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1 Introduction 
 
 
 

 

We are currently amid the largest surge, arguably ‘boom’, in the application 

and development of artificial intelligence (AI) for scientific research in history. 

Scholarly publications, patents, education, training, salaries, research 

activity and investment are increasing at unprecedented rates. We may now 

be on the steepest part of the adoption and development curve. This is 

happening across the entire economy. Practically all industry sectors, 

advanced economies, professions and world regions are seeing rapid 

uptake of AI. The science sector is no exception. There’s a worldwide 

competitive race, and collaborative movement, to develop AI capability [8]. 

Many scientists, and science organisations, are aiming to uplift AI capability. 
 
 

 

We are seeing steep rates of adoption in science because, 

in many well-publicised cases, AI is improving the speed, 

cost-effectiveness, quality and safety of scientific research. 

In some cases, the benefits from using AI are 

transformational; scientists have been able to solve 

problems hitherto beyond reach. There is a hope that  
AI can provide a much-needed productivity boost for science. 

AI may help scientists address humanity’s greatest 

challenges such as climate change, pollution, resource 

scarcity and infectious diseases. However, not all AI projects 

have met the expectations of scientists. Sometimes AI 

projects can be complex, costly, time-consuming and labour-

intensive with limited results. The pathway to  
AI enablement, which most science organisations have 

embarked upon, is both rewarding and challenging. 

 
This report has been prepared to help science managers,  
science organisations and investors understand plausible  
development pathways for AI. Our aim is to describe  
how AI has changed science and what the future may  
hold. We hope this will help science-sector workers  
make informed decisions about how they prepare for an  
AI‑enabled future. Such decisions may be about investment,  
divestment, capability uplift, education, training and  
organisational design. We think most of the world’s  
science and research organisations are currently working  
through these, and related, issues as they seek to harness  
the opportunities and mitigate the risks of AI technology. 

 
 

 

Other research institutes examining the impact of AI 

on science and exploring related issues include: 

 

• The Alan Turing Institute. The institute was 

awarded £38.8 million ($70.6 million) in 2018 

for a 5-year research program on ‘AI and Data 

Science for Science, Engineering, Health and 

Government’. This applied‑research program 

aims to understand and accelerate productive 

application of AI within these sectors [9]. 
 
• The ‘Artificial Intelligence and Augmented Intelligence 

for Automated Investigations for Scientific Discovery’ 

(AI4SD) program aims to explore and demonstrate how 

AI technologies can boost discovery in all fields of 

research [10]. It is funded by the United Kingdom 

Engineering and Physical Sciences Research Council. 

A recent AI4SD conference was held at Chilworth 

Manor in the United Kingdom (and online) during 1–3 

March 2022. 
 
• The Organisation for Economic Co-operation and 

Development (OECD). Under the broader umbrella of the 

AI Policy Observatory, the OECD held a conference on 

‘artificial intelligence and the future of science’ from 29 

October to 5 November 2021. The conference examined 

the science productivity slump and the extent to which AI 

may provide a solution [11]. At this conference experts 

from across the globe presented data showing declining 

productivity in the science sector and discussed 

improvements possible via AI technology [12, 13]. 
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• The Stanford University Human-Centered AI Institute. 

This institute prepares the AI index and associated 

reports, which are regularly updated to provide a 

comprehensive dataset on AI technology uptake and 

adoption across all fields of science, industry and society 

[14]. This institute also has a lead role in the ‘One 

Hundred Year Study of Artificial Intelligence’ (AI100), 

which provides an ‘insider’ perspective about the past, 

present and future trajectory of AI development. The most 

recent AI100 report was published in 2021 and is titled 

‘Gathering Strength, Gathering Storms’ [15], indicating 

enhanced AI capability but coming with increased risks 

and complexity. 
 
• The Argonne Laboratory AI for Science Project.  

The Argonne Laboratories at Oak Ridge and Berkeley 

hosted ‘town hall’ meetings for over 1,000 scientists 

during July to October 2019 about the use of AI, big data 

and high-performance computing. The findings were 

captured in the ‘AI for Science’ report written by over 80 

authors. This report provides a detailed account about the 

state of the art, grand challenges, advances over the next 

decade, accelerating development 
 

and expected outcomes from AI application in 

nine major fields of scientific research [16]. 
 
• The University of Adelaide Australian Institute for 

Machine Learning (AIML). Along with the Australian 

Strategic Policy Institute, the AIML recently published a 

report titled ‘Artificial intelligence: Your questions 

answered’ [17], which examines issues of development, 

adoption and adaptation to AI technologies in Australia. 

It also examines issues of sovereign capability and why 

Australian industry often cannot buy AI ‘off-the-shelf’. 

The AIML actively monitors 
 

and examines issues relating to AI in Australia. 

 
 
 

 

• The 20-year community roadmap for AI research in the 

United States [18]. This document, and associated 

program of activity, is concerned with AI capability uplift in 

the United States out to the year 2040. It identifies 

research priorities in the areas of (a) integrated 

intelligence, (b) meaningful interaction, and (c) self‑aware 

learning. The report makes recommendations about 

hardware and software resources, training and education, 

ethics, policy, workforce transitions and mission-led 

research for AI, amongst other matters [18]. 

 
This report contributes to the understanding about how AI 

will enable, and potentially transform, science from a global 

and Australian perspective. Our report opens with a brief 

history of AI and what makes now, the current boom cycle, 

different from the past. We then describe the global and 

Australian science sectors, highlighting science’s 

productivity slump which AI can potentially help solve. We 

next present a bibliometric analysis of AI adoption across 

all science domains and patterns 
 
of AI science and technology development. Lastly, the 

report explores AI development pathways in science 

over the coming decade and examines the strategic 

implications for scientists and science organisations 

aiming to uplift capability for an AI-enabled future. 
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2 Artificial intelligence – 

Why now? 
 
 

 

2.1 A turbulent history  
 
There are many detailed accounts of AI’s history. In this 

section we draw upon key publications [19-23] to provide a 

brief summary of AI’s historic development to contextualise 

our subsequent analysis of its current status and future 

development pathways. We emphasise that AI isn’t new 
 
to science; it has been on a long and turbulent journey 

with interest waxing and waning through history. 

 
AI is a field of science that has been widely considered done-

and-dusted a few times. However, AI has shown a strong 

ability to bounce back and re-establish scientific prominence. 

It is hard, if not impossible, to identify a start date for AI 

research. Scientists were publishing on concepts related to 

AI in the 1930s and 1940s. For example, Walter Pitts and 

Warren McCullough [24] published a paper in 1943 about 

how artificial neurons can perform logical functions. One of 

their students, Marvin Minsky, later developed the ‘stochastic 

neural analog reinforcement calculator’ [25] which has 

evolved into AI neural networks  

used widely in machine learning (deep learning) today. Figure 1. Alan Turing – Can machines think? 
 

 Data source: Sketch by Natata on Shutterstock.  
One of the pivotal papers in AI was written by Alan Turing 

(Figure 1) and published in October 1950 [26]. This paper 

opens with the words ‘I propose to consider the question, can 

machines think?’. It lays out the future challenges for AI to 

solve. Turing’s question is still being asked [27] but remains 

unanswered. Turing died in 1954. The field of AI got its name 

at the Dartmouth Workshop of 1956. Organised by John 

McCarthy, Marvin Minsky, Nathaniel Rochester and Claude 

Shannon, this meeting brought together leading 
 
AI experts of the time [28]. Workshop attendees agreed to 

adopt ‘artificial intelligence’ as the name of their emerging 

research field. Naming AI helped connect a related set of 

technologies, concepts and theories. It helped formalise and 

establish an identity for a new field of science. 

 
Investment and activity in AI escalated during the 1950s and, 

more so, in the 1960s. Significant advances occurred in the 

fields of natural language processing, automated reasoning, 

computational modelling, autonomous systems and robotics. 

The United States Defense Advanced Research Projects 

Agency (DARPA), the National Research Council and the 

United Kingdom Government were among the more notable 

investors in AI capability. The 1960s can 
 
be considered AI’s first boom time. However, sentiment 

changed in the early 1970s. The first AI ‘winter’ lasted from 

1974 to 1980. It was triggered by the Lighthill Report 

commissioned by the British Government and written 

 
 
 
 
by mathematician James Lighthill. The report was highly 

critical of AI’s failure to achieve its ‘grandiose objectives’  
[29]. The funding agencies mostly agreed with the view 

that AI had over-promised and under-delivered. The flow 

of resources for AI research was reduced to a trickle [23]. 

 
Despite the setbacks, the 1980s saw a return to boom times 

with the rise of expert systems and connectionism – an 

approach in the cognitive sciences which explains mental 

phenomena using artificial neural networks. The Japanese 

Government began aggressively funding AI through  
the fifth-generation computer project [30]. The United 

Kingdom and United States governments were soon to 

follow, again injecting substantial funds into a range of AI 

research initiatives in the early/mid 1980s. The business 

community became engaged as private companies boosted 

funding for AI research and development (R&D). 

 

However, the boom times of the 1980s were 

followed by a second winter in 1987–1993. This was 

triggered by the business community which 

increasingly felt their investments in AI were failing 

to achieve commercial outcomes. Similar to the first 

winter, there was again a prevailing sentiment that 

AI had over‑promised and under-delivered. 
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Expectations had risen higher than what was achievable. It 

was reported that by 1993 over 300 AI companies had shut 

down or gone bankrupt [23, 31]. This triggered a review of 

AI investment by governments; and again, AI R&D funds 

were suddenly and substantially reduced in the United 

States, the United Kingdom and across the globe. 

 
Despite the two winters, the field of AI found a return to 

growth in the 1990s seeing the rise of new paradigms, 

tools, theories and applications. The 1990s saw the rapid 

growth of the internet, data and computing power. Since 

the late 1990s AI has remained on a strong growth 

trajectory. Research, investment, capability and adoption 

have continued to expand; there hasn’t been a third 

winter. There are no apparent signs of 
 
a slowdown. In the current era AI is having a greater 

impact on scientific research than ever before. 

 

2.2 Why is now different? 
 
Many of the historic conditions which characterised the 

time periods leading up to previous AI winters, 

sometimes called AI ‘springs’, exist at the current time. 

There has been a huge and sudden boom in investment. 

There is much hype. Expectations are running high, and 

there is considerable mythology and confusion 

surrounding AI’s capabilities and functions. If AI again 

fails to deliver on its perceived promises, it may enter 

another winter. However, there are reasons to believe 

the current era is different from the past. In this section 

we briefly explore what is different about the current 

epoch in the timeline of AI for science. 

 

2.2.1 Greater depth and breadth 

of adoption 
 
Compared to historic booms, today’s AI surge has 

greater depth and breadth of technology penetration 

within diverse scientific fields, industry sectors, 

geographies, policy spheres and demographics. AI has 

gotten into practically everything everywhere. This is 

creating greater resilience for AI compared to historic 

boom–bust cycles. AI is too deeply embedded in too 

many places to suddenly lose relevance, as happened 

in the two winters of 1974–1980 and 1987–1993. 

 
This embeddedness can be seen through publishing and 

patent trends. Our bibliometric analysis based on data from 

The Lens [32] reveals that 5.7% of all peer-reviewed research 

publications refer to AI in the title, abstract or keywords. This 

is up from 3.1% in 2017 and 1.2% in 2000. 

 
 
 

 
In 2021 alone, 344,000 journal papers, books, book 

chapters and conference papers were published on the 

topic of AI [33]. In 2020 Google Scholar reported that AI 

attracted more citations than any other research field and 

five of the seven top-cited papers were on AI topics  
[1]. Patents for AI have also been increasing sharply. 

According to data from The Lens the number of published 

patents worldwide on the topic of ‘artificial intelligence’ rose 

from 11,000 in 2017 to 57,000 in 2021 representing an 

average year-on-year growth of 84% over the last 5 years 

[32]. This growth is happening in all world regions and most 

countries, with China being a standout: the number of peer-

reviewed publications on AI from China now exceeds that 

from both the United States and Europe. Furthermore, the 

growth in AI publishing is happening in all industry sectors 

with sharp increases in the corporate, government, medical 

and other sectors [14]. 

 
In terms of expenditure, we are seeing sustained growth 

which is likely to continue over coming years. Most 

governments from advanced economies have announced 

and funded significant AI strategies, roadmaps, plans and 

policies. Canada was among the first of the OECD countries 

to commit to a national AI strategy in 2017 [34]. Since then 

over 700 AI policy and strategy initiatives have been 

developed across 60 countries and territorial jurisdictions [3, 

4]. By late 2019, over $86 billion in funding had been 

announced for AI initiatives [35]. Investment has continued 

to grow. In 2021 worldwide spending on AI products and 

services grew 15.2% year-on-year, reaching US$341.8 

billion. Growth of 18.8% is expected for 2022 with total 

spending forecast to exceed US$500 billion per year by 

2024 [36]. The share of this expenditure being invested in 

science and research is unknown, but due to the novelty and 

complexity of developing AI – e.g. training machine-learning 

algorithms – it is likely to be substantial. 

 
It is also worth noting that AI has now found its way 

into people’s day-to-day lives. Billions of people use, 

and increasingly depend upon, AI on a regular basis.  
Countless companies use AI technologies to provide goods 

and services to their customers. Before the turn of the 

century this was not the case. In the 1990s (and before)  
AI was a concept beyond the realm of most people’s lived 

experience. In comparison, people today routinely interact 

with powerful AI through smart-phones, smart-cars and 

smart-speakers. This makes AI both tangible and 

practically useful. The contemporary widespread 

familiarity with AI makes it easier for today’s research 

community to communicate its value proposition. 
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2.2.2 Hardware, software and 

data availability 
 
Throughout history AI scientists have struggled to 

implement and test their ideas due to a lack of 

computational resources and/or lack of data to train 

machine-learning algorithms. Much was theorised but 

could not be proven nor developed. That is often why 

scientists hit a wall and could not realise their objectives. 

This boom is different. This boom comes with much better 

tools and much better data. Scientists can turn their ideas 

into technologies and technologies can be turned into 

consumer products with commercial value. 

 

For example, in the last 10 years we have seen the rise of 

graphics processing units (GPUs) which are well suited to 

support parallel computing. The GPU has been 

transformative for AI. It has enabled low-cost high-power 

computing for a vast range of complex machine-learning 

challenges. Furthermore, cloud-based computing 

services are bringing these within reach. We are also 

seeing software tools and platforms, such as PyTorch, 

Tensorflow, Theano, MxNet, Microsoft Azure, and 

Amazon Web Services, make AI much more accessible 

to a broader cross‑section of scientists; a subset of AI 

functionality is usable for those without highly developed 

and specialised AI skills. More recently we have seen 

code-free AI tools that allow users to perform AI functions 

via relatively simple graphic user interfaces (GUIs). These 

are likely to improve over time. 

 
Another limiting factor for AI scientists in history has been the 

availability of data to train machine-learning algorithms. 

However, there’s no shortage of data today. There are 

challenges about managing an overwhelming volume, variety 

and velocity of data. There are also challenges about verifying 

data, as well as challenges about handling private and 

confidential data. If these challenges can be addressed, 

today’s scientists can have access to more 
 
data on every topic than ever before in history. The data 

comes from human internet usage, sensory systems and 

countless other rapidly expanding sources. These data are 

providing scientists with new opportunities to use AI to 

identify patterns, test hypotheses and make predictions. 

 
 
 

 

2.2.3 Commercial drivers 
 
While there have been surges in AI investment in the past, 

they do not come close to what is happening today. Private 

investment flows into AI have increased substantially over the 

past several years (Figure 2). Despite the pandemic, private 

investment in AI companies increased by a record high of 

9.3% in 2020 year-on-year – which is above the 5.7% 

increase of 2019 – and exceeded US$40 billion [14]. Venture 

capital investment in AI has also been growing compared to 

other areas of investment. According to the OECD, the share 

of venture capital investments in AI start-ups reached 20% of 

all venture capital investments in 2020, up from 
 
3% in 2012 [37]. The number of venture capital deals in AI 

companies grew by 34% annually between 2012 and 2020 

from 500 deals in 2012 to 3,900 deals in 2019 [37]. In 2020 

Australia was ranked 11th in the world by the total amount of 

private investment in AI companies [14] with the United 

States, China, United Kingdom and Israel at the top of the list. 

With so much invested, AI activity by R&D providers and 

product developers is likely to be sustained for some time. 

 
 

 
  .     

  .    
  .   

 
 
 

 
  .   

 
 

 
  .   

 
 .   

 
 
 
 

     

 
Figure 2. Private investment in artificial intelligence companies 

worldwide (billions of US dollars). 
 
Data source: Stanford University Artificial Intelligence Index [14]. 
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2.2.4 Improved scientific knowledge and 

technological capability 
 
Lastly, today’s surge in artificial intelligence comes with 

solutions and/or improvements to some – but by no means 

all – of the longstanding machine-learning problems, and 

with knowledge gaps filled which limited AI’s development 

historically. For example, CSIRO re-implemented a classic 

machine-learning algorithm, Random Forest, enabling 
 
it to overcome the ‘curse of dimensionality’, which was 

brought on by today’s larger and more detailed datasets 

[6]. Other algorithmic improvements include new 

regularisation techniques which modify the learning 

algorithm to improve the generalisability of the model plus 

improve its performance on unseen data [38]. 
 
These techniques can reduce the problem of ‘overfitting’ in 

machine learning which happens when the model is too 

closely matched to input data and is, therefore, unable to 

predict future observations accurately. We have also seen 

the emergence of robust optimisers such as Adam [39], 

RMSprop [40] and modification of the stochastic gradient 

descent (SDG) procedure [41]. These approaches speed up 

optimisation algorithms and generate higher quality 

solutions compared to earlier methods. The last 10 years 

have also seen the emergence of improved 

 
 
 

 
backpropagation algorithms which improve the accuracy of 

artificial neural networks by finely adjusting mathematical 

weight functions. The recent transition to the Rectified Linear 

Unit (ReLU) activation function has substantially helped 

address the vanishing gradient problem; a longstanding 

challenge in the field of machine learning [14]. 

 
Solutions to these, and other, AI barriers have opened up 

entirely new avenues for continued problem solving and 

improvement of AI technologies. This means  
AI science has a greater chance of delivering on 

expectations. The future is likely to see continued 

discovery and innovation in the field of AI enabling the 

development of enhanced technological capabilities. 

 

2.2.5 No slowdown in sight 
 
There’s so much momentum behind the current AI growth 

cycle it is hard to see it ending anytime soon. If AI were to 

experience another winter in one field of research – such 

as computer science – it is unlikely to be winter 

everywhere. The field of AI has become so large and 

diverse it is likely to be experiencing all four seasons in 

sub-fields, application domains, geographies and industry 

sectors at any one point in time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
HairNet is an artificial intelligence and  

machine learning model that can score leaf  
hairiness in cotton to assist breeders in  
identifying plants with beneficial traits. 
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3 The science sector 
 
 
 

 

In this section we describe the size, structure and trends within the Australian 

and global science sectors. We examine how the sector has expanded and we 

examine the science productivity slump. It is likely that AI will play an important 

role in boosting science productivity and, in turn, economy-wide productivity. 
 
 

 

3.1 What is the science sector? 
 
The science sector is an interconnected, collaborative and 

dynamic global community with highly porous boundaries. It 

captures a diverse range of conceptual frameworks, 

paradigms, methodologies and cultural approaches to 

knowledge discovery. The Australian Academy of Science 
 
[42] says, ‘science can be thought of as both a body of 

knowledge (the things we have already discovered), and the 

process of acquiring new knowledge (through observation 

and experimentation—testing and hypothesising)’. 

 

Science happens in households, communities, 

start‑ups, large companies, government agencies, 

research institutions and universities. There are many 

ways of classifying scientific activity. The Australian 

Academy of Sciences identifies four broad and 

high‑level categories of scientific research [42]: 

 
• natural science – the study of living organisms 

and physical sciences which includes the study 

of the material universe 
 
• social science – the study of human individuals, 

communities, societies and institutions 

and how they interact and behave 
 
• formal science – the study of logic and mathematics 
 
• applied science – the adaptation and 

use of existing scientific knowledge for 

industry and societal applications. 

 
The United Nations recently conducted global consultation 

to define the science sector for statistical purposes [43]. This 

analysis identified the concept of ‘scientific and technological 

activities’ which includes three components of science 

activity: (a) research and experimental development, (b) 

scientific and technological education and training, and (c) 

scientific and technical services.  
We have defined and conceptualised the science sector 

in the same manner in the subsequent analysis. 

 
 

 

3.2 The global science sector 
 
For some time, the world has been growing its science 

workforce and research spending (Figure 3). In 2018 the 

global research workforce was estimated by the United 

Nations at 9.33 million workers up from 8.01 million in 2014. 

This workforce is estimated to be growing over three times 

faster than population growth; increasing by 16% during the 5-

year period 2014 to 2018 [44]. Data from the OECD show that 

the number of researchers per 1,000 employed persons has 

increased from 6.1 to 8.9 during 2000 to 2020 [2]. 

 
Expenditure patterns for R&D are indicative of aggregate 

global-level science spending. Spending on R&D is 

outpacing global economic growth, reaching 2.2%  
of global GDP by 2020 compared to 2.0% a decade 

ago. In the OECD it has grown faster, reaching 2.48% 

in 2019. Recent estimates suggest the world now 

spends over US$1.7 trillion per year on research with  
10 countries accounting for 80% of expenditure. The top 

five spenders in absolute terms are the United States, 

China, Japan, Germany and South Korea. The country 

spending the most on R&D relative to GDP is Israel, 

which invested 4.93% of GDP in R&D in 2019 [2]. 

 
Global technology corporations are another key source  
of expanding funds, and overall activity, for scientific  
research. This has been a relatively recent phenomenon  
and is especially relevant to AI science. During 2005–2018,  
global private-sector R&D spending rose from $523.8 billion  
to $1.1 trillion [45]. A NASDAQ report [46] reveals the R&D  
budgets of the top spenders in 2020: Amazon ($62.3 billion),  
Alphabet ($40.2 billion), Huawei ($32.1 billion), Microsoft  
($28.1 billion), and Apple ($27.3 billion). These trends suggest  
that private corporations are funding or doing much of the  
world’s scientific research. Given the business objectives  
of these companies, much of this R&D is likely within the  
fields of data science and AI. The entry of the private/  
corporate sector into R&D is impacting scientific research. 
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Figure 3. Increasing spending on R&D within the OECD. 
 
Data source: OECD Statistics [2]. 

 
 
 
 

 
The bulk of the global research effort by publishing 

volume lies in the physical sciences, which contained 44% 

of all publishing in the year 2021. This is followed by the 

health sciences, life sciences and the social sciences and 

humanities, which contained 22%, 20% and 14%, 

respectively, of publishing in the same year. The relative 

level of publishing within these domains has remained 

relatively stable over history. When we look beneath the 

top-level research domains, we see that the fields of 

medicine, biochemistry genetics and molecular biology, 

engineering, social sciences and computer science 

account for over half of all research publishing (Figure 4). 

Medicine is by far the largest research field, accounting for 

one-fifth of all research publishing. Again, this has 

remained relatively stable over history. 

 
 
 
 

 
The volume of research published across all fields of science 

has been increasing consistently for over 60 years (Figure 5). 

However, during the peak COVID-19 pandemic years of 2020 

to 2022, global combined scientific publishing via journal 

papers, conference papers, books, book chapters and 

dissertations declined by 12%. This may have multiple 

causes, including: (a) the redirection of research effort 

towards urgent COVID-19 issues; (b) a switch to alternative 

non-traditional publishing venues; (c) decreased productivity 

of researchers working in lockdowns; and (d) reduced 

research funds in the university sector associated with 

reduced revenue due to COVID-19 disruptions. 
 
The patterns and consequences of pandemic-related research 

activity contraction are explored in the research literature in 

greater depth [48, 49]. These studies indicate the possibility of 

long-term effects and the disproportionate impact on female 

researchers with young children. 
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Figure 4. Share of global peer-reviewed publishing by research field in 2022. 
 
Data source: The Lens [32] and Scopus, Elsevier All Science Journal Classification [47]. Data sourced for 1 Jan 2022 to 20 Sept 2022. 
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Figure 5. Worldwide peer-reviewed scientific publishing in all fields for 1960–2021. 
 
Data source: The Lens [32] database of peer-reviewed scholarly publications. 

 
 

 

Publishing venues may also be changing. During recent 

times, new open-access research-sharing platforms have 

risen quickly. For example, during 2016–2021 submissions of 

research papers to the arXiv pre-print server increased 60% 

from 113,380 to 181,630 [50]. The material is not subject to 

peer review and, therefore, comes with a significant quality 

and reliability caveat. However, it does allow 
 
for rapid sharing of research results and is being used 

extensively. In another example, the ‘Papers with Code’ 

platform now reports 62,856 research papers (as of 8 Jan 

2022) [51]. The extent to which these alternative venues 

displace and/or complement traditional peer-reviewed 

publishing, and/or morph into new publishing models, 

remains to be seen. Peer review is still needed to separate 

knowledge from opinions. The question is whether new 

models can uphold this critical function whilst speeding up 

the process of knowledge sharing [52]. What’s evident at the 

current time is sizeable and rapidly increasing usage of the 

alternative venues by the science community. 

 
 

 

3.3 The Australian science sector 
 
In the Australian and New Zealand Industry Classification 

(ANZIC) the science sector fits under the industry  
sub‑grouping ‘scientific research services’ [53]. In 2016, this 

industry contained 28,850 workers, roughly 0.3% of the 

Australian workforce. However, most scientists work within, 

and most science happens within, other industry sectors 

(Figure 6). The vast bulk of Australian scientists do not work 

in the science industry. They use science to problem‑solve in 

other industries and societal spheres. The ‘science sector’ is 

spread widely across the entire economy. 

 
Using the most recent population census for 2016,  
we identify 109,890 natural, physical and social scientists in 

Australia representing 1% of the total workforce [53]. We 

note a degree of uncertainty in this estimate due to the 

category groupings used by the Australian Bureau of 

Statistics. It is likely that we are including some 

non‑scientists and excluding some scientists because there 

is no category for ‘scientist’ in our statistics; it requires 

aggregating and disaggregating other categories. 
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Nevertheless, we believe a reasonable approximation 

has been achieved using the occupation information in 

the census (Appendix A). From this we identify 11 

sub‑categories of the scientist profession (Figure 7). The 

two largest groupings are medical laboratory scientists 

and environmental scientists, which together account for 

about 30% of the scientific workforce [53]. 

 
At 22% of the total science workforce, Australia’s 

professional services sector contains the largest share of 

scientists [53]. It includes sub-industry groupings such 
 

 
 
 

 
as management consulting, architectural, engineering, law, 

accounting, market research, veterinary and other services. 

This analysis suggests that much of AI for science (the 

focus of this report) is likely to occur within Australian 

industry as opposed to dedicated research organisations 

and universities. This is because most scientists work in 

industry. However, research organisations may be more 

focused on theoretical and early-stage developmental 

aspects of AI compared to industry scientists who may be 

focused on adoption and application. 
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Figure 6. The number of Australian scientists by industry grouping. 
 
Data source: Australian Bureau of Statistics, 2016 Population Census [53].  
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Figure 7. The number of Australian scientists by field of science. 
 
Data source: Australian Bureau of Statistics 2016 Census (see Appendix A for methods and assumptions) [53].  
Note: Thesocial science field contained a small number of non-science occupations that could not be disaggregated. 
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R&D spending patterns recorded by the Australian Bureau 

of Statistics [54] provide insight into science investment 

patterns. In 2019–2020, total expenditure on R&D by 

business, government, higher education and not-  
for‑profit sectors in Australia amounted to $35.602 billion, 

representing an increase of $2.54 billion (8%) over the 

preceding 2 years. Much of the growth in R&D spending 

comes from the higher education sector, which increased 

from $11.24 billion in 2017–2018 to $12.71 in 2019–2020, 

an increase of $1.47 billion (13%). However, over the 

longer-term Australian R&D spending declined as a 

percentage of GDP from 2.1% in 2012 to 1.8% in 2020. 

 
At the higher levels of the research field taxonomy, the 

publishing profile for Australian research has similar 

expression to global research. However, at a more 

granular level we can see that Australia has comparative 

specialisation in certain fields. To examine this, we 

calculate specialisation quotients at the second-level of 

the All Science Journal Classification (ASJC) by Scopus, 

Elsevier [47] which contains 26 unique research fields. 

The specialisation quotient is calculated as follows: 

 
 
 

 
A specialisation quotient above 1 implies the research field is 

associated with greater output in Australia compared to the 

average for all research fields. This analysis reveals that over 

the 10-year period 2012–2021, the fields of psychology, 

health professions, earth and planetary science, nursing, 

agricultural and biological science and environmental science 

have higher levels of comparative specialisation in Australia 

(Figure 8). By comparison, Australia has lower levels of 

comparative specialisation in dentistry, physics and 

astronomy, mathematics, chemistry and materials science. At 

the even more granular (third) level of the research field 

hierarchy, the top 10 fields of research by specialisation for 

Australia include: emergency medical services; research and 

theory; community and home care; tourism, leisure and 

hospitality management; economic geology; chiropractics; 

occupational therapy; pharmacy; physical therapy, sports 

therapy and rehabilitation; and ecological modelling. 

 

 

  Number of publications 

÷ 
Number of publications 

  in research field by in all research fields by 

Specialisation quotient 
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Number of publications 

 
Number of publications   
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Agricultural and biological sciences                     .            

Arts and humanities            .                     

Biochemistry genetics and molecular biology                  .               

Business management and accounting                     .            

Chemical engineering            .                     

Chemistry            .                     

Computer science              .                  

Decision sciences                  .               

Dentistry           .                     

Earth and planetary sciences                       .            

Economics econometrics and  nance                     .            

Energy               .               

Engineering              .                     

Environmental science                     .            

Health professions                        .         

Immunology and microbiology                  .               

Materials science            .                     

Mathematics            .                     

Medicine                  .               

Neuroscience                     .            

Nursing                       .            

Pharmacology toxicology and pharmaceutics              .                     

Physics and astronomy            .                     

Psychology                           .      

Social sciences                     .            

Veterinary                 .               
                                

 .   .   .   .   .   .   .   .   .   .   .  

           SPECIALISATION QUOTIENT           
 
Figure 8. Comparative levels of specialisation in Australian science and research during 2012–2021. 
 
Data source: The Lens [32] and Scopus, Elsevier All Science Journal Classification [47]. A higher score indicates greater 

specialisation within the given field of research compared to the average comparison of Australia and the world. 
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3.4  Productivity decline 
 
Productivity is the efficiency via which inputs are converted to 

outputs. Productivity is an important determinant of short-run 

economic growth and the primary determinant of long-run 

economic growth (and wealth generation). Ideas are the fuel 

source for productivity. When people discover how to 

produce something or deliver a service more efficiently it 

leads to productivity growth. Science is one of the most 

important pathways to discovery and ideation. The positive 

associations between science, ideas and productivity are well 

established 
 
and accepted, although the magnitude of benefit is not 

easily quantified [55]. However, over the past decade or 

so, the world’s advanced economies, and the science 

sector itself, have been caught within a productivity 

slump (Figure 9). This is harming economic growth and 

limiting long-term improvement of living standards. 
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Figure 9. Average (mean) annual OECD-country multi-

factor productivity growth. 
 
Data source: OECD Statistics [2]. 

 
 
 

 
A comprehensive study published in the American Economic 

Review in 2020 finds that within the science sector ‘research 

effort is rising substantially while research productivity is 

declining sharply’ [56]. The analysis examines agricultural 

crop yields, semi-conductors, cancer treatments, heart 

disease treatments, intellectual property patents and overall 

economic productivity. The analysis uses outcome metrics 

related to benefits such as changes in crop yields (e.g. 

wheat, corn) per unit of area resulting from agricultural R&D. 

Similar outcome metrics were used for the other categories. 

The researchers show that the cost of developing new 

pharmaceutical products to treat illness doubles every 9 

years. They find that while the research workforce has 

grown, productivity (output per researcher) has decreased 

[56]. We are getting fewer ground-breaking ideas for each 

dollar invested. 
 
For example, the cost of developing a new antibiotic was 

estimated at US$1.581 billion in 2017 [57]. This far exceeds 

the costs of antibiotic discovery compared to the ‘golden era’ 

of the 1970s and 1980s. For antibiotic discovery, and many 

other types of scientific discovery, the next wave of 

discovery appears harder to achieve [58]. 

 
The authors conclude that the United States needs to 

double research effort, and double its research workforce, 

every 13 years to maintain science output. Without this 

investment, they argue, the United States economy will 

experience productivity decline and declining rates of GDP 

growth [56]. The United States economy, and other 

advanced economies worldwide, increasingly depend  
on science and technology improvements to sustain 

growth. Therefore, it is critical that the science sector 
 
– the engine room for the creation of ideas – keeps 

operating at full pace. If science productivity is declining, 

the only way to achieve this is via investing in more 

scientists and more science resources. The economists 

who did this study indicate that in advanced economies, 

income growth and improved living standards depend on 

research productivity and research effort [56]: 
 

 
 

 

Economic growth = Research productivity × Number of researchers  
e.g. 2% to 5% per year 

 
decreasing 

 
increasing 
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The centrality of innovation, science and research to 

productivity uplift and economic growth is well accepted 

and demonstrated within the field of economics. It means 

that if research productivity is declining, the only way  
of ensuring income growth is via increasing research effort. 

This is the approach followed by most advanced 

economies, as shown in the R&D expenditure data and 

statistics on the growing R&D workforce presented earlier in 

this chapter. Most OECD economies are growing the share 

of GDP spent on R&D to offset declines in research 

productivity and achieve overall economic growth. 

 
The United States economic study finding productivity 

decline isn’t a standalone. A study from the Research 

Institute of Economy, Trade and Industry in Japan applied 

the same techniques and found ‘significant decline of R&D 

efficiency in the Japanese information service industry’ [12]. 

The researchers recommend that the Japanese government 

implement R&D policies that address the decline. Another 

team of economists from the Leibniz Centre for European 

Economic Research and the Copenhagen Business School 

replicated the United States study for China and Germany 

using firm-level data over three decades [13]. They find 

evidence of productivity decline in both countries and ‘strong 

decline’ in Chinese R&D productivity. The authors conclude 

that ‘diminishing returns in idea production are a global 

phenomenon, not just confined to the United States’ [13]. 

These studies were presented at a recent OECD workshop 

examining science productivity and AI [11]. 

 
 
 

 
There will be many policy interventions needed to solve the 

productivity slump in science. However, the recent surge in 

AI capability and adoption is likely to play an important role. 

Recent years have seen AI substantially improve the speed, 

quality, safety and cost-effectiveness of scientific research. 

AI is already enabling discoveries which were hitherto 

beyond reach. Although AI has been used by scientists 

since the 1960s, it hasn’t been mainstreamed until the last 

several years. The last few years have seen a huge 

increase in AI development and application in all scientific 

fields. AI is likely to be one of the most important 

mechanisms for boosting science productivity and escaping 

the slump. The need for science to reinvent itself, and 

problem-solve for industry and society, is likely to be a 

driving consideration for AI development and adoption into 

the future. 
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4 Artificial intelligence and 

knowledge discovery 
 
 

 

4.1 Enablement or transformation? 
 
To demonstrate the potential of AI to impact knowledge 

discovery, let us consider the case of electricity generation 

via nuclear fusion. According to the International 

Thermonuclear Experimental Reactor organisation in 

France, nuclear fusion creates 4 million times more energy 

than chemical reactions such as burning coal,  
oil or gas [59]. Electricity generation via nuclear fusion 

represents one of the most important (future) scientific 

discoveries for humanity. If discovered, nuclear fusion 

would provide an abundant and practically inexhaustible 

source of clean energy. Nuclear fusion does not produce 

the high-activity and long-lived nuclear waste associated 

with nuclear fission. Nuclear fusion provides greatly 

enhanced safety, substantially reduced financial costs and 

reduced risk of weaponisation [59]. Nuclear fusion can help 

solve climate change while supplying abundant energy for 

ample food, water and mineral (via mining and recycling) 

production. It is a game changer for humanity. 

 
The main problem with electricity generation via nuclear 

fusion is that it currently cannot be accomplished in a 

practical and industrial way. The scientific community has 

been trying for decades. However, it appears this capability 

is getting closer. In early 2022 British scientists reported the 

production of 59 megajoules of energy sustained for  
5 seconds from a nuclear fusion reaction; while the duration is 

minuscule by industrial electricity generation standards, this is 

nevertheless a major improvement upon previous records 

[60]. Another significant breakthrough came from the field of 

AI at about the same time. In February 2022 the results of a 

collaboration between DeepMind and  
the Swiss Plasma Center were published in Nature [61]. In 

this project reinforcement learning, a type of machine 

learning, was used to control the super-heated suspended 

plasma needed for the nuclear fusion reaction within a 

device called a tokamak. Reinforcement learning was used 

to control voltage in the tokamak and, thereby, the shape of 

the suspended plasma, ensuring it met experimental 

requirements while not touching the walls of the tokamak. 

 
 

 

This is a well-understood but extremely difficult‑to‑solve 

optimisation problem for nuclear physicists. Reinforcement 

learning was able to identify plasma configurations  
not previously known. As reported in Wired magazine 

[62], Ambrogio Fasoli (fusion and plasma physicist and 

director of the Swiss Plasma Center) says this represents 

a ‘significant step’ on the pathway to nuclear fusion and 

that AI enables ‘us to explore things that we wouldn’t 

explore otherwise, because we can take risks with this 

kind of control system we wouldn’t dare take otherwise’ 

and that ‘if we are sure that we have a control system that 

can take us close to the limit but not beyond the limit, we 

can actually explore possibilities that wouldn’t otherwise 

be there for exploring’ [62]. 

 
For scientists working on nuclear fusion, AI has provided a 

big boost. It has removed one of the critical barriers on the 

pathway to discovery; the ability to control the plasma within 

the tokamak. The future impact of AI on science and 

knowledge discovery can be viewed as a continuum of 

possibility. At one end of the continuum is enablement: the 

useful application of AI tools to help scientists do what they 

are already doing faster, cheaper, safer and better. 
 
At the other end of continuum is transformation: the use of AI 

to remove major barriers to scientific progress leading to 

paradigmatic shifts, new approaches to knowledge discovery 

and new possibilities for problem solving. 

 
The case for enablement is well demonstrated through 

thousands of published AI studies within practically all 

science fields over recent decades. Our observations in 

this report, that the share of global scholarly publishing 

on AI has risen since 2020 from 1.2% to 5.7% and AI  
is now applied in virtually all disciplines, provide evidence 

of the usefulness of AI to scientists and researchers. The 

extent to which AI will (in the future) be transformative and 

associated with paradigmatic shifts in approaches to 

knowledge discovery and major leaps in problem‑solving 

capability is less clear. However, some AI scientists see 

this as a distinct possibility. 
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Hiroaki Kitano is a Japanese AI scientist and is the director of 

both the Systems Biology Institute and Sony Computer 

Science Laboratories in Tokyo. Writing in Nature [63], Kitano 

proposes the ‘Nobel Turing Challenge’, which ‘aims to 

develop a highly autonomous AI system that can perform top-

level science, indistinguishable from the quality of that 

performed by the best human scientists, where some of the 

discoveries may be worthy of Nobel Prize level recognition 

and beyond’. In this paper Kitano also argues that future AI 

science ‘may be an alternative form of science that will break 

the limitation of current scientific practice largely hampered by 

human cognitive limitation and sociological constraints’ and 

that such approaches ‘could give rise to a human-AI hybrid 

form of science that shall bring systems biology and other 

sciences into the next stage’ [63]. Kitano is connected with a 

team at the Alan Turing Institute in the United Kingdom which 

is delivering a project (‘The Turing AI scientist grand 

challenge’) which tackles similar and related objectives [64]. 

As stated on the Alan Turing website, this ongoing project 

started in January 2021 and is, among other things [64, 65]: 

 
 
• reviewing current autonomous systems capable of 

performing scientific research with a focus on AI 

approaches capable of pushing disciplinary 

science beyond the current cutting-edge 
 
• developing a multi-year roadmap charting a 

scientific and technical pathway for AI for 

science with milestones identified in materials, 

biomedicine and environmental sciences. 

 
A related line of inquiry pursued by researchers working 

on the philosophy of science is about the possibility  
of theory-free, data-intensive science [66-68]. Starting in 

the early 2000s ‘this approach is supposed to be data 

driven, strongly inductive, and relatively theory 

independent’ [69]. Data-intensive science can be 

considered transformative as it represents a paradigm shift 

challenging existing approaches to knowledge discovery. 

The idea comes from the successful application of data 

science for forecasting in fields like meteorology [70], 

economics, energy, and demographics [71]. 
 
The idea has credence because sometimes data can work 

better than theory for modelling and predicting system 

behaviour [71]. However, science philosophers have 

criticised the idea of theory-free data‑intensive science 

[72]. Some have argued that researchers using ‘big data’ 

approaches (akin to data-intensive science) may sidestep 

the critical hurdle of causality and rely upon statistical 

correlation to explain and predict system behaviour [73]. 

The concern about sole reliance on 

 
 
 

 
data-intensive approaches is they (a) fail to draw upon 

existing theory, and (b) fail to establish and understand 

causality [73]. This can lead to errors and accidents. 

 

Recent perspectives suggest that ‘data versus theory’ is a 

false dichotomy and that there is no competition between 

the two [69]. Instead, data science approaches are 

inextricably linked to theory and have unique application in 

practically every field of science [74]. Techniques such as 

linear regression analysis have long been used by scientists 

to understand and explain real‑world phenomena. When 

linked with other tools and ideas, these techniques can lead 

to confirmation of existing theories or the development of 

new theories. Scientists have always used data, and as the 

tools of data science get better, they are getting better at 

using data. Theory and causality haven’t vanished; they 

remain critically important. The observations about data-

intensive science are likely to apply to AI-intensive science. 

Data science often uses AI, and AI almost always uses data 

science; the two fields are increasingly inseparable. 

 
 
 

4.2 Case studies – Artificial intelligence 

applications for science 
 
In this section we describe case studies where AI 

has improved the efficiency and effectiveness (the 

productivity) of scientific research. A more detailed, 

comprehensive and up-to-date repository of case 

studies is available on the CSIRO website 

(www.csiro.au/en/research/technology-space/ai). 

 
The case studies also illustrate how AI is enabling science 

and research in diverse fields of study. This includes 

examples of enablement and transformation, where  
AI has enabled scientists to solve complex problems and 

has created an elevated platform of capability and 

knowledge discovery. Overall, AI and its constituent 

technologies (such as pattern recognition and machine 

learning) appear to considerably enhance and accelerate 

the scientific process by allowing: (a) faster processing of 

data, (b) handling of very large and datasets, (c) handling 

of disparate datasets, (d) offloading of menial tasks, 
 
(e) deeper and wider exploration of the experimental space, 

(f) more accurate predictions due to better models, and (g) 

faster and more reliable detection of salient and/or anomalous 

patterns or events. However, the enhancement and 

acceleration of science via AI is largely predicated on relevant 

data being available in digital format, thereby necessitating 

that any physical experiments need to be designed and 

executed such that the primary objectives include data 

acquisition in digital format. 
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4.2.1 Predicting the 3D structure 

of proteins 
 
Proteins are essential for the growth and maintenance of all 

cells and tissues [75, 76]. Understanding their structure, or 

the way they fold, is key to identifying their function –  
a time-consuming and challenging problem that scientists 

have spent decades trying to solve [75, 76]. AlphaFold 

is a neural network system developed by Google’s 

DeepMind that can map the 3D structure of proteins with 

significantly greater accuracy than conventional methods 

[75, 77]. AlphaFold has been applied to map the human 

proteome (the entire set of proteins that make up the 

human body) and was able to predict the structure of 

98.5% of human proteins [77]. Together with the 

European Molecular Biology Laboratory’s European 

Bioinformatics Institute, DeepMind has developed the 

AlphaFold Protein Structure Database to make these 

predictions available to the scientific community [78]. This 

technology can potentially support future advances in 

biological research and drug development. 

 

4.2.2 Accelerating solar panel research 
 
Researchers at CSIRO have developed a research robot 

that can autonomously test flexible solar panel samples 
 
[5]. These researchers developed the autonomous system 

during the ‘second wave’ of COVID-19 in Melbourne in 

2020. Before this, researchers could manually test up to 20 

solar cells per day and had to be physically present in the 

lab [5]. The new automated research system is controlled 

remotely and could test 12,000 cells in 24 hours, which 

represents a 600-times improvement in productivity 
 
[5]. AI and machine learning is also being applied to efficiently 

analyse and predict parameters for solar cell manufacturing of 

organic solar cells [77]. These applications illustrate how 

autonomous testing, combined with machine learning, can 

increase the efficiency of scientific research and accelerate 

the development of new technologies, even while scientists 

are working from home [5]. 

 
 
 

 

4.2.3 Enhancing the reach of citizen science 
 
AI is being applied in citizen science, assisting civic 

educators and scientists in engaging the community in 

scientific endeavours and collecting large datasets on rare 

or difficult to access phenomena. Examples include 

iNaturalist, a platform run by the California Academy of 

Sciences and National Geographic where members of the 

public can submit photos of the natural world, including 

animals and plants [79]. This platform uses computer vision 

and a machine-learning model previously trained on an 

existing research-grade dataset of images [80, 81]. Citizen 

science can enhance the spatial and temporal resolution of 

data in ecological monitoring projects relative to traditional 

methods [82]. Using AI systems can improve the cost 

efficiency of collecting, processing and analysing data 

generated by the public [82] enabling more researchers to 

leverage the benefits of citizen science. 

 

4.2.4 Predicting the replicability of 

scientific studies 
 
The replicability of scientific findings was brought into 

question with a series of publications demonstrating that a 

large share of studies in psychology, economics, and 

medicine could not be replicated [83-85]. Non-replicability 

can impede scientific progress, hinder public support and 

trust in science, and waste finite funding resources [86]. 

Researchers from Northwestern University used machine 

learning to accurately estimate the replicability of a study; 

meaning the extent to which it is possible to replicate the 

methodology but not necessarily whether (or not) the results 

hold-up. The machine-learning approach performed as well 

as expert survey predictions, which 
 
is the current gold-standard, but resource-intensive, method 

of assessing replicability [86]. While this research is 

preliminary, it suggests that AI can potentially be used to test 

the replicability of scientific findings without imposing 

additional time and resource requirements on scientists. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
19 



 
 
 

 

4.2.5 Discovering and developing 

new materials 
 
AI is being widely applied across materials science to 

accelerate the rate at which scientists can discover and 

develop new materials [87]. An early example is the 

Autonomous Research System developed by researchers 

from the Air Force Research Laboratory, UES Inc. and 

Lockheed Martin Advanced Technology Laboratories 
 
[88]. This system combines robotics, AI, data science, and 

in situ technologies to design, execute, and analyse 

experiments faster than traditional human-driven 

approaches [88]. This approach has been used to explore 

the synthesis of carbon nanotubes – a well-suited material 

for electronics applications that scientists have spent 

decades trying to understand [88]. Through autonomous 

experimentation, AI can increase the speed and cost of 

materials science research, increase the productivity of 

scientists, and maximise the value that can be derived from 

complex multi-dimensional datasets [87]. 

 

4.2.6 Untangling mathematical 

relationships 
 
Advances in mathematics depend on the ability of 

mathematicians to discover new patterns and formulate 

statements around the potential relationship between 

objects (referred to as a conjecture) [89]. These insights are 

then used to develop new mathematical proofs [89]. AI can 

assist mathematicians in the initial step of detecting patterns 

between objects, which can help guide them in developing 

mathematical formulae and theorems [89]. 
 
A team of researchers from DeepMind, the United Kingdom 

and Australia have applied AI to study the algebraic  
and geometric structure of knots – a longstanding 

mathematical challenge [90]. The machine-learning 

approach enabled the researchers to discover novel and 

surprising patterns, and develop new conjectures [89]. 

 

4.2.7 Improving the efficiency in 

conservation science 
 
Like many aspects of science, conservation research 

operates in a resource-constrained environment. 

Conservation managers need to determine the most 

effective way of managing these finite resources and 

identify when to stop efforts to manage and survey an 

endangered species population. Still, they often have 

insufficient information for making these decisions [91]. 

 
 
 

 
To provide better intelligence, deep-learning techniques have 

been used to count the number of endangered species 

animals from aerial survey images [92, 93]. Using images 

collected from motion-sensor cameras placed in natural 

habitats, researchers found that a deep-learning system can 

identify animals as accurately as a human observer  
[93]. The use of AI here to classify around 5.5 million 

images saved over 8.4 years in human labour [93]. 

This demonstrates the significant cost and time savings 

that AI can provide in conducting conservation research. 

 

4.2.8 Predicting high-impact research 
 

The impact of scientific outputs is typically measured 

through citation metrics, such as h-indices and journal 

impact factors. These metrics can be discipline‑specific, 

biased, or reflect lag quality indicators [94, 95].  
With trillions of dollars invested in research globally each 

year, having reliable predictors of impactful research is 

critical. Researchers from the Massachusetts Institute  
of Technology have developed a DELPHI framework 

(Dynamic Early-warning by Learning to Predict High 

Impact), which uses machine learning to predict the likely 

impact of scientific publications [96]. It draws upon a rich 

collection of publication, journal and citation data [96]. The 

model was able to predict high-impact research the year it 

was published with 77% accuracy, and it was a better 

predictor than citation metrics [96]. This work 

demonstrates how AI can potentially be used to inform 

funding decisions to maximise the return on investment 

and impact of scientific research. 

 

4.2.9  Decoding the human brain 
 
The human brain is arguably the most complex system 

known to humankind, but AI is helping scientists to crack the 

neural code. AI provides scientists with opportunities to 

directly explore the functioning of healthy, neurotypical 

human brains, which has previously been limited, if not 

impossible, due to practical or ethical considerations  
[97]. For example, researchers from the Massachusetts 

Institute of Technology have used deep neural networks to 

demonstrate the hierarchical structure of the human visual 

system [98]. The neural-network model can identify objects 

as well as a human and exhibits a similar pattern of neural 

activity to a monkey brain performing a similar task [98]. 

Similar applications have been used to show the 

hierarchical organisation of the human auditory cortex [99]. 

These neural-process models can help scientists generate 

hypotheses around certain brain functions and inform their 

experimental design [97]. 
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4.2.10 Identifying drugs for 

antibiotic‑resistant bacteria 
 

AI has been applied in a range of medical contexts, and 

increasingly, it is being used to accelerate the discovery of 

new drugs [100]. Improving the efficiency of drug discovery 

research is particularly critical in the face of the increasing 

prevalence of antibiotic-resistant bacteria and the 

diminishing returns on investment and high risk associated 

with drug discovery [101-103]. Researchers have used deep 

learning to develop a model that can identify candidate 

molecules capable of inhibiting the growth of Escherichia coli 

(E. coli) – a common bacteria associated with antimicrobial 

resistance [101]. Similarly, scientists have also used AI to 

rapidly identify and test novel compounds that can inhibit 

discoidin domain receptor 1 (a common receptor implicated 

in fibrosis and other diseases) [104]. This emerging work 

demonstrates how deep-learning models can lead to faster 

and more cost‑effective experiments than traditional 

approaches [100]. 

 

4.2.11  Representing spatial phenomena 
 
Geospatial AI is an emerging field that combines spatial 

science with AI methods to derive rich insights from big 

spatial data [105]. These approaches can be used to 

understand the environmental factors that people may be 

exposed to at a given geographical location and time and 

how this exposure may impact their health [105].  
A group of researchers from the University of Southern 

California used this approach to develop a model that can 

predict air quality (i.e. particulate matter air pollution <2.5 

μm in diameter, or PM2.5) [106]. The model accurately 

predicted PM2.5 concentration levels without relying on 

prior domain knowledge and quantified the impact of 

various geographic features (e.g. parking lots, commercial 

buildings) on air quality [106]. The fine spatiotemporal 

resolution of this model provided insights into the impacts 

of air pollution (e.g. health or environmental outcomes) on 

specific populations [106]. 

 

4.2.12 Automating literature reviews 

and bibliometric analyses 
 
Scientists are under increasing strain to keep up with the 

ever-growing number of scientific publications, as are 

editors and peer-reviewers [107]. Moreover, scholarly 

works are usually written for expert audiences in specific 

academic fields, limiting their use beyond academia, or 

even other academic fields. Emerging AI tools can assist 

with reviewing, appraising and summarising scientific 

publications. Examples include the Artificial Intelligence 

 
 
 

 
Review Assistant, launched by open-access publisher 

Frontiers in June 2020, which can screen the language 

quality, integrity of figures, instances of plagiarism and 

potential conflicts of interest in submissions [108]. Other AI-

enabled systems use natural language processing tools to 

synthesise academic papers into language that  
a 7-year-old child can understand [109]. These tools 

can potentially improve the productivity of academics 

and publishers and assist them in identifying and 

evaluating relevant and impactful research [107, 108]. 

 

4.2.13 Identifying archaeological samples 
 
In archaeology, deep-learning approaches have been 

increasingly applied to make sense of often unstructured and 

disparate datasets, and to derive new insights from 

archaeological records [110]. Traditional sampling methods 

can be time and resource-intensive [111]. Existing 

applications have used pattern recognition and AI to identify 

patterns in pottery and engraved wooden artifacts [111, 112] 

as well as to sort and filter images and identify objects in 

images (e.g. rock art, tools, shell or animal bone) 
 
[110]. With advances in large-scale lidar, satellite and aerial 

imagery, archaeologists have access to richer geospatial data for 

archaeological mapping of sites [110]. As a result, using machine 

learning to analyse geospatial data can help archaeologists 

profile the landscape characteristics without physically accessing 

archaeological sites [110, 113, 114]. 

 

4.2.14 Faster chip design 
 
When designing computer chips (such as CPUs and GPUs), 

various components must be placed in a floorplan that 

satisfies many operational requirements, including metrics 

such as power consumption, performance, and chip area. 

This typically requires considerable manual effort over many 

months to generate manufacturable layouts. To address this 

problem, researchers at Google designed an AI system for 

automatic floorplan generation based on reinforcement 

learning (a type of machine learning which learns from its past 

mistakes) that required a training dataset of 10,000 chip 

layouts of varying quality. The trained system was then able 

to automatically generate floorplans in only 
 
6 hours, with the resulting floorplans having comparable or 

better metrics than human‑designed floorplans [115]. Similar 

reinforcement‑learning approaches may be applicable  
in science domains where experimental designs require 

time‑consuming trials to explore the space of many possible 

outcomes. The potential time savings may allow researchers 

to focus on higher level tasks and hence be more productive; 

substantial time savings may also lead to discoveries that 

hitherto were too time-consuming to pursue. 



5 Science domain 

adoption trends 
 
 

 

In this section we explore temporal patterns of AI application and development 

during 63 years from 1960 to 2022 in science application domains. This shows 

how the field of AI has moved beyond computer science into other scientific and 

academic research disciplines. Overall, AI continues to be increasingly adopted 

across all areas of science, as evidenced by the increasing share of 
 

AI publications relative to total publications. This trend is likely to continue 

for some time until AI usage is normalised within science domains and as 

researchers grapple with the ever-increasing volume of scientific data. 
 
 

 

5.1 Data sources and methods 

(bibliometric analysis) 
 
We applied bibliometric analysis to explore trends in AI 

adoption [116]. Bibliometric analysis involves the 

examination of terms and phrases in research literature to 

understand important trends or patterns. Bibliometric 

analysis is becoming increasingly popular as the body of 

published research continues to expand [117, 118].  
The volume and rate of publishing in some fields makes 

comprehensive literature reviews by human researchers 

difficult or infeasible. Semi-automated literature searches 

which augment human researchers are increasingly needed 

to achieve up-to-date coverage of all relevant publications. 

 
Previous studies have used bibliometric analysis to explore AI 

research patterns. One such study used Microsoft Academic 

Graph [119] to examine the extent to which social science 

research fields are cited within AI publications [120]. The 

authors found social science fields such as geography, art 

and philosophy were under-represented in AI research. They 

conclude ‘the gap between social science and AI research 

means that researchers and policymakers may 
 
be ignorant of the social, ethical and societal implications of 

new AI systems’ [120]. In another bibliometric study, web-of-

science data was used to examine AI research efforts across 

countries, sponsors, institutions and disciplines [121]. This 

study found that AI technology development has arisen from 

high levels of interdisciplinary research. TheStanford 

University AI index report also uses bibliometric analysis to 

measure AI publishing intensity [14]. 

 
 

 

Our work contributes to this body of knowledge by using  
a novel, large, comprehensive and up-to-date dataset of 

scholarly publishing. We use a broader definition of AI with a 

larger and more diverse set of search phrases developed by 

the OECD [122] via expert consultation. Our bibliometric 

analysis is focused on AI application within other research 

fields; not the mirror (opposite) issue covered in earlier work 

[120] about how other fields have been used within AI 

research. Our analysis uses a formal, comprehensive and 

granular classification of research covering all major fields of 

physical, natural and social sciences and arts and 

humanities. We take a historical perspective examining 
 
AI publication trends from 1960 to 2022. We also examine 

patent citations relating to AI technologies and how different 

types of AI technology have evolved over time. 

 
Our bibliometric analysis of AI research trends across 

various scientific application domains is based on The 

Lens database [123]. The Lens is a product of a 

collaboration between the Queensland University of 

Technology and a not-for-profit Brisbane-based firm 

Cambia. It received funding from the Bill and Melinda 

Gates Foundation, the Rockefeller Foundation and other 

organisations. As of 20 September 2022, The Lens 

database contained 249 million scholarly publications 

and over 143 million patent records. 
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The Lens has previously been used to analyse science 

trends relating to genetics [33] and COVID-19 [124]. 

The Lens draws upon data from the following databases: 
 
• CrossRef 
 
• The Open Researcher and Contributor IDentifier (ORCID) 
 
• PubMed 
 
• Impactstory 
 
• COnnecting REpositories (CORE) 
 
• Microsoft Academic (which ceased 

operations on 31 December 2021) 
 
• European Patent Office (EPO) 
 
• United States Patent and Trademark Office (USPTO) 
 
• Intellectual Property (IP) Australia 
 
• World Intellectual Property Organization (WIPO). 

 
We extracted bibliometric data from The Lens using their 

Application Programming Interface (API) with Python scripts 

during 18–29 April 2022 (to capture the 1960–2021 time 

period) and on 20 September 2022 (for the last, partial, year 

of data of 2022). The last year, therefore, contains data for 

72% of the year. Whilst the absolute numbers  
of AI publications are likely to rise and change over the 

remaining days of the year, the relative shares (percentages) 

are likely to remain stable. The Lens database contains 

records on all scholarly publications in all fields of research by 

the whole world over all history. As such it is a large, complex 

and continually evolving database. The content, 
 

 
 
 

 

structures and definitions/rules of the database are likely to 

be changing. This means that future extractions of the data 

could yield different results but are unlikely to change the 

main implications/results from our study. 

 
To identify AI-related publications, we used a set of 214 

AI search phrases developed by the OECD via expert 

consultation (Appendix B). AI-related publications had to 

contain one or more of the 214 search phrases in the 

publication title, abstract or keywords. We limited our 

analysis to scholarly publications that were journal 

papers, books, book chapters, conference proceedings 

and conference proceedings articles; all of which are 

peer-reviewed. This search strategy returned 3.35 

million AI-related scholarly works published between 1 

January 1960 and 20 September 2022 (Figure 10). 

 
Each publication was classified by field of science using the 

All Science Journal Classification (ASJC) system. The ASJC 

is a three-level hierarchical taxonomy that represents a 

comprehensive classification of global research covering all 

fields of study and is maintained by Elsevier (Table  
1). The top level has four categories (health sciences, life 

sciences, physical sciences, and social sciences and 

humanities), the second level has 26 categories, and the 

third level has 333 categories. The ASJC codes are 

assigned by Elsevier’s team of in-house experts at the time 

of publication. The assignment of the code is based on the 

aims, title and content of the publication [47]. A single 

publication can be assigned multiple ASJC codes. 

 
 
 
 
 

 

All scholarly publications during  
January to September  

( , , ) 
 
 
 
 

 

Limited to peer-reviewed  
journal papers, books, book  

chapters and conference  
proceedings/papers  
( , , ) 

 
Limited to documents with  
arti cial intelligence phrases  
in title, abstract or keyword  
(, , ) 

 
Figure 10. Identifying artificial intelligence scholarly works from 1960 to 2022. 
 
Data source: The Lens [32]. 
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Table 1. All Science Journal Classification (ASJC) categories [47].  
 
First-level research field Second-level research field Number of third-level research fields 

Health sciences Dentistry 7 

 Health professions 17 

 Medicine 49 

 Nursing 24 

 Veterinary 5 
   

Life sciences Agricultural and biological sciences 12 

 Biochemistry genetics and molecular biology 16 

 Immunology and microbiology 7 

 Neuroscience 10 

 Pharmacology toxicology and pharmaceutics 6 
   

Physical sciences Chemical engineering 9 

 Chemistry 8 

 Computer science 13 

 Earth and planetary sciences 14 

 Energy 6 

 Engineering 17 

 Environmental science 13 

 Materials science 9 

 Mathematics 15 

 Physics and astronomy 11 
   

Social sciences and Arts and humanities 14 

humanities 
Business management and accounting 11  

 Decision sciences 5 

 Economics econometrics and finance 4 

 Psychology 8 

 Social sciences 23 
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5.2 Publishing intensity and 

volumes – all research fields 
 
In this section we examine temporal patterns in AI 

publishing across all ASJC fields of research. We found the 

volume of AI publishing continually increased over history, 

both in terms of the total number of AI publications and the 

relative share of total publications (Figure 11). The only 

exceptions were 1964 and 1971, where the number of 

publications contracted, before returning to growth in the 

following year. Interestingly, we did not find convincing 

evidence of a decline in AI publications associated with 

1974–1980 and 1987–1993, the periods corresponding 
 
to the first and second AI winters, respectively (Figure 

12). However, our analysis is not exhaustive and there 

may be time lags, spatial patterns and impacts on 

specialised AI fields worthy of further consideration. 

 
Growth in AI publishing has been greatest in the past 5–6 

years, with the relative share of AI publishing rising from 

2.9% of all publications in 2016 to 5.7% of all publications 

in 2022. The total number of AI publications rose from 

159,426 to 344,265 over this time period which equates to 

a 2.2-times increase. In most fields of research, the 

amount of AI adoption in the past several years roughly 

equals what happened over all preceding history. Across 

all fields of research, the volume of peer-reviewed 

publications on AI in the past 7 years 
 
(1.6 million documents) exceeds all prior AI publishing 

over the proceeding 55 years (1.5 million documents). 

 
Assuming these trends continue, it is likely that a much 

greater share of publishing will be on the topic of AI by 2030. 

Our analysis of AI-related publications suggests that we are 

currently on the steepest part of the adoption curve and there 

are no signs of a slowdown. As such, the full potential impact 

of AI on science and research domains lies ahead. AI will 

become increasingly integrated into routine research 

practices. As AI becomes normalised researchers may apply 

AI tools and concepts without using AI phrases in the title, 

abstract or keywords. 

 
 
 

 

5.3 Adoption trends in 

application domains 
 
In this section we explore AI publishing intensity within the 

four first-level (Figure 13) and 26 second-level (Table 2) 

research fields. We report AI publishing intensity as the 

percentage of AI-related publications out of the total number 

of publications. We also report the AI publication counts in 

absolute terms. Physical sciences account for the bulk of AI 

publishing in relative and absolute terms. In 2021, there 

were 461,000 AI-related publications in the physical 

sciences, accounting for 9.4% of total publication output. AI-

related publishing was roughly evenly distributed across 

other first-level fields of science, with the social sciences 

and humanities, life science and health sciences making up 

3.9%, 3.4% and 2.6%, respectively. 

 
We examined trends in AI publishing intensity over time to 

find evidence of AI winters across specific fields of research. 

There is evidence of an AI winter from 1974 to 1980 in the 

field of computer science (the first winter), with publishing 

intensity dropping and then plateauing during this period. 

Across all other fields of research, there is no clear evidence 

of a similar pattern during either the first or second AI winter. 

This suggests the first AI winter may have been isolated to the 

computer science domain. Beyond this we did not find 

evidence of domain-specific slow-downs in AI publishing 

associated with either of the two AI winters. 

 
Looking across the second-level research fields, we found 

that computer science dominates AI publishing, with one-

quarter of all publications in the field on AI. Mathematics 

(14%), engineering (11%) and decision sciences (11%) 

also have a high AI publishing intensity. A similar pattern 

was also observed when looking at the number of AI 

publications across fields of research. The lowest level of 

AI penetration was observed within dentistry, nursing, 

veterinary science, pharmacology toxicology and 

pharmaceutics, where publishing intensity ranged from 1% 

to 2%. However, this appears to be changing, as AI 

publishing has increased in these fields (and most other 

fields of research) in recent years. 
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Figure 11. Peer-reviewed research publications on artificial intelligence. 
 
Data source: The Lens [32]. Date range is from 1 January 1960 to 20 September 2022. 
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Figure 12. Annual change in peer-reviewed AI-related publications (%) over time. 
 
Data source: The Lens [32]. 
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Table 2. Artificial intelligence publishing intensity by research field (percentage).  
 
Fields of Research (Second-Level ASJC) 1970  1980  1990 2000 2010 2015 2020 2021 2022* 

              

Agricultural and biological sciences 0.1  0.1  0.3 0.7  1.2 1.5 2.5 2.8 3.5 
              

Arts and humanities 0.0  0.1  0.3 0.4  0.6 0.7 2.3 3.2 2.7 
              

Biochemistry genetics and molecular biology 0.1  0.1  0.2 0.4  1.3 1.9 3.2 3.8 4.8 
              

Business management and accounting 0.5  0.5  0.9 1.3  2.2 2.6 4.8 5.0 6.3 
              

Chemical engineering 0.1  0.0  0.2 0.7  1.0 1.1 4.1 4.8 5.4 
              

Chemistry 0.0  0.1  0.2 0.4  0.6 1.0 2.7 3.2 3.6 
              

Computer science 3.7  1.9  6.9 12.4  16.0 17.1 22.7 25.7 29.5 
              

Decision sciences 2.3  1.4  2.1 4.5  7.1 8.5 9.8 11.3 14.9 
              

Dentistry 0.0  0.0  0.1 0.3  0.3 0.3 0.9 1.7 1.6 
              

Earth and planetary sciences 0.1  0.2  0.5 0.9  1.7 2.5 4.4 5.5 7.3 
              

Economics econometrics and finance 0.0  0.1  0.3 0.8  0.9 1.1 2.7 3.5 3.9 
              

Energy 0.1  0.2  0.3 0.8  1.5 2.1 4.5 5.2 6.0 
              

Engineering 0.3  0.4  1.6 3.0  4.4 5.2 10.1 11.3 12.4 
              

Environmental science 0.1  0.2  0.3 0.7  1.3 1.7 2.9 3.3 4.0 
              

Health professions 0.1  0.2  0.4 1.1  1.4 2.2 3.2 4.1 7.3 
              

Immunology and microbiology 0.1  0.1  0.1 0.3  0.7 1.4 1.9 2.3 3.1 
              

Materials science 0.1  0.1  0.3 0.5  0.7 0.9 4.2 4.1 4.2 
              

Mathematics 0.6  0.8  1.9 4.9  7.9 9.0 12.7 14.1 15.3 
              

Medicine 0.0  0.1  0.2 0.3  0.8 1.1 2.2 2.7 3.5 
              

Neuroscience 0.1  0.1  0.5 1.1  2.3 3.5 5.1 6.1 8.3 
              

Nursing 0.0  0.0  0.1 0.2  0.3 0.5 1.1 1.2 1.9 
              

Pharmacology toxicology and pharmaceutics 0.0  0.0  0.1 0.3  0.6 0.9 1.7 2.0 2.2 
              

Physics and astronomy 0.1  0.2  0.6 0.8  1.2 1.7 5.6 7.0 7.2 
              

Psychology 0.2  0.4  0.7 1.2  1.7 2.2 2.7 2.9 3.6 
              

Social sciences 0.1  0.1  0.3 0.4  0.8 1.2 2.8 3.6 4.1 
              

Veterinary 0.0  0.0  0.1 0.1  0.2 0.4 1.0 1.1 1.4 
            

            

Level of AI publishing intensity Low   Medium  High      
               
 
* Final year of data captures publishing activity within 1 January to 20 September 2022 only. 
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Figure 13. Artificial intelligence publishing intensity by main research domains. 
 
Data source: The Lens [32]. Data sourced from January 1960 to September 2022. 

 
 
 
 
 
 
The AI publishing intensity within a field of science is 

influenced by the overall publishing volume; both metrics 

are important. For example, while medicine has 

comparatively lower AI publishing intensity relative to other 

fields (2.6% of publications were AI-related in 2021),  
it accounts for a substantial share of AI publication volume. 

In 2021 there were 55,374 AI-related publications within the 

field of medicine, which accounts for 8.4% of all AI-related 

publications. This makes medicine the third-largest field by 

publication volume after computer science (25.5% of all AI-

related publications) and engineering (18.1%). As such, 

medicine represents an important area for AI science 
 
and technology development. Within the overall field of 

medicine, the usage and development of AI technologies 

is most pronounced within the third-level fields of health 

informatics, as well as radiology, nuclear medicine and 

imaging, where access to digital data is readily available. 

 
 
 
 
 
 
The development and adoption of AI technology started 

within the areas of computer science, mathematics, 

engineering and decision sciences, with the AI publishing 

intensity picking up in these areas from the early 1980s or 

before. Most other fields do not show substantial uptake 

until the 2000s or 2010s. What is consistent across all 

fields of research, however, is a sudden and substantial 

surge in AI publishing intensity from 2017 to 2021 (Figure 

14 to Figure 18). Except for materials science, publishing 

intensity has continued to rise, or accelerate, in all fields of 

research during the COVID-19 pandemic. Overall, AI is 

having a greater impact in the current era, compared to all 

history, for the physical sciences, life sciences, health 

sciences, social sciences and humanities. 
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Figure 14. Artificial intelligence publishing intensity in the physical sciences (1–5 fields). 
 
Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 
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Figure 15. Artificial intelligence publishing intensity in the physical sciences (6–10 fields). 
 
Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 
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Figure 16. Artificial intelligence publishing intensity in the health sciences. 
 
Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 
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Figure 17. Artificial intelligence publishing intensity in the life sciences. 
 
Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 
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Figure 18. Artificial intelligence publishing intensity in the social sciences and humanities. 
 
Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 

 
 
 

 

5.4 Artificial intelligence 

technology diffusion trends 
 
In the early stages of its development AI research mostly 

occurred within the computer sciences field and, to a lesser 

extent, engineering, mathematics and decision sciences. 

However, the usefulness of AI was soon discovered by 

scientists in many other fields of research. The pattern  
via which AI technologies developed by computer scientists 

were adopted in other fields can be considered technology 

diffusion, a sub-field of research in the discipline of 

technology economics [125]. In this section we explore the 

diffusion of AI technology. We do this by analysing time-

series data on the concentration of AI activity and temporal 

patterns of AI adoption. We analyse the most granular level 

of the ASJC classification, the third‑level, which contains 

333 unique fields of research. 

 
Our analysis of the concentration of AI publishing over time 

uses the Gini Coefficient (GC). The GC is a measure of 

concentration for any variable across multiple categories, 

such as how evenly wealth is distributed among individuals 

within society. We used the GC to measure the extent to 

 
 
 

 

which AI is concentrated in a few fields of research versus 

evenly distributed across all fields, an approach taken 
 
in earlier AI technology diffusion analyses [120]. The GC 

ranges from 0 to 1, where 1 implies all AI publications 

are in one field of research and 0 implies a perfectly 

equal distribution of AI publishing across all fields. 

 
We found that from 1960 to 1980 the GC fell from 0.9 to 

0.7 as AI diffused beyond the foundation disciplines of 

computer science, mathematics and engineering into a 

much broader range of application domains (Figure 19). 

This level of AI diffusion has been sustained over the 

following four decades. The main reason the GC hasn’t 

fallen further, indicating a more even distribution of AI 

activity, is that computer science has increased AI 

publishing faster than other research fields. 

 
The number of fields of research using AI has increased over 

the same time period, with close to all fields publishing on AI 

by 2021; up from 70% in 1980 (Figure 20). It took roughly 25 

years from 1960 to 1985 for AI technologies  
to be represented in over 80% of all research fields. We 

can see from these data that AI has been embedded and 

applied in most fields of research for decades. 
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Figure 19. Concentration of artificial intelligence publishing across research fields. 
 
Note: The Gini Coefficient is a statistical measure of concentration. It is used here to measure the level of concentration of AI 

publishing across fields of research. A higher value represents increased concentration. 
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Figure 20. Diffusion of artificial intelligence technology into research fields. 
 
Note: There are a total of 333 third-level All Science Journal Classification research fields. The graph shows 

the number of research fields with artificial intelligence publishing from 1960 to 2021. 
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5.5 Trends in artificial 

intelligence technologies 
 
In this section we explore publishing trends across various 

subfields of AI. We analysed publication counts for the 214 

OECD AI phrases (Appendix B) from 1960 to 2021. 
 
The majority of AI technologies saw publishing volumes 

increase over time, with some developing faster than 

others. The top six AI technologies with strongest growth 

over the past 20 years were convolution neural networks, 

followed by deep learning, random forest, generative 

adversarial networks (defined as ‘adversarial network’), 

sentiment analysis and transfer learning (Figure 21). Deep 

learning accounts for the greatest share of AI publications 

in 2021 (7.6% of total AI publications) and has shown the 

strongest 20-year increase, growing 25.4 times from 2002 

to 2021. Looking at the past 5 years alone, the strongest 

growth has been observed across ‘generative adversarial 

networks’ and ‘transfer learning’ (growing by 2.3 and 5.3 

times during 2016–2021, respectively). 

 
 
 

 
We also examined the extent to which various AI 

technologies have been translated into commercially 

valuable and socially useful products. We did this by 

examining the number of patent citations attributed to 

research publications containing an AI-related search 

term in the title, abstract or keyword. Patent citations 

were taken as a proxy measure of commercial (and 

societal) impact, where a greater number of patent 

citations is assumed to indicate greater impact. The 

analysis revealed that scholarly publications which 

included reference to ‘neural network’, ‘convolutional 

neural network’, ‘deep learning’, ‘machine learning’ and 

‘computer vision’ generated the greatest number of 

patents (Figure 22). These AI subfields are associated 

with the most significant commercial value and impact. 
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Figure 21. The six fastest-growth artificial intelligence technologies over past 20 years. 
 
Data source: The Lens [32], OECD [122]. Note: The graph shows the number of peer-reviewed publications with the search term 

appearing in the title, abstract or keywords for journal papers, conference papers, books and book chapters. 
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Figure 22. Patent citation counts for the top 20 artificial intelligence phrases for 2017–2021. 
 
Data source: The Lens [32]. 
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6 Future development pathways 
 
 
 

 

6.1 Software, hardware and 

open access resources 
 
Hardware and software toolkits available to scientists and 

researchers wanting to apply AI in their work are 

continually improving. This will boost the productivity of 

advanced AI developers and researchers with limited AI 

knowledge seeking to perform a particular AI function or 

procedure. The technology upgrades are having  
the impact of democratising and industrialising AI. 

They will play an important role in the diffusion of AI 

technology across all fields of science and research. 

 
AI accelerators are computing processors specifically 

designed to handle matrix algebra operations used in 

machine learning. AI accelerators improve the speed and 

reduce the latency of AI computations. They enable more 

time-efficient and cost-efficient development of AI systems. 

Over the past few years, the number of AI accelerators 

available on the market has increased in quantity and 

diversity. They are used in applications such as 

autonomous vehicles, speech recognition, natural 

language processing and video object detection [126]. 
 
A recent review [126] of AI hardware accelerators by the 

Massachusetts Institute of Technology describes over 70 AI 

accelerators under several categories: (a) research chips,  
(b) very low power chips, (c) embedded chips and systems,  
(d) autonomous systems, (e) data centre systems, (f) data 

centre chips and cards. The last category is further broken 

up into CPUs (with new low-level instructions targeting 

AI/ML workloads), FPGA-based accelerators, GPU-based 

accelerators, and dataflow chips, such as Google’s Tensor 

Processing Units (TPUs). In addition to those already on 

the market, the study reviews 12 AI accelerators that have 

been announced for future release in the short term, 

including accelerators from Qualcomm, a large company in 

the mobile/cellular phone space. The future is likely to see 

continued improvement in computational power and 

efficiency of AI systems with an increased diversity of 

specialised processors suited for various applications. 

 
A related development in computing hardware is the rise 

of quantum computing. Quantum computers use theories 

of quantum physics to store and analyse data. Unlike 

conventional computers, which use a binary (on/ off) 

system to represent data, quantum computers use qubits 

which can be in many states at any given point in time. 

Writing in Nature in 2019, Google scientists reported that 

their quantum processor called ‘sycamore’ can solve a 

problem in 200 seconds that would take a 

 
 
 

 
state-of-the-art classical supercomputer 10,000 years to 

solve. They refer to this as an ‘experimental realisation of 

quantum supremacy’ [127]. The researchers conclude that 

‘as a result of these developments, quantum computing is 

transitioning from a research topic to a technology that 

unlocks new computational capabilities’ and that ‘we are 

only one creative algorithm away from valuable near-term 

applications’ [127]. Quantum computers may eventually 

have the capacity to solve AI problems beyond the reach of 

conventional computers. This can potentially lead to a 

paradigm shift and step change in AI capability. 

 
In addition to improved hardware, the AI field is seeing the 

rapid growth of software frameworks to support AI 

operations. Examples of popular frameworks include 

PyTorch, Tensorflow, Keras and Caffe. Using these 

frameworks in environments such as Python and R, 

researchers can design and/or adapt machine-learning 

algorithms relatively quickly, often without the need to delve 

into the low-level details of the algorithms. This is how many 

researchers are likely to develop and apply AI within their 

fields of expertise. These AI frameworks have played, and 

will continue to play, an important role in facilitating AI 

technology diffusion across all fields of physical, natural and 

social sciences. We are also seeing the emergence of code-

free AI software tools delivered through graphic user 

interfaces (GUIs). A research team from Moorfields Eye 

Hospital in the United Kingdom recently evaluated code-free 

AI tools for training machine-learning algorithms from 

corporations such as Amazon, Apple, Clarifai, MedicMind 

and Microsoft [128]. The code-free deep learning (CFDL) 

software tools were used for the classification of medical 

imagery. They conclude ‘that CFDL platforms have the 

potential to improve access to deep learning for both 

clinicians and biomedical researchers, and represent 

another step towards the democratization and 

industrialization of AI’ [128]. Furthermore, mass-market 

software tools such as Microsoft Excel and Microsoft Power 

BI are increasingly making code-free machine-learning 

functions available to users to perform common tasks [129, 

130]. 

 
The open-access frameworks for AI computations are 

supported by a large and growing number of platforms 

which enable knowledge sharing. Examples include 

GitHub, Bitbucket, SourceForge, Gogs, Gitbucket, AWS 

CodeCommit, Beanstalk, Phabricator, Gitea, Allura, 

Rhodecode, CodeGiant, Cloud Source Repositories  
(by Google), Azure DevOps Services, Google Developers 

and Trac [131]. There are many other such platforms. 
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These are powerful information resources which speed 

up and assist scientists developing software code for AI. 

The volume of material and continuously improving 

search tools allow a software developer to find a code 

snippet, library or dataset to quickly solve a problem 

they’re working on. These platforms also facilitate Q&A 

style discussions where software developers can turn to 

their community for help. Furthermore, there are 

platforms such as Kaggle and ImageNet which host 

competitions for AI experts to access datasets and solve 

problems. Competitions on these platforms have fast 

tracked AI problem solving in many areas [132, 133]. 

Collectively these open-access resources will provide a 

big boost to AI application in diverse fields of science. 

 

Lastly, the rise of accessible cloud-based computing services 

is also facilitating the adoption of AI across all fields of 

research and world regions. A recent report by information 

technology (IT) consulting firm Gartner finds that the global 

cloud computing market grew from US$270 billion in 2020 to 

a (forecast) US$397 billion in 2022 with 23% growth during 

2021 [134]. The analysts observed that the pandemic fuelled 

the growth of cloud computing with many business 

operations moving online. A similar pattern is likely to have 

occurred within the global science and research community 

as remote work was needed due to movement and/or 

quarantine restrictions. Market research by ReportLinker 

forecasts the continued growth of the cloud rising at an 

annual compound annual growth rate of 16.3% during 2021 

to 2026 and reaching US$948 billion per year [135]. The 

science sector is an enthusiastic adopter of cloud computing 

[136]. The field of genetics, for example, depends on cloud 

computing for storage, sharing and analysis of vast quantities 

of data for cross‑organisational and international science 

teams [137]. 
 
 

6.1.1 Implications for science and 

research organisations 
 
Science organisations seeking to uplift AI capability will need 

to make decisions about hardware, software and 

computational infrastructure upgrades, including the access 

to cloud computing services. These tools have improved 

substantially over recent years. They are likely to follow  
a pathway of ongoing improvement in the future. There are 

many unknowns about quantum computing; it could 

potentially lead to a step change and paradigm shift in AI 

resulting in substantially elevated capability. Quantum 

computing services are already available to AI developers 

and science organisations will need to factor this into their 

longer-term AI capability development strategies. 

 
 
 

 

6.2 The quest for better data 
 

We are living in the era of ‘big data’, where the volume, 

variety and velocity of data inflows continue to expand. Big 

data have supported the training of machine‑learning 

algorithms. For example, vast image datasets (labelled by 

users through search terms) supported the development of 

image recognition systems able to accurately identify dogs, 

cats, birds or practically any object within an image. 

Speech recognition, face recognition and 

emotion/expression recognition systems have benefited 

similarly from vast volumes of labelled data. 

 
However, big data can be problematic. Big data contain 

considerable noise in addition to the signal. Big data can 

contain spurious entries which are camouflaged and hard to 

identify amid the other entries. This can degrade the 

accuracy and reliability of machine-learning models. For 

example, a recent analysis of 62 published scientific studies 

using machine learning on chest radiographs and CT scans 

to detect and prognosticate COVID-19 found that ‘none of 

the models identified are of potential clinical use due to 

methodological flaws and/or underlying biases’ 
 
[7]. Most of the problems related to duplication and quality 

issues in the datasets used for machine learning: 

 
• Incorrectly sourced datasets – In these cases data 

were incorrectly sourced from demographic age 

groups that led to biased and inaccurate results 

when applied at the population level. 
 
• Frankenstein datasets – In these cases public datasets 

were assembled from numerous other datasets and 

then redistributed under a new name. This meant 

algorithms were being trained on multiple identical or 

overlapping datasets with significant duplication. 
 
• Biased datasets – In these cases images shared 

publicly and/or contained within published 

documents often have a form of selection bias. For 

example, people with certain conditions and/ or 

disease severity may be more/less likely to share 

their images. This leads to bias in the data. 

 

The masses of data, which on the surface looked like a 

powerful resource for training machine-learning algorithms, 

had serious limitations which in every case made the model 

unusable in clinical settings. Similar problems have been 

observed in earlier reviews of AI-based models for COVID-19 

diagnosis and prognosis. For example, another review of 169 

studies containing 232 machine‑learning models found ‘all 

models were rated at high or unclear risk of bias, mostly 

because of non-representative selection of control patients, 

exclusion of patients who 
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had not experienced the event of interest by the end of the 

study, high risk of model overfitting, and unclear reporting’ 

[138]. Most of these problems stemmed from the incorrect 

use of datasets that were not fit-for-purpose. 

 

Given such findings the AI science community in 

healthcare, and other domains, is likely to invest greater 

effort in developing higher quality and fit-for-purpose 

datasets. Professor Luciano Floridi from the University of 

Oxford and Alan Turing Institute recently published a paper 

[139] on the near-term future for AI. One of the trends he 

identifies is the move from ‘big data’ to ‘small data’ – and 

he defines small data as being higher quality, well curated 

and provenance assured. He gives the example of an AI-

based system developed by Google’s DeepMind in 

partnership with Moorfields Eye Hospital in London. 

Historically, medical imaging diagnostics based on AI 

typically relied on ‘databases of millions of annotated 

images’. However, the system was successfully trained 

using only 14,884 eye scans for early detection of 

sight‑threatening eye diseases and was found to reach or 

exceed diagnostic accuracy by experts and is considered 

clinically applicable [140]. The dataset of 14,884 scans 

represents a considerably smaller‑than‑usual dataset. The 

dataset wasn’t just smaller; it was also well curated, 

labelled by experts, reviewed/examined by experts, 

provenance assured, and fit-for-purpose [140]. 
 
 

6.2.1 Implications for science and 

research organisations 
 
The ability of a research organisation to achieve 

competitive differentiation and problem-solve with AI will, in 

large part, be determined by the quality of its datasets. Vast 

volumes of publicly available data have been, and will 

remain, important for the development of AI. For example, 

a CSIRO team used machine learning to identify COVID-19 

virus mutations with likely impact on disease severity [141]. 

This was done on only 0.3% of the available viral data 

points due to a lack of patient information for the rest [142]. 

This illustrates the rate-changing potential for high-quality 

datasets. Specifically, future AI capability uplift will require 

investments in high-quality data which is fit-for-purpose, 

provenance assured, validated, up-to-date, and ethically 

obtained. As such, it is likely to be critical for an 

organisation to know what datasets it owns, their 

provenance, reliability and suitable uses, as well as 

detailed metadata of those datasets. 

 
This means science and research organisations seeking 

to upgrade AI capability will need to become adept at 

acquiring, storing, protecting and recording metadata 

 
 
 

 

on the right (top-priority) datasets. Some of the datasets 

needed will be novel and will require new investment/capture. 

Other datasets will be historic and may require formatting, 

validating and fixing. The data imperative means that 

research organisations, like any organisation, need to move 

towards becoming increasingly data‑driven. This implies 

changes to business processes, infrastructure, skills and 

organisational culture. 

 
Strategies about how to become a data-driven organisation 

are well covered in the management sciences literature [143, 

144]. Data-driven organisations need strong capacity to 

acquire, analyse, interpret protect, store, share and 

communicate data. Furthermore, data-driven organisations 

demonstrably use data in decision making to achieve 

organisational objectives. They also know the value of their 

current and future-planned data assets. Research 

organisations need to acquire these traits to achieve 

aspirations for AI capability upgrades. 

 

6.3 Education, training 

and capability uplift 
 
The surge in AI development and application is being 

accompanied by a surge in AI training and education. An 

analysis of 18 universities across 9 countries found that 

the number of undergraduate courses teaching students 

skills necessary to build and deploy AI models doubled 

from 2016 to 2020, and increased by 42%  
for postgraduate courses [14]. Similarly, enrolments in 

introductory courses for AI or machine learning have grown 

by close to 60% over the same time [14]. Data from the 

OECD AI Policy Observatory shows the number of AI 

courses (delivered in English) worldwide increased 80.1% 

during 2018–2021, and AI now comprises 27.3% of all 

computer science and IT courses [145]. 

 
In Australia the number of AI courses offered by universities 

has grown 1.2 times over the past 4 years, with 235 courses 

on offer in 2021 [145]. The University of Queensland and the 

University of Sydney are ranked among the world’s top 100 

academic institutions in AI according to the Nature Artificial 

Intelligence Index. These institutes are placed in 55th and 

76th positions, respectively [146]. The universities ranked in 

the top 10 positions are all in the United States, Germany and 

the United Kingdom [146]. Australian institutions such as the 

Australian Institute for Machine Learning at the University of 

Adelaide are also expanding, with the number of staff 

increasing from 80 in 2017 to 140 in 2021 [147]. Tertiary 

educational and vocational training institutes in Australia are 

offering a growing range of studying opportunities for people 

seeking to gain AI skills. 
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In Australia the fastest growth in AI course offerings was 

observed for master’s degrees [148]. The science and 

research sectors are in direct competition with industry for AI 

skills. An analysis of job postings in the United States in 

2019 found 9.1% of postings were for AI-related positions  
[149]. These AI-related jobs tended to be higher skilled 

positions with 80% requiring a 4-year bachelor degree as a 

minimum requirement [149]. In Australia, 37,587 AI-related 

job advertisements were posted in 2015–2019 by Adzuna – a 

leading job advertisement search engine [150]. These jobs 

tend to be concentrated in Australian states with the largest 

population, with the notable exception of the Northern 

Territory, which had a higher rate of AI jobs relative to 
 
its population. AI-related positions make up a fraction of 

the total job advertisements in Australia, accounting for 

0.5% of all postings made between 2015 and 2019 [150]. 

 
An analysis conducted by the OECD examined the 

prevalence of AI skills across occupations using LinkedIn 

member profiles in 2015–2020 [151]. This analysis found 

Australia ranked in the middle of the list (13th place out of 26 

OECD countries) with the highest penetration of AI skills in 

the United States, followed by Germany and Israel [151]. 

When it comes to the AI scientific workforce, as measured 

through the Global AI Talent Tracker by MacroPolo, the 

majority of AI scientists are currently based in the United 

States (59%), followed by China (11%) and Europe (10%) 
 
[152]. Most AI scientists completed their undergraduate 

degrees in China (29%), followed by the United States 

(20%) and Europe (18%). This reveals a strong net-inward 

movement of AI talent into the United States [152]. 

 
A growing number of students in Australia are graduating 

with degrees in IT or computer science and have skills 

suitable for AI-related occupations. The number of university 

graduates with degrees in IT, as a field of education, has 

been on a steep rise since 2017 after over a decade of 

slump [153]. Between 2003 and 2013 the number of IT 

graduates was mainly in decline, which was a warning trend 

for Australia’s transition to the digital economy [154]. In 

2013, the trend reversed to a slow growth (2013–2017) and 

moved into a steep rise since 2017 [153]. By 2020, 
 
the number of IT graduates in Australia almost tripled 

compared to 2013, exceeding 31,700 people [153]. In 2020, 

IT became the fourth-largest field of education by the number 

of graduates after management and commerce, society and 

culture and health [153]. The growth was the highest among 

the postgraduate overseas students – the number 

 
 
 

 

of IT graduates in this sector grew over 5-times between 

2013 and 2020 to over 15,600 students [153]. This can be 

partly attributed to the COVID-19 pandemic as IT degrees 

may have been more easily shifted to online education. 

 
Research has shown that workers who have a background in 

computer science and programming are more supportive of 

the development of AI [155], suggesting that AI literacy can be 

an additional important factor in encouraging adoption of AI 

across the science sector. While there is limited 

understanding around the level of AI awareness and 

understanding across the science sector in Australia, the 

majority of the Australian public report low (62%) or moderate 

(26%) subjective knowledge of AI [156]. Examining and 

improving the AI literacy of the workforce will help science and 

research organisations identify gaps in the current 

understanding of AI in the scientific workforce and future 

capability areas that require attention [155, 156]. 

 
Another dimension to AI upskilling is the importance of 

interdisciplinarity [157]. Research projects using AI typically 

require high levels of interdisciplinarity involving expertise in 

the science application domain along with specialised 

expertise in areas such as machine learning, natural language 

processing, computer vision, robotics and other sub-fields of 

AI. A study into the interdisciplinary nature of AI finds that ‘the 

relationship between AI and interdisciplinary research must be 

considered as a two-way street’ [157]. The authors of this 

study note that more effort is going in one direction (applying 

AI to other research fields) than the other (applying other 

research fields to AI). Other researchers using bibliometric 

analyses have observed similar patterns [120]. Both these 

studies identify a need for improved two-way interdisciplinarity 

collaboration to achieve improved outcomes from AI for 

science. 

 
Lastly, it is worth noting that the future AI talent pipeline for 

science and research organisations does not start at 

university. Education researchers have found an interest, 

motivation and capability for science, technology, 

engineering and mathematics (STEM) expertise – including 

mathematics and the foundational skills needed for  
AI – is typically acquired in early childhood learning 

[158, 159], primary school and high school [160, 161]. 

Therefore, a longer-term view of the AI talent pipeline 

requires investment in all lifelong stages of learning. 
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6.3.1 Implications for science and 

research organisations 
 
Research organisations will need strategies for talent 

acquisition and retention, given the strong demand for AI 

skills. Industry employers are often able to lure skilled AI 

workers with high salaries. Research organisations will 

need to offer competitive renumeration packages to attract 

and retain skilled AI workers. The feasibility of talent 

acquisition and retention will need consideration by 

research organisations while making decisions about 

whether to grow certain types of AI capability. 
 
At some point the supply of AI skills is likely to adjust 

to meet demand. Many industries are on the same 

steep AI adoption curves as we have shown for the 

science sector; they are hungry for the same AI skills. 

 
The number of, and variety of, education and training 

courses available to scientists seeking to upgrade AI 

capability is continuing to expand. There is a wide range of 

course formats: from micro-credentialling or flash courses to 

acquire specific skills for specific tasks and timeframes, 

through to longer in-depth courses designed to develop 

deeper skills and knowledge. Research organisations, and 

researchers, can take advantage of these educational 

offerings to upgrade AI capabilities. Furthermore, research 

organisations may already have staff with professional 

backgrounds which make them well-suited for a career 

transition into AI-focused roles. In addition to training 

 
 
 
 

 
and education, research organisations will need strategies to 

bolster two-way interdisciplinary collaboration in AI projects. 

This involves a flow of expertise from AI specialists into 

science application domains along with the flow of science 

domain expertise back into the field of AI. 

 
Some of the upskilling required will exist beyond the 

organisation’s immediate sphere of influence. Longer term 

and broad-based development of the AI talent pipeline will 

involve developing foundational skills in mathematics and 

computational logic for children and teenagers in early 

learning, primary school and high school contexts. That’s 

when an interest, motivation and capability for advanced 

STEM skills begins to develop. Research organisations can 

work with schools and learning organisations to promote the 

foundational education needed for the future AI workforce. In 

the same way that science and research organisations have 

developed school engagement programs to raise awareness 

around STEM careers (e.g. CSIRO’s STEM Professionals in 

Schools program), similar efforts can be used to strengthen 

the knowledge and understanding around AI-related career 

opportunities. 

 
 
There is also value in uplifting societal awareness and 

understanding of AI. Improving the general knowledge of 

AI will help create informed users who can better 

manage the risks, and harness the opportunities, 

associated with AI technology. It will also help society 

work towards effective policies, laws and regulations. 
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6.4 Towards collaborative 

artificial intelligence 
 
Initial predictions about the impact of technology on the 

workforce focused on the areas where technologies like AI 

would substitute and replace humans [162, 163]. However, 

increasingly the focus has shifted to how humans and AI 

can work together (augmentation). Human-AI collaboration 

is a field of research about how humans and AI can 

meaningfully interact and cooperate to carry out tasks to 

higher standards than either can achieve alone [164]. 

Human-AI collaboration can lead to significant productivity 

gains and expand the bounds of human capacity. IT 

company Accenture estimated that organisations that 

invested in human-AI collaboration would increase their 

revenues by 38% and employment by 10% between 2018–

2022 [165]. Human-AI collaboration is important within the 

science sector as per other industry sectors. The productive 

use of AI by scientists depends in large part upon the 

quality of human-AI collaboration and individual, team and 

organisational levels. 

 
How does human-AI collaboration happen? Partnership on 

AI, a global multistakeholder organisation, has developed a 

standardised framework to investigate and characterise 

human-AI collaboration [166]. Using seven case studies, the 

framework covers the following: the nature of the 

collaboration (e.g. the goals of the interaction, how the 

human and AI are engaged and their level of agency); the 

situational context of the collaboration (e.g. whether the 

human and AI are physically co-located, AI awareness, trust 

in AI system and potential consequences); the AI system 

characteristics (e.g. whether the AI system is interactive, 

adaptable, predictable, explainable and human-like); 
 
and the characteristics of the human collaborator [166]. 

Understanding and examining the nature of human-AI 

collaboration is critical to progressing the responsible design 

and governance required to ensure safe, reliable and 

productive design and development of collaborative AI. 

 
FastMRI is an example of a human-AI collaborative system 

which aims to accelerate the rate at which doctors can 

acquire brain scans using magnetic resonance imaging 

(MRI) without compromising on the image quality [166]. 

 
 
 

 
This AI system, developed by Facebook and NYU School of 

Medicine’s Department of Radiology, interprets lower quality 

image data, which has been rapidly acquired, and predicts 

the missing data to create a higher quality image. This higher 

resolution image can then be interpreted by the doctor to 

determine whether an abnormality is present, increasing their 

productivity, reducing patient time in the MRI scanner and 

potentially increasing diagnostic accuracy. 

 
Another emerging area of research related to human‑AI 

collaboration looks at how workers perceive future  
AI developments. Initial surveys and interviews of 

healthcare professionals, librarians and qualitative 

researchers, data scientists and the public have revealed 

a number of common themes around how workers view 

human‑AI collaboration [155, 156, 167-178]. First, there is 

a generally positive view towards the value that AI can 

provide. A 2019 survey of the American public found that 

79% of participants were either supportive or neutral 

towards future AI developments, with support for AI 

strongest in higher educated and higher income cohorts, 

or those that have a computer science or programming 

background [155]. This share is even higher in similar 

surveys that have been conducted in Australia (85% 

supportive or neutral towards AI) [178]. 

 
The positive sentiment is driven by the perceived benefits 

of AI. A survey of clinicians in South Korea found that  
83.4% felt AI would be useful in medicine, particularly for 

diagnostic purposes [179]. The European Society of 

Radiology also found that radiologists felt that AI can 

potentially result in higher productivity, resulting in more 

available time to spend with patients [168]. AI also opens 

opportunities for researchers to access and derive greater 

value from existing large datasets that would otherwise be 

prohibitively resource-intensive to manually analyse [170-

172]. Scientists traditionally use meta-analyses to synthesise 

findings from a large collection of scientific studies, a highly 

time and labour-intensive process. AI could provide a means 

to automate the process [171], helping researchers stay 

across the fast-moving research landscape. 

 
Studies exploring perceptions of AI in the research 

community have found that most scientists and researchers 

do not think AI can, nor should, replicate the research 

process [169, 172]. Instead, AI systems and human scientists 

could operate in a ‘synergistic partnership’ [171-173, 180]. 
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This synergistic relationship acknowledges the unique and 

complementary strengths of humans and AI systems and 

provides opportunities to collaborate to address the 

limitations of humans and AI on their own [167, 169-172, 

175, 179-181]. Under a human-AI collaboration scenario, 

the human scientist would delegate tasks that can be 

completed more efficiently by an AI system, leaving the 

human scientist to invest their time and resources into 

tasks that rely on uniquely human cognitive abilities. 

 
AI systems have an advantage over human workers when 

it comes to rapidly processing and analysing large masses 

of information and identifying patterns or relationships [171, 

180]. By automating these manual tasks, scientists can 

have more time for creative and higher order  
tasks [170, 171]. Conversely, humans perform better in 

ambiguous or uncertain decision-making contexts [180]. 

Researchers are sceptical whether an AI system will be 

able to replicate a human’s ability to make complex 

associations or complete tasks that require subjective 

judgement or specialised knowledge [172]. This includes 

tasks that require prior knowledge around the data or 

domain [169] or those that require human judgement, 

such as reviewing scientific publications [169-172] or 

interpreting ambiguous medical results [179, 182]. 

 
Surveys of scientists have found that transparency and 

explainability are critical factors in determining trust in an AI 

system [169]. Without this transparency, researchers are 

concerned that AI could produce biased results or 

exacerbate existing societal inequalities [169]. A group of 

researchers from IBM and Rensselaer Polytechnic Institute 

have shown that ‘transparency features’ are critical  
in human-AI systems as they help build trust between the 

user and the machine [183]. These researchers used 

visualisations to enhance transparency, and in turn, user 

trust, around the data that goes into the model and the 

process through which the AI generates a predictive model. 

 
 
 

 

6.4.1 Implications for science and 

research organisations 
 
The ability to capture value of human-AI collaboration rests 

upon buy-in from the scientific community and there are 

several factors that influence this. One of these is trust, 

particularly in non-data science domains, which relates to 

AI literacy. Research has shown that workers who have a 

background in computer science and programming are 

more supportive of the development of AI [155]. While there 

is limited understanding around the level of AI awareness 

and understanding across the science sector in Australia, 

the majority of the Australian public report low (62%) or 

moderate (26%) subjective knowledge of AI [156]. 

Examining and improving the AI literacy of the workforce 

will help science and research organisations build 

understanding and acceptance of 
 
AI [155, 156]. In general, a greater share of Australians 

places their trust in AI systems (41%) than other countries 

(e.g. 35% in the United Kingdom and 33% in the United 

States) [156]. To maximise the complementary strengths of 

human scientists and AI systems, AI applications need to 

be designed and evaluated with the human scientist 

workflow in mind. In certain cases, AI systems might be 

used to automate a discrete part of the workflow (e.g. pre-

processing large datasets), or work in concert with the 

human scientists (e.g. validating previous analyses). 

 
Addressing the productivity slump is an area of concern in 

the contemporary research sector. While AI presents an 

opportunity to do more with fewer resources and free 

scientists up for higher value tasks, it is important that this 

increase in productivity does not coincide with a decline in 

research quality or impact [171]. For example, using AI 

might speed up the rate at which scientists can collect and 

analyse data, but this may not contribute 
 
to meaningful advancements in the field if such tools are 

implemented in the absence of sufficient human oversight 

and specialised domain input. Multidisciplinary research 

teams involving data science and domain knowledge 

specialists will likely feature more heavily to support quality 

outputs from human-AI collaborations. 
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6.5 Artificial intelligence 

workforce diversity 
 
There is a lack of gender and cultural diversity in the AI 

research workforce. This is evident in both technology 

corporations and academic/research organisations. 
 
For example, a recent study of gender diversity in AI 

research workforces based on analysis of arXiv publications 

by the National Endowment for Science, Technology and the 

Arts in the United Kingdom found [184]: 

 
• Worldwide, 13.8% of authors on AI research papers are 

female and the portion of papers written by at least one 

female author has not increased since 1990. 
 
• Less than 25% of AI researchers are female in 

most academic institutions with a few exceptions. 
 
• There are relatively few female authors of AI research 

papers from technology corporations such as Google 

(11.3%), Microsoft (11.95%) and IBM (15.7%). 
 
• AI research papers with at least one female author 

tended to be more applied and were more likely to 

use human terms such as ‘fairness, human 

mobility, mental, health, gender and personality’. 

 
Gender disparity in the AI workforce is similar to the 

gender disparity in the broader field of computer science 

and within STEM disciplines. According to the 2021 STEM 

equity monitor by the Australian Government [185], 28% of 

the STEM workforce are women, and males in 
 
STEM professions earn (on average) $28,994 per year  
more than females compared to a pay gap of  
$25,534 across all industries. The STEM equity monitor  
also records changes to gender disparity over time: 

 
• During 2015 to 2019 the proportion of women 

enrolled in STEM courses at Australian 

universities increased from 34% to 36%. 
 
• During 2016 to 2020 the proportion of 

women working across all STEM-qualified 

industries increased from 24% to 28%. 
 
• During 2016 to 2020 the proportion of managers 

and senior managers in STEM roles who are 

female increased from 18% to 23%. 

 
 
 

 
In addition to gender issues the STEM workforce, likely to 

reflect the AI workforce, has a lack of cultural and ethnic 

diversity. For example, professional body Science and 

Technology Australia finds that ‘one in 200 Aboriginal or 

Torres Strait Islander people of working age have a STEM 

degree – while one in 20 non-Indigenous working age people 

have a STEM degree’ [186]. Australian mathematician 

Rowena Ball writing on the topic in Australian Quarterly  
in 2015 says that ‘unless this percentage of Indigenous 

enrolments in STEM is increased what does follow is that 

Indigenous people are being systematically locked out of 

high paying jobs in science related fields’ [187]. It also 

means that Australian science and technology is not 

capturing the full benefits of Indigenous science and 

knowledge. This knowledge can help us understand the 

world and problem-solve in many contexts. 

 

6.5.1 Implications for science and 

research organisations 
 
Many research organisations acknowledge the lack of 

gender and ethnic/cultural diversity in AI and STEM 

workforces as a challenge they are working to address. 

While there has been some progress, much remains to be 

done. Improving workforce diversity will be an important 

developmental pathway for AI capability uplift within 

research organisations over the coming decade. A review 

of Australia’s strategies to achieve gender equality in STEM 

was recently published by authors from several universities 

and non-government organisations (NGOs) [188]. This 

provides details on the outcomes associated with various 

strategies and priorities for the journey ahead. There are 

also initiatives to promote Indigenous science in Australia. 

For example, the national science agency of Australia, 

CSIRO, has an Indigenous science program which aims ‘to 

create Indigenous-driven science solutions that support 

sustainable futures for Indigenous peoples, cultures and 

Country’ [189]. 
 
In one project under this program Microsoft, CSIRO and 

Kakadu National Park rangers are combining AI, 

science and Indigenous knowledge for environmental 

management and biodiversity protection [190]. 
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6.6 The rise of ethical 

expectations and regulations 
 
A recent review of AI ethics policies was published in 

January 2021 by researchers at the School of Public Policy 

at the Georgia Institute of Technology [191]. They identified 

112 documents prescribing AI ethics principles, frameworks, 

policies and strategies from 25 countries produced during 

2016–2019. The documents were published by governments, 

companies and NGOs. The top five (of 25) ethics topics 

covered in these documents were: (a) social responsibility; 

(b) transparency; (c) bias and fairness; (d) privacy; and (e) 

safety and reliability. The authors found that ‘public and NGO 

documents are more participatory in their creation and more 

engaged with the law’ and that ‘private-sector documents 

appear to be more concerned with client and customer-

related ethical issues that may lend themselves to a technical 

fix’. 

 
Overall, the study points towards a substantial expansion 

in AI ethics expectations across all sectors with the public 

and NGO sectors leaning towards future legislative 

implications. It complements several earlier studies 

examining the development of AI ethics policies, laws, 

guidelines and frameworks across the globe [192-194].  
One study found convergence around five ethical principles 

across the globe: (a) transparency; (b) justice and fairness;  
(c) non-maleficence; (d) responsibility; and (e) privacy 

[194]. All these topics feature in the AI ethics principles 

of the Australian Government, quoted as follows [195]: 

 
• ‘Human, societal and environmental wellbeing: 

AI systems should benefit individuals, society 

and the environment. 
 
• Human-centred values: AI systems should respect human 

rights, diversity, and the autonomy of individuals. 
 
• Fairness: AI systems should be inclusive and accessible, 

and should not involve or result in unfair discrimination 

against individuals, communities or groups. 
 
• Privacy protection and security: AI systems should 

respect and uphold privacy rights and data 

protection, and ensure the security of data. 
 
• Reliability and safety: AI systems should reliably 

operate in accordance with their intended purpose. 
 
• Transparency and explainability: There should 

be transparency and responsible disclosure so 

people can understand when they are being 

significantly impacted by AI, and can find out 

when an AI system is engaging with them. 

 
 
 

 

• Contestability: When an AI system significantly impacts 

a person, community, group or environment, there 

should be a timely process to allow people to 

challenge the use or outcomes of the AI system. 
 
• Accountability: People responsible for the various phases 

of the AI system lifecycle should be identifiable and 

accountable for the outcomes of the AI systems, and 

human oversight of AI systems should be enabled.’ 

 
These principles are identified by the Australian 

Government as voluntary and intended to be 

‘aspirational and to complement – not substitute – 

existing AI regulations and practices’ [195]. A recent 

review of the application of these principles was done 

by researchers at CSIRO [196]. 

 
As we look into the future and across the globe, it is 

possible that the currently voluntary and aspirational AI 

principles may become regulations and laws. A recent 

April 2021 paper in the Harvard Business Review [197] 

explores this issue and opens with the statement ‘Over 

the last few weeks, regulators and lawmakers around the 

world have made one thing clear: New laws will soon 

shape how companies use artificial intelligence’. 

Examples of recent developments include: 

 
On 31 March 2021 the five main financial regulators in 

the United States (including the Federal Treasury) 

issued an information request to financial institutions to 

provide detailed information on their use  
of AI and machine learning. They indicated the 

information provided is to help ensure ‘compliance 

with applicable laws and regulations’ [198]. 

 
On 21 April 2021 the European Union proposed the first 

legal framework on AI which includes fines of up to 6% of 

company revenue for non-compliance [197, 199]. 

Furthermore, the European Union’s general data 

protection regulation (GDPR) includes articles limiting the 

use of automated decision systems including requirements 

related to explainability and contestability. 

 
Clearly there is a considerable pathway ahead before AI-

specific laws are enacted across the globe. Sectors such as 

finance and retail may be at the forefront of these 

regulations due to their extensive and routine handling of 

confidential customer data. However, over the coming years 

and decades AI policies, regulations and laws are likely to 

increase. The science sector will be impacted along with 

other sectors; research organisations will need to ensure 

they are compliant. Furthermore,  
AI ethics go beyond compliance. There are also rising 

expectations for ethical AI from society, investors and 

AI researchers and developers themselves. 
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and detection of crown-of-thorns  
starfish using machine learning. 

 
 
 
 
 

 

However, ensuring that the development and application  
of AI is both compliant and meets (and exceeds) the ethical  
expectations of society can be challenging. The AI research  
community is still working to resolve the operational  
meaning of concepts such as explainability, transparency,  
repeatability and interpretability as they apply to  
machine‑learning systems. There is also considerable work  
underway to develop software and systems to deliver on  
AI ethics. For example, a recent study [200] identifies and  
reviews state-of-the-art technologies to enable explainable  
AI (XAI), including: (a) features-oriented methods, (b) global  
methods, (c) concept models, (d) surrogate models, (e)  
local pixel-based methods, and (f) human-centric methods.  
Another area of technological innovation to achieve  
improved AI ethics is privacy-preserving analytics. Recent  
review papers have been published on this rapidly emerging  
field [201, 202]. There is also a growing body of work and  
technology development on improved ways to identify  
and manage bias in machine-learning projects; a recent  
review paper describes 25 bias mitigation methods [203]. 
 
 

6.6.1 Implications for science and 

research organisations 
 
The implication arising from this AI development pathway is 

that the AI ethics performance bar is likely to be higher and 

more tightly regulated into the future. What are currently 

voluntary principles and guidelines could become laws 

 
 
 
 
 

 

in the future. Societal awareness about the issues and 

expectations for ethical AI is likely to rise. Over the last 

several years, governments, companies and not-for-profits 

have identified principles and expectations for ethical AI. 

There are high levels of agreement in these principles about 

transparency, fairness, explainability and privacy. 

 
However, merely signalling an intention to deliver ethical 

AI may not be sufficient. Delivering on complex ethical 

requirements will require improved scientific knowledge 

and technological capability. It will require skills and 

capability uplift within the AI workforce. Early investment 

in ethical capability – including technology, skills and 

cultures – will help research organisations stay ahead of 

the regulations. 

 
Lastly, there’s a complex balance between efforts to ensure 

the ethics of AI and the development of novel technologies 

which improve (or save) people’s lives. Effective approaches 

to AI ethics will ensure principles are upheld without limiting 

the pace or quality of innovation and discovery. Furthermore, 

many of today’s innovative technologies and approaches 

enabling improved ethical performance – as discussed above 

– have grown organically within the AI community. This has 

mostly happened in the absence of laws and regulations. 

There’s much evidence of a strong drive, coming from within 

the AI research and development community itself, to achieve 

improved ethical performance. 
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7 Conclusion 
 
 
 

 

This report has shown how AI application and development within computer 

science, and all other major fields of science and research, has increased 

substantially. The growth has been strongest over the past several years. 
 

The coming decade is likely to see the growth continue, and AI become more 

deeply and broadly adopted in most scientific research domains. References to AI 

techniques in the titles, abstracts and keywords of research papers are likely to 

(at some point) decline as the technology becomes commonplace. At this point AI 

technology will be subsumed into application domains as ‘business as usual’. 
 
 
 
 
The current surge in AI activity is not without historical 

precedent. Twice before in history AI research, investment 

and activity has surged. The peaks were followed by 

troughs; two AI winters are generally considered to have 

occurred during 1974–1980 and 1987–1993. Many of the 

conditions leading up to these two winters are present 

today; however, there are significant differences. The sheer 

size and momentum of the current AI boom is unlikely to 

end anytime soon. There’s so much AI-related investment, 

upskilling, organisational change and policy development 

that it will be some time before it levels-off. 

 
The uptake of AI technologies within science and research 

domains holds the promise of productivity improvement. This 

is much needed as the global science sector is amid an 

ongoing productivity slump where more research effort is 

being invested to achieve the same (or fewer) outcomes. The 

science productivity slump is causing a broader productivity 

slump across most industries and the entire economy. As a 

general-purpose technology, AI can improve productivity in 

all domains of science and research and, therefore, all 

industries. However, at this stage we still refer to this as ‘a 

promise’ for productivity uplift. There is much evidence from 

case studies that AI is improving 
 
the efficiency and effectiveness of science, enabling 

discoveries to happen faster, safer and at lower cost. 

However, this empirical evidence is currently not sufficient 

as incontrovertible proof of the productivity gains of AI. 

 
 
 
 
The implications for science organisations arising from this 

report are captured under the future development 

pathways of AI for science. Overall, science organisations 

have an imperative to upgrade AI capability to remain 

competitive and capable for the future. This will require 

education, training, hardware and software upgrades.  
It will require the development of data assets and changed 

ways of working to become a more data-driven organisation. 

It will also require ensuring the development and application 

of AI is ethically sound and responds to societal 

expectations, regulations and legislation. 

 
The notion that AI will be doing research by itself seems 

unlikely. Scientific research requires creativity, judgement, 

logic and communication skills that lie beyond the reach of 

current and foreseeable future AI capability. However, 

human scientists working in harmony with powerful AI 

technologies (where AI augments human capabilities), are 

likely to achieve better outcomes, such as a higher rate of 

scientific discovery. 

 
The economic depression of 1920–1921 resulting from the 

‘Spanish Flu’ of 1918–1920 was followed by the ‘Roaring 

20s’, a decade of unprecedented economic growth. 

Economic historians [204] studying the Roaring 20s identify 

the general-purpose technology of electricity as the primary 

driver of productivity growth in manufacturing. This 

productivity growth in manufacturing stimulated overall 

economic growth with spectacular results. It is possible that 

AI is the general-purpose technology of our time which 

leads to improved productivity in science which, in turn, 

improves productivity and growth in the whole economy. 
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Appendix A – Science 

occupations 
 
 

 

Considering the four types of science (natural science, 

social science, formal science and applied science) we 

identified corresponding occupations from the Australian 

and New Zealand Standard Classification of Occupations 

(ANZSCO). We sought occupations where the description 

involved research activity and was consistent with tasks 

comprising the scientific process. The occupations we 

identified (with ANZSCO codes in brackets) included: 

 
• science technicians (3114) 
 
• natural and physical science professionals (234) 
 
• economists (224311) 
 
• social professionals (272499) 
 
• mathematicians (224112) 
 
• statisticians (224113). 

 
 

 

The category of natural and physical science 

professionals contains sub-categories of 

 
• agricultural, fisheries and forestry scientists (2341) 
 
• chemists, and food and wine scientists (2342) 
 
• environmental scientists (2343) 
 
• geologists, geophysicists and hydrogeologists (2344) 
 
• life scientists (2345) 
 
• medical scientists (2346) 
 
• veterinarians (2347) 
 
• and other natural and physical 

science professionals (2349). 

 
The ‘social professional’ category captures social scientists  
conducting research in diverse fields: anthropologists,  
criminologists, geographers, political scientists,  
sociologists and others. We note that some of these  
categories may contain relatively small numbers of  
non‑science occupations that we could not separate out. 
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Appendix B – 
 

Artificial intelligence phrases 
 
 
 

 
During 2018–2019 the Organisation for Economic Co-operation and Development (OECD) held several expert working 

groups to identify, review and refine a set of phrases to search for artificial intelligence (AI) patents and scholarly 

publications. In the final meeting in 2019 the patent examiners and AI experts convened by the OECD went through the 

final draft list of phrases to validate and challenge them. The final set of phrases was published by the OECD [122]. We 

have also used these phrases to search for AI publications in this report. The phrases are listed below. 

 

 

action recognition cognitive computing feature engineering 

activity recognition cognitive insight system feature extraction 

adaboost cognitive modelling feature learning 

adaptive boosting collaborative filtering feature selection 

adversarial network collision avoidance firefly algorithm 

ambient intelligence community detection fuzzy c 

ant colony computational intelligence fuzzy environment 

ant colony optimisation computational pathology fuzzy logic 

artificial bee colony algorithm computer vision fuzzy number 

artificial intelligence convolutional neural network fuzzy set 

artificial neural network cyber physical system fuzzy system 

association rule data mining gaussian mixture model 

autoencoder decision tree gaussian process 

autonomic computing deep belief network generative adversarial network 

autonomous vehicle deep convolutional neural network genetic algorithm 

autonomous weapon deep learning genetic programming 

backpropagation deep neural network gesture recognition 

Bayesian learning dictionary learning gradient boosting 

bayesian network differential evolution algorithm gradient tree boosting 

bee colony dimensionality reduction graphical model 

biped robot dynamic time warping gravitational search algorithm 

blind signal separation emotion recognition hebbian learning 

bootstrap aggregation ensemble learning hidden Markov model 

brain computer interface evolutionary algorithm hierarchical clustering 

brownboost evolutionary computation high-dimensional data 

chatbot extreme machine learning high-dimensional feature 

classification tree face recognition high-dimensional input 

cluster analysis facial expression recognition high-dimensional model 

cognitive automation factorisation machine high-dimensional space  
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high-dimensional system lpboost particle swarm optimisation 

human action recognition machine intelligence pattern recognition 

human activity recognition machine learning pedestrian detection 

human aware artificial intelligence machine translation policy gradient methods 

humanoid robot machine vision Q-learning 

human-robot interaction madaboost quadruped robot 

image classification MapReduce random field 

image processing Markovian random forest 

image recognition memetic algorithm rankboost 

image retrieval meta learning recommender system 

image segmentation motion planning recurrent neural network 

independent component analysis multi task learning regression tree 

inductive monitoring multi-agent system reinforcement learning 

industrial robot multi-label classification relational learning 

instance-based learning multi-layer perceptron robot 

intelligence augmentation multinomial naive Bayes rough set 

intelligent agent multi-objective evolutionary algorithm rule learning 

intelligent classifier multi-objective optimisation rule-based learning 

intelligent geometric computing multi-sensor fusion self-organising map 

intelligent infrastructure naive Bayes classifier self-organising structure 

intelligent software agent natural gradient semantic web 

intuitionistic fuzzy set natural language generation semi-supervised learning 

Kernel learning natural language processing sensor data fusion 

K-means natural language understanding sensor fusion 

latent dirichlet allocation nearest neighbour algorithm sentiment analysis 

latent semantic analysis neural network service robot 

latent variable neural turing similarity learning 

layered control system neural turing machine simultaneous localisation mapping 

learning automata neuromorphic computing single-linkage clustering 

legged robot non negative matrix factorisation social robot 

link prediction object detection sparse representation 

logitboost object recognition spectral clustering 

long short term memory (LSTM) obstacle avoidance speech recognition 
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speech to text 
 
stacked generalisation 
 
statistical relational learning 
 
stochastic gradient 
 
supervised learning 
 
support vector machine 
 
support vector regression 
 
swarm intelligence 
 
swarm optimisation 
 
t s fuzzy system 
 
Takagi-Sugeno fuzzy systems 
 
temporal difference learning 
 
text mining 
 
text to speech 
 
topic model 
 
totalboost 
 
trajectory planning 
 
trajectory tracking 
 
transfer learning 
 
trust region policy optimisation 
 
unmanned aerial vehicle 
 
unsupervised learning 
 
variational inference 
 
vector machine 
 
virtual assistant 
 
visual servoing 
 
wheeled mobile robot 
 
xgboost 
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