for this.

A projector will, on average, observe a level of demand that deviates from their initial expectations

since they incorrectly predict demand conditional on the signal. They attribute this deviation to the

value of s1. Thus, when a projector anticipates that the signal will have little effect on predecessors’

beliefs (i.e,. γ1 is small), they require a more extreme value of s1 to rationalize the deviation between

the observed demand and their biased predictions.

Now consider demand in Generation 2. An agent with taste t forms an expectation of ω based on

49



s2 and ω̂1(t) equal to E[ω|s2, ω̂1(t)] = γ2s2 + (1− γ2)ω̂1(t). Using the expression for ω̂1(t) above,

the expected valuation of an agent in Generation 2 with taste t is

E[u(ω, t)|s2, ω̂1(t)] = γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
+

(
1− α(1− γ2)

)
t. (A.12)

Let v̂2(t) denote the expected valuation in (A.12). Similar to the approach in the main text, we can

write this perceived valuation in terms of a taste-independent component, denoted by ω̄2, where

ω̄2 ≡ γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
. (A.13)

In the rational model (i.e., α = 0), ω̄2 reduces to ω̃2—the rational expectation of ω given (s1, s2).
Given (A.13), we can write perceived valuations in Generation 2 as v̂2(t) = ω̄2 + β2t, where β2 ≡
1− α(1− γ2).

The Evolution of Beliefs. In fact, the perceived valuations of consumers in all Generations n ≥ 2
can be expressed as v̂n(t) = ω̄n + βnt where ω̄n is independent of tastes. Thus, the dynamics of the

model are described by the evolution of the sequences of (ω̄n) and (βn).
To verify for this claim, suppose that, as in Generation 2, the perceived valuations of agents in

any Generation n > 2 are given by v̂n(t) = ω̄n + βnt. The demand in period n ≥ is then

Dn(pn; ω̄n) ≡ 1− F

(
1

βn

(pn − ω̄n)

)
. (A.14)

A projecting agent in Generation n+1 with taste t thinks that agents in Generation n share a common

expectation of ω, denoted ω̂, and thus have a demand given by

D̂n(pn; ω̂|t) = 1− F̂ (pn − ω̂|t) = 1− F

(
pn − ω̂ − αt

1− α

)
. (A.15)

The agent thus infers that the posterior expectation of Generation n is the value of ω̂ that equates

(A.14) and (A.15), yielding

ω̂n(t) =

(
1− α

βn

)
ω̄n +

(
1−

1− α

βn

)
pn − αt. (A.16)

Thus, the updated expectation of ω for an agent with taste t in Generation n+ 1 is

E[ω|sn+1, ω̂n(t)] = γn+1sn+1 + (1− γn+1)

[(
1− α

βn

)
ω̄n +

(
1−

1− α

βn

)
pn − αt

]
. (A.17)

This agent’s total perceived valuation is v̂n+1(t) = E[ω|sn+1, ω̂n(t)] + t; hence,

v̂n+1(t) = γn+1sn+1 + (1− γn+1)

[(
1− α

βn

)
ω̄n +

(
1−

1− α

βn

)
pn

]

︸ ︷︷ ︸
≡ω̄n+1

+

(
1− α(1− γn+1)

)

︸ ︷︷ ︸
≡βn+1

t.
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This reveals how (βn) and (ω̄n) evolve:

βn+1 = 1− α(1− γn+1), (A.18)

ω̄n+1 = γn+1sn+1 + (1− γn+1)

[(
1− α

βn

)
ω̄n +

(
1−

1− α

βn

)
pn

]
. (A.19)

Thus, for all n ≥ 2, the perceived valuations of consumers in period n are given by v̂n(t) =
ω̄n + βnt, where βn and ω̄n and follow the processes in (A.18) and (A.19), respectively, starting

from the initial conditions of β1 = 1 and ω̄1 = ω̃1 = γ1s1. Furthermore, the quantity demanded in

each period n is given by dn = Dn(pn; ω̄n) as in (A.14).45

There are a few features of this process worth noting. First, since γn is monotonically decreasing

in n with limn→∞ γn = 0, it follows that βn monotonically decreases from 1 and converges to 1−α.

Thus, in every period, a consumer’s perceived valuation puts too little (yet positive) weight on his

own taste. In the limit, this diminished weight is equal to 1 − α. This is identical to our results

in both the static and dynamic cases of our baseline model in the main text. See, for instance, the

discussion preceding Proposition 2.

Additionally, since βn ∈ (1 − α, 1) for all n, the term (1 − α)/βn that appears in the transition

equation for (ω̄n) must take a value in (0, 1). Thus, the term in square brackets in Equation (A.19)

is a convex combination of ω̄n and pn, implying that the aggregate biased belief in each period n is

strictly increasing in the price faced by the previous generation. Furthermore, the weight on ω̄n (i.e.,

(1− α)/βn) converges to 1 as n → ∞, and thus the effect of the preceding price on current beliefs

diminishes over time.

Finally, we can use Equation (A.19) to write the beliefs of the current generation in terms of

the entire history of signals and prices. Toward that end, let λn ≡ (1 − α)/βn ∈ (0, 1). For all

k = 1, 2, . . . and all n ≥ k + 2, define ank =
∏n−1

j=k+1 λj . We then have:

ω̄n = γnsn + (1− α)γn

(
1

βn−1

sn−1 +
n−2∑

k=1

ank
βk

sk

)

+ αγn

(
1

βn−1

pn−1 +
n−2∑

k=2

ank
βk

pk +
an1
γ1

p1

)
. (A.20)

The key implications of this expression are that aggregate biased beliefs put too little weight on

predecessors’ signal values and instead erroneously put positive weight on all past prices.

The next result summarizes some of the points above, emphasizing that the comparative statics

in our baseline model of the main text continue to hold within this richer signal structure.

Proposition A.2 (Comparative Statics in the Quasi-Public-Signal Model). Consider the signal struc-

ture of Section A.2. Beliefs and valuations in each period n follow the process described in (A.19)

so long as demand remains interior (i.e., dk ∈ (0, 1) for all k < n). In this case, the perceived

quality of each agent in each period n ≥ 2 is decreasing in their private value and increasing in the

price charged in each preceding period.

45Note that the transition equations in (A.18) and (A.19) characterize the process in the case where the quantity

demanded in each period prior to n+ 1 is interior (i.e., dk ∈ (0, 1) for k ≤ n).
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B Inference from Price

In this appendix, we consider two ways in which projection can distort inferences from prices. The

first considers traders’ inferences about the expected return of a risky asset. The second considers

consumers’ inferences about the quality of a good when they observe the price a monopolist offers

to fully-informed consumers.

B.1 Inference from Price and Portfolio Choice

In this section, we examine the effect of projection in a canonical portfolio-choice problem in which

agents learn about the fundamental value of a risky asset from its equilibrium price. We consider a

variant of the competitive rational-expectations equilibrium in a linear-normal model. Traders differ

in their degree of risk tolerance, and they project their tolerance onto others. Traders’ erroneous per-

ceptions of others’ risk attitudes lead them to misinfer from the risky asset’s equilibrium price. More

specifically, projection again leads to a negative relationship between an individual’s idiosyncratic

taste and her perception of the common value: traders who are more risk tolerant underestimate

the expected return of the risky asset, while those who are less risk tolerant overestimate it. These

misperceptions mirror our results obtained in the case where consumers learn from the quantity

demanded (Proposition 1), and they additionally imply inefficient allocations as in Proposition 8.

We also show that projection reduces the equilibrium price of the risky asset. This is because

the demand of more risk-tolerant agents is more sensitive to their beliefs about the return, and thus

the pessimistic inferences formed by these types outweigh the the optimistic inferences formed by

less-risk-tolerant types. Thus, on aggregate, projection dampens the equilibrium price.

B.1.1 Setup

There are two periods, n = 1, 2. In period 1, traders divide their wealth between two assets. One

asset is riskless, and we normalize its price and gross rate of return to 1. The other asset is risky and

yields a payoff of ω ∼ N(ω0, τ
−1
0 ) in period 2. The risky asset is in fixed supply Q, and let p denote

its price in period 1.

Consider a continuum of traders with unit measure. As in the main text, a fraction λ ∈ (0, 1)
of agents are informed: each of these agents observes a common signal s = ω + ǫ, where ǫ ∼
N(0, τ−1

s ). The remaining fraction of agents (measure 1 − λ) have no private information. These

agents attempt to infer s from p. Put differently, each agent i receives a private signal si ∈ {s,∅}
and λ = Pr[si = s].

Preferences and Misperceptions. Each agent has constant absolute risk aversion (CARA) pref-

erences over terminal wealth. Agent i’s coefficient of absolute risk aversion is θi. It is well-known

that, under these preferences, agent i with information set Ii will invest xi in the risky asset where

xi =
E[ω|Ii]− p

θiVar[ω|Ii]
; (B.1)

for instance, see Grossman (1976). As it will simplify the exposition below, let ti = 1/θi denote

the reciprocal of an agent’s measure of risk aversion (i.e., an agent with lower risk aversion has a

stronger “tolerance” for risk, captured by ti). Agents differ in their taste for risk: as in the main
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text, suppose ti is i.i.d. across agents according to a CDF F with positive support, and suppose ti is

independent of si. Furthermore, Agent i thinks that t ∼ F̂ (·|ti) as specified by (2).

Individual and Aggregate Demand. As in the main text, suppose that informed agents base their

demand on the true signal. Uninformed agents, however, attempt to infer the signal from the market

price. The solution below will involve uninformed agents misinferring the signal as a function of

their type. As such, let ŝ(t) denote the perception of the signal formed by agents with type t. With

this (supposed) knowledge of the signal, an agent with information Ii = {ŝ(ti)} will form beliefs

such that

E[ω|Ii] = ω0 +
τs

τs + τ0
(ŝ(ti)− ω0) (B.2)

Var[ω|Ii] = (τs + τ0)
−1. (B.3)

From (B.1), this implies that an individual’s demand as a function of (i) the price, (ii) her perceived

signal, and (iii) her taste for risk is

x(p; ŝ(ti), ti) = ti

(
E
[
ω
∣∣Ii = {ŝ(ti)}

]
− p

Var
[
ω
∣∣Ii = {ŝ(ti)}

]
)

= ti
(
τ0ω0 + τsŝ(ti)− (τ0 + τs)p

)
.46 (B.4)

Conditional on uninformed agents’ perceived signals, which will be determined endogenously in

equilibrium, the aggregate demand for the risky asset is then

D(p; s) = λ

∫

T

x(p; s, t)f(t)dt

︸ ︷︷ ︸
Demand from Informed Agents

+(1− λ)

∫

T

x(p; ŝ(t), t)f(t)dt

︸ ︷︷ ︸
Demand from Uninformed Agents

. (B.5)

B.1.2 (Ir)rational Expectations Equilibrium

We now analyze a variant of the classical competitive rational-expectations equilibrium. Follow-

ing our NBE solution concept, we assume that each uninformed agent believes the market is in a

rational-expectations equilibrium, but wrongly thinks the equilibrium is with respect to her mis-

specified model. It is worth noting that in the rational benchmark of this model, uninformed agents

correctly infer s from p, which is the standard result of the rational-expectations equilibrium in this

simple setup without shocks. Thus, under our solution concept with projection, each misspecified

agent believes that: (i) all others share her perception of the distribution of types, (ii) all uninformed

agents properly extract the signal s from p with respect to this perception and use that extracted

signal to form their own demand, and (iii) the price clears the market.

Biased Extracted Signals. Given that a projecting trader i thinks that all others correctly extract

the true signal, her perceived aggregate demand function in equilibrium conditional on signal ŝ is

D̂(p; ŝ|ti) =

∫

T

x(p; ŝ, t)f̂(t|ti)dt. (B.6)

Her perceived market-clearing condition is then D̂(p, ŝ|ti) = Q. As such, trader i’s inferred signal

46We put no constraints on traders’ positions or prices. Negative values of x represent shares sold.
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given p can be obtained by inverting this condition. From (B.4), note that

∫

T

x(p; ŝ, t)f̂(t|ti)dt =

(
τ0ω0 + τsŝ− (τ0 + τs)p

)
Ê [T |ti] . (B.7)

This implies that trader i believes the relationship between the equilibrium price and s is given by

p̂(s|ti) ≡
τs

τs + τ0
s+

1

τs + τ0

(
τ0ω0 −

Q

Ê [T |ti]

)
. (B.8)

An uninformed trader i’s perceived signal in equilibrium is the value ŝ(ti) that equates the preceding

function with the observed price; i.e., p̂(ŝ(ti)|ti) = p. Hence, fixing p, trader i’s perceived signal is

ŝ(ti) =
τs + τ0

τs
p−

1

τs

(
τ0ω0 −

Q

Ê [T |ti]

)
. (B.9)

Notice that for α > 0, Ê[T |ti] is increasing in ti since those who are more tolerant of risk believe

that the population distribution of t is stochastically higher. Thus, ŝ(ti) is decreasing in ti.

Proposition B.1. Consider the setup above. For any α > 0, an uninformed trader’s expectation of

ω conditional on p is increasing in her level of risk aversion (i.e., decreasing in her risk tolerance).

This mirrors the negative relationship between perceived quality and taste obtained in the main

text (e.g., Propositions 1 and 8). Since an uninformed trader’s individual demand is linearly increas-

ing in her expectation of ω, this result implies that those traders with relatively high risk aversion

will overinvest in the risky asset while those with low risk aversion will underinvest.

The Effect of Projection on the Market Price. The equilibrium price equates the true aggregate

demand with supply: from (B.5), p solves

Q = λ

∫

T

x(p; s, t)f(t)dt+ (1− λ)

∫

T

x(p, ŝ(t), t)f(t)dt. (B.10)

Using the expressions above for the individual demand of informed and uninformed agents, we thus

have

Q =

(
τ0ω0 + λτss− (τ0 + τs)p

)
E [T ] + (1− λ)τs

∫

T

tŝ(t)f(t)dt, (B.11)

where E[·] is w.r.t. the true distribution, F . Notice that (B.9) implies that

τs

∫

T

tŝ(t)f(t)dt =

(
(τs + τ0)p− τ0ω0

)
E [T ] +Q

∫

T

(
t

Ê[T |t]

)
f(t)dt. (B.12)

Let B(α) ≡
∫
T

(
t

Ê[T |t]

)
f(t)dt. Notice that B(α) is a constant that depends on the degree of projec-

tion. In the rational benchmark with α = 0, we have B(α = 0) = 1. By contrast, if α ∈ (0, 1), then

B(α) < 1. This follows from the fact that z(t) = t/Ê[T |t] is strictly concave, and thus Jensen’s

inequality implies that B(α) = E[z(T )] < z(E[T ]) = 1.
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Substituting (B.12) into the equilibrium condition in (B.11) yields

Q = λ

(
τ0ω0 + τss− (τ0 + τs)p

)
E [T ] + (1− λ)B(α)Q. (B.13)

As expected, in the rational benchmark we have α = 0 ⇒ B(α) = 1, and the previous condition

reduces to the rational market-clearing condition

Q =

(
τ0ω0 + τss− (τ0 + τs)p

)
E [T ] , (B.14)

which simply means that the aggregate demand of fully-informed agents equals the supply.

With projection, the market price is given by

p =

(
τs

τs + τ0

)
s+

(
τ0

τs + τ0

)
ω0 −

[
1− (1− λ)B(α)

λ

]

︸ ︷︷ ︸
Distortion from Projection

Q

(τs + τ0)E [T ]
. (B.15)

This pricing function is identical to the standard one except there is a price “distortion” factor equal

to

χ(α) ≡

[
1− (1− λ)B(α)

λ

]
. (B.16)

In the rational benchmark, we have χ(0) = 1. But since B(α) < 1 for α ∈ (0, 1), we have χ(α) > 1
under projection. As evident from (B.15), the effect of projection on the equilibrium price is similar

to the effect of an increased supply of the risky asset. Projection therefore puts downward pressure

on the price.

The intuition from why projection dampens the price stems from the fact that more risk-tolerant

traders are the ones who form more pessimistic beliefs. These traders’ individual demands are more

sensitive to their expectations over the risky asset’s return. Thus, relative to traders who are less

risk tolerant, the misperceptions of the risk-tolerant traders have a stronger effect on the aggregate

demand. And since these miseperceptions tend to be pessimistic, they reduce the equilibrium price.

This setting is one in which the price would efficiently transmit traders’ private information

under rational inference. Projection clearly induces inefficient transmission. In turn, this leads to

inefficient behavior among investors. The risk-tolerant investors hold too little of the risky asset,

and the risk-averse hold too much. While this effect of projection harms uninformed traders, it

helps the informed: they face a lower price for the risky asset. As discussed in Grossman (1976),

models of competitive markets can sometimes be “over-informationally” efficient—when the price

fully reveals private information, the traders who were initially informed earn no return on their

information. In this example, we show that even though the price would fully reveal the signal to

rational traders, projection generates a clear benefit to those who have private information.

B.2 Inference from a Monopolist’s Price

We now argue that our basic comparative statics emerge even in the simple case where an observer

infers ω from the price a monopolist offers to fully-informed consumers. Namely, an observer with

a stronger taste infers a lower quality. Intuitively, high types overestimate the price a monopolist
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would charge conditional on any level of quality; they consequently underestimate ω conditional on

the observed price. The opposite logic holds for low types.

Suppose a projecting observer with taste t thinks that that p maximizes p[1− F̂ (p− ω̂|t)] where

ω̂ is the expected quality among informed consumers. Hence, this agent thinks p is the solution to

p =
1− F̂ (p− ω̂|t)

f̂(p− ω̂|t)
≡ 1/ĥ(p− ω̂|t), (B.17)

where ĥ(x|t) denotes the perceived hazard rate of a projector with taste t. From (2), we have

ĥ(x|t) =
1

1− α

f
(
x−αt
1−α

)

1− F
(
x−αt
1−α

) =
1

1− α
h

(
x− αt

1− α

)
, (B.18)

where h is the hazard rate associated with F . Since we assume h is increasing, ĥ(x|t) is also

increasing on type t’s perceived support for all t ∈ T . Furthermore, for a fixed x, (B.18) reveals that

ĥ(x|t) is decreasing in t, and hence perceived distributions exhibit strict Hazard-Rate Dominance

(HRD) with respect to t; that is, for any t > t′ and any x interior to both T (t) and T (t′), we have

ĥ(x|t) < ĥ(x|t′).
Let ω̂(t) be a projector’s estimated value of ω. This is the value of ω̂ that solves (B.17), and thus

ω̂(t) = p− ĥ−1(1/p|t). (B.19)

Given that the family of perceived distributions satisfies HRD, ĥ−1(x|t) > ĥ−1(x|t′) ⇔ t > t′, and

hence ω̂(t) is decreasing in t—higher types form more pessimistic estimates of ω.

C Proofs

Proof of Proposition 1. We prove this result for a more general utility structure than assumed in

the main text. Here, we assume that each agent’s valuation for the good is given by a utility func-

tion u(ω, t) that is strictly increasing and differentiable with respect to both variables and satisfies
∂2

∂ω∂t
u(ω, t) > 0 for all t ∈ T and ω ∈ R. For simplicity, we also assume u is linear in ω.47

Our model of projection easily accommodates such a generalization: An agent with private value t
believes the utility of any agent with taste t′ is û(ω, t′|t) = αu(ω, t) + (1− α)u(ω, t′). This misper-

ceived utility function then pins down type t’s perceived distribution of valuations in each state ω.

We begin by proving the following lemma.

Lemma C.1. Consider any u satisfying the assumptions above, and suppose that (p, s) admits

interior demand. For any λ > 0 and α ∈ [0, 1), there exists a unique steady-state equilibrium; in

that equilibrium, the quantity demanded is equal to the quantity demanded in the full-information

benchmark (i.e., λ = 1).

47The intuitions from the proof generalize beyond this risk-neutral case. However, we assume risk neutrality so that,

as in the main text, each agent’s mean belief, ω̂, is a sufficient statistic for their behavior irrespective of further details on

their posterior distribution over ω. Thus, as in the main text, uninformed agents here attempt to extract the mean belief

of informed agents, ω̄(s). The proof below holds without the linearity assumption when informed agents are perfectly

informed. And an analogous argument would hold beyond the linear case so long as we impose a similar structure on

U(s, t)—an agent’s expected utility conditional on s and t.
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Step 1: Inference rules. We first derive an uninformed agent’s inference from the observed

quantity demanded, d. Since we focus on symmetric strategies, it is sufficient to derive the inference

rule of an arbitrary agent with taste t. Let D̂(p; ω̂|t) denote this agent’s conjectured demand among

a population of agents who believe the expected value of ω is ω̂;

D̂(p; ω̂|t) = Pr

[
αu(ω̂; t) + (1− α)u(ω̂;T ) ≥ p

]
= Pr

[
u(ω̂;T ) ≥

p− αu(ω̂; t)

1− α

]

= Pr

[
T ≥ t∗

(
p− αu(ω̂; t)

1− α
; ω̂

)]
= 1− F

(
t∗
(
p− αu(ω̂; t)

1− α
; ω̂

))
, (C.1)

where t∗(p; ω̂) is the inverse of u(ω̂; t) w.r.t. t evaluated at ω̂ and p. That is; t∗(p; ω̂) is such that

u(ω̂; t∗(p; ω̂)) = p for all p ≥ 0 and ω̂ ∈ R. Note that t∗ is well defined given our assumptions on

u. Furthermore, let t∗1(p; ω̂) and t∗2(p; ω̂) denote the partial derivative of t∗ w.r.t. the first and second

argument, respectively; our assumptions on u also imply that for all p ≥ 0 and ω̂ ∈ R, we have

t∗1(p; ω̂) > 0 and t∗2(p; ω̂) < 0.

An uninformed agent with taste t’s inference rule is then given by the function ω̂(·|t, p) : [0, 1] →
R such that for all d ∈ (0, 1), ω̂(d|t, p) is equal to the unique value of ω̂ that solves

d = 1− F

(
t∗
(
p− αu(ω̂; t)

1− α
; ω̂

))
, (C.2)

and ω̂(d|t, p) represents the agent’s perceived expected value of ω. An uninformed agent with taste

t buys if d is such that u (ω̂(d|t, p), t) ≥ p. The steady-state condition for the static equilibrium is

then:

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] . (C.3)

Under our solution concept, a projecting agent with taste t believes that all agents (i) follow

the same inference rule as him; (2) form an expectation of ω equal to ω̂(d|t, p); and (3) take their

expected-utility-maximizing action given this expectation. He therefore believes that, in equilib-

rium, his inference rule allows him to perfectly extract the signal of the informed agents. To see

this, note that an agent with taste t thinks that demand among the informed is

D̂(p; ω̄(s)|t) = 1− F

(
t∗
(
p− αu(ω̄(s); t)

1− α
; ω̄(s)

))
, (C.4)

and thinks that

Pr [u (ω̂(d|T, p), T ) ≥ p] = Pr [u (ω̂(d|t, p), T ) ≥ p]

= 1− F

(
t∗
(
p− αu(ω̂(d|t, p); t)

1− α
; ω̂(d|t, p)

))
= d (C.5)

where the third equality follows from the fact that, by definition, ω̂(d|t, p) is the value of ω̂ that

solves (C.2). Thus, substituting (C.4) and (C.5) into (C.3) reveals that the agent believes that, in
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equilibrium, the aggregate quantity demanded is such that

d = λ

(
1− F

(
t∗
(
p− αu(ω̄(s); ti)

1− α
; ω̄(s)

)))
+ (1− λ)d

⇒ d = 1− F

(
t∗
(
p− αu(ω̄(s); ti)

1− α
; ω̄(s)

))
. (C.6)

Within this agent’s model, both (C.5) and (C.6) must hold, and hence the agent believes

1− F

(
t∗
(
p− αu(ω̄(s); t)

1− α
; ω̄(s)

))
= 1− F

(
t∗
(
p− αu(ω̂(d|t, p); ti)

1− α
; ω̂(d|t, p)

))
, (C.7)

which implies that ω̂(d|t, p) = ω̄(s) since ω̂(d|t, p) is the unique value of ω̂ that solves (C.2).

By this logic, this inference rule does perfectly reveal the informed agents’ private informa-

tion when all agents are rational (i.e., α = 0), since in this case (C.7) reduces to t∗(p; ω̄(s)) =
t∗(p; ω̂(d|t, p)) and thus in reality we have ω̂(d|t, p) = ω̄(s) since t∗ is strictly decreasing in ω̂.

Step 2: ω̂(d|t, p) is strictly decreasing in t. Next, we show that ω̂(d|t, p) is strictly decreasing in

t. Recall that for any fixed d ∈ (0, 1), Condition (C.2) implies that ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− F−1(1− d) = 0. (C.8)

By the implicit function theorem (IFT), we have

∂ω̂(d|t, p)

∂t
= −

(
∂L(ω̂|t, p)

∂t

)(
∂L(ω̂|t, p)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (C.9)

Notice that
∂L(ω̂|t, p)

∂t
= −t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂; t)

∂t
< 0, (C.10)

and

∂L(ω̂|t, p)

∂ω̂
= −t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂; t)

∂t
+ t∗2

(
p− αu(ω̂; t)

1− α
; ω̂

)
< 0, (C.11)

and hence (C.9) implies that
∂ω̂(d|t,p)

∂t
< 0.

Step 3: Total perceived valuations, u(ω̂(d|t, p), t), are increasing in t. Although perceived

quality is decreasing in t (Step 2), total perceived valuations remain increasing in t. Notice that

∂u(ω̂(d|t, p), t)

∂t
=

∂u(ω̂(d|t, p); t)

∂ω̂

∂ω̂(d|t, p)

∂t
+

∂u(ω̂(d|t, p); t)

∂t
, (C.12)

and thus
∂u(ω̂(d|t,p),t)

∂t
> 0 iff

∂ω̂(d|t, p)

∂t
> −

(
∂u(ω̂; t)

∂t

)(
∂u(ω̂; t)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (C.13)
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Substituting (C.10) and (C.11) into (C.9) implies that

∂ω̂(d|t, p)

∂t
= −

(
∂u(ω̂; t)

∂t

)(
∂u(ω̂; t)

∂ω̂
+K

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

, (C.14)

where

K = −

(
1− α

α

)
t∗2

(
p− αu(ω̂; t)

1− α
; ω̂

)

︸ ︷︷ ︸
<0

(
t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

))−1

︸ ︷︷ ︸
>0

∣∣∣∣
ω̂=ω̂(d|t,p)

, (C.15)

and hence (C.13) holds given that K ≥ 0. Note that K is strictly positive if α > 0 and hence

equilibrium total perceived valuations are strictly increasing in t under projection.

Step 4: The fraction of uninformed agents who buy follows a cutoff rule and is equal to frac-

tion of informed agents who buy. The equilibrium condition in (C.3) depends on the fraction of

uninformed agents who buy in the steady state, Pr [u (ω̂(d|T, p), T ) ≥ p]. Since Step 3 ensures

that u (ω̂(d|t, p); t) is strictly increasing in t, there must exist a threshold value t̂(d) such that, in

equilibrium, types with with t ≥ t̂(d) buy and those with t < t̂(d) do not. That is, there is a well-

defined “marginal uninformed type”, t̂(d), that naturally separates the type space into buyers and

non-buyers.

We now show that, for any value of d ∈ (0, 1), it must be that t̂(d) = F−1(1 − d). That is, the

marginal uninformed type is such that the fraction of uninformed agents who buy is equal to d. To

see this, the inference of an agent of any type t, ω̂(d|t, p), must satisfy

u

(
ω̂(d|t, p); t∗

(
p− αu(ω̂(d|t, p), t)

1− α
; ω̂(d|t, p)

))
=

p− αu(ω̂(d|t, p), t)

1− α
; (C.16)

this follows from the fact that, by definition, t∗(ũ; ω̂(d|t, p)) is the value of t such that u(ω̂(d|t, p), t) =
ũ. Furthermore, recall that for all t, the inference rule ω̂(d|t, p) is such that (C.8) holds as an identity;

substituting this identity into (C.16) and rearranging implies that

p = αu(ω̂(d|t, p); t) + (1− α)u
(
ω̂(d|t, p);F−1(1− d)

)
. (C.17)

Given that the condition above must hold for all t ∈ T , it must hold for type t̂(d) ≡ F−1(1 − d)
whose private value lies at the (1−d)-percentile in the taste distribution. Condition (C.17) evaluated

at t̂(d) = F−1(1− d) implies

p = αu
(
ω̂(d|t̂(d), p);F−1(1− d)

)
+ (1− α)u

(
ω̂(d|t̂(d), p);F−1(1− d)

)

= u
(
ω̂(d|t̂(d), p); t̂(d)

)
. (C.18)

Thus, an agent with type t̂(d) = F−1(1− d) forms an inference that leaves him indifferent between

buying or not. By Step 3, above, we know that an agent with t > t̂(d) must form an inference

such that he has a strict preference to buy, while one with t < t̂(d) must form an inference such

that he has a strict preference to not buy. Thus t̂(d) represents the marginal uninformed type, and

the fraction of uninformed agents who buy is thus Pr [u (ω̂(d|T, p), T ) ≥ p] = 1 − F
(
t̂(d)

)
=

1− F (F−1(1− d)) = d.
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Step 5: The total fraction of agents who buy in equilibrium is equal to the fraction of informed

agents who buy. Recall from (C.3) that, in equilibrium, the aggregate quantity demanded must

satisfy

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] . (C.19)

From Step 4, we know that Pr [u (ω̂(d|T, p), T ) ≥ p] = d, and hence the equilibrium condition

reduces to

d = λDI(p; ω̄(s)) + (1− λ)d ⇒ d = DI(p; ω̄(s)). (C.20)

This completes the proof of the lemma. We now establish each part of Proposition 1.

Part 1. Let ω̂(t) denote the steady-state inference of an uninformed agent who has taste t; that

is, ω̂(t) ≡ ω̂(d∗|t, p), where d∗ ≡ DI(p; ω̄(s)) is the quantity demanded in equilibrium. The fact

that ω̂(t) is strictly decreasing in t is established in Step 2 in the proof of Lemma C.1.

Recall from Step 4 of Lemma C.1 that the marginal uninformed type is t̂(d) = F−1(1 − d).
Since d = DI(p; ω̄(s)) = [1− F (t∗(p; ω̄(s)))] in equilibrium, we therefore have t̂(d) = t∗(p; ω̄(s))
in equilibrium. That is, the marginal uninformed type is equal to the marginal informed type. This

further implies that the an uninformed agent with t = t∗(p; ω̄(s)) is the unique uninformed type who

correctly estimates the state: substituting t̂(d) = t∗(p; ω̄(s)) into (C.18) implies that this type forms

an inference that leaves him indifferent between buying or not, which means that he must form the

same expectation as the informed agent who is truly indifferent; hence, ω̂(d|t∗(p; ω̄(s)), p) = ω̄(s)
at the equilibrium value of d. Since ω̂(t) is strictly decreasing in t, this implies that uninformed

agents with t > t∗(p; ω̄(s)) underestimate the state, while those with t < t∗(p; ω̄(s)) overestimate

the state.

Part 2. We know argue that ω̂(t) is increasing in p for each t ∈ T . Condition (C.2) implies that

ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− F−1(1− d) = 0. (C.21)

In the steady-state, d = DI(p; ω̄(s)) = 1− F (t∗(p; ω̄(s))) and hence F−1(1− d) = t∗(p; ω̄(s)); the

preceding condition implies that ω̂(t) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− t∗(p; ω̄(s)) = 0. (C.22)

The IFT then implies

∂ω̂(t)

∂p
= −

(
∂L(ω̂|t, p)

∂p

)(
∂L(ω̂|t, p)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(t)

, (C.23)

and (C.11) shows that
∂L(ω̂|t,p)

∂ω̂
< 0. Hence,

∂ω̂(t)
∂p

> 0 iff
∂L(ω̂|t,p)

∂p

∣∣
ω̂=ω̂(t)

> 0. Notice that

∂L(ω̂|t, p)

∂p
= t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

)(
1

1− α

)
− t∗1(p; ω̄(s)). (C.24)

We first show that (C.24) is positive at the margin; i.e., for type t = t∗(p; ω̄(s)). In this case,

ω̂(t) = ω̄(s) and thus u(ω̂, t) = u(ω̄(s), t) = p, implying that t∗1

(
p−αu(ω̂;t)

1−α
; ω̂
)

= t∗1(p; ω̄(s)).

Hence, (C.24) is positive if and only if α > 0. To see why this condition must hold more generally,
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let ω̂(t|p) denote the equilibrium perception of an agent with taste t facing price p, and consider p0
and p1 > p0. Let t∗0 ≡ t∗(p0; ω̄(s)). The preceding argument establishes that ω̂(t∗0|p1) > ω̂(t∗0|p0).
Furthermore, from Part 1, we know that ω̂(t|p) is strictly decreasing in t for each p ∈ {p0, p1}. Since

ω̂(t∗0|p1) > ω̂(t∗0|p0), we must have ω̂(t|p1) > ω̂(t|p0) for all t if ω̂(·|p0) and ω̂(·|p1) do not cross;

that is, if there exists no t̃ ∈ T such that ω̂(t̃|p1) = ω̂(t̃|p0). Toward a contradiction, suppose such

a t̃ exists, and let ω̃ = ω̂(t̃|p1) = ω̂(t̃|p0). By definition, ω̃ must rationalize the observed levels of

demand at prices p0 and p1. But this contradicts the fact that the agent must infer distinct estimates

of ω from these different levels of demand. Moreover, it is immediate that (C.24) is strictly positive,

as desired, for the functional form for u considered in the main text whenever α > 0 since in this

case t∗1 is a constant. �

Proof of Proposition 2. We prove this result for the more general class of utility functions intro-

duced at the beginning of the proof of Proposition 1 (i.e.,u(ω, t) is strictly increasing and differn-

tiable w.r.t. both variables, satisfies ∂2

∂ω∂t
u(ω, t) > 0, and is linear in ω). Thus, the results of the

generalized version of Proposition 1 apply.

The random variable describing valuations of the uninformed agents in the rational steady-state

equilibrium is v(T ) ≡ u(ω̄(s), T ). Under projection, this random variable is v̂(T ) ≡ u(ω̂(T ), T ).
We argue that v̂(·) is a clockwise rotation of v(·). First, note that v̂(t∗) = u(ω̂(t∗), t∗) = u(ω̄(s), t∗) =
v(t∗), which follows from the proof of Part 1 of Proposition 1 where we show that ω̂(t∗) = ω̄(s).
Thus, v and v̂ intersect at t∗. Next, for t > t∗, v̂(t) = u(ω̂(t), t) < u(ω̄(s), t) = v(t) since

ω̂(t) < ω̄(s) for t > t∗ given that ω̂(t) is strictly decreasing in t (as shown in Part 1 of Propo-

sition 1). Similarly, for t < t∗, v̂(t) = u(ω̂(t), t) > u(ω̄(s), t) = v(t) since ω̂(t) > ω̄(s) for

t < t∗, which again follows from ω̂(t) being strictly decreasing in t. Thus, v̂ is clockwise rotation

of v. Since v and v̂ are both strictly increasing functions, this rotation property implies that v̂(T )
is less disperse than v(T ) in the sense of the dispersion order defined by Shaked and Shanthiku-

mar (2007); i.e., v̂(T ) ≤disp v(T ) (see the end of the proof of Proposition A.1 in Appendix A.1

for the definition of this order). Thus, by Theorem 3.B.16 of Shaked and Shanthikumar (2007),

Var
(
v̂(T )

)
< Var

(
v(T )

)
. �

Proof of Lemma 1. We will prove the claim by induction on n = 2, . . . , N . As argued in the main

text preceding Equation (11), ω̂2(t) = ω̄2−αt for some ω̄2 independent of t. This establishes the base

case. Now suppose that in period n, ω̂n(t) = ω̄n−αt. The marginal uninformed type in period n has

taste t̂n such that ω̂n(t̂n)+ t̂n = pn ⇒ t̂n = (pn−ω̄n)/(1−α) and thus aggregate demand in period n
is dn = λ

[
1−F (pn− ω̄(s))

]
+(1−λ)

[
1− F

(
pn−ω̄n

1−α

)]
. An observer in generation n+1 then forms

a perception of ω equal to ω̂n+1(t) such that dn = 1− F̂ (pn − ω̂n+1(t)) = 1− F (pn−ω̂n+1(t)−αt

1−α
) ⇒

ω̂n+1(t) = [pn − (1− α)F−1(1− dn)]− αt = ω̄n+1 − αt, where ω̄n+1 = pn − (1− α)F−1(1− dn)
is independent of t. �

Proof of Proposition 3. Part 1: Initial Overreaction. We will focus on the case with p̃ < p; the

case with p̃ > p is analogous and thus omitted.

Step 1: Quantity demanded is constant prior to the price change. Suppose n∗ ≥ 2. For ease of

exposition, let dI ≡ DI(p; ω̄(s)) and d̃I ≡ DI(p̃; ω̄(s)) denote the fraction of informed agents who

buy at p and p̃, respectively. In period 1, d1 = DI(p; ω̄(s)) = dI . The aggregate biased belief in

period 2 is ω̄2 = (1− α)ω̄(s) + αp, and Equation (11) then implies that the fraction of uninformed

agents who buy in period 2 is DU(p; ω̄2) = dI . Thus, the overall fraction of agents who buy in

period 2 is d2 = dI . Equation (14) then implies that ω̄3 = ω̄2. Hence, if n∗ ≥ 3, then d3 = d2 = dI .
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It is straightforward that this logic giving rise to a constant aggregate biased belief and quantity

demanded will continue until the first period with the new price, p̃.

Step 2: Quantity demanded increases beyond the rational benchmark when the price drops.

Since the quantity demanded is constant prior to the price change, we can (without loss of generality)

assume from now on that n∗ = 1. That is, p1 = p and pn = p̃ for all n ≥ 2. In all periods n ≥ 2,

the fraction of informed agents who buy is d̃I . By contrast, in period 2, the fraction of uninformed

agents who buy is d̃U2 ≡ DU(p̃; ω̄2) = 1 − F
(
p̃−ω̄2

1−α

)
. Importantly, d̃U2 > d̃I . To see this, note that

ω̄2 = (1− α)ω̄(s) + αp and hence

d̃U2 = 1− F

(
p̃− (1− α)ω̄(s)− αp

1− α

)

= 1− F

(
p̃− ω̄(s)−

α

1− α
(p− p̃)

)
> 1− F (p̃− ω̄(s)) = d̃I , (C.25)

where the inequality follows from p − p̃ > 0. Thus, the total quantity demanded in period 2 is

d2 = λd̃I + (1− λ)d̃U2 , which exceeds the rational benchmark of d̃I .

Step 3: Quantity demanded remains above the rational benchmark in all subsequent periods.

We now consider the path of d̃Un ≡ DU(p̃; ω̄n) = 1 − F
(
p̃−ω̄n

1−α

)
for n > 2 starting from the initial

condition of d̃U2 = 1 − F
(
p̃−ω̄2

1−α

)
. From the law of motion in Equation (14), we must have that for

all n ≥ 2,

d̃Un+1 = DU(p̃; ω̄n+1) = λd̃I + (1− λ)d̃Un . (C.26)

Thus, if d̃Un > d̃I , then d̃Un+1 > d̃I . Since we start from the base case of d̃U2 > d̃I , induction on n

implies that d̃Un > d̃I for all n ≥ 2. Thus, the aggregate quantity demanded in any period n ≥ 2 is

dn = λd̃I + (1− λ)d̃Un > d̃I , and dn therefore exceeds the rational benchmark.

Part 2. We now show that the dn converges to the rational benchmark level of d̃I as n → ∞.

Toward this end, we first show that for all k ≥ 1,

d̃Uk+2 =
[
1− (1− λ)k

]
d̃I + (1− λ)kd̃U2 . (C.27)

We will show by induction that in each period k+2, we have d̃Uk+2 = ak+2d̃
I + bk+2d̃

U
2 , and that the

coefficients ak+2 and bk+2 satisfy ak+2 + bk+2 = 1 and bk+2 = (1 − λ)k. The base case (k = 1) is

immediate from (C.26), since d̃U3 = λd̃I + (1 − λ)d̃U2 For the induction step, suppose the claim is

true for k > 1. Thus, d̃Uk+2 = ak+2d̃
I + bk+2d̃

U
2 . From (C.26), this implies that

d̃Uk+3 = λd̃I + (1− λ)[ak+2D
I + bk+2d̃

U
2 ] = [λ+ (1− λ)ak+2]︸ ︷︷ ︸

≡ak+3

d̃I + (1− λ)bk+2︸ ︷︷ ︸
≡bk+3

d̃U2 . (C.28)

It is then immediate that bk+3 = (1 − λ)k+1 as required given the induction assumption of bk+2 =
(1− λ)k. To show that ak+3 + bk+3 = 1, note that ak+2 + bk+2 = 1 implies

ak+3 + bk+3 = λ+ (1− λ)ak+2 + (1− λ)bk+2 = λ+ (1− λ)[ak+2 + bk+2] = 1. (C.29)

The deviation between the quantity demanded in period n under projection and the rational

benchmark quantity is |dn − d̃I | = |λd̃I + (1− λ)d̃Un − d̃I | = (1− λ)|d̃Un − d̃I |, and (C.27) implies
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that for n ≥ 2, |d̃Un − d̃I | = (1− λ)n−2|d̃U2 − d̃I |. Thus,

|dn − d̃I | = (1− λ)n−1|d̃U2 − d̃I |. (C.30)

This value is clearly decreasing in n and converges to 0 as n → ∞. Thus, dn converges to the

rational benchmark, d̃I , as n → ∞. �

Proof of Proposition 4. Part 1. The seller’s objective is

max
p1,p2

Π(p1, p2;α, λ), (C.31)

subject to the dynamic constraint ω̄2 = αp1 + (1− α)ω̄(s). Note that

Π(p1, p2;α, λ) = p1D1(p1; ω̄(s)) + p2D2(p2; ω̄2, ω̄(s)), (C.32)

where, from Equation (12), we have

D1(p1; ω̄(s)) = DI(p; ω̄(s)), (C.33)

D2(p2; ω̄2, ω̄(s)) = λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2), (C.34)

with DI(p; ω̄(s)) = 1− F (p− ω̄(s)) and DU(p; ω̄2) = 1− F
(
p−ω̄2

1−α

)
.

Potential Cases and Outline. We first describe the potential mix of interior and corner solutions

and argue which of these are possible at the optimum. Then, for each possible case, we proceed to

show that p∗1 > pM and p∗1 > p∗2.
Fixing s, let v = ω̄(s) + t and v = ω̄(s) + t denote the expected valuations of the lowest and

highest informed types, respective. The set of valuations among informed types is thus V = [v, v].
As a function of p1, an uninformed consumer’s valuation in period 2 is (1 − α)(ω̄(s) + t) + αp1.
Notice that at any optimum, p1 ∈ [v, p̄], where, recall, the price ceiling is p̄ = v − κ for some κ > 0
arbitrarily small such that p̄ > pM . Hence, given p1 and α > 0, the set of valuations of uninformed

consumers in period 2, denoted V̂ ≡ [(1− α)v + αp1, (1− α)v + αp1], is a strict subset of V .

First, notice that it is never optimal for the seller to serve all consumers in period 1. Since

(pM , s) admits interior demand, it is not optimal to serve all consumers in the rational benchmark;

moreover, doing so under projection leads to the least attractive distribution of perceived valuations

in period 2. Hence, in period 1 we either have an interior solution or a price equal to the price

ceiling: p∗1 ∈ (v, p̄].
Now consider possible corner cases in period 2. Since the valuations of uninformed types are a

strict subset of the valuations of informed types, demand in period 2 is D2(p; ω̄2; ω̄(s)) =





λDI(p; ω̄(s)) + (1− λ) if p ∈ [v, (1− α)v + αp1),

λDI(p; ω̄(s)) + (1− λ)DU(p; ω̄2) if p ∈ [(1− α)v + αp1, (1− α)v + αp1],

λDI(p; ω̄(s)) if p ∈ ((1− α)v + αp1, p̄].

(C.35)

We now argue that the seller will never operate strictly within the first or third region of the

demand function above, but may operate at the corner pc2 ≡ (1−α)v+αp1 at which all uninformed

types are served. First consider the third region. It is clearly sub-optimal to serve only informed
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types in period 2 since the strategy p1 = p2 = pM yields the seller the rational static monopoly

profit in each period. Thus, deviating from these prices would require the seller to strictly benefit

by serving consumers with manipulated beliefs, which is not possible when serving only informed

types. Now consider the interior of the first region, where the seller sets a price below the lowest

perceived valuation of uninformed types. This cannot happen at the optimum since it involves using

p1 to inflate the beliefs of uninformed types to an inefficient extent: since all uninformed types

strictly prefer to buy at p2 given ω̄2, a slight reduction in p1 would have no effect on the demand

of the uninformed (or informed) agents in period 2 but would strictly increase the seller’s profit in

period 1. Thus, p∗2 ≥ pc2 and in period 2 we either have an interior solution (in the middle region of

C.35) or the corner solution such that p∗2 = pc2.

We now show that p∗1 > pM and p∗1 > p∗2 in any of the possible cases noted above (i.e., interior

or ceiling in period 1, and interior or corner in period 2).

Case 1: Interior Solutions. Substituting the dynamic constraint into D2 in (C.33), the first-order

conditions of C.31 are:

∂

∂p1
p1D1(p1; ω̄(s)) + p2

∂

∂ω̄2

D2(p2; ω̄2, ω̄(s))
∂ω̄2

∂p1
= 0, (C.36)

∂

∂p2
p2D2(p2; ω̄2, ω̄(s)) = 0. (C.37)

Define the following functions, which each correspond to the price derivatives of the seller’s profit

in period n w.r.t. pn for n = 1, 2:

M1(p; ω̄(s)) ≡
∂

∂p
pD1(p; ω̄(s)), (C.38)

M2(p; ω̄2, ω̄(s)) ≡
∂

∂p
pD2(p; ω̄2, ω̄(s)). (C.39)

Substituting these expressions along with the relevant derivatives into the FOCs above yields:

M1(p1; ω̄(s)) + p2

(
α(1− λ)

1− α

)
f

(
p2 − ω̄2

1− α

)
= 0, (C.40)

M2(p2; ω̄2, ω̄(s)) = 0. (C.41)

Step 1: p∗1 > pM . Since (pM , s) admits interior demand under rational inference and since F has

an increasing hazard rate, M1 is strictly decreasing in p and has exactly one root at pM > 0. Note

that FOC (C.40) implies that p∗1 solves

M1(p
∗
1; ω̄(s)) = −p∗2

(
α(1− λ)

1− α

)
f

(
p∗2 − ω̄2

1− α

)
, (C.42)

where the right-hand side is strictly negative at an interior solution whenever α > 0. Thus, since M1

is decreasing in p and M1(p
M ; ω̄(s)) = 0, we must have p∗1 > pM .

Step 2: p∗2 < p∗1. FOC (C.41) implies that p∗2 solves M2(p
∗
2; ω̄2, ω̄(s)) = 0. Toward a contradic-
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tion, suppose that p∗2 = p∗1. We argue that M2(p
∗
1; ω̄2, ω̄(s)) < M1(p

∗
1; ω̄(s)). Note that

M2(p; ω̄2, ω̄(s)) = D2(p; ω̄2, ω̄(s))− p

[
λf(p− ω̄(s)) +

(
1− λ

1− α

)
f

(
p− ω̄2

1− α

)]
. (C.43)

At p = p∗1, we have ω̄2 = (1− α) + αp∗1 and (p− ω̄2)/(1− α) = p∗1 − ω̄(s), which further implies

that D2(p
∗
1; ω̄2, ω̄(s)) = 1− F (p∗1 − ω̄(s)) = D1(p

∗
1; ω̄(s)). Thus, evaluating M2 at p = p∗1 yields

M2(p
∗
1; ω̄2, ω̄(s)) = D1(p

∗
1; ω̄(s))− p∗1f(p

∗
1 − ω̄(s))

(
1− αλ

1− α

)
. (C.44)

However, note that M1(p
∗
1; ω̄(s)) = D1(p

∗
1; ω̄(s)) − p∗1f(p

∗
1 − ω̄(s)), and thus M2(p

∗
1; ω̄2, ω̄(s)) <

M1(p
∗
1; ω̄(s)) ⇔

− p∗1f(p
∗
1 − ω̄(s))

(
1− αλ

1− α

)
< −p∗1f(p

∗
1 − ω̄(s)), (C.45)

which holds for any α > 0. However, this presents a contradiction: since M1(p
∗
1; ω̄(s)) < 0 by FOC

(C.40), M2(p
∗
1; ω̄2, ω̄(s)) < M1(p

∗
1; ω̄(s)) ⇒ M2(p

∗
1; ω̄2, ω̄(s)) < 0, which violates FOC (C.41).

Thus, if M2(p; ω̄2, ω̄(s)) is decreasing in p, we must have p∗2 < p∗1 in order for both FOCs to hold.

To complete the proof, we only need to show that M2(p; ω̄2, ω̄(s)) is decreasing in p.

Step 3: M2 is decreasing in p. Notice that

M2(p; ω̄2, ω̄(s)) = λ

[
∂

∂p
pDI(p; ω̄(s))

]

︸ ︷︷ ︸
≡MI(p;ω̄(s))

+(1− λ)

[
∂

∂p
pDU(p; ω̄2)

]

︸ ︷︷ ︸
≡MU (p;ω̄2)

= λM I(p; ω̄(s)) + (1− λ)MU(p; ω̄2). (C.46)

It is immediate that M I(p; ω̄(s)) = M1(p; ω̄(s)) and is hence decreasing in p. Moreover, we can

show that MU is also decreasing in p given our assumptions on F . The following Lemma establishes

this.

Lemma C.2. Suppose the family of distributions {F (x− ω̄)}ω̄∈R is such that for any ω̄(s),
M I(p; ω̄(s)) ≡ ∂

∂p
p[1 − F (p − ω̄(s))] is decreasing at all p such that F (p − ω̄(s)) ∈ (0, 1). Then

for any α ∈ [0, 1) and ω̄2 ∈ R, MU(p; ω̄2) ≡ ∂
∂p
p[1 − F (p−ω̄2

1−α
)] is decreasing at all p such that

F (p−ω̄2

1−α
) ∈ (0, 1).

We now prove Lemma C.2. Consider an arbitrary value of ω̄(s) ∈ R. Notice that M I(p; ω̄(s)) =
1−F (p− ω̄(s))− pf(p− ω̄(s)), and hence the assumption of the lemma implies ∂

∂p
M I(p; ω̄(s)) <

0 ⇔ −f(p− ω̄(s))− f(p− ω̄(s))− pf ′(p− ω̄(s)) on the relevant domain, which is equivalent to

− 2f(p− ω̄(s))− pf ′(p− ω̄(s)) ≤ 0 (C.47)

for all ω̄(s) (and strictly so for p − ω̄(s) on the interior of the support of F ). Now note that

MU(p; ω̄2) ≡ ∂
∂p
p[1 − F (p−ω̄2

1−α
)] = 1 − F (p−ω̄2

1−α
) − pf(p−ω̄2

1−α
) 1
1−α

. To show that MU(p; ω̄(s)) is
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decreasing in p, note that

∂

∂p
MU(p; ω̄2) = −f

(
p− ω̄2

1− α

)
1

1− α
− f

(
p− ω̄2

1− α

)
1

1− α
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)2

= −2f

(
p− ω̄2

1− α

)
1

1− α
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)2
. (C.48)

The expression above is weakly negative iff

− 2f

(
p− ω̄2

1− α

)
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)
≤ 0. (C.49)

Under a change of variables with p̃ = p

1−α
and ω̃ = ω̄2

1−α
, the previous condition is then equivalent

to

− 2f(p̃− ω̃)− p̃f ′(p̃− ω̃) ≤ 0. (C.50)

This condition is equivalent to Condition (C.47), which holds by assumption. Furthermore, Condi-

tion (C.47) additionally implies that Condition (C.50) holds with a strict inequality when p−ω̄2

1−α
is on

the interior of the support of F . This completes the proof of Lemma C.2.

Since F satisfies the assumption of Lemma C.2 (because we assume F has an increasing hazard

rate), MU is decreasing and thus M2 is decreasing since it is the convex combination of decreasing

functions. This completes Case 1.

Case 2: p∗1 = p̄. Suppose the optimal price in period 1 is the price ceiling. Then p∗1 > pM given

that p̄ > pM . To show p∗1 > p∗2, suppose that p∗2 = p̄ for a contradiction. Recall that if p1 = p2, then

DU(p2; ω̄2) = DI(p2; ω̄(s)) ⇒ D2(p2; ω̄2, ω̄(s)) = DI(p2; ω̄(s)). Thus, the seller’s total profit from

p∗1 = p∗2 = p̄ would be 2DI(p̄; ω̄(s)) < 2DI(pM ; ω̄(s)) since pM uniquely maximizes pDI(p; ω̄(s)).
Thus, p1 = p2 = pM is strictly preferred to p∗1 = p∗2 = p̄, contradicting the presumption that the

latter path is optimal. Thus, we must have p∗2 < p∗1.
Case 3: p∗1 interior yet p∗2 = pc2. In this case, p∗2 = pc2 = (1 − α)v + αp∗1. Note that p∗1 >

p∗2 ⇔ p∗1 > v, which is true given that is sub-optimal to serve all consumers in period 1. Thus, we

need only show that p∗1 > pM when p∗1 is interior (the ceiling case is considered above). The seller

chooses p∗1 to maximize p1D
I(p1; ω̄(s)) + pc2[λD

I(p2; ω̄(s)) + 1− λ], yielding a FOC of

M1(p
∗
1; ω̄(s)) + α[λDI(pc2; ω̄(s)) + 1− λ− λpc2f(p

c
2 − ω̄(s))] = 0, (C.51)

and thus

M1(p
∗
1; ω̄(s)) + αλM1(p

c
2; ω̄(s)) + α[1− λ] = 0. (C.52)

Recall that M1(p
M ; ω̄(s)) = 0 and M1(p; ω̄(s)) > 0 for all p < pM . Thus, since pc2 < p∗1, if

p∗1 ≤ pM , then M1(p
∗
1; ω̄(s)) + αλM1(p

c
2; ω̄(s)) > 0, contradicting the FOC above. This completes

the proof of Part 1.

Part 2. Effect of α. First consider the case in which p∗1 and p∗2 are interior solutions to the

optimization program in (C.32). From the Envelope Theorem,
∂p∗n
∂α

= 0 for n = 1, 2, and hence

∂

∂α
Π(p1, p2;α, λ) = −p∗2

[
λf(t∗2)

∂t∗

∂α
+ (1− λ)f

(
t̂2
) ∂t̂2
∂α

]
, (C.53)
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where we’ve defined t∗2 ≡ p2 − ω̄(s) and t̂2 ≡
p∗2−(1−α)ω̄(s)−αp∗1

1−α
. Since t∗2 is the marginal informed

type, ∂t∗

∂α
= 0. Now note that

∂t̂

∂α
=

(1− α)[ω̄(s)− p∗1] + [p∗2 − (1− α)ω̄(s)− αp∗1]

(1− α)2
= −

p∗1 − p∗2
(1− α)2

. (C.54)

Substituting these values back into (C.53) yields

∂

∂α
Π(p1, p2;α, λ) = (1− λ)p∗2f

(
p∗2 − (1− α)ω̄1 − αp∗1

1− α

)[
p∗1 − p∗2
(1− α)2

]
. (C.55)

Since we have assumed λ < 1, the expression above is positive whenever p∗1 > p∗2, which is true by

Part 1 of this proposition. The case in which p∗1 = p̄ and p∗2 is interior yields ∂
∂α
Π(p1, p2;α, λ) that

is identical to expression (C.55). Finally, consider the case in which p∗2 = pc2 = (1−α)v+αp1 (i.e.,

the corner case described in Part 1 in which all uninformed types are served in period 2). In period

1, the seller chooses p1 to maximize

Πc(p1;α, λ) = p1[1−F (p1− ω̄(s))]+ [(1−α)v+αp1]

[
1−λF ((1−α)v+αp1− ω̄(s))

]
. (C.56)

Note that this profit function accounts for the fact that all uninformed types buy in period 2. Let p∗1
be the value of p1 that maximizes the expression above, and let pc2(p

∗
1) ≡ (1−α)v+αp∗1. For either

an interior value p∗1 or p∗1 = p̄, we have

∂Πc(p1;α, λ)

∂α
= (p∗1 − v)

[
1− λF (pc2(p

∗
1)− ω̄(s))

]
− pc2(p

∗
1)λf

(
pc2(p1)− ω̄(s)

)
(p∗1 − v), (C.57)

and hence ∂
∂α
Πc(p1;α, λ) > 0 if and only if

[
1− λF (pc2(p

∗
1)− ω̄(s))

]
− pc2(p

∗
1)λf

(
pc2(p

∗
1)− ω̄(s)

)
> 0. (C.58)

The previous condition must hold given that we are focusing on the case in which all uninformed

types are served: as argued above, it is optimal to set the highest possible price in the first region of

D2 in (C.35), and hence the previous inequality must hold for all p2 ≤ (1− α)v + αp1.
Effect of λ. Similar to the approach above, if p∗2 is interior and either p∗1 is interior or p∗1 = p̄,

then we have
∂

∂λ
Π(p1, p2;α, λ) = p∗2

[
−F (t∗2) + F

(
t̂2
)]

, (C.59)

where neither t∗2 nor t̂2 depend on λ. This expression is negative whenever t̂2 < t∗2. Notice that

t̂2 =
p∗2 − (1− α)ω̄(s)− αp∗1

1− α
= p∗2 − ω̄(s)−

α

1− α
[p∗1 − p∗2] = t∗2 −

α

1− α
[p∗1 − p∗2]. (C.60)

Since α > 0, t̂2 < t∗2 ⇔ p∗1 − p∗2 > 0, which is again true by Part 1 of this proposition. If instead we
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have a corner solution in period 2, then the profit function is as in (C.56) and

∂Πc(p1;α, λ)

∂λ
= −pc2(p

∗
1)F

(
pc2(p1)− ω̄(s)

)
, (C.61)

which is clearly negative. �

Proof of Proposition 5. Part 1. Consider the optimal price pair (p∗1, p
∗
2). Let t∗2 ≡ p∗2 − ω̄(s) denote

the marginal informed type in period 2, and and let t̂2 ≡
p∗2−ω̄2

1−α
denote the marginal uninformed type.

Note that if t̂2 < t∗2, then the interval of types who adopt the good in period 2 at a price above their

true expected valuation is [t̂2, t
∗
2]. From (C.60), we have t∗2 − t̂2 =

α
1−α

[p∗1 − p∗2]. Since p∗1 − p∗2 > 0

for all α > 0 (by Proposition 4 Part 1), we know that t̂2 < t∗2. Thus, the width of the interval of

types who wrongly adopt is

t∗2 − t̂2 =
α

1− α
[p∗1 − p∗2], (C.62)

which is strictly positive.

Part 2. Suppose that ω̄(s) + t < 0. We show that α sufficiently large will induce the seller to

set the “corner” price in period 2 at which all uninformed types are served. Recall from the proof

of Proposition 4 that this price is pc2 = (1− α)v + αp1, where v = ω̄(s) + t. We will show that the

price derivative of the period-2 profit function is necessarily negative at pc2 for α sufficiently large,

implying that p∗2 = pc2, and thus that all uninformed types are served. Toward this end, recall that

the period-2 profit is

Π2(p2; p1) = p2

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
, (C.63)

and hence

∂Π2(p2; p1)

∂p2
=

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))

− p2

(
λf(p2 − ω̄(s)) +

(1− λ)

(1− α)
f

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
. (C.64)

To evaluate
∂Π2(p2;p1)

∂p2

∣∣
p2=pc2

, notice that
pc2−(1−α)ω̄(s)−αp1

1−α
= t. Since F (t) = 0, we have

∂Π2(p2; p1)

∂p2

∣∣∣∣
p2=pc2

= 1− λ

(
F (pc2 − ω̄(s))− pc2f(p

c
2 − ω̄(s))

)
− p2c

(1− λ)

(1− α)
f (t) , (C.65)

and thus a sufficient condition for
∂Π2(p2;p1)

∂p2

∣∣
p2=pc2

< 0 is

p2c
(1− λ)

(1− α)
f (t) > 1. (C.66)
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Since pc2 = (1− α)v + αp1, the previous condition is equivalent to

v +
α

(1− α)
p1 >

1

(1− λ)f(t)
. (C.67)

From Proposition 4 Part 1, we know that along the optimal price path, p1 > pM for all α > 0.

Hence, a sufficient condition for (C.67) is

v +
α

(1− α)
pM >

1

(1− λ)f(t)
. (C.68)

The right-hand side of (C.68) is positive and finite given that f is positive on T . Thus, since pM > 0,

there exists α̃ ∈ (0, 1) such that v+ α̃
(1−α̃)

pM = 1
(1−λ)f(t)

. Then α > α̃ implies that Condition (C.68)

holds, and hence the seller chooses pc2 such that all uninformed types are served in period 2. �

Proof of Lemma 2. As noted in the text, we restrict attention to the case in which it is never optimal

to serve the lowest type. In this case, Equation (13) implies that the true demand function in period

n ≥ 2 is D(pn; ω̄n, ω̄(s)) = λDI(pn; ω̄(s)) + (1 − λ)DU(pn; ω̄n), where DI and DU are specified

in Equation (16). Hence,

D(pn; ω̄n, ω̄(s)) =
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)
. (C.69)

In period n+1, an uninformed observer with taste t thinks that when the preceding generation holds

a common expectation of ω equal to ω̂, then their demand is given by

D̂(pn; ω̂|t) =
(1− α)t+ ω̂ − pn + αt

(1− α)(t− t)
. (C.70)

The inferred value of this observer, denoted ω̂n+1(t), is the value of ω̂ that solves D̂(pn; ω̂|t) =
D(pn; ω̄n, ω̄(s)). By Lemma 1, ω̂n+1(t) = ω̄n+1 − αt. Substituting this into the previous equality

and solving for ω̄n+1 in terms of ω̄n yields the following law of motion:

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n, (C.71)

starting from ω̄2 = (1− α)ω̄(s) + αp1. We complete the proof using induction on n ≥ 2. Define

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑

k=2

λ(1− λ)n−1−kpk. (C.72)

For the base case, note that (C.71) implies that ω̄3 = λ
[
(1−α)ω̄(s)+αp2

]
+(1−λ)[(1−α)ω̄(s)+

αp1] = (1− α)ω̄(s) + α[(1− λ)p1 + λp2] = (1− α)ω̄(s) + αp̃2. Now suppose that for any n > 2,

we have ω̄n = (1 − α)ω̄(s) + αp̃n−1. Again, (C.71) implies that ω̄n+1 = λ
[
(1 − α)ω̄(s) + αpn

]
+

(1− λ)[(1− α)ω̄(s) + αp̃n−1] = (1− α)ω̄(s) + α[(1− λ)p̃n−1 + λpn] = (1− α)ω̄(s) + αp̃n. �

Proof of Proposition 6. As noted in the text, we restrict attention to the case in which it is never

optimal to serve the lowest type. Thus, the optimal price path is characterized by the first-order
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conditions, aside from the possibility of pricing at the ceiling. We discuss the price-ceiling case at

the end of the proof and focus on the interior case first. In the interior case, profit in period n ≥ 2 is

Π(pn; ω̄n, ω̄(s)) = pnD(pn; ω̄n, ω̄(s)) = pn

(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)

)
;

in period n = 1, profit is Π̃(p1; ω̄(s)) = p1

(
t+ω̄1−p1

t−t

)
. The seller’s maximization problem is thus

max
{pn}Nn=1

(
Π̃(p1; ω̄(s)) +

N∑

n=2

Π(pn; ω̄n)

)
s.t. ω̄n+1 = ϕ(ω̄n, pn) ∀n = 2, . . . , N, (C.73)

where ϕ(ω̄n; pn) ≡ λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n is the transition function derived in Lemma

2. The Lagrangian is then

L = Π̃(p1; ω̄1) +
N∑

n=2

Π(pn; ω̄n) +
N∑

n=1

γn(ω̄n+1 − ϕ(ω̄n, pn)), (C.74)

where {γn}
N
n=1 are Lagrange multipliers.

The plan for the proof is to first develop a set of equations (first-order conditions and Euler

equations) that characterize the optimal price path. We will then argue that the price in the final

period, pN , must be lower than pN−1 by the same logic underlying the two-period case (Proposition

4). We then argue by induction that if for any n we have pn > pn+1 > · · · > pN , then pn−1 > pn,

which establishes the declining price path (i.e. Part 2 of the proposition). Finally, we will note that

p1 > pM (i.e,. Part 1).

We begin by deriving a set of first-order conditions that characterize the system of prices. Given

the functional forms of Π, Π̃, and ϕ, we have the following collection of first-order conditions: (i)

the FOC w.r.t. p1 is
t̄+ ω̄(s)− 2p1

t− t
= γ1α; (C.75)

(ii) the FOC w.r.t. pn for n = 2, . . . , N − 1 is

(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − 2(1− λα)pn

(1− α)(t− t)

)
= γnλα; (C.76)

(iii) the FOC w.r.t. pN is

(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄N − 2(1− λα)pN

(1− α)(t− t)

)
= 0, (C.77)

which follows from the fact that γN = 0 given the FOC w.r.t. to ω̄N+1; and (iv) the FOC w.r.t. ω̄n

for n = 2, . . . , N is

pn

(
1− λ

(1− α)(t− t)

)
+ γn−1 = γn(1− λ). (C.78)

From these FOCs, we can derive an “Euler equation” by using the FOC for pn−1 in (C.76) to

solve for γn−1 and then substituting this value into (C.78). The result provides a link between pn−1
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and pn in terms of the current beliefs. Equations (C.75) and (C.78) imply that the Euler equation

linking periods 1 and 2 is

p2 =

(
2λ(1− α) + α(1− λ)2

(1− λ)(2− λα)

)
p1 −

2(2λ− 1)(1− α)

(1− λ)(2− λα)
pM . (C.79)

For n > 2, equations (C.76) and (C.78) along with the expression for ω̄n in terms of past prices

(from Lemma 2) imply that the Euler equation linking periods n− 1 and n is:

pn = φ−1pn−1 − φMpM − φ̃p̃n−2 (C.80)

where we’ve introduced the following positive constants:

φ−1 =
(2− αλ)− αλ2(2− λ)

(1− λ)(2− αλ)
, (C.81)

φM =
2λ(1− α)

(1− λ)(2− λα)
, (C.82)

φ̃ = α
λ(2− λ)

(2− λα)
. (C.83)

To characterize the solution, we will combine these Euler equations with the FOCs for each pn.

Using the our expression for ω̄n in terms of past prices (from Lemma 2), the FOCs w.r.t. pn for

n ≥ 2 from above can be equivalently written as

0 = (1− α)(t+ ω̄(s)) + α(1− λ)p̃n−1 − 2(1− λα)pn + α(1− λ)
N∑

k=n+1

pk
∂p̃k−1

∂pn

= 2(1− α)pM + α(1− λ)p̃n−1 − 2(1− λα)pn + αλ

N∑

k=n+1

(1− λ)k−npk, (C.84)

where we’ve used the fact that ∂p̃k−1

∂pn
= λ(1− λ)k−n−1 and pM = (t+ ω̄(s))/2 in the uniform case.

Given that the demand function in period 1 is different from the one in n ≥ 2, the FOC w.r.t. p1 is

0 = (1− α)pM − 2(1− α)p1 + α

N∑

k=2

(1− λ)k−1pk (C.85)

since ∂p̃k−1

∂p1
= (1 − λ)k−2. To summarize, the N prices must solve the following system of N
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equations:

p1 = pM +
α

2(1− α)

( N∑

k=2

(1− λ)k−1pk

)

...

pn =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃n−1 + λ

N∑

k=n+1

(1− λ)k−npk

)

...

pN =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃N−1

)
. (C.86)

Going forward, we will streamline notation by letting cn ≡ pn/p
M denote the “normalized”

price in each period n. This allows us to characterize the system for (c1, . . . , cN) without any

explicit dependence on the value of pM . Similarly, for all n, let c̃n−1 = p̃n−1/pM = (1− λ)n−2c1 +∑n−1
k=2 λ(1−λ)n−1−kck. Additionally, let ĉn+1 ≡

∑N

k=n+1(1−λ)k−npk/p
M =

∑N

k=n+1(1−λ)k−nck.

We now prove the following via induction: for n > 2, if cn > cn+1 > · · · > cN , then cn−1 > cn.

Base Case: cN−1 > cN . We prove the base case by showing cN−1 > cN . From (C.84), the

FOC w.r.t. cN−1 is 2(1− α) + α(1− λ)c̃N−2 − 2(1− λα)cN−1 + αλ(1− λ)cN = 0, and the FOC

w.r.t. cN is 2(1 − α) + α(1 − λ)c̃N−1 − 2(1 − λα)cN = 0. The definition of c̃N−1 implies that

that c̃N−1 = (1− λ)c̃N−2 + λcN−1. Substituting this value into the latter FOC and equating the two

FOCs yields the following necessary condition:

αλ(1− λ)c̃N−2 =

(
2(1− λα) + αλ(1− λ)

)
[cN−1 − cN ]. (C.87)

It is straightforward to verify that 2(1− λα) + αλ(1− λ) = 2− αλ[1 + λ] > 0 for any α ∈ (0, 1)
and any λ ∈ (0, 1). Thus, since the left-hand side of (C.87) is strictly positive (it is a weighted sum

of normalized prices), we have cN−1 > cN .

Induction step: cn > cn+1 for n ≥ 2. Consider n ∈ {3, . . . , N − 1} and suppose that cn >
cn+1 > · · · > cN . We will show that cn−1 > cn. To do so, we first derive an expression for cn−1

purely in terms of (cn, . . . , cN). Note that neither the Euler equation for cn−1 nor the FOC w.r.t.

cn−1 provides this: the former characterizes cn−1 as a function of previous prices, (c1, . . . , cn−1) and

the latter characterizes cn−1 as a function of previous and future prices. To obtain this expression,

note that (C.80) implies c̃n−2 = (φ−1cn−1 − cn − φM) /φ̃. Substituting this value into the FOC w.r.t.

cn−1 (Equation C.84) yields

2(1− λα)cn−1 = 2(1− α) + α(1− λ)
1

φ̃

(
φ−1cn−1 − cn − φM

)
+ αλĉn. (C.88)

From the definition of ĉn, note that ĉn = (1− λ)cn + (1− λ)ĉn+1. Substituting this expression into

(C.88) and substituting the values of constants φ−1, φM , and φ̃ from above (Equations C.81 to C.83)
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and simplifying reveals that

cn−1 = φ−1cn + φM −

(
λ

1− λ

)
φ̃ĉn+1. (C.89)

Recall that, by assumption, cn > cn+1 > · · · > cN , and we want to show cn−1 > cn. From (C.89),

this condition is equivalent to φ−1cn + φM −
(

λ
1−λ

)
φ̃ĉn+1 > cn, and hence equivalent to

[φ−1 − 1]cn >

(
λ

1− λ

)
φ̃ĉn+1 − φM . (C.90)

From the definition of φ−1, we have φ−1 − 1 > 0. Notice that (C.89) must hold for all n ∈
{3, . . . , N − 1}, and hence cn = φ−1cn+1 + φM −

(
λ

1−λ

)
φ̃ĉn+2. Moreover, note that the definitions

of φ−1 and φ̃ are such that φ−1 = (1−λφ̃)/(1−λ); substituting this into the previous equality along

with the fact that ĉn+1 = (1− λ)cn+1 + (1− λ)ĉn+1 implies that
(

λ
1−λ

)
φ̃ĉn+1 = −(1− λ)cn + (1−

λ)φM + cn+1. Substituting this into the inequality of interest (Condition C.90) yields the equivalent

condition of [φ−1−λ]cn > cn+1−λφM . Since we know cn > cn+1 and since φ−1−λ > 0 (because

φ−1 > 1, as noted above), the previous condition will hold at cn > cn+1 if it holds at cn = cn+1.

Thus, it suffices to show that [φ−1 − λ]cn+1 > cn+1 − λφM ⇔ [φ−1 − λ − 1]cn+1 > −λφM . The

previous condition holds so long as φ−1 − λ − 1 > 0, which can be directly confirmed from the

definition of φ−1 in (C.81). This completes the induction step.

So far, we have verified that cN−1 > cN implies that cn > cn+1 for all n ≥ 2. To complete the

proof, we must show that c2 > c3 > · · · > cN implies that c1 > c2. Since the Euler equation linking

periods 1 and 2 is different from one in all other periods, we cannot rely on (C.89) as above. Instead,

consider the FOCs in periods 1 and 2 (Equations C.85 and C.84), which are 2(1−α)−2(1−α)c1+
αĉ2 = 0 and 2(1 − α) + α(1 − λ)c̃1 − 2(1 − λα)c2 + αλĉ3 = 0, respectively. Using the fact that

ĉ2 = (1− λ)c2 + (1− λ)ĉ3, equating two FOCs and simplifying yields the condition

α[(1− 2λ)ĉ2 + 2(1− λ)c2] = ζ[c1 − c2], (C.91)

where ζ = [2(1 − α) + α(1 − λ)] = 2 − α(1 + λ); note that ζ ∈ (0, 2) for all α ∈ (0, 1).
Thus, we have c1 > c2 so long as (1 − 2λ)ĉ2 + 2(1 − λ)c2 > 0 ⇔ 2(1 − λ)c2 > (2λ − 1)ĉ3.
While this holds immediately whenever λ < 1/2, we must show it holds more generally. Recall

that ĉ3 =
∑N

k=3(1 − λ)k−2ck. Substituting this into the previous inequality yields the equivalent

condition of 2(1−λ)c2 > (2λ− 1)
∑N

k=3(1−λ)k−2ck ⇔ 2c2 > (2λ− 1)
∑N

k=3(1−λ)k−3ck. Since

we’ve assumed c2 > c3 > · · · > cN , a sufficient condition for the previous inequality is

2c2 > (2λ− 1)c2

N∑

k=3

(1− λ)k−3 ⇔ 2 > (2λ− 1)
N−3∑

k=0

(1− λ)k. (C.92)

Recall that the partial sum of the geometric series is
∑N−3

k=0 (1−λ)k is strictly less than 1
1−(1−λ)

= 1
λ

.

Thus, a sufficient condition for Condition (C.92) is 2 > (2λ− 1) 1
λ

, which necessarily holds.

Finally, it is immediate from the FOC for p1 in (C.84) that p1 > pM . Similarly, if the FOC in

period 1 does not hold because the seller prefers setting p1 equal to the price ceiling, p̄, then the

logic of this proof remains unchanged. If p1 = p̄, then clearly we have p1 > pM ; moreover, the
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seller would never charge p2 = p̄ if p1 = p̄ since she strictly profits from a price decrease in period

2. Thus, it is immediate that we still have p2 < p1 = p̄ in this case, and hence prices will follow the

interior path described above from period 2 onward. �

Proof of Proposition 7. In period 1, the quantity demanded is

D1(p; ω̄(s)) = λ[1− F (p− ω̄(s))] + (1− λ)[1− F (p− ω̄0)]. (C.93)

Now consider what an agent who delays with taste t will infer from observing this quantity. They

think that if informed agents expect a quality of ω̂; then the demand in period 1 is

D̂1(p; ω̂|t) = λ

[
1− F

(
p− ω̂ − αt

1− α

)]
+ (1− λ)

[
1− F

(
p− ω̄0 − αt

1− α

)]
. (C.94)

Equating the two equations above allows us to solve for ω̂2(t), which denotes the perceived quality

of an agent with taste t who has not bought in period 1. Assuming T ∼ U(t, t), this solution is

ω̂2(t) =
α

λ

(
p− (1− λ)ω̄0 − t

)
+ (1− α)ω̄(s). (C.95)

The marginal type in period 2 under projection is the t̂2 that solves ω̂2(t̂2) + t̂2 = p, and hence

t̂2 = p−

[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω̄0. (C.96)

The marginal type in period 2 under rational inference is t∗2 = p− ω̄(s). Note that t̂2 < t∗2 ⇔

p−

[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω̄0 < p− ω̄(s) ⇔ ω̄(s) > ω̄0. (C.97)

Recall that the only types present in period 2 are those who did not buy in period 1; i.e., only those

with t ≤ tU1 ≡ p− ω̄0. Note that rational consumers in period 2 buy if and only if t∗2 < tU2 ⇔ ω̄(s) >
ω̄0. Condition (C.97) thus implies that the same is true under projection: t̂2 < tU2 ⇔ ω̄(s) > ω̄0;

hence, projectors in period 2 only buy when the quality is higher than expected.

Part 1. Suppose ω̄(s) > ω̄0. Under rational inference, the interval of types who buy in period

2 is [t∗2, t
U
1 ]. Under projection, this interval is [t̂2, t

U
1 ], where t̂2 < t∗2 by (C.97). Hence, the quan-

tity demanded in period 2 under projection exceeds the rational benchmark. Moreover, using the

expressions above for t̂2 and t∗2, the interval of types who wrongly adopt the good is

t∗2 − t̂2 =
α(1− λ)

λ− α

[
ω̄(s)− ω̄0

]
. (C.98)

The measure of this interval is clearly increasing in α and in ω̄(s)− ω̄0.

Now consider the range of types who buy in period 2 yet hold a quality expectation that exceeds

the rational expectation, TO ≡ {t ∈ [t̂, tU1 ] | ω̃2(t) > ω̄(s)}. This set represents the buyers who

overestimate quality and will, on average, be disappointed by adoption ex post; that is, t ∈ TO ⇒
E[ω − ω̂(t)|s] < 0. Let t̃ be the type in period 2 who infers correctly; i.e., ω̂2(t̃) = ω̄(s). From
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(C.95), we have

t̃ = p− λω̄(s)− (1− λ)ω̄0. (C.99)

Since ω̂2(t) is decreasing in t, all types t < t̃ in period 2 will overestimate quality and hence

TO = [t̂, t̃). Since ω̄(s) > ω̄0, we have t̃ ∈ (t∗2, t
U
1 ) given that λ ∈ (0, 1). In contrast to ratio-

nal learning, t̃ > t∗2 implies that some projecting buyers who correctly adopt the good (i.e., their

expected valuation exceeds the price) will systematically experience disappointment, on average.

Part 2. Suppose ω̄(s) < ω̄0. As discussed prior to Part 1, ω̄(s) < ω̄0 implies that no consumers

buy in period 2 under rational inference or under projection. Hence, outcomes in this case match

the rational benchmark. �

Proof of Proposition 8. We first derive some preliminary results on the nature of uninformed agents’

biased inference rules and the equilibrium quantity demanded before proving each part of the propo-

sition.

Let t∗ ≡ p− ω̄(s) be the marginal informed type (i.e., an informed type strictly prefers to buy a

positive quantity iff t > t∗). The aggregate demand of informed agents is then

DI(p; ω̄(s)) =

∫

T

x∗(p; ω̄(s), t)dF (t) =

∫ t

t∗
(ω̄(s)− p+ t)dF (t)

= −[1− F (t∗)]t∗ +

∫ t

t∗
t̃f(t̃)dt̃. (C.100)

Let H(t) ≡ −[1 − F (t)]t +
∫
t̃≥t

t̃f(d)dt̃. Now consider the demand function among agents with

a quality expectation of ω̂ from the perspective of an uninformed agent with taste t. This agent

believes the marginal type is t̂ = p− ω̂, and hence he perceives

D̂I(p; ω̂|t) = −[1− F̂ (t̂|t)]t̂+

∫ t(t)

t̂

t̃f̂(t̃|t)dt̃

= −

[
1− F

(
t̂− αt

1− α

)]
t̂+

∫ t(t)

t̂

t̃
1

1− α
f

(
t̃− αt

1− α

)
dt̃. (C.101)

Consider a change of variables with x = t̃−αt
1−α

. Recalling that t(t) = αt + (1 − α)t, the expression

above can be written as

D̂I(p; ω̂|t) = −

[
1− F

(
t̂− αt

1− α

)]
t̂+

∫ t

t̂−αt
1−α

[αt+ (1− α)x]f (x) dx

= −

[
1− F

(
t̂− αt

1− α

)]
[t̂− αt] + (1− α)

∫ t

t̂−αt
1−α

xf (x) dx

= (1− α)

(
−

[
1− F

(
t̂− αt

1− α

)](
t̂− αt

1− α

)
+

∫ t

t̂−αt
1−α

xf (x) dx

)

= (1− α)H

(
t̂− αt

1− α

)
, (C.102)

where H is defined in (C.100).
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An uninformed projecting agent’s inference rule, ω̂(d|t), is obtained by solving for the perceived

marginal type t̂(d|t) that solves D̂I(p; ω̂|t) = (1−α)H
(

t̂−αt
1−α

)
= d, and then setting ω̂(d|t) = p− t̂.

We now use the Implicit Function Theorem (IFT) to show that a projector’s biased inference rule is

linearly decreasing in t with slope α.

Let L(x; d) = (1 − α)H(x) − d. Note that an agent infers a marginal type t̂(d|t) equal to the

value of t̂ that solves L
(

t̂−αt
1−α

; d
)
= 0. Thus,

∂t̂(d|t)

∂t
= −

(
∂

∂t
L

(
t̂− αt

1− α
; d

))(
∂

∂t̂
L

(
t̂− αt

1− α
; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= −

(
−

α

1− α

)(
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

= α. (C.103)

Since ω̂(d|t) = p− t̂(d|t), ∂
∂t
ω̂(d|t) = −α. Thus, we can write any uninformed type’s inferred value

of ω̄(s) upon observing aggregate demand as

ω̂(d|t) = ω̃(d)− αt, (C.104)

where ω̃(d) is independent of t. While we will not explicitly solve for ω̃(d) (which will depend

on F and α), we now argue that, in equilibrium, the aggregate quantity demanded by uninformed

agents is equal to the aggregate quantity demanded by informed agents. To see this, we first derive

the aggregate quantity demanded by uninformed agents. Since ω̂(d|t) = ω̃(d)− αt, an uninformed

type t will demand ω̃(d) − p + (1 − α)t units. Thus, the truly marginal type among uninformed

agents is t̂ = (p− ω̃(d))/(1− α), and the aggregate demand among uninformed types is

DU(p; ω̃(d)) =

∫ t

t̂=
p−ω̃(d)
1−α

[ω̃(d)− p+ (1− α)t]dF (t)

= (1− α)

∫ t

t̂=
p−ω̃(d)
1−α

[
−
p− ω̃(d)

1− α
+ t

]
dF (t)

= (1− α)H

(
p− ω̃(d)

1− α

)
. (C.105)

Note that ∂
∂d
DU(p; ω̃(d)) = −H

(
p−ω̃(d)
1−α

)
∂ω̃(d)
∂d

, and that
∂ω̃(d)
∂d

= ∂ω̂(d|t)
∂d

and t̂(d|t) = p − ω̂(d|t)
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then implies
∂ω̃(d)
∂d

= −∂t̂(d|t)
∂d

. Since t̂(d|t) solves L
(

t̂−αt
1−α

; d
)
= 0, we have

∂t̂(d|t)

∂d
= −

(
∂

∂d
L

(
t̂− αt

1− α
; d

))(
∂

∂t̂
L

(
t̂− αt

1− α
; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= − (−1)

(
(1− α)H

(
t̂− αt

1− α

)
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂− αt

1− α

))−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̃(d)

1− α

))−1

, (C.106)

and thus
∂ω̃(d)

∂d
= −

∂t̂(d|t)

∂d
⇒

∂ω̃(d)

∂d
= −

(
H

(
p− ω̃(d)

1− α

))−1

, (C.107)

which implies

∂

∂d
DU(p; ω̃(d)) = −H

(
p− ω̃(d)

1− α

)
∂ω̃(d)

∂d

⇒
∂

∂d
DU(p; ω̃(d)) = H

(
p− ω̃(d)

1− α

)(
H

(
p− ω̃(d)

1− α

))−1

= 1. (C.108)

Thus, DU as a function of the observed equilibrium quantity must vary identically with d; that

is, DU(p; ω̃(d)) = d + c for some constant c. But the only constant generically consistent with

the required equilibrium condition of d = λDI(p; ω̄(s)) + (1 − λ)DU(p; ω̃(d)) is c = 0. Thus,

in equilibrium, ω̃(d) must be such that DU(p; ω̃(d)) = DI(p; ω̄(s)). And thus, in equilibrium,

d = DI(p; ω̄(s)). For shorthand, let ω̂(t) = ω̂(d|t) evaluated at d = DI(p; ω̄(s)).
Part 1. As established above in (C.104), an uninformed agent with taste t forms an estimate of

ω equal to ω̂(t) = ω̃(d) − αt, where ω̃(d) is independent of t. Thus, ω̂(t) is clearly decreasing in t
whenever α > 0.

Part 2. As argued above, in equilibrium we must have DU(p; ω̃(d)) = DI(p; ω̄(s)). Recall

that t∗ = p − ω̄(s) and t̂ = (p − ω̃(d))/(1 − α) are the marginal informed and uninformed types,

respectively. From (C.100) and (C.105), we have DI(p; ω̄(s)) = H(t∗) and DU(p; ω̃(d)) = (1 −
α)H(t̂). Hence, in equilibrium, we must have H(t∗) = (1−α)H(t̂). Since H is strictly decreasing,

t̂ < t∗ whenever α > 0.

Part 3. Next, we argue that the uninformed marginal type overestimates ω: t̂ < t∗ ⇔ (p −
ω̃(d))/(1− α) < p− ω̄(s) ⇔

ω̃(d) > (1− α)ω̄(s) + αp. (C.109)

Notice that ω̂(t̂) = ω̃(d)−αt̂ = ω̃(d)−α(p− ω̃(d))/(1−α) and thus ω̂(t̂) > ω̄(s) ⇔ ω̃(d)−αp >
(1−α)ω̄(s), which holds given (C.109). Thus, ω̂(t̂) > ω̄(s). Furthermore, there must exist t̃ ∈ (t̂, t)
such that ω̂(t̃) = ω̄(s). If such a type did not exist, then the fact that ω̂(t) = ω̃(d) − αt implies

that all uninformed types who buy in equilibrium overestimate ω̄(s). But this, together with the fact

that t̂ < t∗, would imply that DU(p; ω̃(d)) > DI(p; ω̄(s)) since, relative to informed types, a wider
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interval of uninformed types buy and they all overestimate ω̄(s). Yet this contradicts the requirement

that DU(p; ω̃(d)) = DI(p; ω̄(s)), and hence t̃ ∈ (t̂, t) exists such that ω̂(t̃) = ω̄(s); moreover,

ω̂(t) = ω̃(d)−αt implies that ω̂(t) > ω̄(s) for t < t̃ and ω̂(t) < ω̄(s) for t > t̃. Since an uninformed

type demands x∗(p; ω̂(t), t) = ω̂(t) + t− p, we additionally have x∗(p; ω̂(t), t) > x∗(p; ω̄(s), t) for

t < t̃ and x∗(p; ω̂(t), t) < x∗(p; ω̄(s), t) for t > t̃.
Part 4. Note that

∣∣x∗(p; ω̂(t), t) − x∗(p; ω̄(s), t)
∣∣ =

∣∣ω̂(t) − ω̄(s)
∣∣ =

∣∣ω̃(d) − ω̄(s) − αt
∣∣. By

definition of t̃, ω̂(t̃) = ω̃(d)−αt̃ = ω̄(s). Thus,
∣∣ω̃(d)− ω̄(s)−αt

∣∣ =
∣∣ω̃(d)− [ω̃(d)−αt̃]−αt

∣∣ =∣∣αt̃− αt
∣∣, and hence

∣∣x∗(p; ω̂(t), t)− x∗(p; ω̄(s), t)
∣∣ = α|t− t̃|. �
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