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Stable and metastable contract networks
∗

Vladimir I. Danilov† Alexander V. Karzanov‡

Abstract

We consider a hypergraph (I, C), with possible multiple (hyper)edges and loops,
in which the vertices i ∈ I are interpreted as agents, and the edges c ∈ C as contracts
that can be concluded between agents. The preferences of each agent i concerning
the contracts where i takes part are given by use of a choice function fi possessing
the so-called path independent property. In this general setup we introduce the
notion of stable network of contracts.

The paper contains two main results. The first one is that a general problem
on stable systems of contracts for (I, C, f) is reduced to a set of special ones in
which preferences of agents are described by use of so-called weak orders, or utility
functions. However, for a special case of this sort, the stability may not exist.
Trying to overcome this trouble when dealing with such special cases, we introduce
a weaker notion of metastability for systems of contracts. Our second result is that
a metastable system always exists.

Keywords: Plott choice functions, Aizerman-Malishevski theorem, stable mar-
riage, roommate problem, Scarf lemma

JEL classification: C71, C78, D74

1 Introduction

In their lives, people often have to make joint actions and organize groups in order to
achieve some goals. We call such cooperations contracts. Examples are: house exchange,
purchase or sale, marriage, loan or deposit of money, hiring, co-financing society, cartel,
military or economic union of countries. Contracts can involve not only individuals, but
also larger entities; for convenience, we call the parties of a contract agents or participants.
Some contracts include only two agents (we call such contracts binary), but many other
ones can include a larger number of agents. Note also that agents are allowed to enter
several different contracts at once.

Contracts bring some benefits to the participants, but also require them to expend
money, time or other costs. It is important for participants to know more precisely what
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they can count on. For this purpose, the agreements should be as detailed and formalized
as possible, although not everything can be taken into account. For example, a marriage
contract may include how much time the spouses can spend in the family and how much
‘outside’, how to share household efforts, how many children to have, etc. The more all
this is worked out in detail, the better the participants represent the pros and cons and can
compare different contracts. We further assume that each contract can be unambiguously
evaluated by each of its participants.

The information about the ‘preference’ of contracts primarily affects the choice of
contracts that will actually be concluded (signed). Here we are based on the premise of
voluntariness of contracts. No one can force an agent to sign a contract if the agent does
not like to do this. On the other hand, no one can forbid a group to sign a contract if
its all members agree. These two requirements lead to the concept of a stable system (or
network) of contracts, which will be the main topic of our work. The concept of stability
originally appeared in the work of Gale and Shapley [9] and gradually has become the
subject of extensive researches both theoretical and practical. Gale and Shapley showed
that in case of marriages, a stable system always exists. They assumed the marriages
to be monogamous and heterosexual (which is shared not always nowadays). Without
these conditions, stable systems may not exist. For example, so is in the famous problem
of stable ‘roommates’, or ‘division into pairs’. Even to a greater extent, this concerns
non-binary contracts.

The main task that we are going to deal with in this paper is to find out under which
conditions stable systems do exist.

One remark is needed to us here. When agents are allowed to conclude many contracts,
they should be able to compare not only individual contracts, but also arbitrary subsets
of contracts. Therefore, it is not enough to attribute a value to each contract only.
Instead, we prefer to use the so-called choice functions (CFs, for brevity), which tell us
which contracts from the available list are ‘the best’ ones to be chosen for signing. This
approach was initiated in [13], where the authors revealed importance of the condition
of ”substitutability” for the existence of stable allocations. Subsequently, a number of
researches have shown that this condition is applicable to all problems with ‘bilateral’
contracts (see [3, 7, 10, 15]). We show that in a more general setting, this condition on
agents’ CFs is also adequate.

The paper contains two main results. The first one is that a general problem on
stable systems of contracts is reduced to a more special situation in which preferences of
agents are described by use of weak orders, or utility functions. Roughly speaking, agents
conclude contracts having the maximum utility, abandoning the rest. But even in such
situations the stability need can not exist. To overcome this trouble, we propose (when
dealing with a weakly ordered setup) a weaker notion of metastable systems of contracts.
Our second result is that such a metastable system always exists.
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2 Basic definitions and settings

A general setup can be stated as follows. There are a finite set of agents I and a finite set C
of contracts which the agents can, in principle, conclude. Each agent can conclude several
contracts. Each contract c ∈ C is shared by a nonempty set of participants P (c) ⊆ I. If
P (c) is a singleton {i}, the contract c is called autarkic; this can be thought of not as a
contract in reality, but rather as an ‘activity’ available to i alone. Thus, the object that we
deal with can be interpreted as a hypergraph, with possible parallel hyperedges. So, when
needed, we may use the language of (hyper)graphs, understanding agents as vertices and
contracts as (hyper)edges. Equivalently, the situation is described by a bipartite graph
with the parties I and C.

For a set S ⊆ C, let S(i) denote the set of contracts s ∈ S such that i is a participant
of s.

As mentioned above, the contracts have some kind of ’utility’, which brings benefits to
their participants. Guided by these utilities, agents conclude some contracts and refuse
others. So an evaluation of contracts via utilities is the most important part of the
problem. The simplest way to define a utility is to express it numerically, by assigning a
(real or integer) number ui(c) to each contract c of C(i). However, this is not the most
general way to set ‘preferences’ of agents. Since an agent can conclude several contracts,
it is often important for it to know not only the utilities of individual contracts, but also
the ones of their collections.

Sufficiently large flexibility and generality are obtained by use of describing preferences
via choice functions. A choice function f on an (abstract) set of ‘alternatives’ X indicates
a subset f(A) ⊆ A for any set (‘menu’) A ⊆ X . In our case, the choice of agent i is taken
within the set of C(i) contracts.1

It light of this, the second important ingredient of the problem is to assign, for each
agent i ∈ I, an appropriate choice function fi on the set C(i). We call such a preference
assignment by an equipment of the hypergraph G = (I, C). Using this, we now can talk
about the stability of a contract system (or network) S ⊆ C. Roughly speaking, this is
a system S such that nobody wants to change it, either by renouncing some contract, or
by concluding a new contract, perhaps by breaking some existing ones in S. At the same
time, it is assumed that contracts are concluded voluntarily. This means that any agent
can refuse to conclude any contract, and that any contract can be concluded only with
the unanimous consent of all its participants. The formal definition is as follows.

Definition. A network S is called stable if the following two conditions hold:

S0. fi(S(i)) = S(i) for any i ∈ I;

S*. If a contract b does not belong to S, then b /∈ fi(S(i) ∪ b) for some i ∈ P (b).

1Here we default assume that an agent does not care of what contracts are concluded without its
participation. For example, in the situation of hiring workers by firms, one assumes that it is important
to the worker in which firms he will work, but it does not matter to him who else works in these firms.
On the other hand, it is important to a firm who will work in it, but it does not matter where else the
employee works. In some situations, such an assumption looks not realistic, but it can be accepted as a
first approximation.
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(Hereinafter, for a set S and a singleton s, we may write S ∪ s for S ∪ {s}.)

The first condition expresses the possibility of renouncing any contract. The second
one says that if a contract b is interesting to its all participants, then it should be con-
cluded. And its absence in S indicates incompleteness of the process of building a system
of contracts. Sometimes one says that such a contract b blocks the system S.

The main issue that we will be dealing with concerns the existence of stable networks.
The answer depends on both the structure (‘geometry’) of the original network C and (to
a greater extent) the ‘preferences’ of agents. For example, if (I, C) is a bipartite graph,
then a stable network S ⊆ C exists under rather weak conditions on preferences. And if
the agents behave indifferently, then the original network C is stable. On the other hand,
even in case of binary contracts with the best individual preferences, the stability may
not take place.

We will focus on preferences without imposing a priori restrictions on the original
network C. As is mentioned earlier, preferences are given by choice functions. But there
are a lot of CFs, and most of them do not correspond to an intuitive concept of the ’best
choice’. To somehow clarify this situation, let us demonstrate a couple of examples of
CFs that are regarded as ‘rational’.

Example 1. Let ≤ be a preorder on a set X (that is, a reflexive and transitive binary
relation). And let f(A) consist of all maximal elements in A ⊆ X relative to ≤ (one often
writes f = max≤). A CF of this kind is considered as rational, since a rational reason
for including one or another alternative in the choice is clearly seen, namely, the lack of
a better alternative. Note that this choice is nonempty (when a menu A is such).

Two special cases of this construction deserve to be mentioned. The first one is when
≤ is a weak order, which means a complete preorder. The second one is when ≤ is a linear
(full) order, or ranking. In the latter case, the choice f(A) consists of a single element (if
A 6= ∅), and we are talking about linear preferences, or linear equipment.

Example 2. Let ≤ be a linear order, but the choice includes b best items from menu.
The number b could be understood as a quota. Such a choice rule is viewed as rational as
well, and it has been considered in many works on stable b-matchings. See e.g. [5, 7, 8, 12]
where generalizations (of type ‘many-to-many’) of stable marriages and roommates are
studied.

Both examples are special cases of the so-called path-independent choice functions.
Such functions are given by the following functional equation:

f(A ∪B) = f(f(A) ∪ B).

This equation says that the answer does not change if to replace a part of the menu
by its best elements. In other words, the choice can be performed step by step, in sev-
eral stages, and the answer does not depend on the order (‘path’). This condition was
introduced by Plott [14], and we call such CFs Plottian or Plott functions. It turned out
that this condition is quite suitable for studying stability, and later on we will assume
everywhere that the CFs in question are just Plottian. Such CFs have been investigated
extensively in the literature (especially Aizerman and Malishevski’s paper [2] should be
distinguished); the facts about Plottian CFs needed for us are given in Appendix C.
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When the equipment is given by Plott functions, any stable network is Pareto optimal.
However, one can address the question: how to understand the optimality if preferences
are given by CFs? We can do this in the following way. Let f be a Plott function on a
set X . One can associate with f the following hyper-relation (a relation on 2X) �=�f

(introduced by Blair [4]), which is given by the expression:

A � B if f(A ∪B) ⊆ B.

This hyper-relation is transitive and reflexive. If CF f is given by the weak order ≤, then
A � B implies max(A) ≤ max(B).

Proposition 2.1 Suppose that all CFs fi are Plottian and that �i are the corresponding
hyper-relations. Let S be a stable system, and T an arbitrary system in C. If for any i,
the inequality S(i) �i T (i) takes place, then S(i) = fi(T (i)) holds for any i.

In other words, if the system T is not worse than S for all agents, then S and T are in
fact equivalent; so T is not better than S.

Proof The condition S(i) �i T (i) means that

fi(S(i) ∪ T (i)) ⊆ T (i).

Note that fi(S(i) ∪ T (i)) = fi(S(i) ∪ T (i) ∪ T (i)) = fi(fi(S(i) ∪ T (i)) ∪ T (i)) = fi(T (i))
(since fi(S(i) ∪ T (i)) ⊆ T (i)). Replacing T (i) by fi(T (i)), we may assume that fi(S(i) ∪
T (i)) = T (i).

If the opposite inequality T (i) �i S(i) holds for all i, then fi(S(i)∪T (i)) = fi(S(i)) =
S(i), and therefore S(i) = fi(T (i)). So we may assume that for some agent (denote it as
0) the set T (0) = f0(S(0) ∪ T (0)) is not contained in S(0). Then there is a contract t
belonging to T (0) but not to S(0). Now let j be an arbitrary participant of the contract t;
so t ∈ T (j) = fj(S(j)∪T (j)). Since t is taken (by the CF fj) from a larger set S(j)∪T (j),
t is also taken in the smaller set S(j)∪ t. So that t ∈ fj(S(j)∪ t). And this is true for any
element j of P (t). Since t does not belong to S, this all contradicts the stability condition
M*. �

The first result of our work is that the problem with a general Plott functions can be
reduced to a problem in which the preferences of agents are given by weak orders. This
allows us to focus on such ‘weakly ordinal’ situations.

3 The reduction theorem

Theorem 3.1 Suppose that an equipment of a hypergraph (I, C) is given by Plott CFs.
Then there exist a hypergraph (I ′, C ′) equipped with weak orders and a mapping π :
(I ′, C ′) → (I, C) such that

a) for any stable system S ′ in C ′, its image π(S ′) is stable in C;

b) for any stable system S in C, there is a stable system S ′ in C ′ such that π(S ′) = S.
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This assertion is based on a theorem in [2] saying that any Plott function is repre-
sentable as the union of several linear CFs. We construct the desired hypergraph (I ′, C ′)
by splitting each agent i ∈ I into a set of its ‘subagents’ ĩ, which already have weak
orders as preferences on the contracts available to them. To make the construction more
transparent, we describe in detail the ‘splitting’ of only one agent, which is denoted as 0.

Let us assume that the CF f0 of this agent is represented as the union of several
‘simpler’ Plott functions f1, . . . , fℓ (for example, linearly or weakly ordered ones).2 We
even may assume that ℓ = 2, and accordingly ‘split’ the agent 0 into two new agents 01
and 02, which are denoted simply as 1 and 2. Each of them has the same set C(0) of
contracts, but their preferences differ and are given by CFs f1 and f2, respectively. More
formally, the new set of contracts C̃ is arranged as follows:

C̃ := (C − C(0)) ⊔ C̃(1) ⊔ C̃(2),

where C̃(1) = C(0) × {1}, C̃(2) = C(0) × {2} are two copies of C(0). When it is not

confusing, we will identify each of C̃(1) and C̃(2) with C(0). In other words, each contract
c involving agent 0 is duplicated, turning into two contracts, c1 and c2, concluded by the
same agents except for 0 which is replaced by 1 and 2, respectively. The mapping π sends
agents 1 and 2 to 0, as well as c1 and c2 to c.

We have already described the preferences of agents 1 and 2; namely, they are given
by CFs f1 and f2. For the other agents (which will be usually denoted as j, j′, etc.), the
contracts c1 and c2 are equivalent (they perceive them as contracts with agent 0). More

formally, agent j (considered as an element of the set Ĩ = (I − {0}) ∪ {1, 2}) chooses c̃

from a menu A ⊆ C̃(j) if and only if c = π(c̃) is chosen from π(A):

f̃j(A) = A ∩ π∗(fj(πA)).

In Appendix C, we show that f̃j is a Plott CF as well.

Note that even if the old CF fj was linear, the new CF f̃j is given in general by a
weak order, because the twins c1 and c2 for the agent j are equivalent (indifferent). This
is the reason why we are able to reduce the problem not to the linear case, but merely to
the weakly ordered one.

So, we have described the new system C̃ of contracts, and now we can formulate the
first assertion; it will be proved in Appendix A.

Proposition 3.2 For C and C̃ as above, if S̃ is a stable system in C̃, then the system
S = π(S̃) is stable in C.

Let St(G) be the set of stable networks for the equipped hypergraph G, and St(G̃) a

similar set for G̃. Then Proposition 3.2 determines the mapping

π : St(G̃) → St(G)

2Recall that the union f1 ∪ · · · ∪ fℓ is given by the formula (f1 ∪ · · · ∪ fℓ)(A) = f1(A) ∪ · · · ∪ fℓ(A).
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that translates any stable system S̃ into π(S̃). We claim that this mapping is surjective,

that is, for any stable system S in G, there exists a stable system S̃ in G̃ such that
π(S̃) = S. Moreover, we will build such a system S̃ canonically.

Construction of S̃. If a contract s belongs to S and does not contain agent 0, then s
is lifted in C̃ in a natural way and included in S̃. Therefore, we only have to explain how
to form S̃(1) and S̃(2). We put S̃(1) := f1(S(0)) and S̃(2) := f2(S(0)) (identifying C̃(1)

and C̃(2) with C(0)).

Proposition 3.3 The system S̃ constructed as above is stable.

The proof is given in Appendix A.

Now let us return to Theorem 3.1. A required mapping π : G′ → G is constructed by
iterating the above splitting construction. The induction is proceeded by the number of
vertices j in (the current hypergraph) G for which CF fj is not weakly ordered. If there
are no such vertices, we are done. So let 0 be a vertex of G for which CF f0 is not weakly
ordered. Discarding unnecessary edges, we may assume that f0 is not empty-valued. By
Aizerman–Malishevski’s theorem (see Appendix C), f0 is representable as f0 = f1∪· · ·∪fℓ
with all f1, . . . , fℓ implemented by weak orders (and even by linear ones). Let G̃ be the
hypergraph constructed as above, but with splitting 0 not into two vertices, but into ℓ
ones. The proofs given above can be extended in an obvious way to this case as well. The
CFs in the new vertices 1, . . . , ℓ are already weakly ordered. But what about the other
vertices j? When fj was weakly ordered, the new f̃j is again weakly ordered. Indeed (see

Appendix C), if fj was generated by a weak order ≤j on C(j), then f̃j is generated by

the weak order π∗(≤j) on C̃(j), where π is the projection of C̃(j) on C(j). �

Thus, we obtain a reduction of a general case (with Plottian CFs) to the special case
where the preferences of agents are given by weak orders. And now it is reasonable to
analyze this special case.

4 Metastable networks of contracts

From now on, we assume that the choice functions fi are always given by weak orders ≤i.
We reformulate the stability conditions in terms of these orders. The first condition S0

means that all elements of the set S(i) are equivalent to each other. The second condition
S* says that if a contract c is not worse than those in S(i) for all participants i of this
contract, then c ∈ S.

In many stability researches one usually assumes that the preferences are given by
linear orders, and many known results are obtained in the framework of this assumption. It
may seem that the situation when preferences admit so-called ‘ties’ would not complicate
the problem too much. But this is a rather controversial issue.

To begin with, note that the previous construction (with vertex splitting) does not
allow us to reduce weak orders to linear ones. Consider the graph G as in Fig. 1.
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Figure 1: The orders on edges are represented by the arrows. The neighbors i and j of agent 0
are equivalent and both are worse than ℓ. The edges of a stable network are drawn in bold.

In this graph G, split vertex 0 into vertices 1 and 2; agent 1 considers i slightly better
than j, agent 2 conversely. The edge d = 0ℓ is split into d1 and d2, and agent ℓ must
distinguish between these edges. Let us assume that d1 is slightly better for him than d2.

Below Figure 2 shows a stable network S̃ of the graph G̃ for which π(S̃) is unstable.

And Figure 1 shows a stable network S which is not lifted to a stable one in G̃.

Figure 2: Lifted graph G̃.

Another technique deals with splitting ties. We slightly perturb preferences without
violating strict inequalities and breeding equivalences. To understand what one can expect
here, look at simple examples illustrated in Fig. 3.

Figure 3: Examples with a triangular graph. Fragment a shows a tie. In fragment b, there is
no stable network. In fragment c, a stable network consists of one edge and one lone agent.

We can see that the original problem and the perturbed one behave differently. Stable
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networks in a perturbed situation may have no relation to stable networks in the original
one.

Stable networks themselves may or may not exist. Classics in the field dealt with
such situations in the case of graphs (viz. binary contracts) with linear orders of agents.
Irving [11] developed an efficient algorithm (for arbitrary graphs) which either finds a
stable matching or declares that none exists. Tan [16] introduced the notion of stable
partition, which always exists and, moreover, enables us to conclude whether a stable
matching does exist or not. A significant clarification of the latter concept was given in
[1] by using the so-called Scarf lemma. Below we propose a close concept of a metastable
network, which also always exists.

In order to get an analogue of stability which ‘always exists’, we need to weaken
(preferably not too much) the previous requirements for stability. There are two of those,
namely, S0 and S*. They act in opposite directions, in a sense. If a system S satisfied
S0, then any of its subsystems satisfies S0 as well (this is a property of Plottian CFs).
Conversely, if S satisfies S*, then any of its super-systems satisfies S* as well. So one
may say that “the stability is a thin balance between two opposing forces”. One of them
tends to reject ‘bad’ contracts. The other one strives to concluding ‘profitable’ contracts.
Now, in our new setup, the agents deal with weak orders and evaluate groups of contracts
on the basis of these orders.

The concept of metastability proposed below preserves condition S* but slightly weak-
ens condition S0, restricting rejections of unprofitable contracts. The refusal of one par-
ticipant i from some contract c may cause that another participant j will have to turn
to a new contract c′ (which he previously ignored, as having a more favorable contract
c). Other participants of c′ can support the desire of j and conclude c′, perhaps reject-
ing other contracts. In other words, one can start an unpredictable series (a cascade) of
renegotiations of contracts, and it is difficult to say how this process could finish (and
whether this finishes at all). The metastability permits to break a contract only if this
action does not threaten to cause a collapse.3

Next we come to the exact definition of metastability. Here it is more convenient to use
utility functions ui : C(i) → R rather than weak orders. This does not affect the meaning
of the concept in essence, since we do not compare the utilities of different agents, nor
add up the utilities of one of them.

Let S ⊆ C be some system of contracts. For each i ∈ I, we define

ui(S) = min(ui(s), s ∈ S(i)).

To make this well-defined, we impose the first condition of the metastability:

MS0. S(i) 6= ∅ for any i ∈ I.

One can understand the number ui(S) as the guaranteed utility that the system S
gives to agent i. Agent i takes part in several contracts (namely, in S(i)), and many of
them may give him more utility than ui(S). The contracts in S(i) that give exactly ui(S)
are called marginal for agent i. There may be several of these if the order ≤i is not linear.

3One may happen that the conclusion of a new agreement could cause a collapse, too. We think that
the proposed method works in a suitable way as a rule, yet cannot be well-motivated in all situations.
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The second condition of the metastability is the following:

MS*. For any contract c ∈ C, there is a participant i of c such that ui(c) ≤ ui(S).

In other words, no contract c can give to each of its participants strictly more than the
system S guarantees. That is, if there would be such a contract c, this should be a serious
reason for the participants of c to conclude it, abandoning their marginal contracts, which
give them strictly less.

Definition. A system S is called metastable if both properties MS0 and MS* hold.

From condition MS* it is immediately clear that any contract in a metastable network
S is marginal for some of its participants.

An interest to the concept of metastability is explained by the facts that, first, there is a
close connection with the notion of stability, and second, metastable systems always exist.
Both facts require, however, that the original contract system C satisfies a rather weak
assumption of ‘autarky’. Namely, that each participant i ∈ I has an autarkic contract. In
what follows, we assume that this requirement is imposed.

Proposition 4.1 Any stable contract system S is metastable.

Proof Let us check MS0. Suppose, for a contradiction, that S(i) is empty for some agent
i. Let c be the autarkic contract of i. Since c is not worse than the set S(i) ∪ c = {c} for
the unique participant of c, the second stability condition implies c ∈ S(i), contrary to
the emptiness of S(i).

Now we check MS* for a stable network S. To do this, note that for any agent i,
any contract from S(i) (where all members are equivalent for i) is marginal and has the
utility ui(S). Now let c be an arbitrary contract; one has to show that some i ∈ P (c)
satisfies ui(c) ≤ ui(S). This is true if c ∈ S (since then c is marginal and its utility is
equal to ui(S)). And if c /∈ S, then by the stability condition S* there is s ∈ S(i) (for
some i ∈ P (c)) such that ui(c) < ui(s) = ui(S). �

Also it is obvious that if all contracts in a metastable network are marginal for each
of its participants, then this network is stable.

An importance of the metastability is expressed in the following theorem whose proof
will be given in Appendix B.

Theorem 4.2 Under the condition of autarky, for any contract system C with weakly
ordered preferences of all agents, there always exists a metastable network.

5 Minimal metastable networks

The concept of metastable networks is still loose, not rigid enough. Let us imagine that
s is an autarkic contract in a metastable system S. Then it is obviously marginal for
his unique participant i. Assume that S(i) contains a contract c different from s. Then
removing s from S, we obtain a system which is again metastable. Moreover, it is even
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preferable for i, since the guaranteed gain of i can only increase (and the guarantees of
the others agents do not change).

This observation is applicable not only to autarkic contracts. Let S be a metastable
system, and T ⊆ S some subsystem in it. Then T satisfies condition MS*. In its turn,
condition MS0 may be violated for T . But if it is still valid, then the system T is also
metastable.4 This justifies the introduction of the following notion.

Definition. A minimal metastable system is a metastable system minimal by inclusion.

There is a simple criterion of the minimality. Let S be some system of contracts. Let
us say that agent i is monogamous5 if S(i) consists of a single contract. This situation is
typical in classical marriage or roommate problems.

Proposition 5.1 A metastable system S is minimal if and only if any contract s of S
contains a monogamous participant.

Indeed, if s is a contract without monogamous participants, then the system S − {s}
is also metastable. �

Similar reasonings show that any metastable contract is a union of minimal metastable
ones. Therefore, in principle, we can restrict ourselves by studying minimal metastable
networks. Especially since such systems provide the largest guaranteed utility.

Linearization. Let ≤i be weak orders of participants i on sets C(i), and let �i be
linear orders extending ≤i on the same sets. (Then c <i c

′ implies c ≺i c
′, that is, strict

preferences preserve while equivalences are eliminated. In terms of utility functions, the
original functions are slightly perturbed.). So, without changing the hypergraph (I, C),
we will strengthen the initial preferences of agents to get linear orders �.

Proposition 5.2 1) If S is a metastable network with respect to linear orders �, then S
is metastable for the original weak orders ≤.

2) Conversely, if a network S is minimal metastable for ≤, then there is a linear
extension � of ≤ such that S is metastable with respect to �.

Proof Assertion 1) is quite simple. We only need to check that condition MS* for ≤
is valid. Suppose it is violated, that is, there is a contract c such that ui(c) > ui(S) for
any participant i of c. But then ũi(c) > ũi(S) for all i ∈ P (c), which contradicts the
metastability of S with respect to � (where ũ stands for the utilities for �).

To see 2), let a system S be metastable for weak orders ≤i. The ‘splitting’ of ties
of non-marginal contracts is not important, so we can focus on marginal ties. Fix a
participant i and denote by M(i) the set of contracts c ∈ C(i) such that ui(c) = ui(S).
Such contracts are divided into two groups. The group belonging to S is denoted by
M+(i), and the rest by M−(i). The first group is certainly nonempty. Choose some

4Note that stable networks do not allow this possibility: if S is stable, then its any proper subsystem
is unstable.

5The term monogamous is appropriate if ‘γαµoζ’ (marriage) is understood as a contract.
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contract si in it and remain its utility unchanged; the utilities ũi of the other members of
M+(i) are slightly increased. The utilities of contracts in M−(i) are slightly decreased.

Doing such operations for all agents, we eventually get a system with linear orders �i

extending the original weak orders ≤i. We assert that this system is metastable.

Indeed, let c be an arbitrary contract, and suppose that for its all participants i, there
holds ũi(c) > ũi(S). Then ui(c) ≥ ui(S). Such inequalities cannot be strict for all i,
in view of the metastability of S. So for some i, the equality ui(c) = ui(S) is fulfilled;
then c ∈ M(i). If c ∈ M−(i), its perturbed utility ũi is slightly less than the utility of
marginal contract si, contrary to the supposition ũi(c) > ũi(S). Hence c ∈ S. Now since
ũi(c) > ũi(S), c is not a unique contract in S(i) for all i ∈ P (c). This contradicts the
minimality of S. �

We obtain that when dealing with minimal metastable networks, one may assume,
w.l.o.g., that the preferences of all participants are given by linear orders. In other words,
all contracts for any agent i are comparable and non-equivalent. In this situation, we
have a closer relationship between the stability and minimal metastability, as follows.

Proposition 5.3 Suppose that the preferences of all agents are given by linear orders. If
S is a stable network of contracts, then S is a minimal metastable one.

Proof Metastability has already been established. It remains to check that any con-
tract s ∈ S is unique for some of its participants i. (Equivalently, any contract s ∈ S
has a monogamous participant.) This follows from the fact that (in the case of linear
preferences) each set S(i) consists of a single contract. �

Note that when the preferences are linear and the original network C is binary (viz.
(I, C) is a graph), the minimal metastable network splits into connected components that
are either isolated vertices or have the form of ‘dandelions’:

✉

❡

❡

❡
❡

❡

❡

❄

✻

❍❍❍❍❥

❆
❆
❆
❆❆❯❄

✁
✁
✁

✁✁☛

✟✟✟✟✙

Here there is a central agent (the dark vertex), and several monogamous agents associated
with it. The marginal contract of the central agent is represented by a two-sided arrow.
In a particular case, this structure degenerates into a single binary contract.

Appendixes

A Proofs of Propositions 3.2 and 3.3

To prove these propositions, we use the following lemma, where S(1) = π(S̃(1)), S(2) =

π(S̃(2)), and S(j) = π(S̃(j)) for j 6= 0, 1, 2.
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Lemma A.1 (a) fj(S(j)) = S(j) for each agent j different from 0.

(b) f1(S(1)) = f1(S(0)), and similarly f2(S(2)) = f2(S(0)).

Proof (a) Let s ∈ S(j). If all participants of a contract s ∈ S are different from 0,

then s = π(s̃) for a single (actually, equal to s) contract s̃ from S̃. By condition S0,

s̃ ∈ f̃j(S̃(j)), that is, s ∈ fj(S(j)). Therefore, we may assume that 0 is one of the

participants of s. The contract s is a projection of some s̃ from S̃, and 1 or 2 is a
participant of s̃. Let for definiteness s̃ = s1 ∈ S̃(1); then s1 ∈ S̃(j). By condition S0, for

S̃ we have the equality f̃j(S̃(j)) = S̃(j). Thus, s1 ∈ f̃j(S̃(j)). By definition of f̃j, this
means that s = π(s1) belongs to fj(π(S(j))) = fj(S(j)).

(b) Recall that S(0) = S(1) ∪ S(2). It is enough to show that f1(S(0)) ⊆ S(1), since
then the Outcast property (defined in Appendix C) gives the desired equality.

Suppose, for a contradiction, that some contract s of f1(S(0)) does not belong to S(1).
Since s is selected from the larger set S(0), it is also selected from the smaller set S(1)∪s,

yielding s ∈ f1(S(1)∪ s). Then s1 ∈ f̃1(S̃(1)∪ s1). This shows that the contract s1 is not

autarkic. Because in this case s1 ∈ S̃(1) and s ∈ S(1) contrary to the supposition.

Now let j be another participant of the contract s (or s1). We assert that s1 ∈

f̃j(S̃(j)∪ s1). To show this (see the definition of f̃j), we have to make sure that π(s1) = s

belongs to fj(π(S̃(j) ∪ s1)) = fj(S(j) ∪ s). Note that s2 ∈ S̃(2); then s2 ∈ S̃(j) and
s ∈ S(j). So S(j) ∪ s = S(j), and fj(S(j) ∪ s) is equal to S(j) and contains s.

Thus, s1 belongs to both f̃1(S̃(1) ∪ s1) and f̃j(S̃(j) ∪ s1) for any participant j 6= 1 of

s1. By condition S*, we obtain s1 ∈ S̃(1) and s ∈ S(1), yielding a contradiction. �

Proof of Proposition 3.2. One has to verify properties S0 and S* for the system S.

We first check S0 for agent 0, that is, f0(S(0)) = S(0). Let s ∈ S(0); one may assume

that s ∈ S(1). Since S(1) = f1(S(1)) (according to S0 for S̃ at the vertex 1), s belongs
to f1(S(1)), which is equal to f1(S(0)) (by Lemma A.1(b)), and therefore s belongs to
f0(S(0)). For other agents j, the needed equality is established in Lemma A.1(a).

Next we check S*. Suppose that there is a blocking contract b for S. That is, b /∈ S,
but b ∈ fi(S(i) ∪ b) for any i ∈ P (b). If 0 /∈ P (b), then b also blocks S̃. Therefore, we
may assume that 0 ∈ P (b).

In this case, b ∈ f0(S(0) ∪ b). This means that b lies either in f1(S(0) ∪ b) or in
f2(S(0) ∪ b). Let b ∈ f1(S(0) ∪ b). Due to the Heredity property of CF f1, we have

b ∈ f1(S(1) ∪ b). Then b1 ∈ f̃1(S̃(1) ∪ b), where b1 = (b, 1).

Now let us examine the inclusion b ∈ fj(S(j) ∪ b), where j ∈ P (b) − {0}. By the

definition of f̃j, we have b1 ∈ f̃j(S̃(j) ∪ b1) since π(S̃(j) ∪ b1) = S(j) ∪ b.

Finally, b1 does not belong to S̃ since b /∈ S. Then the contract b1 is blocking for S̃,
contrary to the stability of S̃. ��

Proof of Proposition 3.3. Recall how the ‘covering’ S̃ is arranged. If s belongs to S and
does not contain 0 as a participant, then s is lifted in C̃ in a natural way and is included in
S̃. As for S̃(1) and S̃(2), they are defined as S̃(1) := f1(S(0)) and S̃(2) := f2(S(0)) (where
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we identify C̃(1) and C̃(2) with C(0)). Since f1(S(0)) ∪ f2(S(0)) = f0(S(0)) = S(0) (by
condition S0), we have

π(S̃(1) ∪ S̃(2)) = S(0).

Similar equalities hold for vertices j different from 0. We need two additional lemmas.

Lemma A.2 Let a vertex j be different from 0. Then π(S̃(j)) = S(j).

Proof Let s ∈ S(j). We have to show that s appears from S̃(j). This is immediate
from the construction if agent 0 does not participate in the contract s. So assume that
0 ∈ P (s). Then s ∈ S(0), and by condition S0, the contract s is selected from S(0) either

by CF f1 or by CF f2. Assume that s ∈ f1(S(0)); then s1 ∈ S̃(1). Therefore, s = π(s1)

belongs to π(S̃), whence s ∈ π(S̃(j)).

Conversely, let s = π(s̃) for s̃ ∈ S̃(j), and let for definiteness 1 ∈ P (s̃). Since s̃ ∈ S̃(1),
we have s ∈ f1(S(0)) ⊆ S(0), which means that s belongs to S(j). �

Corollary A.3 π(S̃) = S.

Lemma A.4 Each c ∈ C(0) satisfies f̃1(S̃(1) ∪ c1) = f1(S(0) ∪ c).

Proof S̃(1) = f1(S(0)). Therefore f̃1(S̃(1) ∪ c1) = f1(f1(S(0) ∪ c) = f1(S(0) ∪ c). �

Now we are ready to finish the proof of Proposition 3.3. One has to verify properties
S0 and S* for S̃.

Verification of S0. We have to show that f̃i(S̃(i)) = S̃(i) for any vertex i of the hyper-

graph G̃.

For vertex 1, we have S̃(1) = f1(S(0)) = f1(f1(S(0))) = f1(S(1)) = f̃1(S̃(1)). Simi-
larly for vertex 2.

Now let j be different from 1 and 2. Let s̃ ∈ S̃(j); we have to show that s̃ is selected (by

CF f̃j) from S̃(j). This is obvious if there are no agents 1 or 2 among the participants of s̃.
Assume that agent 1 participates in s̃, that is, s̃ = s1 for some edge s of f1(S(0)) ⊆ S(0).
But then s ∈ S(j) = fj(S(j)), by S*. And since s = π(s1) is selected (by CF fj) from

S(j) = π(S̃(j)) (see Lemma A.2), we have s1 ∈ f̃j(S̃(j)) (by the definition of f̃j).

Verification of S*. We show that there are no blocking contracts for S̃. Suppose, for a
contradiction, that such a contract b̃ exists. If there are no vertices 1 and 2 among the
participants of b̃, then its projection b = π(̃b) blocks S, which contradicts the stability of

S. Therefore, we may assume that agent 1, say, participates in b̃.

Assume that 1 is the unique participant of b̃ (that is, b̃ is autarkic). Then b̃ does

not belong to S̃(1), and b = π(̃b) does not belongs to f1(S(0)). If b ∈ S(0), then b /∈

f1(S(0) ∪ b) = f1(S(0)). But due to Lemma A.4, f1(S(0) ∪ b) = f̃1(S̃(1) ∪ b1). So b̃ = b1
is not blocking, contrary to the supposition. Therefore, we may assume that b /∈ S(0).
Since S is stable, b /∈ f0(S(0) ∪ b) and, moreover, b does not belong to f1(S(0) ∪ b). This
contradicts the stability of S.
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Now consider a participant j in P (b1) different from 1. Since b1 blocks S̃, we have

1) b1 /∈ S̃(1);

2) b1 ∈ f̃1(S̃(1) ∪ b1), and

3) b1 ∈ f̃j(S̃(j) ∪ b1).

The first relation 1) can be rewritten as b /∈ f1(S(0)).

The second relation can be rewritten as b ∈ f1(S(0)∪b) (in view of Lemma A.4). This
together with the first relation implies that b /∈ S(0).

The third relation (with the definition of f̃j) gives b ∈ fj(π(S̃(j) ∪ b)) = fj(S(j) ∪ b)
(by Lemma A.2).

As a consequence, we obtain that b blocks S, contrary to the stability of S. This
completes the proof of Proposition 2. ��

B Proof of Theorem 4.2

We will think of each contract c as a partially defined real function on the set of agents I.
The definition domain Dom(c) of this function coincides with P (c), the set of participants
of c, and the value at i ∈ Dom(c) is ui(c).

Definition. A function x : I → R is called compromise for C if the following two
properties are fulfilled:

1) no function c from C can be strictly greater than x within its domain; in other
words, for any c ∈ C, there exists i ∈ Dom(c) such that c(i) ≤ x(i);

2) for any participant i ∈ I, there exists c ∈ C such that i ∈ Dom(c) and x ≤ c
(within the domain of c).

The first property is something like a coalition rationality: the coalitionDom(c) refuses
the ‘distribution’ x if c gives strictly more than x to every participant of the coalition.
In particular, x is no worse than autarkic contracts. The second condition says that x
cannot be too large: the ‘payment’ to any agent i must be ‘justified’ by its participation
in some ‘good’ contract (which gives all participants of the contract at least x).

The second condition can also be expressed as follows. Let S = S(x) be the set
of ‘good’ (compared with x) contracts, that is, the contracts c with x ≤ c. Then the
condition says that S covers I. So S is a metastable system. Thus, any compromise
function x gives the metastable system S(x) of contracts (those that are not worse than
x). On the other hand, if S is a metastable system of contracts, then its ‘lower envelope’
is a compromise function. Note that the first condition pulls x ‘upward’, while the second
one pulls ’downward’; so x cab be viewed a compromise between these two ‘forces’.

Theorem 4.2 is equivalent to the following

Theorem B.1 Under the hypotheses of Theorem 4.2, there exists a compromise function.

To show this, one could appeal to Scarf lemma, yet we prefer to give a direct and
concise proof inspired by [6]. We will construct a correspondence F (x 7→ F (x)) whose
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fixed points coincide with the compromises. The existence of fixed points follows from
Kakutani’s theorem, or, ultimately, from Brauer’s theorem.

Construction of the correspondence F . Take a ‘big cube’ X = [−N,N ]I in the space R
I

(where N is large compared with the maximal value of functions from C), and construct
a convex-valued correspondence F : X ⇒ X . To do this, one need to define the ‘image’
F (x) of any point x ∈ X . This set F (x) is constructed as a parallelepiped of the form
×iFi(x), where Fi(x) is a closed segment in [−N,N ]. Moreover, Fi(x) is either the whole
segment [−N,N ] or one of its ends.

To do this, fix i and consider the set C(i) = {c ∈ C : i ∈ Dom(c)}. There are three
possible situations:

Right: there is a function c ∈ C(i) such that c > x.

Left: each function c from C(i) is less than x at some point (that is, there exists
j ∈ Dom(c) such that c(j) < x(j)).

Intermediate: not left and not right.

In Right case, the interval Fi(x) consists of the right point {N}. In Left case, it
consists of the left point {−N}. And in Intermediate case, Fi(x) is the interval [−N,N ].

Lemma B.2 The fixed points of F are compromises for C, and vice versa.

Proof Let us check property 1 from the above definition. Suppose this is not valid,
namely, there is a function c strictly greater than x. Then for some i, we have x(i) = N .
But then we obtain Left situation, and x(i) = −N . A contradiction.

Now check property 2. Suppose, for a contrary, that for some agent i, every of its
contract c is worse than x for some participant of c. Then we have Left situation. So
x(i) = −N . But in this case, any autarkic function ci is strictly greater than x. So, the
situation is Right, and therefore x(i) = N . A contradiction again. �

Note that Left and Right situations are open relative to x: if we slightly disturb x, the
situation remains unchanged. It follows that the interval Fi(x) depends on x in an upper
semi-continuous way. Since this property holds for any i, we obtain that F (x) depends
on x in an upper semi-continuous way. Now Kakutani’s theorem can be applied to the
correspondence F , yielding that there exists x ∈ F (x).

The converse assertion is trivial. ��

C Plott choice functions

In this section, X is a finite (for simplicity) set. Recall that a CF on X is a mapping
f : 2X → 2X such that f(A) ⊆ A for any ‘menu’ A ⊆ X . Such a CF is called a Plott
function if the following equality holds for any menus A and B:

f(A ∪B) = f(f(A) ∪ B).

This immediately gives f(A ∪ B) = f(f(A) ∪ f(B)), as well as f(f(A)) = f(A).
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Let us fix some Plott CF f . A subset N ⊆ X is called null (or insignificant) if
f(N) = ∅. It can be seen from earlier reasonings that there is the largest null subset
N∗; this is the union of all null sets. Adding any null set to a menu does not change the
choice. So, by removing N∗ by X , we may assume that ∅ is the only null set, that is,
assume that f is a ‘non-empty-valued’ CF.

Plott functions have two characteristic properties.

Heredity (or substitutability): if A ⊆ B, then f(B)∩A ⊆ f(A). In other words, if a ∈ A
is chosen in a larger set B, then a is chosen in A as well.

Corollary. If A ⊆ f(B), then f(A) = A.

Outcast (or independence from rejected alternatives, IRA): if f(A) ⊆ B ⊆ A, then
f(A) = f(B).

Conversely, it can be shown that holding Heredity and Outcast properties implies that
the CF is Plottian.

One may ask: how to build Plott functions?

Let ≤ be a preorder on X and let f(A) = max≤(A) consist of all maximal elements
in A. Such a CF is obviously Plottian. In particular, if ≤ is a weak or a linear order.

Another interesting example. Let ≤ be a linear order on X , and assign to each element
x ∈ X its ‘cost’ c(x). Also let a ‘budget constraint’ b be given. The selection from A
consists in a successive choice of the best elements until their total cost exceeds b.

It is easy to check that the union of (two or more) Plott functions is again Plottian.
Aizerman and Malishevski [2] showed that any (non-empty-valued) Plott function can be
represented as the union of several linear CFs.

Another construction has been encountered earlier. Let π : X → Y be a mapping of
sets, and g a CF on Y . Define the CF f = π∗(g) on X by the following formula:

f(A) = A ∩ π−1(g(π(A))) for A ⊆ X.

In other words, a is chosen from A if π(a) is chosen from π(A). In particular, π(f(A)) =
g(π(A)).

Proposition C.1 The CF f is Plottian if g is Plottian.

Proof Let us check that f satisfies Heredity and Outcast.

To see Heredity, let A ⊆ B, a ∈ A and a ∈ f(B). The second means that π(a) ∈
g(πB). Since πA ⊆ πB, by Heredity for g, we get π(a) ∈ g(πA), that is, a ∈ f(A).

To see Outcast, it suffices to show that if f(B) ⊆ A ⊆ B, then f(A) ⊆ f(B) (the
converse inclusion follows from Heredity). Let a ∈ f(A); then π(a) ∈ g(πA). Applying π
to the inclusions f(B) ⊆ A ⊆ B, we get g(πB) = π(f(B)) ⊆ πA ⊆ πB. From Outcast
for g, we get g(πA) ⊆ g(πB). Therefore, π(a) ∈ g(π), implying a ∈ f(B). �

Obviously, for π : X → Y as above, if CF g is given by a weak order ≤Y , then
f = π∗(g) is given by the weak order ≤X= π∗(≤Y ).
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