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Abstract

This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM)

model of Jensen and Maheu (2010). Instead of using a Dirichlet process mixture (DPM)

to model return innovations, we use an infinite hidden Markov model (IHMM). This

allows for time variation in the return density beyond that attributed to parametric

latent volatility. The new model nests several special cases as well as the SV-DPM.

We also discuss posterior and predictive density simulation methods for the model.

Applied to equity returns, foreign exchange rates, oil price growth and industrial pro-

duction growth, the new model improves density forecasts, compared to the SV-DPM,

a stochastic volatility with Student-t innovations and other fat-tailed volatility models.
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1 Introduction

Changing volatility has become ubiquitous in economic time-series data. Besides high fre-

quency asset returns, conditional heteroskedasticity is even found in lower frequency macroe-

conomic aggregate data (Chan, 2013, 2017; Marcellino et al., 2016; Diebold et al., 2017;

Carriero et al., 2019). Generalized autoregressive conditional heteroskedasticity (GARCH,

Bollerslev, 1986) and stochastic volatility (SV, Taylor, 1982) are popular modelling ap-

proaches used to capture volatility dynamics. However, much less attention has been paid to

modelling unknown return innovation distributions.

Flexible modelling of return innovations coupled with parametric volatility models can

be found in the work of Jensen and Maheu (2010), Delatola and Griffin (2011, 2013), Kalli

et al. (2013) and Liu (2021). Although flexible, these approaches assume that the underlying

innovation distribution is constant over time. Volatility changes from the parametric portion

of the model, but the underlying return distribution is fixed over time.

This paper explores a SV parametric specification, coupled with an infinite hidden Markov

component that governs a mixture of normals. This is a direct extension from Jensen and

Maheu (2010) and replaces the Dirichlet process mixture (DPM) with a Markov mixture

model. The Markov chain allows for the possibility that the weights on the mixture change

over time. In theory this means that the mixture can capture changing conditional skewness,

kurtosis as well as changes in the tail dynamics beyond what the SV component can account

for.

The infinite hidden Markov model (IHMM) has been fruitfully used in other settings:

GARCH modelling (Dufays, 2016), inflation dynamics (Song, 2014; Jochmann, 2015) short-

term interest rates (Maheu and Yang, 2016), realized covariance models (Jin and Maheu,

2016; Jin et al., 2019), macroeconomic forecasting (Hou, 2017; Yang, 2019) and model com-

bination (Jin et al., 2022).

The IHMM approximates the unknown conditional return distribution that is nonpara-

metrically similar to the DPM. Unlike the DPM model, the mixture weights in the IHMM are

Markovian. The prior on this Markov chain is constructed using two layers of nested Dirichlet

processes referred to as a hierarchical Dirichlet process (Teh et al., 2006). The IHMM can

be seen as a regime-switching model with an infinite number of states. In each period, the

return distribution is approximated by an infinite mixture and the mixture weights depend

on the previous state the system is in. In contrast, the DPM approximates the unknown

distribution with an infinite mixture, but the weights are constant and independent of the

previous states.

Due to the unbounded state space, the IHMM can accommodate both structural breaks
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and recurrent changes in a unified framework. However, a regime switching model may not

be able to capture the strong persistence in the volatility dynamics (Ryden et al., 1998). Our

model’s SV component captures this and allows the IHMM component to focus on transitory

changes in the shape of the unknown distributions.

Our infinite hidden Markov model with stochastic volatility (SV-IHMM), is related to

Virbickaitė and Lopes (2019), which has a two-state Markov switching process that affects

the conditional mean of log-volatility, while log-squared returns are nonparametrically mod-

elled. The SV-IHMM allows unbounded states for the conditional mean of log-volatility but

nonparametrically models return innovations without losing the sign information of returns.

Related work that includes discrete parameter changes in volatility modelling include Maheu

and McCurdy (2000), Calvet and Fisher (2004), Griffin and Steel (2011) and Bauwens et al.

(2014).

Estimation relies on Markov chain Monte Carlo (MCMC) methods. Posterior simulation

for the IHMM component comes from Teh et al. (2006) and Maheu and Yang (2016); while the

latent stochastic volatility is simulated with the random block sampler of Jensen and Maheu

(2010). We apply the model to several different asset classes and compare it with a number

of strong benchmark models, including the SV-DPM from Jensen and Maheu (2010) and

the SV model with Student-t innovations. While the SV component of the model captures

movements that display strong persistence in volatility, the variance component directed from

the IHMM portion can be thought of as capturing transitory changes in volatility that could

be labelled as jumps. In all applications we find significant evidence of parameter change.

Evaluating forecasts through the predictive likelihood shows that the SV-IHMM is pre-

ferred to all other benchmarks. Predictive density plots indicate that the SV-IHMM tends

to produce distributions with the fattest tails, when necessary. Comparison of tail forecasts,

in the form of value-at-risk and expected shortfall confirm our model’s superior performance.

This paper is organized as follows. Section 2 illustrates the specification of the proposed

SV-IHMM, along with the sampling algorithm and density forecast computation. Section 3

lists the benchmark models for comparison. Section 4 extensively investigates the model’s

empirical performance with real world data. Section 5 concludes. An Appendix details the

posterior simulation methods used for our model and some benchmark specifications.

3



2 SV-IHMM

2.1 Model Specification

Our proposed SV-IHMM model includes a parametric SV component and a Bayesian non-

parametric portion, following an infinite hidden Markov model (IHMM). The IHMM is con-

structed from the hierarchical Dirichlet process (HDP) introduced by Teh et al. (2006). Let

rt, denote returns and ht log-volatility then the hierarchical representation of the SV-IHMM

is1

Γ ∼ Stick(η), Πj
iid
∼Stick2(α,Γ), j = 1, . . . ,∞, (1a)

st|st−1 ∼ Πst−1 , (1b)

rt|st, ht, θ ∼N(µst , ω
2
st
exp(ht)), (1c)

ht|ht−1 ∼N(ϕht−1, σ
2
v), (1d)

θj
iid
∼H, j = 1, . . . ,∞, (1e)

for t = 1, . . . , T . θst = {µst , ωst} and θ = {θ1, θ2, ...} is the collection of the state-dependent

parameter vectors that are generated from the base measure H. st ∈ {1, . . . ,∞} is the

state variable that is governed by the first-order Markov chain of infinite dimension with

transition matrix Π. Stick(η) and Stick2(α,Γ) are stick-breaking representations of the

Dirichlet processes (Sethuraman, 1994; Teh et al., 2006). Let Γ = {γ1 . . . , γ∞} then Γ ∼

Stick(η) denotes a discrete distribution with weights generated as

γj = vj

j−1
∏

l=1

(1− vl), vj
iid
∼Beta(1, η), j = 1, 2, 3..... (2)

Γ serves as a centring distribution. Each row of Π is drawn as Πj ∼ Stick2(α,Γ). The

distribution of Πj has weights generated as

πji = π̂ji

i−1
∏

l=1

(1− π̂jl), π̂ji
iid
∼Beta

(

αγi, α

(

1−
i
∑

l=1

γl

))

, (3)

where πji is an element of Π at the jth row and ith column. πji represents the probability of

moving from parameter θj to parameter θi.

η and α are concentration parameters that govern the likelihood of new states occurring

when the model is applied to a finite dataset. The two DPs in (1a) are linked by sharing

1It is possible to allow φ and σ2

v
to be state dependent, however, we omit it here as we found no empirical

support for this specification.
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the same atom θ. This means that each draw of Πj has the same support and facilitates

the construction of an infinite transition matrix that can be used to govern st. Stick(η)

determines the top-level hierarchy and is shared in the second level. The second layer,

Stick2(α,Γ), governs each row of the transition matrix and is centred such that E[Πj] = Γ.

The IHMM nests the DPM model of Antoniak (1974) when α → ∞, and each row of the

transition matrix converges to the same vector Γ.

The associated stick-breaking representation of the model is

p(rt|θ,Π, st−1, ht) =
∞
∑

k=1

πst−1kN(rt;µk, ω
2
k exp(ht)), (4a)

ht = ϕht−1+σvvt, vt ∼ N(0, 1), (4b)

where N(rt;µk, ω
2
k exp(ht)) denotes the normal density function with mean µk and variance

ω2
k exp(ht) evaluated at rt. πst−1k governs the weight assignments to different normal kernels,

where the weights change accordingly over time via the first-order Markov chain. The model

in (4) becomes the SV-DPM specification of Jensen and Maheu (2010) if the weights are

independent of the previous state, where πjk = πk for all j and k.

As in conventional SV models, the conditional mean has the lag term ϕht−1 but the SV-

IHMM has a second channel affecting volatility though the Markov chain and the variance

component ωst . Since the unconditional mean of ht is zero when |ϕ| < 1, the parameter ω2
st

effectively controls and allows for changes in the log-volatility of the returns. This is seen by

rewriting the model as

rt = µst + exp(h
′

t/2)zt (5a)

h
′

t − logω2
st

= ϕ(h
′

t−1 − logω2
st−1

) + σvvt, (5b)

where h
′

t = ht+logω2
st
. Here the conditional mean of h

′

t is logω
2
st
and could capture transitory

jumps as well as permanent changes in log-volatility depending on the state process. State

changes allow for both the conditional mean and the unconditional mean of h
′

t to change over

time through ω2
st
.

Although not modelled parametrically, leverage or asymmetric volatility effects in which

price changes result in volatility changes next period can be captured through the nonpara-

metric portion of the model. For instance, a state move that results in a low µst this period

and a high ω2
st+1

next period will capture this. The advantage of modelling this nonparamet-

rically is that a more general relationship can be captured as well as allowing this relationship

to change over time.

Finally, one may argue that the extension to allow ϕ and σ2
ν to be state dependent could
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be important. We estimated this for our empirical application and found little evidence of

time variation in these parameters. As such, we focus on the simpler specification above.

2.2 Priors and Hierarchical Priors

This subsection defines the priors and hierarchical priors for the SV-IHMM. The priors for

the infinite Markov transition matrix Π are formed by Stick(η) and Stick2(α,Γ), which were

discussed in previous section. In order to minimize the impact of the prior, rather than fixing

η and α, we follow Fox et al. (2011) and impose the following hyper prior:

η ∼ Gamma(2, 8), α ∼ Gamma(2, 8), E(η) = E(α) = 0.25. (6)

H is the common base measure of the second layer of the DPs in the model. This prior is

specified as µj ∼ N(b0, B0) and ωj ∼ IG(ν0, s0). Motivated by Song (2014), a hierarchical

prior is used to learn from the data about these prior settings. These are

b0 ∼ N(0, 1), B0 ∼ IW (3, I), v0 ∼ Exp(1), s0 ∼ Gamma(5, 1), (7)

where I is an identity matrix and B0 ∼ IW (4, I) if the conditional mean is an AR(1) process.

When a new state is introduced to the model, the associated draws of a new µ and ω are

obtained from the informative priors that were influenced by the data. This can contribute

to faster learning about the new states and, thus, improve the forecasts.2 ϕ ∼ N(0, 1) is

truncated to the stationary region for an AR(1) process and σ2
v ∼ IG(11, 0.01).3

2.3 Posterior Sampling

The sampling scheme for the SV-IHMM consists of two parts. First, we sample the state-

dependent parameters, transition matrix, latent states and the concentration parameters of

the HDP. Second, we sample the log-volatility.

Conditional on the log-volatility, the sampling algorithm for the state-dependent pa-

rameters is similar to that of the IHMM. We use the beam sampler from Van Gael et al.

(2008). This randomly generates the auxiliary variables (slices) that stochastically truncate

the infinitely dimensional transition matrix Π into a finite size so that the forward-filtering

backward-sampling (FFBS) an be applied (Chib, 1996).

2Maheu and Yang (2016) documents significant improvements in the density forecast accuracy.
3We apply a very informative prior to separately identify the SV and IHMM components. A prior of

σ2

v
∼ IG(5, 0.25) provides similar forecast results.
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We define an auxiliary variable ut > 0 (slice) that is generated by a uniform density as

follows:

p(ut|st, st−1,Π, ) =
✶(ut < πst−1,st)

πst−1,st

t = 1, . . . , T, (8)

where ✶(·) denotes the indicator function. Augmenting the model with ut gives us the

following target density:

p(rt, ut|θ,Π, st−1, ht) =
∞
∑

k=1

✶(ut > πst−1k)N(rt;µk, ω
2
k exp(ht)). (9a)

Integrating out the slice yields (4a), but given ut there are now a finite number of non-zero

terms ✶(ut > πst−1k) that we need to account for. This is easily found by defining K to

satisfy maxi∈{1,...,K}{1−
∑K

j=1 πi,j} < mint∈{1,...,T}{ut}. Then j = 1, . . . , K cover all non-zero

terms ✶(ut > πst−1k).

Now, sampling the states and the state-dependent parameters is done on a finite Markov

switching model. In each iteration of the posterior sample, K will change.

The FFBS within the Beam sampler is applied in the following way:

The prediction step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t−1) ∝
K
∑

j=1

✶(ut < πj,k)p(st−1 = j|u1:T ,Π, r1:t−1, ht). (10)

The update step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t) ∝ p(st = k|u1:T ,Π, r1:t−1)p(rt|r1:t−1, µk, ωk, ht). (11)

After s1:T are sampled, we update K by excluding the states for which there are no observation

assignment. The slices are drawn from the uniform distribution.

To sample ht, a random length block-move Metropolis-Hastings (MH) sampler of Jensen

and Maheu (2010) is used. The block size of this sampler is randomly drawn from a Poisson

distribution with preset hyperparameter λh, and the expected block size is λh + 1. Once ht

is sampled, θ and σv can be easily sampled via conjugacy. c1:K represents the oracle counts
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that help us sample α and η. All of the posterior steps are summarized in the following:

p(u1:T |s1:T ,Π) p(s1:T |Π, u1:T , r1:T , h1:T , θ) p(c1:K |s1:T ,Γ, α)

p(Γ|s1:T , η, α, c1:K) p(Π|s1:T ,Γ, α, c1:K) p(µ1:K , ω1:K |r1:T , s1:T )

p(α, η|s1:T , c1:K) p(h1:T |r1:T , θ) p(ϕ, σ2
v |h1:T )

p(b0, B0, v0, s0|µ1:K , ω1:K)

Appendix A.2 describes the details of each sampling step. Let Θ = {s1:T , u1:T ,Π, α, η, c1:K , µ1:K , ω1:K , ϕ, σv, h

Sampling each of the conditional posterior distributions provides one iteration of the sam-

pler and MCMC theory ensures these draws converge to a sample from the desired posterior

density, p(Θ|r1:T ). After dropping the burn-in draws, the sample average of g(Θ(i)) provides

a simulation consistent estimate of the posterior moment, E[g(Θ)|r1:T ], for some function of

interest g(·). For example, given N MCMC draws,

E(µst |r1:T ) ≈
1

N

N
∑

i=1

µ
(i)

s
(i)
t

, for t = 1, . . . , T, (13)

is the posterior mean estimate of µst at each point in time.

2.4 Out-of-Sample Forecasts

This subsection describes the simulation details to compute forecasts. The predictive distri-

bution of the returns integrates out all of the parameter uncertainty and has the following

generic form:

p(rt+1|r1:t) =

∫

p(rt+1|Θ, r1:t)p(Θ|r1:t)dΘ, (14)

where p(rt+1|Θ, r1:t) is the density of rt+1, given the parameter set Θ and the past returns.

p(Θ|r1:t) is the posterior density of Θ, given the data. Any feature of the predictive density,

such as the predictive mean, can be obtained through simulation methods.

A central component in a Bayesian model comparison is the predictive likelihood. This

is obtained for a model by evaluating the predictive density at the realized data point rt+1.

The predictive likelihood measures the accuracy of the density forecasts, with larger values

being better.

To compute the log-predictive likelihood (LPL) for the SV-IHMM, we do the following:

Given the posterior draws from each iteration of the MCMC sampler {Θ(i)}Ni=1, we draw

s
(i)
t+1 ∈ {1, . . . , K(i) + 1}, where K(i) is the total number of active states:

1. Simulate the state variable s
(i)
t+1 through Π

(i)

s
(i)
t

, conditional on s
(i)
t .
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2. If s
(i)
t+1 ≤ K(i), then rt+1 is assigned to an existing state, with state-dependent parameter

θ
s
(i)
t+1

= (µ
(i)

s
(i)
t+1

, ω
(i)

s
(i)
t+1

). Otherwise, rt+1 is assigned to a new state, s
(i)
t+1 = K(i) + 1, where

(µ
(i)

s
(i)
t+1

, ω
(i)

s
(i)
t+1

) is drawn from the hierarchical prior, µ
s
(i)
t+1

∼ N(b
(i)
0 , B

(i)
0 ) and ω2

s
(i)
t+1

∼

IG(ν
(i)
0 , s

(i)
0 ).

The predictive likelihood estimate at t+ 1 is computed over all MCMC draws:

p(rt+1|r1:t) ≈
1

N

N
∑

i=1

p(rt+1|µ
(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)), (15)

where p(rt+1|µ
(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)) denotes the normal density evaluated at rt+1 with mean

µ
(i)

s
(i)
t+1

and variance ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1). h

(i)
t+1 is obtained by simulating forward a value from the

existing MCMC draw h
(i)
t+1 ∼ N(ϕ(i)h

(i)
t , σ

(i)2
v ).

Equation (15) measures the predictive likelihood of forecast accuracy at period t+1. The

forecast performance over the entire out-of-sample period, t0, . . . , t1 t0 ≤ t1, is determined by

computing the joint predictive likelihood of model MA in the following way:

LPLA = log p(rt0:t1 |r1:t0 ,MA) =

t1
∑

t=t0

log p(rt|r1:t−1,MA) (16)

Two models, MA and MB, can be compared with a log-predictive Bayes factor (BF)

defined as BFAB = LPLA−LPLB. Positive values favour MA. Values above 5 are regarded

as strong evidence for MA.

The root mean squared forecast error (RMSFE) for MA is computed in a similar way:

RMSFE =

√

∑t1
t=t0

(rt − E(rt | r1:t−1,MA))2

t1 − t0 + 1
, (17)

where E(rt|r1:t−1,MA) is the predictive mean for rt given data r1:t−1. For each out-of-sample

period, we re-estimate the model to compute the predictive quantities.

To further evaluate the model forecasts we compute the value-at-risk for quantile q along

with the expected shortfall by simulating from the predictive density. To compare models

we report the scoring rule of Taylor (2019). Let V aRq
t+1 and ESq

t+1 denote the value-at-

risk and expected shortfall for a model using information r1:t at percentile q. We simu-

late from the predictive distribution by adding a third step above that simulates r
(i)
t+1 ∼

N(µ
(i)

s
(i)
t+1

, ω
(i)2

s
(i)
t+1

exp(h
(i)
t+1)). From these draws we numerically estimate the V aRq

t+1 and ESq
t+1

9



accordingly. The scoring function is

L(rr+1, V aRq
t+1, ESq

t+1) = − ln
( 1− q

ESq
t+1

)

−
(rt+1 − V aRq

t+1)
[

q − ✶(rt+1 < V aRq
t+1)

]

qESq
T+1

+
rt+1

ESq
t+1

.

The average score, TS(q), is measured over entire out-of-sample period in the following way,

TS(q) =

∑t1
t=t0

L(rr+1, V aRq
t+1, ESq

t+1)

t1 − t0 + 1
, (18)

with models producing smaller values being preferred.

3 Benchmark Models

We consider the following benchmark models for comparison. The GARCH-N is defined as

rt = µ+ σtϵt, ϵt ∼ N(0, 1), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1. (19)

The GARCH-t replaces the normal distribution with a Student-t distribution:

rr = µ+ σtut, ut ∼ t(ν), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1, (20)

where t(ν) denotes a Student-t distribution with mean 0, scale parameter 1 and degree of

freedom ν.

The SV parametric versions, including the SV-N, are defined as

rt = µ+ exp (ht/2) ϵt, ϵ ∼ N(0, 1), ht = ξ + ϕht−1 + σvvt. (21)

Similarly, SV-t has the following Student-t return innovations:

rt = µ+ exp (ht/2) ut, ut ∼ t(ν), ht = ξ + ϕht−1 + σvvt. (22)

The SV-IHMM nests several models of interest that we can compare our model to. The

first is an IHMM without the SV component. If σv = 0, and ht = 0, ∀t in the SV-IHMM
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then we have the following IHMM:

Γ ∼ Stick(η), Πj
iid
∼Stick2(α,Γ), j = 1, . . . ,∞, (23a)

st|st−1 ∼Πst−1 , (23b)

rt|st, ht, θ ∼N(µst , ω
2
st
), (23c)

θj
iid
∼H, j = 1, . . . ,∞, (23d)

As mentioned above, the infinite hidden Markov chain nests the DPM as a special case and,

therefore, the SV-IHMM nests the SV-DPM of Jensen and Maheu (2010). The SV-DPM

model is obtained by replacing the first two lines in (1a)–(1b) with

Γ ∼Stick(η), (24a)

st ∼Γ, t = 1, . . . , T. (24b)

Finally, since the SV-IHMM nests the SV-DPM, it also nests the SV-t under certain param-

eter restrictions and prior assumptions.

The model by Amado and Terasvirta (2013), is a multiplicative time-varying GJR-

GARCH that decomposes volatility to a GJR-GARCH specification and a multiplicative

time-varying component. According to Amado and Terasvirta (2013), the TV-GJR-GARCH

model is written as,

rt = µ+ et, et = σ2
t gtϵt, ϵt ∼ N(0, 1), (25a)

σ2
t = β0 + β1e

2
t−1 + β2σ

2
t−1 + β3e

2
t−1I(et−1 < 0), (25b)

gt = gt(t/T, γ,c1:K) =
r
∑

l=1

δlGl(t/T, γ, cl,1:K), (25c)

Gl(t/T, γ, cl,1:K) =

(

1 + exp{−γ

K
∏

k=1

(t/T − clk)}

)−1

. (25d)

The gt(·) is a time-varying deterministic function with δl > 0, γ > 0 and c1 ≤ c2 ≤ · · · ≤ cK .

The choice of r = 1 and K = 2 are preselected and suggested by Amado and Terasvirta

(2013) as the optimal choice.4 The extended model labelled TV-GJR-GARCH-t replaces the

normal innovations with Student-t innovations in the return equation. Posterior simulation

steps follow the GARCH model and details are discussed on the Appendix A.4.

The multifractal volatility of Calvet and Fisher (2004) decomposes the volatility into sev-

4We also tried r = 1 and K = 1 ranked as the second best in Amado and Terasvirta (2013). The
alternative choice does not display better forecast performance.
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eral latent multiplicative components, each multinomially distributed. Their model, labelled

as MMV-K, is.

rt = µ+ ωet, et ∼ N(0, σ2
t ) (26a)

σ2
t = M1t ·M2t · · ·MKt (26b)

Mkt ∼











α with probability 1
2
γk

2− α with probability 1
2
γk

Mkt−1 with probability 1− γk

(26c)

γk = 1− (1− γ1)
bk−1

, (26d)

with γk ∈ (0, 1) and b ∈ (1,∞).5 The σ2
t is a joint multiplication of K multipliers and each

multiplier is either α or 2−α. The number of multipliers K is preset and denoted as MMV-K

in the paper. Given the K and two choices for each multiple (α and 2−α), there is a total of

d = 2K combinations. As suggested by Calvet and Fisher (2004), the model can be written

as a special case of Markov-switching model and as such estimation follows Chib (1996) to

sample the latent states. The rest of the parameters (γ1, b, α) are sampled conditioned on

the latent state sequences via a single-move random-walk Metropolis-Hastings step.6

The prior and the hierarchical prior of the IHMM are the same as that of the SV-

IHMM. For the SV-DPM, we keep the same priors, hyper-priors and hierarchical priors

as in SV-IHMM. The key difference is that there is only one concentration parameter, η ∼

Gamma(2, 8), in the SV-DPM. Let µ, β0, β1, β2 follow an independent N(0, 1) in GARCH-N

and GARCH-t. Similarly, µ, ξ, ρ follow an independent N(0, 1) and σ2
v ∼ IG(11, 0.01) in

both the SV-N and SV-t. The prior for ν in the Student-t is uniform: ν ∼ U [2, 50] which

applies to all model using student-t distribution. For the TV-GJR-GARCH model, µ, β0,

β1, β2 and β3 follow independent N(0, 1). The other parameters, δ1, γ, c1:2 follow truncated

N(0, 1) with the restrictions such that δ1 > 0, γ > 0, c1 ≤ c2 ≤ · · · ≤ cK . For the MMV-K

model, γ1 ∼ Beta(2, 2), α ∼ U [0, 1], ω−2 ∼ Gamma(5, 1). There is no need to sample γ2:K

as they are deterministic conditioned on γ1 and b.

5γ1 is sampled and γ2:K are deterministic given γ1 and b.
6Calvet and Fisher (2004) indicate the MMV-K is ultimately a Markov switching model with state

dimension of 2K . The computation of Markov transition probability is referred to Appendix A.5.
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4 Empirical Results

4.1 Data

Four time series datasets are studied using the SV-IHMM and the benchmark models. These

datasets cover three assets from equity, commodity, and foreign exchange markets and a

macroeconomic indicator. We select Apple Inc. (AAPL) as a large cap equity and use its

common stock returns at daily frequencies, dated from December 15th, 1980 to December 31,

2020, and obtain a sample size of 10,099, which we retrieved from the CRSP.7 For the foreign

exchange rate, we study the daily exchange rates of the Canada-US dollar for the period

January 5th, 1971, to December 31, 2020 (12,057 observations), which we obtained from

the FRED.8 West Texas Intermediate (WTI) crude oil spot free on board (FOB) prices are

selected for our commodity prices and run from January 2, 1986 to December 31, 2020. There

are 8,819 daily observations and these are downloaded from the U.S. Energy Information

Administration. The U.S. industrial production index is downloaded from FRED and is a

monthly measure of real output. There are 1,222 observations, dating from March, 1919 to

December, 2020. All of the time series are transformed into rates of change by taking the

log difference and scaling it by 100. The data series are labelled AAPL, USD/CAD, Crude

Oil, and IP Growth, respectively. Table 1 illustrates some descriptive statistics of the data.

AAPL and Crude Oil have greater volatility and skewness than USD/CAD and IP Growth.

4.2 Posterior Analysis

Table 2 summarizes the posterior parameter estimates of only the most competitive models:

the SV-IHMM, SV-DPM, SV-t and GARCH-t across the four datasets. The posterior means

and 0.95 density interval estimates are reported. The burn-in MCMC draws are 20,000 and

another N = 20, 000 draws are used for posterior inference. In the case of IP Growth, we

include an AR(1) term in the parametric models with a fixed coefficient in the conditional

mean and denote it as ρ in the table.9 In the nonparametric models (SV-IHMM, SV-DPM

and IHMM), ρ is also state dependent along with the intercept.

First, introducing a second dynamic structure on the volatility through ω2
st

does not

weaken the volatility persistence of ht. For instance, ϕ is in the range of 0.993 – 0.999 for all

of the models. Second, in the nonparametric components, we find that the SV-IHMM model

uses more active states than the SV-DPM in applications of AAPL and USD/CAD, whereas

7Center for Research in Security Prices.
8Federal Reserve Economic Data, U.S. Federal Reserve Bank of St. Louis.
9See Maheu et al. (2020) for the importance of a lag of IP growth for forecasting.
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it is about the same in applications of Crude Oil and IP Growth, as shown in Table 2.10

The estimates for the SV-t and the GARCH-t are typical, with a small degree of freedom

in the t-distribution and strong persistence measures of ϕ and β1 + β2 in volatility. The

exception is for the SV-t applied to IP Growth, where the degree of freedom is larger other

applications. In this case, the fat-tails are generated though the log-volatility, which has a

much larger σ2
v than the other data.

Figure 1 shows the posterior mean of the variance components for the SV-IHMM model

that is applied to AAPL for the period 2012 to 2020. As discussed earlier, the ht process

by construction captures the smooth changes in the volatility. Deviations from this are

controlled by ωst , which captures short-term changes in volatility and, as the bottom plot

shows, is much more transitory in nature than ht. This allows for a volatility shock with

little to no persistence, where abrupt breaks are captured by ωst and we avoid the problem

that is common to standard GARCH and SV models, in which the effects of large volatility

shocks last too long (Mikosch and Stărică, 2004; Stărică and Granger, 2005).

Figures 2 and 3 display a heatmap for the state used in USD/CAD and IP Growth

application. The heatmap is a T × T matrix that displays p(si = sj|r1:T ) at entry (i, j)

with colours. A colour closer to red (yellow) indicates a probability closer to one (zero).

Excluding the diagonal which is all red, off diagonal elements that are closer to red indicate

that those dates, (i, j), are more likely to share the same state and hence parameters. The

USD/CAD heatmap indicates frequent recurrent states over the whole sample. Similarly,

for IP growth we see clear evidence of past states from 1920s and 1960s used to capture the

Great Moderation in the early 1980s.

Figures 4 and 5 display the posterior mean of selected state dependent parameters (e.g.

E[µst |r1:T ]) for two applications. A 0.95 density intervals is included along with colours to

indicate the most likely parameter in use at each point in time. ω2
st
captures the transitory

changes such as the recent COVID-19 shock, where ω2
st

displays a spike in early 2020 as

shown in Figures 4 and 5. On the contrary, the persistent volatility component, exp(ht),

hardly moves at all.

Estimates of conditional skewness and conditional kurtosis at each point in the sample

from the posterior predictive density are displayed in Figure 6 for the SV-IHMM. There is

considerable variation due to the mixture component weights changing over time as well as

stochastic volatility.

10However, no concrete conclusion can be drawn from the K estimates as it is not a consistent estimator
of the number of components. (Miller and Harrison, 2013)
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4.3 Density, Point and Tail Forecasts

We perform recursive one-period-ahead out-of-sample forecasts by using each of the models.

Three measurements are computed. We report the log-predictive likelihood (LPL), which

evaluates the predictive accuracy of the entire predictive distribution. The second measure is

the root-mean squared forecast error (RMSFE) of the predictive mean. The final is the scoring

rule by Taylor (2019) that evaluates the forecast accuracy of value-at-risk and expected

shortfall.

Table 3 shows the LPL, the log-Bayes factor in favour of the SV-IHMM against the

benchmarks, and the RMSFE among all of the models for the four datasets. Table 4 compares

the performance of tail forecasts of SV-IHMM and the benchmarks. We consider a large out-

of-sample period with which to compare the models. In this paper, the training sample is

set to approximately to the first five-years of data, and the out-of-sample period starts from

the closest start of a calendar year. For example, the out-of-sample size is 8,823 observations

for AAPL, 10,856 observations for USD/CAD, 7,543 observations for Crude Oil, and 1,164

observations for IP Growth. To compute the forecasts, each model is re-estimated in each

out-of-sample period.

There are several points worth mentioning. First, the SV-IHMM provides the best forecast

results, compared to all of the benchmark models, in terms of density forecasts. This model

has a positive log-Bayes factor against all competitors. The SV-DPM specification is the

second-best model and is always superior to or marginally better than the SV-t. Third, the

GARCH-t is quite competitive and is better than the SV-t for IP Growth. The fat tails of

the SV-t are always preferred to the SV-N, except for the case of IP Growth where the two

models predict equally well. The SV-N does produce fat tails in the predictive density but

the generally small degree of freedom parameter estimates in the SV-t (see Table 2) model

indicate that this is insufficient. The SV-DPM and SV-IHMM capture the non-Gaussian fat

tails through a discrete mixture of distributions.

Some insight into model performance is seen in Figure 7, which plots the cumulative

log-BF between the SV-IHMM and other top performing benchmark models at each point in

time. If the curve is sloping upward (downward), this indicates the SV-IHMM does better

(worse) in accounting for the associated realized data at time t.

Overall, each of the plots shows gradually increasing log-Bayes factors in support of the

SV-IHMM. None of the results of the final log-Bayes factors are driven by a few influential

outliers and, instead, come from consistent gains over the out-of-sample period. The SV-

IHMM can take some time to show improvements over the SV-DPM in the case of Crude Oil

and IP Growth. This is likely due to needing more data to learn about the more complex

transition matrix here.
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Although the evidence for the SV-IHMM is very strong over the SV-DPM, we acknowledge

that the out-of-sample period is very large. This means that it takes a significant amount of

data to uncover the gains the SV-IHMM has over the SV-DPM. The key difference in these

models is the Markov chain structure governing the states in the SV-IHMM. Finally, the

differences in RMSFE are very minor across models.

Some differences in the models can be seen in Figure 8, which shows log-predictive den-

sities for various dates. Generally, when necessary, the SV-IHMM can produce thicker tails

than the SV-DPM model.

While the RMSFE and log-predictive likelihood assess the center and the whole predictive

distribution, the Taylor scoring rule focuses on accuracy in the lower tail of the distribution.

The average score according to (18) is reported in Table 4 and shows the SV-IHMM performs

the best for a q of 5%. At the 1% level the SV-t and GARCH-N models are better for AAPL

and IP growth, respectively, while the SV-IHMM is competitive.11 This scoring rule requires

ESq
T+1 < 0 which is violated for the MMV-K models applied to IP growth.

4.4 Robustness

The hierarchical prior in the SV-IHMM automatically provides some robustness to prior

settings, but the priors on the precision parameters η and α are informative. This is standard

and necessary as it imposes some weak structure on density estimation. Broadly speaking,

these parameters control the number of active states in the model and, as such, govern

parsimony. To explore their impact on the results, we report the posterior estimates for

the full sample and we recompute the out-of-sample forecasts for a loose prior for η ∼

Gamma(5, 5) and α ∼ Gamma(5, 5) and a tight prior for η ∼ Gamma(0.5, 8) and α ∼

Gamma(0.5, 8).

Table 5 compares the results of the two different prior settings. The posterior estimates

of the SV component are very similar over all prior settings, but more states are used on

average for the loose prior, as expected. The loose prior tends to reduce the LPL in the

USD/CAD application while it improves in IP Growth. The tighter prior does not show

significant changes in the LPL with respect to the benchmark prior. For AAPL and Crude

Oil, the alternative priors have a small impact on the LPL and the RMSFE.

The Appendix A.1 includes additional results for the top models using looser priors for

σ2
ν . These result in the same ranking of models. Except for the IP Growth, the tighter prior

results in larger LPL values.

11Similar results are documented while using the alternative scoring rule of Patton et al. (2019).

16



5 Conclusion

This paper proposes a new Bayesian semiparametric stochastic volatility model with Marko-

vian mixtures. The model nests the SV-DPM model proposed by Jensen and Maheu (2010)

but allows the unknown innovation distribution to change over time. The empirical results

show that this change is important. In general, the SV-IHMM consistently outperforms all

of the benchmark models in terms of out-of-sample density forecasts and tail forecasts. The

results for the SV-IHMM are robust to different prior settings.
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Table 1: Descriptive Statistics

Returns Mean Median StDev Skewness Ex.Kurtosis Min Max

AAPL 0.0711 0.0000 2.9081 -1.7501 46.5407 -73.1248 28.6890
USD/CAD -0.0006 0.0000 0.4087 0.1098 10.1554 -3.8070 5.0716
Crude Oil -0.0117 -0.0213 2.5514 1.8373 69.8919 -41.2023 64.3699
IP Growth 0.2493 0.2800 1.9409 -0.0607 12.8184 -14.6100 15.3219
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Table 2: Posterior Summary of Parameters

Panel A: AAPL

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1188 ( 0.0816, 0.1559) 0.1417 ( 0.1239, 0.1563)
ξ 0.0122 ( 0.0067, 0.0188) β0 0.0260 ( 0.0139, 0.0404)
φ 0.9993 (0.9985, 0.9999) 0.9928 (0.9888, 0.9962) 0.9909 ( 0.9864, 0.9947) β2 0.9332 ( 0.9217, 0.9461)
σ2
ν 0.0011 (0.0007, 0.0017) 0.0098 (0.0058, 0.0147) 0.0122 ( 0.0078, 0.0182) β1 0.0394 ( 0.0324, 0.0452)

ν 6.1802 ( 5.5081, 6.9721) 5.2532 ( 4.9630, 5.4631)
α 1.2308 (0.7548, 1.8503)
η 0.9454 (0.4342, 1.6495) 0.4132 (0.1180, 0.8610)
K 10.3052 (8.0000,13.0000) 6.1295 (3.0000,10.0000)

Panel B: USD/CAD

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0001 (-0.0038, 0.0035) -0.0005 (-0.0043, 0.0031)
ξ -0.0127 (-0.0189,-0.0069) β0 0.0001 ( 0.0000, 0.0002)
φ 0.9993 (0.9987, 0.9998) 0.9962 (0.9943, 0.9979) 0.9951 ( 0.9929, 0.9971) β2 0.9268 ( 0.9173, 0.9351)
σ2
ν 0.0024 (0.0015, 0.0033) 0.0116 (0.0091, 0.0148) 0.0132 ( 0.0100, 0.0174) β1 0.0542 ( 0.0473, 0.0620)

ν 10.0817 ( 8.2735,12.5834) 6.3324 ( 5.6626, 7.0463)
α 0.6543 (0.3615, 1.0422)
η 1.0455 (0.4979, 1.8023) 0.3647 (0.1060, 0.7685)
K 10.9187 (9.0000,14.0000) 5.3633 (3.0000, 9.0000)

Panel C: Crude Oil

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0594 (-0.0965,-0.0227) -0.0754 (-0.0995,-0.0484)
ξ 0.0148 ( 0.0091, 0.0214) β0 0.0488 ( 0.0337, 0.0657)
φ 0.9933 (0.9901, 0.9961) 0.9893 (0.9851, 0.9931) 0.9875 ( 0.9826, 0.9916) β2 0.9068 ( 0.8920, 0.9197)
σ2
ν 0.0098 (0.0066, 0.0137) 0.0164 (0.0120, 0.0214) 0.0182 ( 0.0139, 0.0237) β1 0.0525 ( 0.0448, 0.0622)

ν 8.9162 ( 7.4014,10.9299) 5.1749 ( 4.8852, 5.7158)
α 1.5493 (0.8461, 2.4802)
η 0.5526 (0.1694, 1.2078) 0.4203 (0.1155, 0.9213)
K 5.6379 (4.0000,10.0000) 6.1468 (3.0000,12.0000)

Panel D: IP Growth

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1411 ( 0.0956, 0.1869) 0.1631 ( 0.1183, 0.2040)
ρ 0.4158 ( 0.3576, 0.4734) 0.3973 ( 0.3466, 0.4574)
ξ -0.0098 (-0.0335, 0.0118) β0 0.0521 ( 0.0249, 0.0825)
φ 0.9966 (0.9941, 0.9990) 0.9970 (0.9948, 0.9992) 0.9622 ( 0.9354, 0.9866) β2 0.5993 ( 0.4912, 0.7464)
σ2
ν 0.0017 (0.0006, 0.0046) 0.0020 (0.0008, 0.0039) 0.1411 ( 0.0518, 0.2265) β1 0.2400 ( 0.1466, 0.3233)

ν 24.6920 ( 6.1601,48.5491) 4.5288 ( 3.5544, 5.5427)
α 1.2772 (0.7094, 2.1243)
η 0.6872 (0.2446, 1.3464) 0.5785 (0.2191, 1.1131)
K 6.9515 (5.0000,11.0000) 7.6072 (5.0000,11.0000)

Note 1: ρ denotes the parameter of the additional AR(1) term for each model.
Note 2: µ, ρ and ξ are state-dependent parameters for SV-IHMM and SV-DPM.
Note 3: β0, β1 and β2 are the GARCH parameters from (20).
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Table 3: Out-of-Sample Forecast Performance: Density and Point Forecast

AAPL USD/CAD

LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -19846.89 — 2.8373 -3581.02 — 0.4283
SV-DPM -19893.40 46.50 2.8341 -3616.36 35.34 0.4284
SV-t -19892.58 45.68 2.8345 -3629.96 48.93 0.4284
GARCH-t -19953.12 106.23 2.8347 -3636.74 55.72 0.4284
IHMM -19934.70 87.81 2.8382 -3716.15 135.13 0.4297
SV-N -20037.88 190.99 2.8350 -3688.19 107.17 0.4284
GARCH-N -20542.51 695.62 2.8343 -3914.81 333.79 0.4284
TV-GJR-GARCH -20830.94 984.01 2.8340 -4063.41 482.38 0.4284
TV-GJR-GARCH-t -20578.67 731.78 2.8349 -3966.95 385.93 0.4284
MMV-2 -20507.10 660.21 2.8350 -5002.40 1421.38 0.4284
MMV-3 -20240.00 393.11 2.8348 -4392.00 810.98 0.4284
MMV-4 -20187.90 341.01 2.8347 -4867.90 1286.88 0.4284
MMV-5 -20211.60 364.71 2.8348 -4644.30 1063.28 0.4284
MMV-6 -20285.40 438.51 2.8348 -4818.10 1238.08 0.4284

Crude Oil IP Growth

LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -16189.88 — 2.6687 -1622.73 — 1.6058
SV-DPM -16213.17 23.29 2.6688 -1641.43 18.69 1.5835
SV-t -16221.76 31.87 2.6690 -1661.11 38.37 1.5823
GARCH-t -16226.84 36.95 2.6689 -1649.76 27.02 1.5808
IHMM -16231.72 41.83 2.6706 -1635.47 12.74 1.5903
SV-N -17019.77 829.88 2.6687 -1662.67 39.94 1.5805
GARCH-N -16492.99 303.10 2.6688 -1791.79 169.06 1.5837
TV-GJR-GARCH -16572.35 382.42 2.6689 -1721.94 99.17 1.5753
TV-GJR-GARCH-t -17004.03 814.15 2.6692 -1661.55 38.82 1.5817
MMV-2 -16648.60 458.72 2.6694 -1772.30 149.57 1.5923
MMV-3 -16525.70 335.82 2.6698 -1727.50 104.77 1.5905
MMV-4 -16432.60 242.72 2.6693 -1720.30 97.57 1.5910
MMV-5 -16418.70 228.82 2.6693 -1715.40 92.67 1.5906
MMV-6 -16459.80 269.92 2.6693 -1705.30 82.57 1.5875

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The log Bayes factors are the difference between the log-predictive likelihoods of the SV-IHMM
model and each corresponding model. Bold entries are for the largest LPL and the smallest RMSFE.
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Table 4: Out-of-Sample Forecast Performance: Tail Forecasts

AAPL USD/CAD Crude Oil IP Growth

1% 5% 1% 5% 1% 5% 1% 5%

SV-IHMM 3.219 2.726 1.157 0.801 2.907 2.542 2.513 1.803

SV-DPM 3.248 2.742 1.192 0.814 2.936 2.553 2.561 1.850
SV-t 3.205 2.735 1.172 0.808 2.938 2.557 2.581 1.846

GARCH-t 3.213 2.754 1.165 0.807 2.920 2.552 2.474 1.825
IHMM 3.223 2.739 1.223 0.833 2.923 2.557 2.506 1.830
SV-N 3.239 2.763 1.184 0.820 3.566 2.737 2.568 1.844

GARCH-N 3.255 2.758 1.262 0.814 2.907 2.555 2.473 1.807
TV-GJR-GARCH 3.305 2.823 1.241 0.832 2.925 2.567 2.871 1.908
TV-GJR-GARCH-t 4.842 3.712 1.241 0.834 5.121 3.865 — —

MMV-2 3.375 2.887 1.404 1.032 3.191 2.698 2.843 —
MMV-3 3.291 2.820 1.309 0.925 3.080 2.661 2.713 —
MMV-4 3.283 2.805 1.358 1.027 3.008 2.619 2.681 —
MMV-5 3.276 2.810 1.384 0.996 3.000 2.614 2.669 —
MMV-6 3.298 2.833 1.340 1.016 3.025 2.630 2.634 —

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The entries are computed according to the scoring rule by Taylor (2019), which considers the
value-at-risk and the expected shortfall jointly. Bold entries are for the smallest value in a column.
Note 3: For IP Growth at 5% level, the MMV-K and TV-GJR-GARCH-t models generate positive VaR and
ES in IP Growth, which violates the strictly negative constraint of the scoring rule.
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Table 5: Robustness: Posterior Estimates and Forecast Performance

AAPL

ϕ σ2
v α η K LPL RMSFE

Loose 0.9989 0.0014 3.3395 1.8419 13.1340 -19843.27 2.8373
Benchmark 0.9993 0.0011 1.2308 0.9454 10.3052 -19846.89 2.8373
Tight 0.9990 0.0011 0.7743 0.8449 10.4248 -19843.70 2.8379

USD/CAD

ϕ σ2
v α η K LPL RMSFE

Loose 0.9994 0.0015 1.2870 2.3436 16.3146 -3591.81 0.4283
Benchmark 0.9993 0.0024 0.6543 1.0455 10.9187 -3581.02 0.4283
Tight 0.9991 0.0023 0.6986 0.7403 9.0708 -3577.30 0.4283

Crude Oil

ϕ σ2
v α η K LPL RMSFE

Loose 0.9932 0.0099 3.6505 1.1750 6.9398 -16190.03 2.6695
Benchmark 0.9933 0.0098 1.5493 0.5526 5.6379 -16189.88 2.6687
Tight 0.9938 0.0081 1.5841 0.3766 5.0579 -16192.12 2.6691

IP Growth

ϕ σ2
v α η K LPL RMSFE

Loose 0.9964 0.0014 2.1213 1.5240 8.8890 -1616.03 1.6060
Benchmark 0.9966 0.0017 1.2772 0.6872 6.9515 -1622.73 1.6058
Tight 0.9964 0.0014 1.0268 0.4840 6.1176 -1624.92 1.6075

Note 1: This table reports posterior mean estimates for φ, σ2

v
, α, η and K, in addition to out-of-

sample LPL and RMSFE using the same out-of-sample period as before.
Note 2: The loose prior represents Gamma(5, 5); the benchmark prior represents Gamma(2, 8);
and the tight prior represents Gamma(0.5, 8).
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Figure 1: AAPL Application: Posterior Mean of Variance Components
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Figure 2: Heat Map for USD/CAD

Note 1: The redder the colour, the higher the probability that two periods sharing the same state.

Figure 3: Heat Map for IP Growth

Note 1: The redder the colour, the higher the probability that two periods sharing the same state.
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Figure 4: State-dependent parameters over time for USD/CAD

Note 1: The black solid line shows the posterior average of the state-dependent parameter and the blue
dotted line shows the corresponding 0.95 DI.
Note 2: The shaded area indicates the most probable state of the period by different colours.
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Figure 5: State-dependent parameters over time for IP Growth

Note 1: The black solid line shows the posterior average of the state-dependent parameter and the blue
dotted line shows the corresponding 0.95 DI.
Note 2: The shaded area indicates the most probable state of the period by different colours.
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Figure 6: Posterior Estimates of Conditional Skewness and Kurtosis
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Figure 7: Cumulative Log-Bayes Factor for SV-IHMM
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Figure 8: Log-Predictive Densities at Selected Dates
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A Appendix

A.1 Appendix: Robustness Test for Different σ2
ν Priors

Table 6: Log Predictive Likelihoods for SV-IHMM with Different σ2
ν Priors

AAPL IG(11,0.01) IG(5,0.25) IG(2.5,0.5)

SV-IHMM -19846.89 -19868.08 -19871.51
SV-DPM -19893.40 -19891.52 -19902.91
SV-t -19892.58 -19900.91 -19905.87
SV-N -20037.88 -20038.83 -20042.03

FX

SV-IHMM -3581.02 -3611.51 -3637.44
SV-DPM -3616.36 -3630.36 -3654.82
SV-t -3629.96 -3638.41 -3644.20
SV-N -3688.19 -3691.60 -3694.79

OIL

SV-IHMM -16189.88 -16196.07 -16203.09
SV-DPM -16213.17 -16212.94 -16220.30
SV-t -16221.76 -16224.20 -16227.19
SV-N -17019.77 -17038.88 -16963.99

IP Growth

SV-IHMM -1622.73 -1608.83 -1615.09
SV-DPM -1641.43 -1631.08 -1633.45
SV-t -1661.11 -1652.57 -1651.97
SV-N -1662.67 -1652.25 -1651.96

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Gr owth are
8823, 10856, 7543 and 1164, respectively.
Note 2: For SV-IHMM and SV-DPM, the SV dynamics follow ht = φht−1 + σννt, νt ∼ N(0, 1).
Note 3: For SV-t and SV-N, the SV dynamics follow ht = ξ + φht−1 + σννt, νt ∼ N(0, 1).

A.2 Appendix: Posterior Sampling Steps for SV-IHMM

1. We sample u1:T |Γ,Π: The auxiliary slice variable U = {ut}
T

t=1 is drawn from u1 ∼

U (0, γs1) and ut ∼ U
(

0, πst−1st

)

.

2. We update K. Similar to DPM model, if K does not meet the following condition

min {ut}
T

t=1 > max {πjR}
K

j=1 (27)
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then K needs to be increased by 1 (K ′ = K + 1), and all of the parameters need to be

drawn from the base measure. In addition, since a new “major” state is introduced, Γ

and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;

(b) We draw v ∼ Beta (1, η), then we update Γ = (γ1, . . . , γK , γK′ , γR)
′, where γK′ =

vγR and γR = (1− v) γR;

(c) We draw vj ∼ Beta (αγK′ , αγR), then we update Πj = (πj1, . . . , πjK , πjK′ , πjR) for

j = 1, . . . , K, where πjK′ = vπjR and πjR = (1− v) πjR;

(d) We draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (αγ1, . . . , αγK , αγK′ , αγR).

The above steps are repeated until inequality (27) holds.

3. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ, h1:T . Iterating the following steps forward

from 1 to T , we have the following:

(a) The prediction step for initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ ✶ (u1 < γk) , k = 1, . . . , K (28)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ, h1:t−1) ∝
K
∑

j=1

✶ (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ, h1:t−1)

(29)

(b) We update the step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ, h1:t) ∝ p (rt|rt−1, θk, ht) p (st = k|r1:t−1, u1:t,Π,Θ, h1:t−1)

(30)

4. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ, h1:T . We sample states s1:T using the

previously filtered values backward from T to 1:

(a) for the terminal state sT , we sample directly from p (sT |r1:T , u1:T ,Π,Θ, h1:T )

(b) for the rest states, we sample from the following,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ, h1:T ) ∝ ✶ (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ, h1:T )

(31)
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5. Sample c1:K |s1:T ,Γ, α. Following the sampling approach of Fox et al. (2011), we perform

the following:

(a) We count the number of each transition type, njk, number of times state j switches

to state k.

(b) We simulate an auxiliary trail variable xi ∼ Bernoulli
(

αγk
i−1+αγk

)

, for i = 1, . . . , njk.

If the trial is successful, then an “oracle” step is involved at the ith step toward

njk and we increase the corresponding “oracle” counts, ojk, by one.

(c) ck =
∑K

j=1 ojk.

6. Sample η: Following Fox et al. (2011) and Maheu and Yang (2016), we assume a

Gamma prior η ∼ Gamma (a1, b1), and let c =
∑K

j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+η

)

(b) λ ∼ Beta (η + 1, c)

(c) η ∼ Gamma (a1 +K − ν, b1 − log λ)

7. Sample α: Following Fox et al. (2011), we assume a Gamma prior α ∼ Gamma (a2, b2)

and let nj =
∑K

k=1 njk,

(a) νj ∼ Bernoulli
(

nj

nj+α

)

(b) λj ∼ Beta (α + 1, nj)

(c) α ∼ Gamma
(

a2 + c−
∑K

j=1 νj, b2 −
∑K

j=1 log (λj)
)

8. Sample Γ|c1:K , η: Given the “oracle” counts c1:K and the property of Dirichlet process,

the conjugate posterior is

Γ|c1:K , η ∼ Dir (c1, . . . , cK , η) (32)

9. Sample Π|n1:K,1:K ,Γ, α: Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (αγ1 + nj1, . . . , αγK + njK , αγR) (33)

10. Sample Θ|r1:T , s1:T , h1:T . We define Yk ≡
(

e−
1
2
htrt|st = k

)T

t=2
, andXk ≡

(

e−
1
2
ht |st = k

)T

t=2
.

The linear model is now

Yk = Xkµk + ωkϵk, ϵk ∼ N (0, I) (34)
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The posteriors are

p (µk|Yk, ωk) ∼
∏

t:st=k

p (rt|µk, ωk) p (µk) (35)

∼ N (Mµ, Vµ) (36)

where

Mµ = Vµ

(

ω−1
k X ′

kYk +B−1
0 b0

)

(37)

Vµ =
(

ω−1
k X ′

kXk +B−1
0

)−1
(38)

and

p (ωk|Y,µk) ∝
∏

t:st=k

p (rt|µk, ωk) p (ωk) (39)

∼ IG (v̄, s̄) (40)

where

v̄ =
Tk

2
+ v0 =

1

2

T
∑

t=1

✶ (st = k) + v0 (41)

s̄ =
1

2
(Yk −Xkµk)

′ (Yk −Xkµk) + s0 (42)

11. Sample hierarchical priors.

(a) Sample b0|µ1:K , B0, h0, H0 ∼ N (µb,Σb), where

µb = Σb

(

B−1
0

K
∑

k=1

µk +H−1
0 h0

)

(43)

Σb =
(

KB−1
0 +H−1

0

)−1
(44)

(b) Sample B0|µ1:K , b0, a0, A0 ∼ IW (ΩB, ωb), where

ωb = K + a0 (45)

ΩB =
K
∑

k=1

(µk − b0) (µk − b0)
′ + A0 (46)
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(c) Sample s0|σ
2
1:K , v0, c0, d0 ∼ Gamma (cs, ds), where

cs = Kv0 + c0 (47)

ds =
K
∑

k=1

σ−2
k + d0 (48)

(d) Sample v0|σ
2
1:K , s0, g0. There IS no easily applicable conjugate prior for v0, so a

Metropolis-Hastings step needs to be applied. We implement a Gamma proposal,

following Maheu and Yang (2016):

v′0|v0 ∼ Gamma

(

τ,
τ

v0

)

(49)

and the acceptance rate is

min

{

1,
p (v′0|σ

2
1:K , s0, g0) /q (v

′
0|v0)

p (v0|σ2
1:K , s0, g0) /q (v0|v

′
0)

}

(50)

12. θh|h1:T : Equation (1d) is simply a linear regression model. Assuming conjugate prior

β ∼ N (bh, Bh), the posterior is

δ|σv, h1:T ∼ N (M,V ) (51)

M = V

(

σ−2
v

T−1
∑

t=1

htht+1 + bhB
−1
h

)

(52)

V =

(

σ−2
v

T−1
∑

t=1

h2
t +B−1

h

)−1

(53)

Based on the above linear regression model with conjugate prior σ2
v ∼ IG (vh, sh), the

posterior is

σ2
v |δ, h1:T ∼ IG

(

T

2
+ vh,

∑T−1
t=1 (ht+1 − δht)

2

2
+ sh

)

(54)

13. Sample ht|h−t, r1:T ,Θ, s1:T : We use the block Metropolis-Hastings (MH) sampler as

in Jensen and Maheu (2010) with random block size k = Poisson (λh) + 1. The

proposal density is derived by approximating the autoregressive coefficient to 1. This

approximation provides an analytic inversion of the covariance matrix. We draw h′
(t,τ)
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from the following proposal density

g
(

h(t,τ)| · · ·
)

= N
(

h(t,τ);Mh − 0.5Vh (ι− ỹ) , Vh

)

(55)

where

ỹi =
(ri − µsi)

2

ωsi

exp (−Mh,i) (56)

Mh,i =
(k + 1− i)ht−1 + ihτ+1

k + 1
, i = 1, 2, . . . , k (57)

Vh,ij = σ2
v

min (i, j) (1 + k)− ij

k + 1
(58)

V −1
h,ij =



















2σ2
v i = j

−σ2
v j = i± 1

0 otherwise

(59)

We accept h′
(t,τ) with probability

min







1,
p
(

h′
(t,τ)|r1:T , h−(t,τ),Θ, s1:T

)

/g
(

h′
(t,τ)|h−(t,τ)

)

p
(

h(t,τ)|r1:T , h−(t,τ),Θ, s1:T
)

/g
(

h(t,τ)|h−(t,τ)

)







(60)

A.3 Appendix: Posterior Sampling for GARCH-N and GARCH-t

Let Θ = {µ, β0, β1, β2, ν} where ν is irrelevant for GARCH-N. We apply a random-walk

MH (RWMH) algorithm to sample the whole Θ vector jointly. A single-move RWMH is

used to compute the proposal covariance and then a block-move RWMH for better sampling

efficiency. A N(0,1) prior is employed for µ, β0, β1 and β2 with restrictions of β0 > 0, β1 > 0,

β2 > 0 and β1 + β2 < 1. The prior for ν is U(2, 50).

A.4 Appendix: Posterior Sampling for TV-GJR-GARCH

We sample Θ = {µ, β0, β1, β2, β3, δ1, γ, c1:2} sampled via single-move RWMH with random

walk, then a block-move RWMH with random is applied to improve the efficiency. gt imposes

a deterministic function of time t in addition to the GARCH persistence. The priors for µ,

β0, β1, β2, β3 are independent N(0, 1) with the same restrictions in GARCH-N. The priors

for δ1, γ, c1:2 are truncated N(0, 1) with restrictions of δ1 > 0, γ > 0 and c1 ≤ c2 ≤ · · · ≤ cK .
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A.5 Appendix: Posterior Sampling for MMV-K

According to Calvet and Fisher (2004), the MMV-K model can be written as a restricted

version of Markov-switching model. Given K and two choices for each multiplier (α and

2 − α), there are total of d = 2K combinations. If we let each combination be a particular

state, then each state corresponds to a sequence of K multipliers with each multiplier being

either α or 2− α. Alternatively, let mi ∈ {m1, . . . ,md} represent one sequence combination

where mi ∈ R
K
+ for i = 1, . . . , d. By definitions, there is a substantial number of combinations

such that mi ̸= mj for i ̸= j but
∏K

k=1 m
k
i =

∏K

k=1 m
k
j , where mk

i is the kth element in the

combination vector mi for state i. Apparently, σt will be the same for these combinations.

In short, we may have a large number of unique combination sequences but most of them

result in the same σt.

Given that γ2:K is a deterministic function of b and γ1, the corresponding Markov transi-

tion probability becomes the following,

πij =
K
∏

k=1

{

(1− γk)✶(m
k
i = mk

j ) + 0.5γk
}

, i, j ∈ (1, . . . , d)

where πij represent the probability of moving from state i to j. With the Markov transition

probability matrix and corresponding state variable σt ∈ {
∏K

k=1 m
k
1, . . . ,

∏K

k=1 m
k
d}, we could

generate a large Markov-switching model with dimension of d = 2K . The latent state variable

can be sampled via the Forward-filtering Backward-sampling (FFBS) by Chib (1996). Con-

ditioned on the sampled latent states, γ1 and b are jointly sampled via RWMH. This can be

computationally expensive as a new path of the state variable σ1:t need to be sampled during

the MH whenever new γ1 and b are generated from the proposal distribution. Conditioned

on σ1:t, γ1 and b, parameters µ and ω are sampled via conjugate Gibbs.
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