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Abstract

Tests based on heteroskedasticity robust standard errors are an important technique in

econometric practice. Choosing the right critical value, however, is not simple at all: Con-

ventional critical values based on asymptotics often lead to severe size distortions; and so

do existing adjustments including the bootstrap. To avoid these issues, we suggest to use

smallest size-controlling critical values, the generic existence of which we prove in this article

for the commonly used test statistics. Furthermore, sufficient and often also necessary con-

ditions for their existence are given that are easy to check. Granted their existence, these

critical values are the canonical choice: larger critical values result in unnecessary power

loss, whereas smaller critical values lead to over-rejections under the null hypothesis, make

spurious discoveries more likely, and thus are invalid. We suggest algorithms to numeri-

cally determine the proposed critical values and provide implementations in accompanying

software. Finally, we numerically study the behavior of the proposed testing procedures,

including their power properties.

1 Introduction

Testing hypotheses on the parameters in a regression model with potentially heteroskedastic er-

rors is an important problem in econometrics and statistics; see MacKinnon (2013) for a recent

survey. Since the classical t-statistic (F -statistic, respectively) is not pivotal, or asymptotically

pivotal, in such a case in general, even under Gaussianity of the errors, so-called heteroskedas-

ticity robust (aka heteroskedasticity consistent) modifications of these test statistics have been

✯Financial support of the second author by the Program of Concerted Research Actions (ARC) of the Université
libre de Bruxelles is gratefully acknowledged. We thank two referees and a co-editor for helpful comments. Address
correspondence to Benedikt Pötscher, Department of Statistics, University of Vienna, A-1090 Oskar-Morgenstern
Platz 1. E-Mail: benedikt.poetscher@univie.ac.at.
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proposed, which are asymptotically standard normally (chi-square, respectively) distributed un-

der the null. These modifications date back to Eicker (1963, 1967), see also Hinkley (1977),

and have later been popularized in econometrics by White (1980) with great success (see MacK-

innon (2013)). Unfortunately, it turned out that tests obtained from these heteroskedasticity

robust test statistics by relying on critical values derived from the respective asymptotic null

distributions have a tendency to overreject the null hypothesis in finite samples (and thus are

invalid), especially so if the design matrix contains high-leverage points; see, e.g., MacKinnon

and White (1985), Davidson and MacKinnon (1985), and Chesher and Jewitt (1987). One factor

contributing to this overrejection tendency is a downward bias in the covariance matrix esti-

mators used in these test statistics, see Chesher and Jewitt (1987). In an attempt to reduce

the overrejection problem, variants of the before-mentioned heteroskedasticity robust test statis-

tics (often denoted by HC1 through HC4, with HC0 denoting the original proposal) have been

considered; see Hinkley (1977), MacKinnon and White (1985), and Cribari-Neto (2004). These

variants rescale the least-squares residuals before computing the covariance matrix estimator em-

ployed in the construction of the test statistic. According to simulation studies reported in, e.g.,

Davidson and MacKinnon (1985) and Cribari-Neto (2004), these modifications, especially HC3

and HC4, seem to ameliorate the overrejection problem to some extent, but do not eliminate it.

Further numerical results are provided in Chesher and Austin (1991), see also Chesher (1989).

Numerical results in Section 11 confirm these observations. Variants of HC0-HC3, denoted by

HC0R-HC3R, obtained by using restricted instead of unrestricted least-squares residuals in the

computation of the covariance matrix estimators employed by the various test statistics (the

restriction alluded to being the restriction defining the null hypothesis) have been introduced in

Davidson and MacKinnon (1985). In their simulation experiments, this typically leads to tests

that do not overreject, but that may substantially underreject; see also the simulation results in

Godfrey (2006), who additionally also considers HC4R. However, as will be shown in Section 11,

also these tests are in general not immune to (sometimes substantial) overrejection.

Note that, under the typical assumptions used in the literature, all the modifications of HC0

discussed so far have the same asymptotic distribution as HC0, and thus the same critical value

as for HC0 (obtained from the asymptotic null distribution) is also used for these modifications

in the before mentioned literature. Sometimes small-sample adjustments to the asymptotic

critical values are attempted by using the quantiles from a td-distribution rather than from

the asymptotic normal distribution, where the degrees of freedom d are either set to n − k (n

and k denoting sample size and number of regressors, respectively), or are obtained through

proposals set down by Satterthwaite (1946) or Bell and McCaffrey (2002); see also Imbens and

Kolesár (2016). While these adjustments can lead to improvements, numerical results presented

in Section 11 show that these adjustments are also not able to solve the overrejection problem

in general. An alternative approach is to use bootstrap methods to compute critical values for

the test statistics HC0-HC4 or HC0R-HC4R. The relevant literature is reviewed in Pötscher

and Preinerstorfer (2020), and it is shown that such methods are again not immune to the
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overrejection problem in general.1 A referee has pointed out the recent papers by Chu et al.

(2021) and Hansen (2021), both of which propose a testing procedure that can be viewed as a

parametric bootstrap method. No theoretical justification is given in those papers. In fact, as we

show in Appendix G, the proposed procedures can be considerably oversized, a feature that can

already be seen to some extent in the numerical results given in Chu et al. (2021) and Hansen

(2021).

A result by Bakirov and Székely (2005) needs to be mentioned here which states that – in the

special case of testing a hypothesis on the location parameter of a heteroskedastic location model

with errors that are Gaussian or scale mixtures thereof – the classical two-sided t-test (with the

usual critical value) has null rejection probability not exceeding the nominal significance level

under any form of heteroskedasticity (for a certain range of significance levels); see Ibragimov and

Müller (2010) for more discussion. Ibragimov and Müller (2016), extending a result in Mickey

and Brown (1966), provide a related result in the case of the comparison of two heteroskedastic

populations; see also Bakirov (1998). Section 5.2 provides some more discussion. We note that

all results mentioned in that section are applicable only to testing certain scalar linear contrasts.

Except for the Bakirov and Székely (2005) result and the variations discussed in Section 5.2,

which apply only to quite special situations like, e.g., the heteroskedastic location model, none

of the methods discussed so far comes with a theoretical result implying that their associated

(finite sample) null rejection probabilities are guaranteed not to exceed the nominal significance

level whatever the form of heteroskedasticity may be.2 In fact, it transpires from the preceding

discussion and the numerical results in Section 11 that for any of these methods instances of test-

ing problems can be found for which the method in question overrejects substantially. Therefore,

it is imperative to be able to find size-controlling critical values for the test statistics consid-

ered, i.e., critical values such that the resulting worst-case rejection probability under the null

hypothesis does not exceed the nominal significance level. We shall hence pursue in this paper

the construction of size-controlling critical values for the test statistics HC0-HC4, HC0R-HC4R,

as well as for (two variants of) the classical (i.e., uncorrected) F -statistic (including the absolute

value of the t-statistic as a special case).

In the present paper we consider classes of test statistics that contain the before mentioned

heteroskedasticity robust test statistics as special cases and show under which conditions – and

how – a critical value can be found such that the resulting test is guaranteed to have size less

than or equal to α, the prescribed significance level.3 It turns out that the conditions for size

1Another possibility is to use Edgeworth expansions to find better critical values, see Rothenberg (1988) for
the case of the HC0 test statistic and Davidson and MacKinnon (1985) for the HC0R test statistic. Simulation
results in MacKinnon and White (1985) and Davidson and MacKinnon (1985) indicate that this does not work too
well in practice. Of course, such expansions could also be worked out for the other versions of the test statistics
mentioned, but this does not seem to have been pursued in the literature.

2In the special case where the number of restrictions tested equals the number of regression parameters,
Davidson and Flachaire (2008) have a result which implies that certain wild bootstrap-based heteroskedasticity
robust tests have size equal to the nominal significance level (and hence do not overreject) in finite samples. We
note that this result in Davidson and Flachaire (2008) is not entirely correct as stated, but needs some amendments
and corrections; see Pötscher and Preinerstorfer (2020).

3A less principled attempt at finding a valid test in a given testing problem (i.e., for given design matrix and
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controllability are broadly satisfied; in particular, for the commonly used test statistics they are

satisfied generically in a sense made precise further below.

We want to emphasize that the existence of size-controlling critical values for heteroskedas-

ticity robust test statistics is not a trivial matter, as it has been shown in Preinerstorfer and

Pötscher (2016), Section 4, that there are cases where the size of such tests is always one, re-

gardless of the choice of critical value; see also the discussion in Proposition 5.7 further below.

And even in cases where size control is possible by an appropriate choice of critical value, the

standard critical values proposed in the literature (including the small-sample adjustments dis-

cussed above) are not guaranteed to deliver size control; in fact, they may fail to do so by a

considerable margin (i.e., they are much too small to control size at the desired level) as shown

in Section 11. Our theoretical results also show the existence of a computable ”threshold” C∗,

say, such that any critical value C satisfying C < C∗ necessarily leads to a test with size 1; see

Proposition 5.5. Since C∗ is not difficult to compute, it can be used as a simple check to weed

out unsuitable proposals for critical values.

Apart from avoiding overrejection by construction, the use of smallest size-controlling, rather

than conventional, critical values offers also advantages in terms of power in instances where

conventional critical values lead to underrejection (i.e., lead to a worst-case rejection probability

under the null hypothesis less than the nominal significance level) as is sometimes the case; see

Sections 6.2.2 and 11.2. In fact, once one has decided on a test statistic to be used for the given

null hypothesis, using the smallest size-controlling critical value (provided it exists) is obviously

the optimal way to proceed.

We also discuss how the critical values that lead to size control can be determined numerically

and provide the R-package hrt (Preinerstorfer (2021)) for their computation. The usefulness of

the proposed algorithms and their implementation in the R-package are illustrated numerically

on some testing problems in Section 11. In particular, we compare tests obtained from various

of the above mentioned test statistics when used with smallest size-controlling critical values in

terms of their power functions. The package hrt also contains a routine for determining the size

of a test obtained from a user-supplied critical value. It is important to note that if in a particular

application one uses the observed value of the test statistic as the user-supplied critical value

in this routine, this routine actually returns a “valid p-value” in the following sense: Checking

whether or not this “p-value” is smaller than the prescribed significance level α is equivalent to

checking whether or not the observed value of the test statistic is larger than or equal to the

smallest size-controlling critical value. Note that the former check avoids the need to actually

compute the smallest size-controlling critical value, which is advantageous from a computational

point of view. See Section 10 for more details.

In the paper we work under a Gaussianity assumption. We stress, however, that this assump-

restriction to be tested) could consist in the practitioner studying the size of a handful of tests (obtained from a
few of the above mentioned test statistics in conjunction with a few of the proposed critical values) by means of
an extensive Monte Carlo study and in hoping that one of the test procedures emerges from this study as valid
for the particular testing problem at hand. Besides being a numerically costly procedure, it does not come with
any guarantee of success.
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tion is mainly made for convenience of presentation; as shown in Section 7.1, this assumption

can be relaxed considerably.

While a trivial remark, we would like to note that the size control results given in this

paper can easily be translated into results stating that the minimal coverage probability of the

associated confidence set obtained by “inverting” the test is not less than the nominal confidence

level.

The paper is organized as follows: After introducing notation and the most important test

statistics in Sections 2 and 3, Section 4 provides some intuition for our size-control results which

are presented in Sections 5 and 6, with some further results relegated to Appendix A. Section

7 discusses ways of relaxing the underlying assumptions. Possible extensions to other classes

of test statistics are discussed in Section 8, while a few comments on power are collected in

Section 9. Section 11 provides the numerical results including a power study, with some details

relegated to Appendix F. Section 12 concludes. Proofs and some technical results can be found

in Appendices B-D. The algorithms for computing rejection probabilities (including size) and

smallest size-controlling critical values are outlined in Section 10, and are presented in detail in

Appendix E. Appendix G contains a discussion of Chu et al. (2021) and Hansen (2021).

2 Framework

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n × k and where β ∈

Rk denotes the unknown regression parameter vector. We always assume rank(X) = k and

1 ≤ k < n. We furthermore assume that the n × 1 disturbance vector U = (u1, . . . ,un)
′ has

mean zero and unknown covariance matrix σ2Σ, where Σ varies in a user-specified (nonempty)

set C describing the allowed forms of heteroskedasticity, with C satisfying C ⊆ CHet, and where

0 < σ2 < ∞ holds (σ always denoting the positive square root).4 The set C will be referred to

as the “heteroskedasticity model”. Here

CHet =

{

diag(τ21, . . . , τ
2
n) : τ

2
i > 0 for all i,

n
∑

i=1

τ2i = 1

}

,

where diag(τ21, . . . , τ
2
n) denotes the n × n matrix with diagonal elements given by τ2i . That is,

the errors in the regression model are uncorrelated but can be heteroskedastic. In particular,

if C is chosen to be CHet, one allows for heteroskedasticity of completely unknown form. The

normalization condition
∑n

i=1 τ
2
i = 1 is included here only in order to guarantee identifiability of

4Since we are concerned with finite-sample results only, the elements of Y, X, and U (and even the probability
space supporting Y and U) may depend on sample size n, but this will not be expressed in the notation.
Furthermore, the obvious dependence of C on n will also not be shown in the notation.
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σ2 and Σ, and could be replaced by any other normalization condition such as, e.g., max τ2i = 1,

or τ21 = 1, without affecting the final results (because any of these normalizations leads to

the same overall set of covariance matrices σ2Σ when σ2 varies through the positive real line).

Although a trivial observation, we stress the fact that all conceivable forms of heteroskedasticity,

including parametric ones, can (possibly after normalization) be cast as submodels C of CHet.

Mainly for ease of exposition, we shall maintain in the sequel that the disturbance vector U

is normally distributed. This assumption can be substantially relaxed as discussed in Section

7.1. The linear model described in (1), together with the just made Gaussianity assumption

on U and with the given heteroskedasticity model C, then induces a collection of distributions

on the Borel-sets of Rn, the sample space of Y. Denoting a Gaussian probability measure with

mean µ ∈ Rn and (possibly singular) covariance matrix A by Pµ,A, the induced collection of

distributions is then given by

{

Pµ,σ2Σ : µ ∈ span(X), 0 < σ2 <∞,Σ ∈ C
}

, (2)

where span(X) denotes the column space of X. Since every Σ ∈ C is positive definite by

assumption, each element of the set in the previous display is absolutely continuous with respect

to (w.r.t.) Lebesgue measure on Rn.

We shall consider the problem of testing a linear (better: affine) hypothesis on the parameter

vector β ∈ Rk, i.e., the problem of testing the null Rβ = r against the alternative Rβ ̸= r, where

R is a q × k matrix always of rank q ≥ 1 and r ∈ Rq. Set M = span(X). Define the affine space

M0 = {µ ∈M : µ = Xβ and Rβ = r}

and let

M1 = {µ ∈M : µ = Xβ and Rβ ̸= r} .

Adopting these definitions, this testing problem can then be written more precisely as

H0 : µ ∈M0, 0 < σ2 <∞, Σ ∈ C vs. H1 : µ ∈M1, 0 < σ2 <∞, Σ ∈ C. (3)

WithM
lin
0 we shall denote the linear space parallel toM0, i.e., M

lin
0 = M0−µ0 = {Xβ : Rβ = 0}

where µ0 ∈M0. Of course, Mlin
0 does not depend on the choice of µ0 ∈M0.

As already mentioned, the assumption of Gaussianity is made mainly for simplicity of presen-

tation and can be relaxed substantially; see Section 7.1. The assumption of nonstochastic regres-

sors entails little loss of generality either, which is important to emphasize: If X is random and

U is conditionally on X distributed as N(0, σ2Σ), with σ2 = σ2(X) > 0 and Σ = Σ(X) ∈ CHet,

the results of the paper can be applied after one conditions on X (and a similar statement applies

to the generalizations to non-Gaussianity discussed in Section 7.1). See Section 7.2 for more dis-

cussion and details. For arguments supporting conditional inference see, e.g., Robinson (1979).

Note that such a “strict exogeneity” assumption is quite natural in the situation considered here.
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We next collect some further terminology and notation used throughout the paper. A (non-

randomized) test is the indicator function of a Borel-set W in Rn, with W called the correspond-

ing rejection region. The size of such a test (rejection region) is – as usual – defined as the

supremum over all rejection probabilities under the null hypothesis H0 given in (3), i.e.,

sup
µ∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ,σ2Σ(W ).

In slight abuse of terminology, we shall sometimes refer to this quantity as ‘the size of W over

C’ when we want to emphasize the rôle of C. Throughout the paper we let β̂(y) = (X ′X)
−1

X ′y,

where X is the design matrix appearing in (1) and y ∈ Rn. The corresponding ordinary least-

squares (OLS) residual vector is denoted by û(y) = y −Xβ̂(y) and its elements are denoted by

ût(y). The elements of X are denoted by xti, while xt· and x·i denote the t-th row and i-th

column of X, respectively. For A an affine subspace of Rn satisfying A ⊆ span(X) let β̃A(y)

denote the restricted least-squares estimator, i.e., Xβ̃A(y) solves

min
z∈A

(y − z)′(y − z).

Lebesgue measure on the Borel-sets of Rn will be denoted by λRn , whereas Lebesgue measure on

an arbitrary affine subspace A of Rn (but viewed as a measure on the Borel-sets of Rn) will be

denoted by λA, with zero-dimensional Lebesgue measure being interpreted as point mass. The

set of real matrices of dimension l × m is denoted by Rl×m (all matrices in the paper will be

real matrices) and Lebesgue measure on this set equipped with its Borel σ-field is denoted by

λRl×m . Let B′ denote the transpose of a matrix B ∈ Rl×m and let span(B) denote the subspace

in Rl spanned by its columns. For a symmetric and nonnegative definite matrix B we denote

the unique symmetric and nonnegative definite square root by B1/2. For a linear subspace L of

Rn we let L⊥ denote its orthogonal complement and we let ΠL denote the orthogonal projection

onto L. The Euclidean norm is denoted by ∥·∥, but the same symbol is also used to denote a

norm of a matrix. The j-th standard basis vector in Rn is written as ej(n). Furthermore, we

let N denote the set of all positive integers. A sum (product, respectively) over an empty index

set is to be interpreted as 0 (1, respectively). Finally, for A an affine subspace of Rn, let G(A)

denote the group of all affine transformations y 7→ δ(y − a) + a∗ where δ ∈ R, δ ̸= 0, and a as

well as a∗ are elements of A; for more information see Section 5.1 of Preinerstorfer and Pötscher

(2016).

3 Heteroskedasticity robust test statistics using unrestricted

residuals

We now introduce two test statistics that will feature prominently in the following. Variants

thereof that use restricted residuals are discussed in Section 6. For results pertaining to other
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classes of test statistics see Section 8. The test statistic we shall consider first is a standard

heteroskedasticity robust test statistic frequently encountered in the literature. It is given by

THet (y) =

{

(Rβ̂ (y)− r)′Ω̂−1
Het (y) (Rβ̂ (y)− r) if det Ω̂Het (y) ̸= 0,

0 if det Ω̂Het (y) = 0,
(4)

where Ω̂Het = RΨ̂HetR
′ and where Ψ̂Het is a heteroskedasticity robust estimator as considered

in Eicker (1963, 1967), which later on has found its way into the econometrics literature (e.g.,

White (1980)). It is of the form

Ψ̂Het (y) = (X ′X)−1X ′ diag
(

d1û
2
1 (y) , . . . , dnû

2
n (y)

)

X(X ′X)−1,

where the constants di > 0 sometimes depend on the design matrix. Typical choices for di

suggested in the literature are di = 1, di = n/(n−k), di = (1− hii)
−1

, or di = (1− hii)
−2

where

hii denotes the i-th diagonal element of the projection matrix X(X ′X)−1X ′, see Long and Ervin

(2000) for an overview. Another suggestion is di = (1− hii)
−δi for δi = min(nhii/k, 4), see

Cribari-Neto (2004). For the last three choices of di just given, we use the convention that we

set di = 1 in case hii = 1. Note that hii = 1 implies ûi (y) = 0 for every y, and hence it is

irrelevant which real value is assigned to di in case hii = 1.5 The five examples for the weights

di just given correspond to what is often called HC0-HC4 weights in the literature.

In conjunction with the test statistic THet, we shall consider the following mild assumption,

which is Assumption 3 in Preinerstorfer and Pötscher (2016). As discussed further below, this

assumption is in a certain sense unavoidable when using THet. It furthermore also entails that

our choice of assigning THet (y) the value zero in case Ω̂Het (y) is singular has no import on the

results of the paper (because of Lemma 3.1(c) below and absolute continuity of the measures

Pµ,σ2Σ).

Assumption 1. Let 1 ≤ i1 < . . . < is ≤ n denote all the indices for which eij (n) ∈ span(X)

holds where ej(n) denotes the j-th standard basis vector in Rn. If no such index exists, set

s = 0. Let X ′ (¬(i1, . . . is)) denote the matrix which is obtained from X ′ by deleting all

columns with indices ij , 1 ≤ i1 < . . . < is ≤ n (if s = 0 no column is deleted). Then

rank
(

R(X ′X)−1X ′ (¬(i1, . . . is))
)

= q holds.

Observe that this assumption only depends on X and R and hence can be checked. Obviously,

a simple sufficient condition for Assumption 1 to hold is that s = 0 (i.e., that ej(n) /∈ span(X)

for all j), a generically satisfied condition. Furthermore, we introduce the matrix

B(y) = R(X ′X)−1X ′ diag (û1(y), . . . , ûn(y))

= R(X ′X)−1X ′ diag
(

e′1(n)Πspan(X)⊥y, . . . , e
′
n(n)Πspan(X)⊥y

)

. (5)

The facts collected in the subsequent lemma, which is taken from Pötscher and Preinerstorfer

5In fact, hii = 1 is equivalent to ûi (y) = 0 for every y, each of which in turn is equivalent to ei(n) ∈ span(X).
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(2020) (but see also Lemma 4.1 in Preinerstorfer and Pötscher (2016) and Lemma 5.18 in Pötscher

and Preinerstorfer (2018)), will be used in the sequel.

Lemma 3.1. (a) Ω̂Het (y) is nonnegative definite for every y ∈ Rn.

(b) Ω̂Het (y) is singular (zero, respectively) if and only if rank (B(y)) < q (B(y) = 0, respec-

tively).

(c) The set B given by {y ∈ Rn : rank (B(y)) < q} (or in view of (b) equivalently given by

{y ∈ Rn : det(Ω̂Het (y)) = 0}) is either a λRn-null set or the entire sample space Rn. The latter

occurs if and only if Assumption 1 is violated (in which case the test based on THet becomes

trivial, as then THet is identically zero).

(d) Under Assumption 1, the set B is a finite union of proper linear subspaces of Rn; in case

q = 1, B is even a proper linear subspace itself.6

(e) B is a closed set and contains span(X). Furthermore, B is G(M)-invariant and, in

particular, B+ span(X) = B holds.

In light of Part (c) of the lemma, we see that Assumption 1 is a natural and unavoidable

condition if one wants to obtain a sensible test from THet.
7 Furthermore, note that, if B =

span(X) is true, then Assumption 1 must be satisfied (since span(X) is a λRn -null set due to

the maintained assumption k < n). As shown in Lemma A.3 in Pötscher and Preinerstorfer

(2018), for any given restriction matrix R, the relation B = span(X) holds generically in various

universes of design matrices. For later use we also mention that under Assumption 1 the test

statistic THet is continuous at every y ∈ Rn\B.8

Next, we also consider the classical (i.e., uncorrected) F-test statistic, i.e.,

Tuc(y) =







(Rβ̂ (y)− r)′
(

σ̂2(y)R (X ′X)
−1

R′
)−1

(Rβ̂ (y)− r) if y /∈ span(X),

0 if y ∈ span(X),
(6)

where σ̂2(y) = û (y)
′
û (y) /(n−k) ≥ 0 (which vanishes if and only if y ∈ span(X)). Our choice to

set Tuc(y) = 0 for y ∈ span(X) again has no import on the results in the paper, since span(X) is

a λRn -null set as a consequence of the maintained assumption that k < n (and since the measures

Pµ,σ2Σ are absolutely continuous). For reasons of comparability with (4) we have chosen not to

normalize the numerator in (6) by q, the number of restrictions to be tested, as is often done in

the definition of the classical F-test statistic. This also has no import on the results as the factor

1/q can be absorbed into the critical value. For later use we also mention that the test statistic

Tuc is continuous at every y ∈ Rn\ span(X).

Remark 3.2. (i) The test statistics THet as well as Tuc are G(M0)-invariant as is easily seen

(with the respective exceptional sets B and span(X) being G(M)-invariant).

6If Assumption 1 is violated, B equals Rn by Part (c).
7If this assumption is violated then THet is identically zero, an uninteresting trivial case.
8If Assumption 1 is violated, then THet is constant equal to zero, and hence is trivially continuous everywhere.
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(ii) Both statistics actually belong to the class of nonsphericity-corrected F-type test statistics

in the sense of Section 5.4 in Preinerstorfer and Pötscher (2016) (terminology being somewhat

unfortunate in case of Tuc as no correction for the non-sphericity is applied in this case). See

Remark C.1 in Appendix C for more discussion.

Remark 3.3. For later use we note the following: Suppose (R, r) and (R̄, r̄) are both of dimen-

sion q× (k+1) and have rank(R) = rank(R̄) = q. (i) Then (R, r) and (R̄, r̄) give rise to the same

set M0, and thus to the same testing problem (3), if and only if (AR,Ar) = (R̄, r̄) holds for a

nonsingular q × q matrix A. (ii) The test statistics THet and Tuc remain the same whether they

are computed using (R, r) or (R̄, r̄) provided (AR,Ar) = (R̄, r̄) holds for a nonsingular q × q

matrix A. [To see this note that the respective exceptional sets B and span(X) are the same

irrespective of whether (R, r) or (R̄, r̄) is used, and that A cancels out in the respective quadratic

forms appearing in the definitions of the test statistics.]

4 Some intuition on why conventional critical values can

lead to overrejection

We begin the heuristic discussion by considering the testing problem (3) with heteroskedasticity

model C = CHet (i.e., heteroskedasticity of unknown form). Let T stand for any of the test statis-

tics introduced in Section 3, with rejection occurring whenever T ≥ C, C a critical value.9,10.

For simplicity of presentation we assume r = 0. As discussed in Section 1, basing the test on

the conventional critical value Cχ2(q),0.05 (the 95% quantile of a chi-square distribution with q

degrees of freedom) often leads to substantial overrejection, i.e., the size of the test (over CHet) is

substantially larger than the desired value α = 0.05. One mechanism leading to such overrejec-

tion is constituted by a concentration phenomenon discussed at some length in Preinerstorfer and

Pötscher (2016): In the present situation, the distribution P0,σ2Σ “concentrates” on a so-called

concentration subspace (given by span(ei(n))) when Σ is “close” to one of the singular matrices

ei(n)ei(n)
′.11 In such a case, depending on the design matrix X and the hypothesis given by

(R, r), the concentration space may fall into the rejection region {T ≥ Cχ2(q),0.05}, leading to a

rejection probability close to one, and thus much larger than α = 0.05.12 Even if the concen-

tration subspace span(ei(n)) is not contained in the rejection region, but is sufficiently close to

it, a considerable portion of the mass of P0,σ2Σ may nevertheless fall into the rejection region

if Σ is close to, but not too close to ei(n)ei(n)
′. This again leads to a relatively large rejection

probability. Overrejection will often be especially pronounced if certain high-leverage points are

present in the design matrix.13

9In case of T = THet Assumption 1 is supposed to hold.
10The discussion similarly applies to the test statistics introduced in Section 6.
11There are also other concentration subspaces in the present situation which we can ignore for the heuristic

discussion.
12This is an oversimplified description ignoring some technical details.
13We note, however, that there are testing problems (e.g., testing the mean in a heteroskedastic location model

using the test statistic Tuc) for which the text-book critical values obtained under homoskedasticity are actually
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In order to obtain a test that has size controlled by α (i.e., size ≤ α) in situations as just

described, the rejection region {T ≥ Cχ2(q),0.05} has to be narrowed down, i.e., Cχ2(q),0.05 has

to be replaced by a suitably larger critical value C. Whether or not this can successfully be

accomplished by a (finite) C, is a non-trivial question, the answer depending on whether or not

all possible concentration subspaces can be made to fall outside of the rejection region {T ≥ C}

by an appropriate choice of C larger than Cχ2(q),0.05. Sufficient conditions when this is possible

are provided in Theorems 5.1 and 6.4. Note that the resulting size-controlling critical values C

are then necessarily larger than Cχ2(q),0.05.

In light of the preceding discussion, a natural question is whether or not imposing a het-

eroskedasticity model more narrow than CHet such as, e.g.,

CHet,τ∗
=
{

diag
(

τ21, . . . , τ
2
n

)

∈ CHet : τ
2
i ≥ τ2∗ for all i

}

,

where τ∗ > 0 is a pre-specified constant set by the user, would mitigate the failure of conven-

tional critical values. Indeed, under the heteroskedasticity model CHet,τ∗
extreme concentration

effects leading to rejection probabilities (arbitrarily) close to one cannot occur, and it is possible

to prove that size-controlling critical values always exist when CHet,τ∗
is used, see Appendix A.

Unfortunately, however, this does not imply that conventional critical values such as Cχ2(q),0.05

will work. In fact, the size over CHet,τ∗
of tests using the critical value Cχ2(q),0.05 can still be

considerably larger than α: To see this, observe that the rejection probabilities depend contin-

uously on the parameters and, in particular, on Σ. Consequently, if τ∗ is small, the size over

CHet,τ∗
will be close to the size over CHet, and thus the former will be much larger than α in

case the latter is so. As a consequence, also in case of the more narrow heteroskedasticity model

CHet,τ∗
size-controlling critical values larger than Cχ2(q),0.05 will have to be used in such a case.

Furthermore, the bound τ∗ has to be decided upon prior to the data analysis and is thus part

of modeling the form of heteroskedasticity. It is difficult to see how one would come up with a

reasonable value of τ∗ in practice: If τ∗ is chosen to be small, this may result in a heteroskedas-

ticity model under which the test based on Cχ2(q),0.05 is still plagued by overrejection as just

discussed, while choosing τ∗ large will typically not be defensible as it presumes considerable

knowledge about the admissible forms of heteroskedasticity.

5 Size control results for THet and Tuc when C = CHet

We introduce the following notation: For a given linear subspace L of Rn we define the set of

indices I0(L) via

I0(L) = {i : 1 ≤ i ≤ n, ei(n) ∈ L} .

valid, see Bakirov and Székely (2005). The reason is that the “worst case” distribution in this case corresponds
to homoskedasticity.
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We set I1(L) = {1, . . . , n} \I0(L). Clearly, card(I0(L)) ≤ dim(L) holds. In particular, if

dim(L) < n holds (which, in particular, is so in the leading case L = M
lin
0 , since dim(Mlin

0 ) =

k − q < n), then card(I0(L)) < n, and thus card(I1(L)) ≥ 1.

We have the following size control result for Tuc as well as for THet over the heteroskedasticity

model CHet (more precisely, over the null hypothesis H0 described in (3) with C = CHet). Note

that CHet is the largest possible heteroskedasticity model and reflects complete ignorance about

the form of heteroskedasticity.

Theorem 5.1. (a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(Tuc ≥ C(α)) ≤ α (7)

holds, provided that

ei(n) /∈ span(X) for every i ∈ I1(M
lin
0 ). (8)

Furthermore, under condition (8), even equality can be achieved in (7) by a proper choice of

C(α), provided α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈CHet
Pµ0,Σ(Tuc ≥ C) is

positive and where C∗ = max{Tuc(µ0 + ei(n)) : i ∈ I1(M
lin
0 )} for µ0 ∈M0 (with neither α∗ nor

C∗ depending on the choice of µ0 ∈M0).

(b) Suppose Assumption 1 is satisfied.14 Then for every 0 < α < 1 there exists a real number

C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(THet ≥ C(α)) ≤ α (9)

holds, provided that

ei(n) /∈ B for every i ∈ I1(M
lin
0 ). (10)

Furthermore, under condition (10), even equality can be achieved in (9) by a proper choice of

C(α), provided α ∈ (0, α∗]∩(0, 1) holds, where now α∗ = supC∈(C∗,∞) supΣ∈CHet
Pµ0,Σ(THet ≥ C)

is positive and where C∗ = max{THet(µ0 + ei(n)) : i ∈ I1(M
lin
0 )} for µ0 ∈M0 (with neither α∗

nor C∗ depending on the choice of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a critical

value C(α) satisfying (7) ((9), respectively), a smallest critical value, denoted by C♦(α), satisfying

(7) ((9), respectively) exists for every 0 < α < 1. And C♦(α) corresponding to Part (a) (Part

(b), respectively) is also the smallest among the critical values leading to equality in (7) ((9),

respectively) whenever such critical values exist. [Although C♦(α) corresponding to Part (a) and

(b), respectively, will typically be different, we use the same symbol.]15

We see from the theorem that the condition for size control of THet (Tuc, respectively) over

14Condition (10) clearly implies that the set B is a proper subset of Rn (as card(I1(Mlin
0 )) ≥ 1) and thus implies

Assumption 1. Hence, we could have dropped this assumption from the formulation of the theorem. For clarity
of presentation we have, however, chosen to explicitly mention Assumption 1. A similar remark applies to some
of the other results given below and will not be repeated.

15Cf. also Appendix A.3.
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CHet, i.e., condition (10) ((8), respectively), only depends on X and R; in particular, in case

of THet, it does not depend on how the weights di figuring in the definition of THet have been

chosen (note that the set B only depends on X and R). Moreover, the sufficient conditions for

size control are generically satisfied in the universe of all n × k design matrices X (of rank k),

see Example 5.1 and the attending discussion further below. Furthermore, it is plain that the

size-controlling critical values C(α) in Theorem 5.1 will depend on the choice of test statistic as

well as on the testing problem at hand. More concretely, the size-controlling critical values in

Part (b) of the theorem thus depend only on X, R, and r, as well as on the choice of weights di,

whereas in Part (a) the dependence is only on X, R, and r. We do not show these dependencies

in the notation. In fact, as discussed in Remark 5.2 below, it turns out that the size-controlling

critical values in both cases actually do not depend on the value of r at all (provided the weights

di are not allowed to depend on r in case of THet). Similarly, it is easy to see that C∗ and α∗ in

Theorem 5.1 do not depend on r (under the same provision as before in case of THet).

Another observation is that any critical value delivering size control over CHet also delivers

size control over any other heteroskedasticity model C since C ⊆ CHet. Of course, for such a C

even smaller critical values (than needed for CHet) may already suffice for size control. Also note

that sufficient conditions implying size control over CHet may be more restrictive than sufficient

conditions implying only size control over a smaller heteroskedasticity model C. For size control

results tailored to such smaller models C see Appendix A.

In light of the results of Chesher and Jewitt (1987) and Chesher (1989), it is useful to

interpret the sufficient conditions for size control, i.e., (8) and (10), in terms of high-leverage

points. First, note that ei(n) ∈ span(X) is equivalent to hii = 1, which corresponds to the

i-th observation being an “extreme high-leverage point”. Hence, (8) is equivalent to hii < 1 for

every i ∈ I1(M
lin
0 ). In other words, the condition for a size-controlling critical value to exist in

Part (a) of Theorem 5.1 requires that none of the indices in I1(M
lin
0 ) corresponds to an extreme

high-leverage point. [It is interesting to observe that all indices in I0(M
lin
0 ) (note that this set

may be empty) correspond to extreme high-leverage points.] Hence, for the condition in (8)

not to be satisfied, not only must extreme high-leverage points be present, but the lever needs

to be of a particular type depending on the hypothesis given by (R, r) (namely, it must have

i ∈ I1(M
lin
0 )). Second, note that a sufficient, but not necessary, condition for (8) is hii < 1

for i = 1, . . . , n. Sufficiency is obvious from the preceding discussion. That the condition is not

necessary can be seen from Example 5.2 further below. Finally, condition (10) implies condition

(8) (since span(X) ⊆ B), and hence implies hii < 1 for every i ∈ I1(M
lin
0 ). The converse is

not always true: even hii < 1 for every i = 1, . . . , n does not guarantee (10) to be satisfied,

see Example 5.5 further below. However, generically (8) and (10) coincide (see Lemma A.3 in

Pötscher and Preinerstorfer (2018)), in which case the discussion given above for (8) also applies

to (10).

Remark 5.2. (Independence of the value of r and implications for confidence sets) (i) As already

noted before, the sufficient conditions for size control in both parts of Theorem 5.1 only depend
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on X and R. In particular, they do not depend on the value of r.

(ii) The size of the test based on Tuc (THet, respectively) in Theorem 5.1 as well as the

size-controlling critical values C(α) (for both test statistics) do also not depend on the value of

r (provided the weights di are not allowed to depend on r in case of THet). This follows from

Lemma 5.15 in Pötscher and Preinerstorfer (2018) combined with Remark C.1 in Appendix C.16

This observation is of some importance, as it allows one easily to obtain confidence sets for Rβ

by “inverting” the test without the need of recomputing the critical value for every value of r.

Remark 5.3. (Some equivalencies) If the respective smallest size-controlling critical values are

used (provided they exist), the tests obtained from THet with the HC0 and the HC1 weights,

respectively, are identical, as these two test statistics differ only by a multiplicative constant.

The same reasoning applies to the test statistics based on the HC0-HC4 weights, respectively, in

case hii does not depend on i.

Remark 5.4. (Positivity of size-controlling critical values) For every 0 < α < 1 any C(α)

satisfying (7) or (9) is necessarily positive. To see this observe that {Tuc ≥ C} = {THet ≥ C} =

Rn for C ≤ 0, since both test statistics are nonnegative everywhere.

The next proposition complements Theorem 5.1 and provides a useful lower bound for the

size-controlling critical values (other than the trivial bound given in the preceding remark).

Proposition 5.5. 17,18(a) Suppose that (8) is satisfied. Then any C(α) satisfying (7) necessarily

has to satisfy C(α) ≥ C∗, where C∗ is as in Part (a) of Theorem 5.1. In fact, for any C < C∗

we have supΣ∈CHet
Pµ0,σ

2Σ(Tuc ≥ C) = 1 for every µ0 ∈M0 and every σ2 ∈ (0,∞).

(b) Suppose that Assumption 1 and (10) are satisfied. Then any C(α) satisfying (9) neces-

sarily has to satisfy C(α) ≥ C∗, where C∗ is as in Part (b) of Theorem 5.1. In fact, for any

C < C∗ we have supΣ∈CHet
Pµ0,σ

2Σ(THet ≥ C) = 1 for every µ0 ∈M0 and every σ2 ∈ (0,∞).

The preceding observation is useful in two ways: First, critical values suggested in the liter-

ature (such as, e.g., the (1 − α)-quantile of a chi-square distribution with q degrees of freedom

or critical values obtained from a degree of freedom adjustment) can immediately be dismissed

if they turn out to be less than C∗, as they then certainly will not guarantee size control.19 We

16For this argument we impose Assumption 1 in case of THet, the case where this assumption is violated being
trivial.

17It is not difficult to show in the context of Parts (a) and (b) of the proposition that any critical value
C > C∗ actually leads to size less than 1. This follows from a reasoning similar as in Remark 5.4 of Pötscher and
Preinerstorfer (2018).

18If (10) in Part (b) of the proposition does not hold, the conclusion of Part (b) can be shown to continue to hold
with C∗ as defined in Theorem 5.1(b), and also with C∗ as defined in Lemma 5.11 of Pötscher and Preinerstorfer
(2018) (note that under the assumptions of Part (b) of the proposition both definitions of C∗ actually coincide
as shown in the proof of Theorem 5.1). [Recall that under violation of (10) size-controlling critical values may
or may not exist.] If Assumption 1 is not satisfied, then THet ≡ 0, and the conclusion of Part (b) holds trivially
(as C∗ = 0 with both definitions). If (8) in Part (a) of the proposition is not satisfied, then no size-controlling
critical value exists by Proposition 5.7; hence, the conclusion of Part (a) holds trivially, again regardless of which
of the two definitions of C∗ is adopted.

19In contrast, if the critical value turns out to be larger than or equal to C∗, it does not follow that size is less
than or equal to α. In fact, substantially oversized tests using a critical value C > C∗ are certainly possible; see,
e.g., Table 2 and the pertaining discussion.
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use this line of reasoning in the numerical results in Section 11. Second, if the observed value

of the test statistic THet (Tuc, respectively) is less than C∗, the decision not to reject the null

hypothesis can be taken without further need to compute size-controlling critical values. Note

that C∗ as given in Theorem 5.1 is quite easy to compute in any given application.

Remark 5.6. Suppose the assumptions of Part (a) (Part (b), respectively) of Theorem 5.1

are satisfied. Then we know from that theorem that the size (over CHet) of {Tuc ≥ C♦(α)}

({THet ≥ C♦(α)}, respectively) equals α provided α ∈ (0, α∗] ∩ (0, 1). If now α∗ < α < 1,

then the size (over CHet) of {Tuc ≥ C♦(α)} ({THet ≥ C♦(α)}, respectively) equals α∗ (where

the C♦(α)’s pertaining to Parts (a) and (b) may be different). This follows from C♦(α) ≥ C∗

(see Proposition 5.5 above) and Remark 5.13(i) in Pötscher and Preinerstorfer (2018).20 This

argument actually also delivers that C♦(α) = C∗ must hold in case α∗ < α < 1.

We next discuss to what extent the sufficient conditions for size control in Theorem 5.1 are

also necessary.

Proposition 5.7. (a) If (8) is violated, then supΣ∈CHet
Pµ0,σ

2Σ(Tuc ≥ C) = 1 for every choice

of critical value C, every µ0 ∈M0, and every σ2 ∈ (0,∞) (implying that size equals 1 for every

C). As a consequence, the sufficient condition for size control (8) in Part (a) of Theorem 5.1 is

also necessary.

(b) Suppose Assumption 1 is satisfied.21 If (8) is violated, then supΣ∈CHet
Pµ0,σ

2Σ(THet ≥

C) = 1 for every choice of critical value C, every µ0 ∈ M0, and every σ2 ∈ (0,∞) (implying

that size equals 1 for every C). [In case X and R are such that B = span(X), conditions (8) and

(10) coincide; hence the sufficient condition for size control (10) in Part (b) of Theorem 5.1 is

then also necessary in this case.]

Remark 5.8. Suppose Assumption 1 is satisfied. In case B ̸= span(X) and (8) hold, but

(10) is violated, neither Part (b) of Theorem 5.1 nor Part (b) of Proposition 5.7 apply. We

note that there are instances of this situation (see Example 5.5) for which it can be shown by

other methods that THet is size controllable despite failure of (10);22 as a consequence, (10) is

not necessary for (9) in general. We conjecture that there are other instances of the situation

described here where size control is not possible, but we have not investigated this in any detail.

[What can be said in general in this situation is that the size of the rejection region {THet ≥ C}

over CHet is certainly equal to 1 for every C < max {THet(µ0 + ei(n)) : ei(n) /∈ B}, where we use

the convention that this maximum is −∞ in case the set over which the maximum is taken is

empty. This follows from Lemma 4.1 in Pötscher and Preinerstorfer (2019) with K equal to the

collection {Π(Mlin
0 )⊥ei(n) : ei(n) /∈ B}.]

20The assumptions for Part A of Proposition 5.12 in Pötscher and Preinerstorfer (2018) required in Remark
5.13 of that paper are satisfied under the assumptions of Theorem 5.1 as shown in the proof of Theorem A.1 in
Appendix C. In this proof also the condition λRn (Tuc = C∗) = 0 (λRn (THet = C∗) = 0, respectively) required in
Remark 5.13 of Pötscher and Preinerstorfer (2018) is verified.

21If this assumption is violated then THet is identically zero, an uninteresting trivial case.
22In this example actually ei(n) ∈ B holds for all i = 1, . . . , n.
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Remark 5.9. Let T stand for either THet or Tuc, and suppose that Assumption 1 is satisfied in

case of T = THet: By Remark C.1 in Appendix C and Lemma 5.16 in Pötscher and Preinerstorfer

(2018) the rejection regions {y : T (y) ≥ C} and {y : T (y) > C} differ only by a λRn -null

set. Since the measures Pµ,σ2Σ are absolutely continuous w.r.t. λRn when Σ is nonsingular,

Pµ,σ2Σ(T ≥ C) = Pµ,σ2Σ(T > C) then follows, and hence the results in this section given for

rejection probabilities Pµ,σ2Σ(T ≥ C) apply to rejection probabilities Pµ,σ2Σ(T > C) equally

well (under the above provision in case of T = THet). A similar remark applies to the results in

Appendix A.1.

5.1 Some examples

We illustrate Theorem 5.1 and Proposition 5.7 with a few examples.

Example 5.1. (i) Suppose the design matrix satisfies ei(n) /∈ span(X) for every 1 ≤ i ≤ n

(which will typically be the case). Then obviously the sufficient condition (8) is satisfied (in

fact, for every choice of M0, i.e., for every choice of restriction to be tested). And the sufficient

condition (10) is also satisfied provided B = span(X).

(ii) Suppose the design matrix X and the restriction R are such that ei(n) /∈ B for every

1 ≤ i ≤ n. Then the sufficient condition (10) is clearly satisfied.

This example shows, in particular, that the sufficient conditions for size control are generically

satisfied in the universe of all n × k design matrices X (of rank k). Given the example, this is

obvious for Tuc; and it follows for THet by additionally noting that, for every given choice of

restriction to be tested, the relation B = span(X) holds generically in the universe of all n × k

design matrices X (of rank k); see Lemma A.3 in Pötscher and Preinerstorfer (2018). The next

example discusses the case where a standard basis vector is among the regressors.

Example 5.2. Suppose that e1(n) is the first column of X and that ei(n) /∈ span(X) for every

2 ≤ i ≤ n. Suppose further that R is of the form R = (0, R̃), where R̃ has dimension q× (k− 1).

That is, the restriction to be tested does not involve the coefficient of the first regressor. Then

it is easy to see that (8) is satisfied and size control for Tuc is thus possible. If also B = span(X)

holds, then the same is true for (10) and THet. [In case R is not as above, but has a nonzero first

coordinate, then it is easy to see that 1 ∈ I1(M
lin
0 ), and hence (8) is violated. It follows from

Proposition 5.7 that the rejection region {Tuc ≥ C} indeed has size 1 for every choice of critical

value C when CHet is the heteroskedasticity model; and the same is true for THet, provided

Assumption 1 is satisfied.23]

We continue with a few more examples where X has a particular structure.

Example 5.3. (Heteroskedastic location model) Suppose k = 1, xt1 = 1 for all t, q = 1, R = 1,

and r ∈ R. The heteroskedasticity model is given by CHet. Then the conditions for size control in

23If Assumption 1 is violated then THet is identically zero, an uninteresting trivial case.
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both parts of Theorem 5.1 are satisfied (since it is easy to see that B coincides with span(X) and

that Assumption 1 is satisfied). Note also that in this example THet and Tuc actually coincide

in case di = n/(n − 1) for all i, i.e., if the HC1, HC2, or HC4 weights are used, and differ only

by a multiplicative constant if the HC0 or HC3 weights are employed; in particular, all these

test statistics give rise to one and the same test if the respective smallest size-controlling critical

values are used (cf. Remark 5.3).24 Furthermore, note that the here observed size controllability

is in line with results in Bakirov and Székely (2005) stating that, for a certain range of significance

levels α, the usual critical values obtained from an F1,n−1-distribution actually can be used as

size-controlling critical values C(α) for the test statistic Tuc (in fact, these are then the smallest

size-controlling critical values C♦(α)).

The subsequent example is closely related to the Behrens-Fisher problem, see Remark A.4 in

Appendix A.1.

Example 5.4. (Comparing the means of two heteroskedastic groups) Consider the problem of

testing the equality of the means of two independent normal populations where the variances of

each item may be different, even within a group. In our framework this corresponds to the case

k = 2, xt1 = 1 for 1 ≤ t ≤ n1, xt1 = 0 for n1 < t ≤ n1 + n2 = n, xt2 = 1− xt1, and R = (1,−1)

with r = 0. The heteroskedasticity model is then again CHet. We first assume that ni ≥ 2

holds for i = 1, 2. Note that in the present context Tuc is nothing else than the square of the

two-sample t-statistic that uses a pooled variance estimator, and that THet is the square of the

two-sample t-statistic that uses appropriate variance estimators from each group (the particular

form of the variance estimator being determined by the choice of di). Now, ei(n) /∈ span(X)

for every 1 ≤ i ≤ n holds, and hence Tuc is size controllable (cf. Example 5.1(i)). This is in line

with results in Bakirov (1998), cf. also Section 5.2. Furthermore, it is obvious that Assumption

1 is satisfied (as s = 0) and a simple calculation shows that B(y) = û(y)′A, where A is a

diagonal matrix with aii = n−1
1 for 1 ≤ i ≤ n1 and aii = −n−1

2 else. This shows that the

set B coincides with span(X). Consequently, also THet is size controllable (again cf. Example

5.1(i)). We also note here that the observed size controllability of THet is in line with results in

Ibragimov and Müller (2016) stating that for a certain range of significance levels α and group

sizes ni the usual critical values obtained from an F1,min(n1,n2)−1-distribution actually can be

used as size-controlling critical values C(α) for the test statistic THet in case di is set equal to

(1− hii)
−1

; in fact, they are then the smallest size-controlling critical values, cf. the discussion

preceding Theorem 1 in Ibragimov and Müller (2016). In the rather uninteresting case n1 = 1

and n2 ≥ 2, it is easy to see that Assumptions 1 is satisfied and that the size of both tests

equals 1 for all choices of critical values in view of Proposition 5.7, since e1(n) ∈ span(X) and

1 ∈ I1(M
lin
0 ) = {1, . . . , n}. The same is true if n1 ≥ 2 and n2 = 1. [The remaining and

24In fact, more is true in the location model: The test statistics T̃Het using the HC0R-HC4R weights (defined
in Section 6 below) all coincide (cf. Footnote 31), and they also coincide with T̃uc (also defined in Section 6
below). Perusing the connection between T̃uc and Tuc established in Section 6.2.1, we can then even conclude
that all the test statistics Tuc, THet with HC0-HC4 weigths, T̃uc, and T̃Het with HC0R-HC4R weights give rise
to (essentially) the same test, provided the respective smallest size-controlling critical values are used.
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uninteresting case n1 = n2 = 1 falls outside of our framework since we always require n > k.]

The next example is an extension of the previous problem to the case of more than two

groups. An interesting phenomenon occurs here: The sufficient conditions for size control of

THet given in Theorem 5.1 are violated, but size controllability can nevertheless be established

by additional arguments. Hence, this example provides an instance where the conditions in Part

(b) of Theorem 5.1 are not necessary.

Example 5.5. (Comparing the means of k heteroskedastic groups) We are given k integers

nj ≥ 1 with
∑k

j=1 nj = n describing group sizes where k ≥ 3 holds. The regressors xti for

1 ≤ i ≤ k indicate group membership, i.e., they satisfy xti = 1 for
∑i−1

j=1 nj < t ≤
∑i

j=1 nj

and xti = 0 otherwise. The heteroskedasticity model is given by CHet. We are interested in

testing β1 = . . . = βk. We thus may choose the (k − 1) × k restriction matrix R with j-th row

(1, 0, . . . 0,−1, . . . , 0) where the entry −1 is at position j + 1. Of course, q = k − 1 and r = 0

hold. We first consider the case where nj ≥ 2 for all j. Then clearly k < n is satisfied. With

regard to Tuc we see immediately that ei(n) /∈ span(X) for every 1 ≤ i ≤ n follows (since nj ≥ 2

for all j) and thus the sufficient condition (8) for size control of Tuc is satisfied. Turning to THet,

it is easy to see that Assumption 1 is satisfied (since s = 0 in view of nj ≥ 2). Furthermore, the

j-th row of R(X ′X)−1X ′ is seen to be of the form

(n−1
1 , . . . , n−1

1 , 0, . . . , 0,−n−1
j+1, . . . ,−n

−1
j+1, 0 . . . , 0),

from which it follows that

R(X ′X)−1X ′ diag(d1û
2
1(y), . . . , dnû

2
n(y))X(X ′X)−1R = S1ιι

′ + diag(S2, . . . , Sk), (11)

where ι is the (k−1)-dimensional vector with entries all equal to 1 and where Sj = n−2
j

∑

t dtû
2
t (y) =

n−2
j

∑

t dt(yt − ȳ(j))
2 with the summation index t running over all elements in the j-th group,

and where ȳ(j) is the mean in group j. From (11) it is not difficult to verify that the set B is

given by

B =
k
⋃

i,j=1,i ̸=j

{y ∈ Rn : Si(y) = Sj(y) = 0} =
k
⋃

i,j=1,i ̸=j

span (x·i, x·j , {el(n) : xli = xlj = 0}) .

Note that B is not a linear space and is strictly larger than span(X). The set Mlin
0 is given by

the span of the vector e = (1, 1, . . . , 1)′. Hence, I1(M
lin
0 ) = {1, . . . , n}. Since ei(n) ∈ B holds

for every i, we conclude that the sufficient condition (10) for size control of THet is not satisfied

and hence Part (b) of Theorem 5.1 does not apply. However, it can be shown by additional

arguments, see Proposition C.3 in Appendix C, that THet is nevertheless size controllable, i.e.,

that (9) holds.25 Next, in the case where nj = 1 for some j, but not for all j, Proposition 5.7

shows that the size of the test based on Tuc equals 1 for all choices of critical values, since then for

25A smallest size-controlling critical value then also exists in view of Appendix A.3.
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some i the standard basis vector ei(n) is one of the regressors and thus we have ei(n) ∈ span(X)

and i ∈ I1(M
lin
0 ) = {1, . . . , n}. For THet the same is true if nj = 1 holds for exactly one j

(because of Part (b) of Proposition 5.7 and since then Assumption 1 is satisfied as is easily seen);

in case nj = 1 is true for (at least) two, but not all, values of j, THet is identically zero (as then

Assumption 1 is violated), and thus is size-controllable in a trivial way. [The remaining and

uninteresting case nj = 1 for all j falls outside of our framework since we always require n > k.]

We close this section by one more example. Again, the sufficient conditions in Part (b) of

Theorem 5.1 fail to hold, but additional arguments based on Example 5.3 establish size control-

lability of the test based on THet.

Example 5.6. Consider again the situation of Example 5.4, except that now R = I2, the 2× 2

identity matrix, (and again r = 0). Then q = k = 2 holds. Consider first the case where

ni ≥ 2 for i = 1, 2. Condition (8) is then obviously satisfied, and hence Tuc is size controllable.

We next turn to THet. Since M
lin
0 = {0} we have I1(M

lin
0 ) = {1, . . . , n}. Furthermore, simple

computations show that Assumption 1 is satisfied and that

B = span (x·1, {ei(n) : i > n1}) ∪ span (x·2, {ei(n) : i ≤ n1}) .

Obviously, the sufficient condition (10) for size control of THet is violated. Nevertheless, THet is

size controllable by the following argument:26 Simple computations show that THet(y) = T1(y)+

T2(y) for y /∈ B, where T1(y) = n2
1β̂

2

1(y)/
∑n1

t=1 dtû
2
t (y) and T2(y) = n2

2β̂
2

2(y)/
∑n

t=n1+1 dtû
2
t (y).

[If the denominator in the formula for Ti(y) is zero for some y ∈ Rn, we define Ti(y) as zero.] Since

B is a λRn -null set, P0,σ2Σ(THet ≥ C) ≤ P0,σ2Σ(T1 ≥ C/2) + P0,σ2Σ(T2 ≥ C/2) for C > 0. Now,

it is easy to see that P0,σ2Σ(Ti ≥ C/2) for i = 1, 2 coincides with the null rejection probability

of a test for the mean in a heteroskedastic location model (based on a test statistic of the form

(4)). However, as shown in Example 5.3, such a test is size controllable. [In the case n1 = 1 and

n2 ≥ 2 (or vice versa) condition (8) is violated and the rejection region {Tuc ≥ C} has size 1 for

every C; furthermore, Assumption 1 is violated, and hence THet is identically zero. The case

n1 = n2 = 1 falls outside of our framework as then k = n.]

In Appendix C we discuss yet another example where the sufficient condition of Part (b) of

Theorem 5.1 fails, but size-controllability can nevertheless be established.

5.2 Some variations on Bakirov and Székely (2005)

(i) As noted in Ibragimov and Müller (2010), testing a hypothesis regarding a scalar linear

contrast in a heteroskedastic (Gaussian) linear regression model more general than a location

model can often be converted to a testing problem in a heteroskedastic (Gaussian) location

model by suitably dividing the data into subgroups and by considering groupwise least-squares

estimators, thus making it amenable to the Bakirov and Székely (2005) result mentioned in

26A smallest size-controlling critical value then also exists in view of Appendix A.3.
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Section 1. However, this introduces additional questions such as how to divide up the data. In

any case, this approach is limited to testing hypotheses on scalar linear contrasts. It also requires

that the linear contrast subject to test is estimable in each subgroup.

(ii) In case the linear contrast subject to test is not estimable in each subgroup, but can be

written as the difference of two linear contrasts where the first contrast is estimable in the first

G1 groups whereas the second contrast is estimable in the last G2 groups (where we consider

a total of G1 + G2 groups), Ibragimov and Müller (2016) point out that the problem can be

converted into the problem of comparing two heteroskedastic (Gaussian) populations. Now, for

such a two-sample comparison problem Bakirov (1998) shows for a certain two-sample t-statistic

(the square of which is Tuc, cf. Example 5.4 above) how – in the presence of heteroskedasticity

– size-controlling critical values can be constructed by appropriately transforming quantiles of

a t-distribution; this result imposes conditions which entail that the nominal significance level

α must be quite small (requiring α not to exceed 0.01 for many group sizes, and often to be

considerably smaller). This somewhat limits the applicability of Bakirov’s result. Thus Ibragimov

and Müller (2016) go on to consider another two-sample t-statistic (the square of which is THet

with di = (1− hii)
−1

, cf. Example 5.4 above) and – extending a result in Mickey and Brown

(1966) – provide a Bakirov and Székely (2005)-type result, i.e., they show that the (1 − α/2)-

quantile of a t-distribution with degrees of freedom equal to the smaller of the two sample sizes

minus 1 provides the smallest size-controlling critical value (for the two-sided test) even under

heteroskedasticity.27 This result holds under certain conditions on the sample sizes and only for

small α, but, e.g., allows for the choice α = 0.05. [We note here that the description of Bakirov

(1998)’s result in Ibragimov and Müller (2016) is inaccurate in that a certain transformation of

the critical value is being ignored.]

(iii) In the problem of comparing two heteroskedastic (Gaussian) populations based on sam-

ples of equal size (“balanced design”) one can – instead of using the two-sample t-test statistics

considered in Bakirov (1998) and Ibragimov and Müller (2016) – employ the Bartlett test statistic,

which simply is the usual t-test statistic computed from the differences between the observations

in the two samples.28 An advantage of this approach is that the original Bakirov and Székely

(2005) result is directly applicable, and there is no need to resort to the results described in (ii).

(iv) Another quite special case that can be brought under the realm of the Bakirov and

Székely (2005) result is a heteroskedastic (Gaussian) regression model with only one regressor

that never takes the value zero. Dividing the t-th equation in the regression model by xt, converts

this into a heteroskedastic location problem.

(v) The results in (i)-(iv) immediately also apply if the errors in the regression are distributed

as scale mixtures of Gaussians (cf. also Section 7.1).

27In the balanced case (i.e., if the two samples have the same cardinality) the test statistic considered in Bakirov
(1998) actually coincides with the test statistic in Ibragimov and Müller (2016).

28Certainly, there is some arbitrariness in how the observations are being “paired”.
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6 Results for heteroskedasticity robust test statistics using

restricted residuals

In this section we consider two further test statistics which are versions of THet and Tuc with the

only difference that the covariance matrix estimators used are based on restricted – instead of

unrestricted – residuals. The first one of these test statistics has been suggested in the literature,

e.g., in Davidson and MacKinnon (1985). We thus define

T̃Het (y) =

{

(Rβ̂ (y)− r)′Ω̃−1
Het (y) (Rβ̂ (y)− r) if det Ω̃Het (y) ̸= 0,

0 if det Ω̃Het (y) = 0,
(12)

where Ω̃Het = RΨ̃HetR
′ and where Ψ̃Het is given by

Ψ̃Het (y) = (X ′X)−1X ′ diag
(

d̃1ũ
2
1 (y) , . . . , d̃nũ

2
n (y)

)

X(X ′X)−1,

where the constants d̃i > 0 sometimes depend on the design matrix and on the restriction matrix

R. Here ũ (y) = y − Xβ̃M0
(y) = Π(Mlin

0 )⊥(y − µ0), where the last expression does not depend

on the choice of µ0 ∈M0, and where ũt (y) denotes the t-th component of ũ (y). Typical choices

for d̃i are d̃i = 1, d̃i = n/(n − (k − q)), d̃i = (1 − h̃ii)
−1, or d̃i = (1 − h̃ii)

−2 where h̃ii denotes

the i-th diagonal element of the projection matrix ΠMlin
0

, see, e.g., Davidson and MacKinnon

(1985). Another suggestion is d̃i = (1− h̃ii)
−δ̃i for δ̃i = min(nh̃ii/(k− q), 4) with the convention

that δ̃i = 0 if k = q.29 For the last three choices of d̃i just given we use the convention that

we set d̃i = 1 in case h̃ii = 1. Note that h̃ii = 1 implies ũi (y) = 0 for every y, and hence it is

irrelevant which real value is assigned to d̃i in case h̃ii = 1.30 The five examples for the weights

d̃i just given correspond to what is often called HC0R-HC4R weights in the literature.31

The subsequent assumption ensures that the set of y’s for which Ω̃Het (y) is singular is a

Lebesgue null set, implying that our choice of assigning T̃Het (y) the value zero in case Ω̃Het (y)

is singular has no import on the results of the paper (as the measures Pµ,σ2Σ are absolutely

continuous). Also, as discussed further below, the assumption is in a certain sense unavoidable

when using T̃Het.

Assumption 2. Let 1 ≤ i1 < . . . < is ≤ n denote all the indices for which eij (n) ∈ M
lin
0

holds where ej(n) denotes the j-th standard basis vector in Rn. If no such index exists, set

s = 0. Let X ′ (¬(i1, . . . is)) denote the matrix which is obtained from X ′ by deleting all

columns with indices ij , 1 ≤ i1 < . . . < is ≤ n (if s = 0 no column is deleted). Then

rank
(

R(X ′X)−1X ′ (¬(i1, . . . is))
)

= q holds.

Observe that this assumption only depends on X and R and hence can be checked. Obviously,

29Note that in case k = q we have h̃ii = 0, and hence d̃i = 1 regardless of our convention for δ̃i.
30In fact, h̃ii = 1 is equivalent to ũi (y) = 0 for every y, each of which in turn is equivalent to ei(n) ∈ Mlin

0 .
31In the case k = q the HC0R-HC4R weights all coincide (d̃i = 1 for every i), and hence result in the same test

statistic.
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a simple sufficient condition for Assumption 2 to hold is that s = 0 (i.e., that ej(n) /∈ M
lin
0 for

all j), a generically satisfied condition. Furthermore, we introduce the matrix

B̃(y) = R(X ′X)−1X ′ diag (ũ1(y), . . . , ũn(y))

= R(X ′X)−1X ′ diag
(

e′1(n)Π(Mlin
0 )⊥(y − µ0), . . . , e

′
n(n)Π(Mlin

0 )⊥(y − µ0)
)

. (13)

Note that this matrix does not depend on the choice of µ0 ∈ M0. The following lemma col-

lects some important properties of Ω̃Het and B̃ (defined in that lemma) and is reproduced from

Pötscher and Preinerstorfer (2020) for ease of reference.

Lemma 6.1. (a) Ω̃Het (y) is nonnegative definite for every y ∈ Rn.

(b) Ω̃Het (y) is singular (zero, respectively) if and only if rank(B̃(y)) < q (B̃(y) = 0, respec-

tively).

(c) The set B̃ given by {y ∈ Rn : rank(B̃(y)) < q} (or, in view of (b), equivalently given by

{y ∈ Rn : det(Ω̃Het (y)) = 0}) is either a λRn-null set or the entire sample space Rn. The latter

occurs if and only if Assumption 2 is violated (in which case the test based on T̃Het becomes

trivial, as then T̃Het is identically zero).

(d) Suppose Assumption 2 holds. Then for every µ0 ∈M0 the set B̃− µ0 is a finite union of

proper linear subspaces; in case q = 1, B̃− µ0 is even a proper linear subspace itself.32,33 [Note

that B̃ − µ0 does not depend on the choice of µ0 ∈ M0. In particular, if r = 0, i.e., if M0 is

linear, we thus may set µ0 = 0.]

(e) B̃ is a closed set and contains M0. Also B̃ is G(M0)-invariant, and in particular B̃ +

M
lin
0 = B̃.

In light of Part (c) of the lemma, we see that Assumption 2 is a natural and unavoidable

condition if one wants to obtain a sensible test from T̃Het.
34 Furthermore, note that if B̃ = M0 is

true, then Assumption 2 must be satisfied (since M0 is a λRn -null set as k− q < n is always the

case). For later use we also mention that under Assumption 2 the statistic T̃Het is continuous at

every y ∈ Rn\B̃.35

We finally consider for completeness, and in analogy with Tuc,

T̃uc(y) =







(Rβ̂ (y)− r)′
(

σ̃2(y)R (X ′X)
−1

R′
)−1

(Rβ̂ (y)− r) if y /∈M0,

0 if y ∈M0,
(14)

where σ̃2(y) = ũ (y)
′
ũ (y) /(n− (k − q)) ≥ 0 (which vanishes if and only if y ∈M0). Of course,

our choice to set T̃uc(y) = 0 for y ∈ M0 again has no import on the results in the paper, since

M0 is a λRn -null set (and since the measures Pµ,σ2Σ are absolutely continuous). For later use we

32Consequently, B̃ is a finite union of proper affine subspaces, and is a proper affine subspace itself in case q = 1.
33If Assumption 2 is violated, then B̃− µ0 = B̃ = Rn in view of Part (c).
34If this assumption is violated then T̃Het is identically zero, an uninteresting trivial case.
35If Assumption 2 is violated, then T̃Het is constant equal to zero, and hence trivially continuous everywhere.
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also mention that T̃uc is continuous at every y ∈ Rn\M0. As we shall see in Section 6.2.1, there

is a close connection between T̃uc and Tuc.

Remark 6.2. The test statistics T̃Het as well as T̃uc are G(M0)-invariant as is easily seen (with

the respective exceptional sets B̃ and M0 also being G(M0)-invariant), but typically they are not

nonsphericity-corrected F-type tests in the sense of Section 5.4 in Preinerstorfer and Pötscher

(2016).

Remark 6.3. Remark 3.3 also applies to T̃Het and T̃uc. [To see this note that the respective

exceptional sets B̃ and M0 are the same irrespective of whether (R, r) or (R̄, r̄) is used, and that

A cancels out in the respective quadratic forms appearing in the definitions of the test statistics.]

6.1 Size control results for T̃Het and T̃uc when C = CHet

Here we discuss size control results for T̃uc as well as for T̃Het over the heteroskedasticity model

CHet (more precisely, over the null hypothesis H0 described in (3) with C = CHet). Some peculiar

properties of the test statistics T̃uc and T̃Het are then discussed in the following section.

We note that the first statement in Part (a) of the subsequent theorem is actually trivial, since

T̃uc is bounded as shown in the next section (which also provides a discussion when non-trivial

size-controlling critical values exist).

Theorem 6.4. (a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(T̃uc ≥ C(α)) ≤ α (15)

holds. Furthermore, even equality can be achieved in (15) by a proper choice of C(α), provided

α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈CHet
Pµ0,Σ(T̃uc ≥ C) and where C∗ =

max{T̃uc(µ0 + ei(n)) : i ∈ I1(M
lin
0 )} for µ0 ∈ M0 (with neither α∗ nor C∗ depending on the

choice of µ0 ∈M0).

(b) Suppose Assumption 2 is satisfied.36 Suppose further that T̃Het is not constant on Rn\B̃.37

Then for every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(T̃Het ≥ C(α)) ≤ α (16)

holds, provided that for some µ0 ∈M0 (and hence for all µ0 ∈M0)

µ0 + ei(n) /∈ B̃ for every i ∈ I1(M
lin
0 ). (17)

36Condition (17) clearly implies that the set B̃ is a proper subset of Rn and thus implies Assumption 2. Hence,
we could have dropped this assumption from the formulation of the theorem. A similar remark applies to some
of the other results given below and will not be repeated.

37The case where T̃Het is constant on Rn\B̃ can actually occur under Assumption 2, see Remark D.2 in Appendix
D. In such a case T̃Het is trivially size-controllable (since B̃ is a λRn -null set under Assumption 2 and since all
probability measures in (2) are absolutely continuous). However, neither a smallest size-controlling critical value
exists (when considering rejection regions of the form {T̃Het ≥ C}) nor can exact size controllability be achieved
for 0 < α < 1. [If Assumption 2 is violated, T̃Het is identically zero and a similar remark applies.]
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Furthermore, under condition (17), even equality can be achieved in (16) by a proper choice of

C(α), provided α ∈ (0, α∗]∩(0, 1) holds, where now α∗ = supC∈(C∗,∞) supΣ∈CHet
Pµ0,Σ(T̃Het ≥ C)

and where C∗ = max{T̃Het(µ0 + ei(n)) : i ∈ I1(M
lin
0 )} for µ0 ∈ M0 (with neither α∗ nor C∗

depending on the choice of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a critical

value C(α) satisfying (15) ((16), respectively), a smallest critical value, denoted by C♦(α), sat-

isfying (15) ((16), respectively) exists for every 0 < α < 1.38 And C♦(α) corresponding to Part

(a) (Part (b), respectively) is also the smallest among the critical values leading to equality in

(15) ((16), respectively) whenever such critical values exist. [Although C♦(α) corresponding to

Part (a) and (b), respectively, will typically be different, we use the same symbol.]39

We see from the theorem that T̃uc is always size controllable over CHet, but as discussed in

Section 6.2 below there is a caveat: Unless (8), i.e., the necessary and sufficient condition for

size-controllability of Tuc, is satisfied, size-controlling T̃uc leads to trivial tests. We also see that

the condition for size control of T̃Het over CHet, i.e., condition (17) is always satisfied in case

B̃ = M0 (since (17) is then equivalent to ei(n) /∈ M
lin
0 for every i ∈ I1(M

lin
0 )). Furthermore,

condition (17) always only depends on X and R; in particular, it does not depend on how the

weights d̃i figuring in the definition of T̃Het have been chosen (note that µ0 + ei(n) /∈ B̃ is

equivalent to ei(n) /∈ B̃− µ0 and that the set B̃− µ0 depends only on X and R). Furthermore,

the size-controlling critical values C(α) in Part (b) of the preceding theorem depend only on X,

R, and r, as well as on the choice of weights d̃i, whereas in Part (a) the dependence is only on

X, R, and r. We do not show these dependencies in the notation. In fact, as shown in Lemma

D.3 in Appendix D, it turns out that the size and the size-controlling critical values in both

cases actually do not depend on the value of r at all (provided the weights d̃i are not allowed

to depend on r in case of T̃Het). Similarly, it is easy to see that α∗ and C∗ do not depend on r

(under the same provision as before in case of T̃Het).

Similarly as in Section 5, a critical value delivering size control over CHet also delivers size

control over any other heteroskedasticity model C since C ⊆ CHet. Of course, for such a C even

smaller critical values (than needed for CHet) may already suffice for size control. Also note

that sufficient conditions implying size control over CHet may be more restrictive than sufficient

conditions only implying size control over a smaller heteroskedasticity model C. For size control

results tailored to such smaller models C see Appendix A.

Remark 6.5. (Some equivalencies) If the respective smallest size-controlling critical values are

used (provided they exist), the tests obtained from T̃Het with the HC0R and the HC1R weights,

respectively, are identical, as these two test statistics differ only by a multiplicative constant.

The same reasoning applies to the test statistics based on the HC0R-HC4R weights, respectively,

in case h̃ii does not depend on i.

38Note that there are in fact no assumptions for Part (a). We have chosen this formulations for reasons of
brevity.

39Cf. also Appendix A.3.
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Remark 6.6. (Positivity of size-controlling critical values) For every 0 < α < 1 any C(α)

satisfying (15) or (16) is necessarily positive. To see this observe that {T̃uc ≥ C} = {T̃Het ≥

C} = Rn for C ≤ 0, since both test statistics are nonnegative everywhere.

The next proposition complements Theorem 6.4 and provides a lower bound for the size-

controlling critical values (other than the trivial bound given in the preceding remark). The

lower bound is useful for the same reasons as discussed subsequent to Proposition 5.5.

Proposition 6.7. 40,41(a) Any C(α) satisfying (15) necessarily has to satisfy C(α) ≥ C∗, where

C∗ is as in Part (a) of Theorem 6.4. In fact, for any C < C∗ we have supΣ∈CHet
Pµ0,σ

2Σ(T̃uc ≥

C) = 1 for every µ0 ∈M0 and every σ2 ∈ (0,∞).

(b) Suppose Assumption 2 and (17) are satisfied, and that T̃Het is not constant on Rn\B̃.

Then any C(α) satisfying (16) necessarily has to satisfy C(α) ≥ C∗, where C∗ is as in Part (b)

of Theorem 6.4. In fact, for any C < C∗ we have supΣ∈CHet
Pµ0,σ

2Σ(T̃Het ≥ C) = 1 for every

µ0 ∈M0 and every σ2 ∈ (0,∞).

Remark 6.8. Suppose the assumptions of Part (a) (Part (b), respectively) of Theorem 6.4

are satisfied. Then we know from that theorem that the size (over CHet) of {T̃uc ≥ C♦(α)}

({T̃Het ≥ C♦(α)}, respectively) equals α provided α ∈ (0, α∗] ∩ (0, 1). If now α∗ < α < 1,

then the size (over CHet) of {T̃uc ≥ C♦(α)} ({T̃Het ≥ C♦(α)}, respectively) equals α∗ (where

the C♦(α)’s pertaining to Parts (a) and (b) may be different). This follows from C♦(α) ≥ C∗

(see Proposition 6.7 above) and Remark 5.13(i) in Pötscher and Preinerstorfer (2018)).42 This

argument actually also delivers that C♦(α) = C∗ must hold in case α∗ < α < 1.

Remark 6.9. In contrast to Section 5, we have little information on the extent to which the

sufficient conditions for size control in Part (b) of Theorem 6.4 are also necessary. This is

due to the fact that T̃Het is typically not a nonsphericity-corrected F-type test as noted in

Remark 6.2. What can be said in general in the context of Part (b) of Theorem 6.4 in case

(17) is violated, is that the size of the rejection region {T̃Het ≥ C} over CHet is certainly equal

to 1 for every C < max{T̃Het(µ0 + ei(n)) : µ0 + ei(n) /∈ B̃}, where µ0 ∈ M0 is arbitrary

(the maximum being independent of the choice of µ0 ∈ M0) and where we use the convention

that this maximum is −∞ in case the set over which the maximum is taken is empty. This

40It is not difficult to show in the context of Parts (a) and (b) of the propsition that any critical value C > C∗

actually leads to size less than 1. This follows from a reasoning similar as in Remark 5.4 of Pötscher and
Preinerstorfer (2018).

41If (17) in Part (b) of the proposition does not hold, the conclusion of Part (b) can be shown to continue to hold
with C∗ as defined in Theorem 6.4(b), and also with C∗ as defined in Lemma 5.11 of Pötscher and Preinerstorfer
(2018) (note that under the assumptions of Part (b) of the proposition both definitions of C∗ actually coincide
as shown in the proof of Theorem 6.4). If T̃Het is constant on Rn\B̃ or if Assumption 2 fails (the latter implying
T̃Het ≡ 0), the conclusion of Part (b) also holds as is easily seen (regardless of which of the two definitions of C∗

is adopted).
42The assumptions for Part A of Proposition 5.12 in Pötscher and Preinerstorfer (2018) required in Remark

5.13 of that paper are satisfied under the assumptions of Theorem 6.4 as shown in the proof of Theorem A.5 in
Appendix D. In this proof also the condition λRn (T̃uc = C∗) = 0 (λRn (T̃Het = C∗) = 0, respectively) required
in Remark 5.13 of Pötscher and Preinerstorfer (2018) is verified.
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follows from Lemma 4.1 in Pötscher and Preinerstorfer (2019) with K equal to the collection

{Π(Mlin
0 )⊥ei(n) : µ0 + ei(n) /∈ B̃}.

Remark 6.10. Suppose q = k. Then Assumption 2 is always satisfied (since M0 being a

singleton {µ0} implies Mlin
0 = {0}, and thus s = 0 in Assumption 2). The subsequent claims are

proved in Appendix D.

(i) In case q = k > 1, it is not difficult to see that then µ0 + ei(n) ∈ B̃ for every i = 1, . . . , n

holds, implying that the sufficient condition (17) in Theorem 6.4(b) is violated. [In contrast,

in case q = k = 1, both examples where (17) is satisfied as well as examples where (17) is not

satisfied can be found.]

(ii) Despite of (i), in case q = k ≥ 1 the test statistic T̃Het is always size-controllable over

CHet. This is so since in case q = k ≥ 1 the statistic T̃Het is a bounded function.

(iii) We also note that in case q = k ≥ 1 both the case where T̃Het is constant on Rn\B̃ as

well as the case where T̃Het is not constant on Rn\B̃ can occur. [In the latter case a smallest

size-controlling critical value exists in view of Appendix A.3. In the former case no smallest size-

controlling critical value exists (when considering rejection regions of the form {T̃Het ≥ C}).]

Remark 6.11. Let T̃ stand for either T̃Het or T̃uc, where in case of T̃ = T̃Het we suppose that

Assumption 2 is satisfied and that T̃Het is not constant on Rn\B̃: By Lemma D.1 in Appendix

D the rejection regions {y : T̃ (y) ≥ C} and {y : T̃ (y) > C} differ only by a λRn -null set. Since

the measures Pµ,σ2Σ are absolutely continuous w.r.t. λRn when Σ is nonsingular, Pµ,σ2Σ(T̃ ≥

C) = Pµ,σ2Σ(T̃ > C) then follows, and hence the results in this and the subsequent section given

for rejection probabilities Pµ,σ2Σ(T̃ ≥ C) apply to rejection probabilities Pµ,σ2Σ(T̃ > C) equally

well (under the above provision in case of T = T̃Het). A similar remark applies to the results in

Appendix A.2.

6.2 Tests obtained from T̃uc or T̃Het can be trivial

For the test statistic Tuc the rejection regions {Tuc ≥ C}, as well as their complements, have

positive (n-dimensional) Lebesgue measure for every positive real number C.43 This follows from

Parts 5&6 of Lemma 5.15 in Preinerstorfer and Pötscher (2016) together with Remark C.1 in

Appendix C. As a consequence, all rejection probabilities – under the null as well as under

the alternative – are positive and less than one regardless of the choice of C > 0. [This is so

because of our Gaussianity assumption and the fact that all Σ ∈ CHet are positive definite.] For

similar reasons, the same is true for THet provided Assumption 1 is satisfied.44 The situation is

somewhat different for tests derived form T̃uc or T̃Het as we shall discuss next. In the course of

this, we also establish a connection between Tuc and T̃uc that is of independent interest. In this

section the size of a test always refers to size over CHet.

43The case C ≤ 0 is uninteresting as the rejection region of Tuc (and of all other test statistics considered) then
are the entire space Rn, since Tuc (and the other test statistics considered) take on only nonnegative values.

44If Assumption 1 is not satisfied then THet ≡ 0, and the resulting test (with rejection region {THet ≥ C}) is
trivial as it never rejects for C > 0, while it always rejects for C ≤ 0.
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6.2.1 The case of T̃uc

First, observe that T̃uc(y) ≤ n− (k− q) holds for every y ∈ Rn and that this bound is sharp. To

see this, note that using standard least-squares theory

T̃uc(y) = (n− (k − q))

(

1−
n
∑

i=1

û2
i (y)/

n
∑

i=1

ũ2
i (y)

)

≤ n− (k − q) (18)

for y /∈ M0 and that T̃uc(y) = 0 else; the bound is attained precisely for y ∈ span(X)\M0. An

immediate consequence of this observation is that any critical value C ≥ (n − (k − q)) leads to

a test with rejection region {T̃uc ≥ C} that is either empty (if C > n− (k − q)) or is a λRn -null

set, namely span(X)\M0 (if C = n − (k − q)). Consequently, such a test is trivial in that all

rejection probabilities (under the null as well as under the alternative) are zero (because of our

Gaussianity assumption and the fact that all Σ ∈ CHet are positive definite). As an aside we

note that any C < n− (k − q) leads to a non-trivial test as is easily seen.

Of course, a critical value C satisfying C ≥ n − (k − q) is certainly size-controlling, but is

useless since it leads to a trivial test as just discussed. We now ask if and when the smallest

size-controlling critical value C♦(α), guaranteed to exist by Part (c) of Theorem 6.4, leads to

a non-trivial test. [This is certainly so if α∗ in Part (a) of Theorem 6.4 is positive, but note

that the theorem is silent on this issue.] To obtain insight, we establish a simple, but important,

relationship between the test statistics T̃uc and Tuc that is of independent interest also: Note

that standard least-squares theory gives

Tuc(y) = (n− k)

(

n
∑

i=1

ũ2
i (y)/

n
∑

i=1

û2
i (y)− 1

)

for y /∈ span(X), and recall Tuc(y) = 0 for y ∈ span(X). Hence, we obtain

T̃uc(y) = (n− (k − q)) (Tuc(y)/(n− k + Tuc(y)) = g(Tuc(y)) (19)

for every y /∈ span(X), where g : [0,∞)→ [0, n−(k−q)) is continuous and strictly increasing with

limx→∞ g(x) = (n − (k − q)). [Since Tuc(ym) → ∞ for every sequence ym → y ∈ span(X)\M0,

the sharpness of the bound n− (k−q) can thus also be read-off from (19).] As a consequence, for

every critical value C > 0, the rejection regions {T̃uc ≥ C} and {Tuc ≥ g−1(C)} differ at most

by span(X), which is a λRn -null set; in particular, the rejection probabilities (under the null as

well as under the alternative) are the same.45 That is, the test statistics T̃uc and Tuc give rise

to (essentially) the same test, if the critical values chosen are linked by the function g as above.

In particular, as we shall see, this is the case if the respective smallest size-controlling critical

values are used for both test statistics (provided both these values exist).

To see what the preceding discussion entails for the existence of non-trivial size-controlling

critical values for T̃uc we distinguish two cases. In the first case we shall see that non-trivial

45This is so because of our Gaussianity assumption and the fact that all Σ ∈ CHet are positive definite.
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size-controlling critical values do not exist, whereas in the second case they do indeed exist.

Case 1: Condition (8) is violated. Recall from Proposition 5.7 that then the size of {Tuc ≥ D}

is 1 for every real D (in particular, implying that Tuc is not size controllable). It transpires from

the preceding discussion, that hence the size of {T̃uc ≥ C} must equal 1 for every C satisfying

0 < C < n− (k− q) (and a fortiori for C ≤ 0), because D := g−1(C) is well-defined and real for

0 < C < n− (k− q). As a consequence, any size-controlling critical value C for T̃uc must satisfy

C ≥ n−(k−q) (with the smallest size-controlling critical value given by n−(k−q)), thus leading

to a rejection region that is trivial in that it is empty (if C > n − (k − q)) or is a λRn -null set,

namely span(X)\M0 (if C = n− (k − q)). That is – while T̃uc is size-controllable in the present

case – it is so only in a trivial way.46 [Another way of arriving at the above conclusion is to

use Part (a) of Proposition 6.7 and to observe that in Part (a) of Theorem 6.4 the quantity C∗

equals n− (k − q). To see the latter, note that violation of condition (8) implies existence of an

index i ∈ I1(M
lin
0 ) with ei(n) ∈ span(X). In particular, û(µ0 + ei(n)) = 0. Since ei(n) /∈ M

lin
0

must hold in view of i ∈ I1(M
lin
0 ), and thus µ0 + ei(n) /∈ M0 for every µ0 ∈ M0 must be true,

we may use (18) to arrive at T̃uc(µ0 + ei(n)) = n − (k − q) for this i ∈ I1(M
lin
0 ). This shows

C∗ ≥ n − (k − q). Equality then follows since C∗ ≤ n − (k − q) trivially holds by (18). As a

point of interest we also note that C∗ = n− (k − q) implies that α∗ in Part (a) of Theorem 6.4

satisfies α∗ = 0.]

Case 2: Condition (8) is satisfied. In this case Tuc is size controllable according to Theorem

5.1. In particular, for any given α ∈ (0, 1) there exists a smallest real number D♦(α) such that

the size of {Tuc ≥ D♦(α)} is less than or equal to α, with equality holding for α ∈ (0, α∗
Tuc

]∩(0, 1)

where α∗
Tuc

refers to α∗ appearing in Theorem 5.1(a), and recall from that theorem that α∗
Tuc

> 0;

and D♦(α) > 0 by Remark 5.4.47 Also note that the rejection region {Tuc ≥ D♦(α)} is not trivial

as it has positive λRn -measure (and the same is true for its complement); see the discussion at

the very beginning of Section 6.2. Setting C♦(α) = g(D♦(α)) and using that {T̃uc ≥ C♦(α)}

and {Tuc ≥ g−1(C♦(α))} = {Tuc ≥ D♦(α)} differ at most by the λRn -null set span(X), we see

that (i) 0 < C♦(α) < n− (k − q), (ii) the size of {T̃uc ≥ C♦(α)} is less than or equal to α, with

equality holding for α ∈ (0, α∗
Tuc

]∩ (0, 1), (iii) C♦(α) is the smallest size-controlling critical value

(recall that g is strictly increasing), and (iv) the rejection region {T̃uc ≥ C♦(α)} is not trivial

as it has positive λRn -measure (and the same is true for its complement). In particular, note

that T̃uc and Tuc give rise to (essentially) the same test if the respective smallest size-controlling

critical values are used. We furthermore note that in the present situation C∗
T̃uc

= g(C∗
Tuc

)

and α∗
T̃uc

= α∗
Tuc

hold, where C∗
Tuc

, α∗
Tuc

correspond to C∗, α∗ in Part (a) of Theorem 5.1,

whereas C∗
T̃uc

, α∗
T̃uc

correspond to C∗, α∗ in Part (a) of Theorem 6.4.48 In particular, α∗
T̃uc

> 0

and 0 ≤ C∗
T̃uc

< n − (k − q) follow. These claims can be seen as follows: Under condition

46The trivial size-controlling critical values C for T̃uc sort of correspond to using ∞ as a “size-controlling critical
value” for Tuc.

47If α∗

Tuc
< α < 1, then the size, in fact, equals α∗

Tuc
; see Remark 5.6.

48If α∗

T̃uc
< α < 1, then the size of {T̃uc ≥ C♦(α)} is, in fact, equal to α∗

Tuc
= α∗

T̃uc
; cf. Footnote 47 and

Remark 6.8.
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(8) we have µ0 + ei(n) /∈ span(X) for every i ∈ I1(M
lin
0 ) and every µ0 ∈ M0. Consequently,

T̃uc(µ0+ei(n)) = g(Tuc(µ0+ei(n))), which proves C∗
T̃uc

= g(C∗
Tuc

) in view of strict monotonicity

of g. The relation α∗
T̃uc

= α∗
Tuc

then follows from the definitions of α∗
T̃uc

and α∗
Tuc

using that

{T̃uc ≥ C} and {Tuc ≥ g−1(C)} differ at most by the λRn -null set span(X) for every C > 0.

Positivity of α∗
T̃uc

now follows from positivity of α∗
Tuc

discussed before, and C∗
T̃uc

< n − (k − q)

follows since C∗
T̃uc

= g(C∗
Tuc

) and C∗
Tuc

< ∞. [Another way of proving α∗
T̃uc

> 0 and 0 ≤

C∗
T̃uc

< n− (k− q) without using relationship (19), is to first establish C∗
T̃uc

< n− (k− q) (from

observing that û(µ0+ ei(n)) ̸= 0 (as µ0+ ei(n) /∈ span(X)) for every i ∈ I1(M
lin
0 ), which implies

T̃uc(µ0 + ei(n)) < n− (k − q) for every such i in view of (18)) and then to proceed analogously

as in the proof of Theorem 6.12 below.]

While T̃uc is always size-controllable, whereas Tuc is not, this does not represent any real

advantage of T̃uc over Tuc, as we have seen that T̃uc admits only trivial size-controlling critical

values in the case where Tuc is not size-controllable. Even more importantly, and already noted

above, these test statistics give rise to (essentially) the same test if for both test statistics the

respective smallest size-controlling critical values are used (provided they both exist).

6.2.2 The case of T̃Het

For T̃Het we find that, not infrequently, it is also a bounded function, although we have no proof

that this is always so. We illustrate the problems that can arise here first by an example. See

also Remark 6.14.

Example 6.1. Consider the n×2 design matrixX where the first column represents an intercept,

the second column is x := (1,−1, 0, . . . , 0)′, and n ≥ 3. Let R = (0, 1), r = 0, hence q =

1. Obviously, the first column of X spans M
lin
0 . Since ei(n) /∈ M

lin
0 for every i = 1, . . . , n,

Assumption 2 holds. Furthermore, h̃ii = n−1. Thus d̃i = d̃1 holds for every i = 1, . . . , n

and for every of the five choices HC0R-HC4R. Note that d̃−1
1 = 1 (HC0R), d̃−1

1 = 1 − n−1

(HC1R), d̃−1
1 = 1 − n−1 (HC2R), d̃−1

1 = (1 − n−1)2 (HC3R), and d̃−1
1 = 1 − n−1 (HC4R),

and hence 0 < d̃−1
1 ≤ 1 for all five choices. Straightforward computations now show that

Ω̃Het(y) = d̃1

[

(y1 − ȳ)
2
+ (y2 − ȳ)

2
]

/4 and

T̃Het(y) = d̃−1
1 (y1 − y2)

2
/
[

(y1 − ȳ)
2
+ (y2 − ȳ)

2
]

(20)

whenever the numerator is positive, and T̃Het(y) = 0 otherwise. Here ȳ denotes the arithmetic

mean of the observations yi. [For later use we also note that the set B̃ is given by {y ∈ Rn : y1 =

y2 = ȳ}, and that the size control condition (17) is satisfied, since ei(n) /∈ B̃ for every i = 1, . . . , n

(also note that µ0 can be chosen to be zero because of r = 0). Furthermore, T̃Het is not constant

on Rn\B̃, since T̃Het(e1(n)) = T̃Het(e2(n)) = d̃−1
1 n2/[(n− 1)2 + 1] and T̃Het(ei(n)) = 0 for i ≥ 3

(note n ≥ 3) and since ei(n) /∈ B̃ for every i.] It is now evident from (20) that T̃Het(y) ≤ 2d̃−1
1 for

every y ∈ Rn and that this bound is attained whenever y1+y2 = 2ȳ and y1 ̸= y2 (e.g., for y = x).

It follows that any critical value C ≥ 2d̃−1
1 leads to a test with rejection region that is empty if
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C > 2d̃−1
1 , and is a Lebesgue null-set if C = 2d̃−1

1 (the latter following from Lemma D.1(d) in

Appendix D together with some of the observations just noted after (20)); thus in both cases

all the rejection probabilities are zero under the null as well as under the alternative (given our

Gaussianity assumption and the fact that all Σ ∈ CHet are positive definite); in particular, these

tests have zero power. Since d̃−1
1 ≤ 1, this eliminates all critical values C ≥ 2 from practical

use. In particular, this eliminates the commonly used choice where C is the 95%-quantile of a

chi-square distribution with 1 degree of freedom, which is approximately equal to 3.8415.

In the preceding example any critical value C ≥ 2d̃−1
1 is trivially a size-controlling critical

value for the given significance level α (0 < α < 1), but it is “too large” and leads to a trivial

test. Certainly, one would prefer to use the smallest size-controlling critical value C♦(α) instead

(which in the preceding example exists by Theorem 6.4 and by what has been shown in the

example) and one would hope that the resulting test is not trivial. As we shall show, this is

indeed the case. To this end we first give a general result that, in particular, is applicable to the

preceding example. Recall that C♦(α) is positive (Remark 6.6), and that Theorem 6.4 is silent

on whether α∗ > 0 or not.

Theorem 6.12. Suppose Assumption 2 and (17) are satisfied, and that T̃Het is not constant on

Rn\B̃. Let α satisfy 0 < α < 1, and let C∗ and α∗ be as defined in Part (b) of Theorem 6.4. If

C∗ < supy∈Rn T̃Het(y) holds, then we have α∗ > 0, and the rejection region {T̃Het ≥ C♦(α)} is

not a λRn-null set, where C♦(α) is the smallest size-controlling critical value as in Part (c) of

Theorem 6.4.

Remark 6.13. (i) The preceding theorem clearly implies that – under its assumptions – the

rejection probabilities associated with the rejection region {T̃Het ≥ C♦(α)} are positive under

the null as well as under the alternative (in view of our Gaussianity assumption and the fact that

all Σ ∈ CHet are positive definite). [While we already know from Theorem 6.4(b) and Remark

6.8 that the rejection region {T̃Het ≥ C♦(α)} has size equal to α in case α ∈ (0, α∗] ∩ (0, 1),

and has size equal to α∗ if α∗ < α < 1, this by itself does not allow one to conclude that the

rejection region has positive λRn -measure as the case α∗ = 0 is not ruled out by Theorem 6.4(b)

and Remark 6.8.]

(ii) Suppose C∗ = supy∈Rn T̃Het(y), but that the other assumptions of Theorem 6.12 hold.49

Then the rejection region {T̃Het ≥ C♦(α)} is a λRn -null set; thus also the smallest (and hence

any) size-controlling critical value leads to a trivial test. To prove the claim, note that by

Proposition 6.7 we have C♦(α) ≥ C∗, implying that the rejection regions are either empty or

coincide with the sets {T̃Het = C∗}, respectively. In the latter case apply Part (d) of Lemma D.1

in Appendix D. We also point out that in the present case α∗ = 0 must hold since the rejection

regions appearing in the definition of α∗ are all empty (because of C > C∗ = supy∈Rn T̃Het(y) in

the definition of α∗).

49We have not investigated whether this case can actually occur for T̃Het. Recall that for T̃uc this case indeed
can occur, see Case 1 in Section 6.2.1.
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(iii) If Assumption 2 holds, but T̃Het is constant on Rn\B̃, any rejection region of the form

{T̃Het ≥ C} is trivial in that the rejection region or its complement is a λRn -null set. [This

case can actually occur, see Remark D.2 in Appendix D.] If Assumption 2 is violated, T̃Het is

identically zero and a similar comment applies.

Example 6.2. We continue the discussion of Example 6.1. As noted prior to Theorem 6.12, any

critical value C ≥ 2d̃−1
1 is size-controlling in a trivial way, but leads to trivial rejection regions.

We now show that the smallest size-controlling critical value C♦(α) indeed leads to a non-

trivial test (which, in particular, has positive rejection probabilities in view of our Gaussianity

assumption and the fact that all Σ ∈ CHet are positive definite). For this it suffices to verify

the assumptions of Theorem 6.12. The first three assumptions have already been verified above.

From the calculations in Example 6.1 it is now easy to see that C∗ = d̃−1
1 n2/[(n − 1)2 + 1],

which is smaller than 2d̃−1
1 = supy∈Rn T̃Het(y). This completes the proof of the assertion. From

Remark 6.13(i) we furthermore see that the rejection region {T̃Het ≥ C♦(α)} has size equal to α

if α ∈ (0, α∗]∩ (0, 1), and has size equal to α∗ if α∗ < α < 1. Finally we note that size-controlling

critical values that do not lead to trivial tests must lie in the interval [d̃−1
1 n2/[(n−1)2+1], 2d̃−1

1 )

which is quite narrow as it is contained in the interval [d̃−1
1 , 2d̃−1

1 ).

While the situation in Example 6.1 is somewhat particular, the example may perhaps con-

tribute to a better understanding of the Monte Carlo findings in Davidson and MacKinnon

(1985) and Godfrey (2006), namely that the tests, obtained from T̃Het (employing HC0R-HC4R

weights) in conjunction with conventional critical values such as the 95%-quantile of a chi-square

distribution with appropriate degrees of freedom, can suffer from severe underrejection under the

null.

Remark 6.14. Another class of examples where T̃Het is bounded is the case q = k discussed

in Remark 6.10. Recall from that remark that in case q = k > 1 condition (17) is, however,

never satisfied and thus Theorem 6.12 is then not applicable. We have not further investigated

non-triviality of tests based on T̃Het in case q = k beyond the observations made in Remark

6.10(iii) that constancy of T̃Het on Rn\B̃ is possible in case q = k ≥ 1 and thus then Remark

6.13(iii) applies.

7 Generalizations

7.1 Generalizations beyond Gaussianity

(i) All results in the preceding sections (as well as the extensions described in Appendix A)

referring to properties under the null hypothesis carry over as they stand to the situation where

the error term U in (1) is elliptically symmetric distributed and has no atom at zero, i.e., U is

distributed as σΣ1/2z where z has a spherically symmetric distribution on Rn that has no atom

31



at zero.50 This is so since – under this distributional model – the null rejection probabilities of

any G(M0)-invariant rejection region coincide with the corresponding null rejection probabilities

under the Gaussian model (i.e., where z is standard Gaussian); see the discussion in Section 5.5

of Preinerstorfer and Pötscher (2016) and Appendix E.1 of Pötscher and Preinerstorfer (2018).51

This implies, in particular, not only that the sufficient conditions for size controllability under

the above elliptically symmetric distributed model as well as under the Gaussian model are the

same, but that also the numerical values of the size-controlling critical values coincide. As a

consequence, the algorithms for computing the size-controlling critical values in the Gaussian

case (used in Section 11 and described in Section 10 and Appendix E) can be used in the above

elliptically symmetric distributed case without any change whatsoever. The same is actually true

if z has a distribution in a certain class larger than the class of spherical symmetric distributions

with no atom at zero, see Appendix E.1 of Pötscher and Preinerstorfer (2018).

(ii) Furthermore, as discussed in detail in Appendix E.2 of Pötscher and Preinerstorfer (2018),

the sufficient conditions for size controllability that we have derived under Gaussianity also imply

size controllability for many more forms of distribution of z than those mentioned in (i); however,

the corresponding size-controlling critical values may then differ from the size-controlling critical

values that apply under Gaussianity.

(iii) Similarly as in Section 5.5 of Preinerstorfer and Pötscher (2016), the negative results given

in the preceding sections (as well as the ones described in Appendix A) such as, e.g., size 1 results,

extend in a trivial way beyond the Gaussian model as long as the maintained assumptions on the

feasible error distributions are weak enough to ensure that the implied (possibly semiparametric)

model, i.e., set of distributions for Y, contains the set given in (2), but possibly contains also

other distributions.

(iv) A further generalization beyond Gaussianity in the important special case where C = CHet

is as follows: SupposeU is distributed as σΣ1/2 diag(r)z where z is standard normally distributed

on Rn and where the n-dimensional random vector r is independent of z with distribution ρ,

where ρ is a distribution on (0,∞)n. [This includes the case where the elements of diag(r)z form

an i.i.d. sample from a scale mixture of normals.] Let Qµ,σ2Σ,ρ denote the implied distribution

for Y given by (1) where µ = Xβ. Consider now instead of (2) the (semiparametric) model

given by all distributions Qµ,σ2Σ,ρ where µ ∈ span(X), 0 < σ2 <∞, Σ ∈ C, and ρ is an arbitrary

distribution on (0,∞)n. Then the sufficient conditions for size controllability derived under

Gaussianity in earlier sections (and in Appendix A) also imply size controllability in this larger

model. In fact, the size-controlling critical values that apply under Gaussianity deliver also size

control under this more general model. This follows from the following reasoning: Let W be a

Borel set in Rn such that Pµ0,σ
2Σ(W ) ≤ α for every µ0 ∈ M0, every 0 < σ2 < ∞, and every

50Note that all results in the preceding sections (as well as the extensions in Appendix A), except for a few
comments in Section 6.2, are results referring to properties under the null hypothesis,

51Note that all rejection regions considered in the preceding sections are G(M0)-invariant, because the test
statistics considered are so.
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Σ ∈ CHet. Then for every such µ0, σ
2, Σ, and every distribution ρ on (0,∞)n we have

Qµ0,σ
2Σ,ρ(W ) = Pr(µ0 + σΣ1/2 diag(r)z ∈W ) = E[ Pr(µ0 + σΣ1/2 diag(r)z ∈ W | r)]

= E[ Pr(µ0 + σrΣ
1/2
r

z ∈ W | r)] = E[Pµ0,σ
2
r
Σr
(W )] ≤ α,

where Σ
1/2
r := Σ1/2 diag(r)/sr with sr denoting the positive square root of the sum of the

diagonal elements of (Σ1/2 diag(r))
2
= Σdiag2(r) and where σr = σsr. Here we have used that

Pµ,σ2
r
Σr
(W ) ≤ α by assumption since Σr = Σdiag2(r)/s2

r
∈ CHet and 0 < σr < ∞ hold for

every realization of r. In the above Pr denotes the probability measure governing (r, z) and

E the corresponding expectation operator. [In the special case where diag(r) is a (random)

multiple of the identity matrix In, the assumption C = CHet is superfluous as then Σ
1/2
r = Σ1/2,

which by assumption belongs to the given C. In this case U satisfies the assumptions in (i), and

hence (iv) adds little new, except that – in contrast to (i) – the reasoning works without use of

G(M0)-invariance.]

(v) It is apparent from the reasoning in (iv) that Gaussianity of z can be replaced by any

other distributional assumption for which size controllability has already been established. E.g.,

one can in (iv) choose z to have a spherically symmetric distribution without an atom at zero or

to have a distribution in the more general class mentioned in (i) (note that all relevant rejection

regions discussed in earlier sections are G(M0)-invariant and thus (i) applies). In a similar vein,

one can combine the results in Appendix E.2 of Pötscher and Preinerstorfer (2018) discussed in

(ii) above with the reasoning outlined in (iv). We abstain from presenting details.

7.2 Generalizations to stochastic regressors

The assumption of nonstochastic regressors can be easily relaxed as follows: Suppose X is

random and U is conditionally on X distributed as N(0, σ2Σ), with σ2 = σ2(X) > 0 and

Σ = Σ(X) ∈ CHet where σ2(·) and Σ(·) may vary in given classes of functions. The size con-

trol results such as Theorems 5.1 and 6.4 can then obviously be applied after one conditions on

X provided almost all realizations of X satisfy the assumptions of those theorems, which will

typically be the case (for brevity we do not provide a formal statement here).52 The result-

ing conditional size control statements then immediately imply that the so-obtained conditional

size-controlling critical values C = C(α,X) also control size unconditionally. Size 1 results such

as, e.g., Propositions 5.5, 5.7, or 6.7 also extend to conditional size 1 results in a similar manner

provided σ2(X) and Σ(X) vary independently through all of (0,∞) and CHet, respectively, for

(almost) every realization of X, when the functions σ2(·) and Σ(·) vary in the before mentioned

function classes.53 Generalizations to non-Gaussianity similarly as discussed in Section 7.1 are

also possible in the present context.

52An appropriately modified statement applies to the size control results in Appendix A.
53See Footnote 40 in Pötscher and Preinerstorfer (2020) for a discussion of sufficient conditions.

33



8 Results for other classes of tests

The results in Sections 5 and 6 (and in Appendix A) have been obtained with the help of a general

theory developed in Section 5 of Preinerstorfer and Pötscher (2016), Section 5 of Pötscher and

Preinerstorfer (2018), and Section 3.1 of Pötscher and Preinerstorfer (2019) that covers a very

broad class of test statistics (and actually allows also for correlated errors). We note that, like in

Section 7.1, Gaussianity is again not essential for a good portion of this general theory, see Section

5.5 of Preinerstorfer and Pötscher (2016) as well as Appendix E of Pötscher and Preinerstorfer

(2018).54 We next discuss a few further situations that can also be handled by the general theory

just mentioned but we refrain from spelling out the details:55

(i) The test statistic considered is an OLS-based test statistic like THet, but where Ω̂Het is

now replaced by an appropriate estimator derived from a given (possibly misspecified) parametric

heteroskedasticity model described by a parameter vector θ.

(ii) The test statistic is a Wald-type test statistic based on a (feasible) generalized least-

squares estimator together with an appropriate covariance matrix estimator based on a given

(possibly misspecified) parametric model. [This includes the (quasi-)maximum likelihood esti-

mator (provided θ is unrelated to β).] Alternatively, the test statistic is the (quasi-)likelihood

ratio or (quasi-)score test statistic based on this parametric model.

(iii) The test statistic is a Wald-type test statistic as in (ii), except that the covariance matrix

estimator is now nonparametric (in the spirit of heteroskedasticity robust testing) as described

in Romano and Wolf (2017). See also Cragg (1983, 1992), Flachaire (2005), Wooldridge (2010,

2012), Romano and Wolf (2017), Lin and Chou (2018), DiCiccio et al. (2019).

9 Some comments on power

Under our maintained assumptions, heteroskedasticity robust tests based on THet or Tuc (using

an arbitrary critical value C, including size-controlling ones) have positive power everywhere in

the alternative (cf. the discussion at the beginning of Section 6.2). These tests can furthermore

be shown to have power that goes to one as one moves away from the null hypothesis along

sequences (µl, σ
2
l ,Σl) where µl moves further and further away from M0 (the affine space of

means described by the restrictions Rβ = r) in an orthogonal direction as l → ∞, where σ2
l

converges to some finite and positive σ2, and Σl converges to a positive definite matrix. Despite

of what has just been said, these tests can have, in fact not infrequently will have, infimal power

equal to zero if C is sufficiently rich, e.g., if C = CHet; cf. Theorem 4.2 in Preinerstorfer and

Pötscher (2016), Lemma 5.11 in Pötscher and Preinerstorfer (2018), and Theorem 4.2 in Pötscher

54Also arguments like in (iv) and (v) of Section 7.1 can be applied to obtain generalizations.
55Applying some of the main results of this general theory (e.g., Corollary 5.6 or Proposition 5.12 of Pötscher

and Preinerstorfer (2018)) will require one to determine the set J(L,C) defined in Appendix B. For the important
cases C = CHet and C = C(n1,...,nm) (defined in Appendix A), this is already accomplished in Propositions B.1
and B.2 in Appendix B below.
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and Preinerstorfer (2019). [This does not contradict the before mentioned result as for this result

sequences Σl that converge to a singular matrix as l→∞ were ruled out.]

For tests based on T̃Het or T̃uc the situation is somewhat different. As shown in Section

6.2, tests based on T̃Het or T̃uc can be trivial for some choices of critical values C (and then

will have power zero everywhere in the alternative). However, if C is chosen to be the smallest

size-controlling critical value (provided it exists), the resulting tests obtained form T̃Het or T̃uc

will typically have positive power (under appropriate assumptions). In particular, then the

test based on T̃uc has the same power function as the test based on Tuc that uses its smallest

size-controlling critical value, provided the latter exists, see Section 6.2.1. We have not further

investigated the power properties of the tests based on T̃Het in any more detail on a theoretical

level. The numerical results in Section 11.2 seem to suggest that for these tests power may not

go to one along sequences (µl, σ
2
l ,Σl) as mentioned above: in fact, power does not rise above

the significance level α in some examples (on the range of alternatives considered). This feature

makes tests based on T̃Het rather undesirable.

10 Computing the size and smallest size-controlling criti-

cal values

Consider a testing problem as in Equation (3) with C = CHet and let T be one of the test statistics

considered in the present article (e.g., THet with some choice for the weights di). Suppose we want

to numerically determine the size of the test with rejection region {T ≥ C} for some user-supplied

critical value C, i.e., we want to determine

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(T ≥ C). (21)

Now, for all test statistics T considered in the present article, this can be simplified to

sup
Σ∈CHet

Pµ0,Σ(T ≥ C) (22)

where, subject to µ0 ∈ M0, µ0 can be chosen as desired. This is due to invariance properties

of T , cf. Remarks 3.2 and 6.2. The quantity in (22) can now be approximated numerically by

any maximization algorithm where the probabilities are evaluated by Monte-Carlo methods or

by the algorithm described in Davies (1980) in case q = 1, cf. Appendix E.1.56

Suppose next that we want to numerically determine the smallest size-controlling critical

value C♦(α) ∈ R (0 < α < 1) when using the test statistic T . [We assume here that the user

knows that the smallest size-controlling critical value indeed exists, e.g., because the user has

checked that the sufficient conditions developed in the present article hold, or because of other

56Alternative to Davies (1980) other algorithms like Imhof’s algorithm, etc. can be used, some of which are also
implementented in the R-package CompQuadForm (Duchesne and de Micheaux (2010)).
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reasoning as, e.g., used in Example 5.5.] Then, in view of (21) and (22), we need to compute

C♦(α) as the smallest real number C for which

sup
Σ∈CHet

Pµ0,Σ(T ≥ C) ≤ α (23)

holds. The quantity to the left in (23) is non-increasing in the critical value C. Hence, to deter-

mine the smallest size-controlling critical value C♦(α), any line-search algorithm (in combination

with an algorithm to determine the sizes as described before) can be used to compute C♦(α). We

stress that it is of foremost importance to know that the testing problem at hand actually allows

for size control before one attempts to numerically determine C♦(α). Hence, the theoretical

results of the present article are of paramount importance also for the algorithmic aspect of the

problem.

The specific algorithms we use to determine size and size-controlling critical values in our

numerical studies are based on the above observations and are described in detail in Appendix

E. They are made available in the R-package hrt (Preinerstorfer (2021)) for the convenience of

the user. The numerical procedures we use are heuristic in nature. Questions of efficacy of these

algorithms or about theoretical guarantees are certainly important, but are beyond the scope of

the present article.

Determining smallest size-controlling values numerically is important, e.g., if one wants to

compare their magnitude with that of standard critical values in some special cases, as we do

inter alia in the next section, or if one wants to obtain a confidence interval. However, a user

who has observed the data and only wants to decide whether or not to reject the null hypothesis

at significance level α (0 < α < 1) when using T combined with the smallest size-controlling

critical value C♦(α), can actually perform this test without needing to compute C♦(α): Let yobs

be the observed data. Define the “maximal p-value” as

p(yobs) = sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ({z ∈ Rn : T (z) ≥ T (yobs)})

= sup
Σ∈CHet

Pµ0,Σ({z ∈ Rn : T (z) ≥ T (yobs)}), (24)

where the second equality in the display follows from the invariance properties mentioned before

(and µ0 ∈ M0 can be chosen as desired). It is now not difficult to see that p(yobs) ≤ α is

equivalent to T (yobs) ≥ C♦(α). That is, rejecting if and only if p(yobs) ≤ α leads to exactly

the same test as rejecting if and only if T (yobs) ≥ C♦(α), with the former description having

the advantage that the more costly computation of C♦(α) can be avoided. What needs to

be computed is (24), which, however, is nothing else than the size of the test when using the

“critical value” T (yobs). Hence, p(yobs) can be determined by any algorithm that determines

the size (22) for the user-supplied “critical value” C = T (yobs). In particular, the routine “size”

provided in the R-package hrt (Preinerstorfer (2021)) can be used for this purpose. Note that

checking whether p(yobs) ≤ α avoids the line-search part (as outlined following (23)), and is
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thus computationally more efficient than first determining C♦(α) (as outlined above) and then

checking whether T (yobs) ≥ C♦(α).

Finally, we note that if (contrary to what we assume in this section) no size-controlling critical

value exists for a given significance level α ∈ (0, 1), then the maximal p-value in (24) is larger

than α for every possible observed value yobs, and the corresponding test thus never rejects and

thus is uninformative. Hence, while the explicit computation of a smallest size-controlling critical

value can be avoided for performing a single test, knowing its existence is important as then the

resulting test is guaranteed to be informative (non-trivial) if THet or Tuc is being used; and the

same is true for T̃Het and T̃uc under the conditions discussed in Section 6.2.

We also note that in view of the discussion in Section 7.1 the algorithms for computing null

rejection probabilities, size, and smallest size-controlling critical values discussed in this section

and Appendix E remain valid for elliptically symmetric distributed data without any need for

modification.

11 Numerical results

In this section we pursue two goals:

1. In Subsection 11.1 we show numerically that any of the usual heteroskedasticity robust

tests can suffer from overrejection of the null hypothesis (sometimes by a large margin)

when they are based on conventional critical values. While this adds to similar evidence

already present in the literature for the HC0-HC4 based tests (see Section 1), this seems

to be a new observation for the HC0R-HC4R based tests. In any case, this drives home

the point that none of these heteroskedasticity robust tests based on conventional critical

values comes with a guarantee that size is controlled by the nominal significance level α.

Consequently, instead of using conventional critical values, this strongly suggests to use

(smallest) size-controlling critical values as investigated in this paper.

2. In Subsection 11.2 we then numerically compute smallest size-controlling critical values

and study the power behavior of tests based on such size-controlling critical values in some

examples.

In this section (and in the attending Appendices E and F) we shall often refer to THet as

HC0-HC4 when we want to stress that the weights di being used are the HC0-HC4 weights,

respectively, see Section 3. Similarly, we shall refer to T̃Het as HC0R-HC4R when the HC0R-

HC4R weights are used, see Section 6. For reasons of uniformity of notation, we shall then

often denote Tuc as UC and T̃uc as UCR. Furthermore, throughout this section we consider the

heteroskedastic Gaussian linear model with C = CHet as introduced in Section 2; in particular,

the notion of size in the present section (and the attending appendices) always refers to this

model.
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The algorithms for computing rejection probabilities, the size of a test, and size-controlling

critical values used in the before-mentioned numerical computations are described in Section 10

and Appendix E. Implementations are available as an R-package hrt (Preinerstorfer (2021)).

11.1 Tests based on conventional critical values

We consider the important case q = 1, and first illustrate numerically that none of the test

statistics UC, HC0-HC4, UCR, and HC0R-HC4R combined with the critical value Cχ2,0.05 ≈

3.8415 results in a test that is guaranteed to have size less than or equal to α = 0.05. This

is achieved by providing instances of design matrices X and of hypotheses, described by (R, r),

such that the respective test has size larger than the nominal significance level α = 0.05, often by

a large margin. Here Cχ2,0.05 denotes the 95%-quantile of a chi-square-distribution with 1 degree

of freedom. [This critical value has a justification for use with HC0-HC4 or HC0R-HC4R via

asymptotic considerations, but, in general, there is no such justification for use with UC or UCR,

which we nevertheless include here for completeness.57] That is, in the instances we exhibit, this

conventional critical value turns out to be too small. We next show similar results for other

suggestions of critical values, e.g., for “degree-of-freedom” adjustments to the conventional chi-

square based critical value such as the Bell-McCaffrey adjustment (Bell and McCaffrey (2002),

Imbens and Kolesár (2016)). It is important to note here that in all the instances mentioned

our conditions for size-controllability are satisfied, showing that size-controlling critical values

can actually be found; hence, the overrejection problems mentioned before are not intrinsic

problems, but only reflect the fact that conventional critical values can be a bad choice and do

not guarantee size control. [In the present context it is worth recalling that for the test statistics

HC0R-HC4R we have already shown in Example 6.1 in Section 6.2 that other situations can be

found in which conventional critical values such as, e.g., Cχ2,0.05 are too large, as the resulting

tests reject with probability zero only (under the null as well as under the alternative), rendering

these tests useless.]

To uncover instances where the conventional critical value Cχ2,0.05 is too small, we make use

of the following observation: In case a given test statistic from the above list (together with a

given design matrix X and hypothesis described by (R, r)) is such that the lower bound C∗ on

size-controlling critical values obtained in Propositions 5.5 (6.7, respectively) exceeds Cχ2,0.05,

we are done, as we then know that the critical value Cχ2,0.05 leads to a test that has size 1. [As

noted subsequent to Theorems 5.1 and 6.4, the value of r actually plays no rôle here, and we

may set it to zero.]

Since the lower bounds C∗ for size-controlling critical values in Propositions 5.5 (6.7, respec-

tively) depend on the given test statistic, on X and on R, we may – for any given choice of test

statistic and any given R – numerically search for particularly “hostile” design matrices, i.e., for

design matrices for which the lower bound is large, to see whether matrices X exist for which

57Of course, in the special case of homoskedasticity, the before mentioned justification also applies to UC and
UCR.
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the lower bound exceeds Cχ2,0.05. We only do this for k = 2, R = (0, 1), r = 0, and n = 25, and

restrict ourselves to matrices X with first column representing an intercept. The concrete search

used is detailed in Appendix F.1, see Algorithm 5 in particular. Table 1 provides, for every test

statistic considered, the lower bound C∗ corresponding to the most “hostile” design matrix found

by the search. [As the searches are run separately for each test statistic, the resulting “hostile”

design matrices will typically differ across the runs.]58 In combination with the theoretical results

UC 731.60 UCR 23.59
HC0 95.56 HC0R 1.08
HC1 1711.19 HC1R 1.04
HC2 52.23 HC2R 1.04
HC3 1.00 HC3R 1.00
HC4 1.02 HC4R 1.04

Table 1: C∗ under respective ”hostile” X.

UC 0.98 UCR 0.98
HC0 0.99 HC0R 0.16
HC1 1.00 HC1R 0.17
HC2 0.99 HC2R 0.17
HC3 0.19 HC3R 0.14
HC4 0.11 HC4R 0.10

Table 2: ”Worst-case” sizes using Cχ2,0.05.

from Propositions 5.5 and 6.7, Table 1 shows that for some design matrices X the critical value

Cχ2,0.05 ≈ 3.8415 results in a test with size equal to 1 when combined with UC, HC0-HC2, and

also with UCR. [This is so despite the fact that, for any of the twelve test statistics considered,

the sufficient conditions for size-control in the pertaining theorems in Sections 5 and 6.1 are sat-

isfied for all relevant X matrices encountered in the numerical procedure (as we have checked),

and hence it is known that size-controlling critical values exist in all these situations!] Table 1

is not informative about the size of the remaining seven tests, since the corresponding entries in

that table are all less than Cχ2,0.05. To obtain insight into the sizes of the remaining seven tests

we do the following: for each of the tests we numerically compute the size for various instances

of design matrices (ones that have already been used in the numerical search leading to Table 1)

and report the largest one of these sizes (“worst case” sizes) in Table 2.59 We actually do this for

all twelve tests considered. The algorithm used in the size computation is the implementation

of Algorithm 1 in the R-package hrt (Preinerstorfer (2021)), cf. the description in Appendices

E.2 and F.1. Table 2 now clearly shows that for every test statistic considered an instance can

be found, in which the size of the test (when using the critical value Cχ2,0.05) clearly exceeds the

nominal significance level α = .05. The lowest value in that table is attained by HC4R, but a

size of 0.10 is still twice the nominal significance level α.

We note that the numbers shown in Table 2 actually only represent numerically determined

lower bounds for the actual sizes, as their computation involves (for any given X) a numerical

search procedure (over the set CHet) for the worst-case null rejection probability; that is, the

58Since, for example, HC0 is a multiple of HC1, where the factor is (n−k)/n = 0.92, we know that the “hostile”
design matrix obtained from the search for HC1 leads to a C∗-value of 0.92 ∗ 1711.19 = 1574.29 for HC0, larger
than the value 95.56 obtained from the search for HC0, cf. Table 1. We could have reported this larger value,
but decided to present the raw results form our searches as this is sufficient for our purposes. We also note that
our search procedure detailed in Appendix F.1 does not seriously attempt to optimize the C∗-value (for everyone
of the test statistics considered) over the set of all feasible X, but is only a crude search for finding a matrix
resulting in a C∗-value sufficiently large for our purposes.

59Of course, considering additional design matrices X would potentially lead to even larger sizes.
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numbers shown in Table 2 correspond to the null rejection probability computed from a “bad”

covariance matrix Σ, but potentially not for the “worst” possible one. [In this process, for any

given Σ ∈ CHet, we have to numerically compute the null rejection probability, which can be

done quite accurately in case q = 1 by algorithms like the Davies algorithm, see Appendix E.1 as

well as Appendix E.2.] In particular, the entries in the 0.98-0.99 range in Table 2 are numerically

determined lower bounds for the size, which, in fact, we know to be equal to 1 in light of Table

1. [We could have used this knowledge to replace the entries in question in Table 2 by 1, but we

decided otherwise in order to showcase the concrete outcome of the numerical algorithm that has

been run. Of course, one could also improve this outcome by using a higher accuracy parameter

in the optimization procedures involved.]

Sometimes – without much theoretical justification in general – it is suggested in the literature

to replace Cχ2,0.05 by the 95%-quantile of an F1,n−k-distribution, which is approximately 4.28 in

the situation considered here (n− k = 23). Obviously, from Table 1 we see that the conclusions

regarding UC, HC0-HC2, and UCR remain the same when this critical value is used. Repeating

the exercise that has led to Table 2, but with Cχ2,0.05 replaced by the 95%-quantile of an F1,n−k-

distribution, gives Table 3, leading essentially to the same conclusions.

UC 0.98 UCR 0.98
HC0 0.99 HC0R 0.15
HC1 1.00 HC1R 0.16
HC2 0.98 HC2R 0.15
HC3 0.18 HC3R 0.13
HC4 0.09 HC4R 0.08

Table 3: ”Worst-case” sizes using F-critical value.

“Degree-of-freedom” adjustments to the conventional chi-square based critical value such as

the Bell-McCaffrey adjustment (Bell and McCaffrey (2002)) have been discussed in the literature.

In particular, Imbens and Kolesár (2016) suggested to use this adjustment with the HC2 statistic.

We have repeated the above exercise that has led to the entry for HC2 in Table 2, but with

Cχ2,0.05 replaced by the Bell-McCaffrey adjustment. For the computation of the Bell-McCaffrey

adjustment we relied on the R-package dfadjust (Kolesár (2019)). For the resulting test, the

largest size that was found in our computations was 0.24, which is more than four times the

nominal significance level. It transpires that this adjustment does also not come with a size-

guarantee.

We conclude here by stressing that the negative findings in this subsection were obtained in

a very simple model with only two regressors and where only one of the parameters is subject to

test. For more complex models and test problems the size distortions may even be worse.
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11.2 Power comparison of tests based on size-controlling critical values

A power comparison of two tests, both conducted at a given nominal significance level α, makes

sense only if both tests actually are level α tests, i.e., if both tests have a size not exceeding the

given α. For this reason, we now compare the tests obtained from the statistics UC, HC0-HC4,

UCR, HC0R-HC4R only when respective smallest size-controlling critical values are used. Our

theoretical results concerning the existence of size-controlling critical values, together with the

algorithms for their computation in Appendix E, allow for such a comparison in terms of power.

Throughout, in addition to the power functions of the before-mentioned tests, we also show

as a benchmark the power function of the infeasible (i.e., oracle) GLS-based F -test conducted at

the 5%-significance level, that makes use of knowledge of Σ. For given Σ ∈ CHet, the distribution

of this infeasible GLS-based F -test statistic is (under PXβ,σ2Σ with β ∈ Rk, σ2 ∈ (0,∞)) a

noncentral F1,n−k-distribution with noncentrality parameter δ2, where

δ = (R(X ′Σ−1X)R′)−1/2(Rβ − r)/σ.

Since the power functions of all the tests considered in our study depend on the parameters β,

σ2, and Σ only through (Rβ − r)/σ and Σ (because of G(M0)-invariance and Proposition 5.4 in

Preinerstorfer and Pötscher (2016)), and thus depend only on δ and Σ, we shall – for given Σ –

present all these power functions as a function of δ. We show only results for δ ≥ 0, as the power

functions in fact depend on δ only through |δ| (for given Σ); see Proposition 5.4 in Preinerstorfer

and Pötscher (2016).

11.2.1 Comparing the means of two heteroskedastic groups

As a practically relevant example, we here compare the power of tests based on size-controlling

critical values in the context of Example 5.4. That is, we treat the problem of comparing the

means of two heteroskedastic groups (e.g., a treatment and a control group), the null hypothesis

being that the difference of expected outcomes in each group is zero. We consider the case where

n = 30 and α = 0.05. Furthermore, we vary the size n1 of the first group (n1 ∈ {3, 9, 15}),

corresponding to a “strongly unbalanced”, “moderately unbalanced”, and “balanced” design,

respectively. We compute the power for a number of covariance matrices Σa given as follows:

For a = 1, 5, 9 define

Σa = 10−1 diag

(

a

n1
, . . . ,

a

n1
,
10− a

n− n1
, . . . ,

10− a

n− n1

)

∈ CHet,

where the first n1 (and last n− n1, respectively) diagonal entries of each Σa are constant. That

is, we look at power functions evaluated at covariance matrices under which the subjects in the

same group actually have the same variances. [For brevity we do not report power functions for

covariance matrices not sharing this property.] For the balanced design, we note that Σ1 and

Σ9 lead to the same power of each test (but we report all results for completeness), and that Σ5
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corresponds to homoskedasticity.

The critical values are chosen in each case as the smallest critical value guaranteeing size

control over CHet (implying, of course, that the corresponding tests can have null rejection

probabilities smaller than α for the covariance matrices Σa considered). The existence of said

critical values follows from our theory and is discussed in detail in Example 5.4 for the test

statistics UC and HC0-HC4; in particular, all assumptions of Theorems 5.1 are satisfied. For

UCR the existence is guaranteed by Part (a) of Theorem 6.4. With regard to the test statistics

HC0R-HC4R, note that Assumption 2 is satisfied since ei(n) /∈ M
lin
0 = M0 = span((1, . . . , 1)′)

for every i = 1, . . . , n as n = 30 > k = 2. This also shows that the sufficient condition for

size control (17) is satisfied as B̃ = M0 is easily verified and since one may set µ0 = 0. We

have verified the non-constancy assumption on the test statistics HC0R-HC4R in Theorem 6.4

numerically. As a consequence, all assumptions of Part (b) of Theorem 6.4 are satisfied.

We note that some of the test statistics differ from each other only by a known multiplicative

constant and hence are equivalent in the sense that they give rise to the same test when the

respective smallest size-controlling critical value is employed, see Remarks 5.3 and 6.5: In the

unbalanced case (n1 ∈ {3, 9}), HC0 and HC1 are equivalent in this sense, as are HC0R-HC4R

(the latter is so since h̃ii = 1/n which does not depend on i). In the balanced case (n = 15),

UC and HC0-HC4 are all equivalent, and the same is true for UCR and HC0R-HC4R as is not

difficult to see. Furthermore, in the balanced as well as in the unbalanced case, the rejection

regions of the tests based on UC and UCR coincide essentially (i.e., up to a λRn -null set) as a

consequence of the relationship established in Section 6.2.1. In particular, it follows that in the

balanced case, all tests considered (essentially) coincide. We nevertheless compute the power

functions for each of the tests separately without making use of the noted equivalencies; this

provides a double-check of our numerical results.60

Numerically the critical values were determined through the implementation of Algorithms

1 and 3 in the R-package hrt (Preinerstorfer (2021)) version 1.0.0, and the power functions

were computed with the implementation of the algorithm by Davies (1980) in the R-package

CompQuadForm (Duchesne and de Micheaux (2010)) version 1.4.3; see Appendices E.2 and

F.2 for more details. For the sake of illustration, we also report the critical values obtained for

every test considered and every balancedness condition in Table 4.

In relation to Table 4 we note that the equivalences discussed before predict, e.g., that the

ratio between the entries in the column labeled HC0 and the corresponding entries in the column

labeled HC1 should be equal to n/(n−2) = 30/28 ≈ 1.0714. The ratios computed from the table

are 1.0414, 1.0761, and 1.0721 (for n1 = 3, 9, 15), which is in pretty good agreement (especially

if one converts the critical values shown in the table to critical values for the corresponding

“t-test” versions by computing their square roots). The agreement between theoretical and

observed ratios for the HC0R-HC4R columns is similar. In the balanced case one can also use

the additional equivalences mentioned before and one again finds very good agreement. Similarly,

60The equivalencies mentioned in this paragraph for the two-group-comparison problem hold for general n, n1,
and n2 as is easily seen.
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n1 UC HC0 HC1 HC2 HC3 HC4
3 225.97 26.69 25.63 17.48 11.86 5.43
9 12.70 5.80 5.39 5.10 4.55 4.70
15 4.59 4.91 4.58 4.59 4.28 4.58

n1 UCR HC0R HC1R HC2R HC3R HC4R
3 25.82 3.25 3.14 3.14 3.02 3.13
9 9.05 4.28 4.15 4.14 4.06 4.19
15 4.08 4.23 3.92 4.08 3.95 4.09

Table 4: The smallest size-controlling critical values for comparing the means of two heteroskedas-
tic groups.

the critical values for UC and UCR in Table 4 are in excellent agreement with their theoretical

relationship found in Section 6.2.1. The reason for the small discrepancies observed lies in the

fact that the algorithm underlying the computations for Table 4 makes use of a random search

algorithm. Concerning Table 4, we also mention that, in the example considered here and for

the test statistic HC2, Ibragimov and Müller (2016) prove in their Theorem 1 (see also the

discussion preceding that theorem) that the smallest size-controlling critical values are given by

18.51 (n1 = 3), 5.32 (n1 = 9), and 4.60 (n1 = 15), respectively. The numerically determined

critical values in Table 4 are reasonably close to these values (after conversion of the critical

values to corresponding “t-test” critical values the maximal difference is about 0.1). Of course,

the accuracy of our algorithm could be increased by using more stringent accuracy parameters in

the optimization routines underlying the computation of the critical value, but this would come

with a longer runtime.

From Table 4 it is clear that for the tests based on unrestricted residuals the smallest size-

controlling critical values obtained are always larger, sometimes considerably, than Cχ2,0.05 ≈

3.8415, again showing that the latter critical value is not effecting size control. For the tests

based on restricted residuals the smallest size-controlling critical values sometimes fall below

Cχ2,0.05 in the strongly unbalanced case (which is not completely surprising in view of Section

6.2.2); while in this case Cχ2,0.05 effects size-control, using the smaller size-controlling critical

values given in Table 4 can only be advantageous in terms of power.

That being said, we emphasize a trivial, but important point, namely that comparing the

magnitudes of size-controlling critical values relating to different test statistics is not very mean-

ingful and, in particular, not a valid way of comparing the quality of the resulting tests. That is,

while it may be tempting to infer from Table 4 that the HC0 test should be considerably more

conservative than the HC4 test, or that the UC test should be considerably more conservative

than the UCR test, such a conclusion would be false and not warranted at all (in particular,

recall that UC and UCR in fact result in (essentially) the same test if the critical values from

Table 4 are being used). While this would be correct if the critical values were all meant to

be used with the same test statistic (which they are not), critical values belonging to different

test statistics can certainly not be compared in such a way. Instead, one has to compare the
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Figure 1: Power functions for n1 = 3. Left column: tests based on unrestricted residuals
(cf. legend). Right column: tests based on restricted residuals (cf. legend). The rows corresponds
to Σa for a = 1, 5, 9 from top to bottom. The abscissa shows δ. See text for more explanation.

corresponding power functions, which is what we shall do next.

The power functions are shown in Figure 1 (“strongly unbalanced”, n1 = 3), Figure 2 (“mod-

erately unbalanced”, n1 = 9), and Figure 4 (“balanced”, n1 = 15), where only the first two

figures are shown in the main text, and the last figure (in which the power functions of all the

feasible tests lie “on top of each other”) is available in Appendix F.3. Readers are referred to

the online version for colored figures.

The power functions illustrate that the testing problem is getting easier, (i.e., power gets

closer to the oracle benchmark), for more balanced design, which has intuitive appeal. Except

for the strongly unbalanced case (n1 = 3), the power loss of the tests based on HC0-HC4

and HC0R-HC4R relative to the oracle benchmark is surprisingly small (see Figure 2 as well

as Figure 4 in Appendix F.3). In the unbalanced cases (n1 ∈ {3, 9}) the HC0-HC4-based tests

behave all very similarly, with the power functions of the HC0- and HC1-based test being virtually

indistinguishable (as they should in view of the before discussed equivalence). The UC-based test

shows markedly worse power performance. Similarly, the HC0R-HC4R-based tests have virtually

indistinguishable power functions (as they should because of the before discussed equivalence).
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Figure 2: Power functions for n1 = 9. Left column: tests based on unrestricted residuals
(cf. legend). Right column: tests based on restricted residuals (cf. legend). The rows corresponds
to Σa for a = 1, 5, 9 from top to bottom. The abscissa shows δ. See text for more explanation.
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The UCR-based test again is inferior (and its power function coincides with the one of UC as

mentioned before). There appears also to be little difference between basing the test statistics

on unrestricted or restricted residuals in this example. In the balanced case we know that all

the feasible tests have exactly the same power function in view of our earlier discussion. This

is visible in Figure 4 in Appendix F.3. Also the different forms of heteroskedasticity considered

seem not to have much effect on the power functions (when expressed as a function of δ), except

for UC and UCR in the unbalanced cases.

Hence, within the scenario considered in this section, perhaps the most important conclusion

concerning the choice of a test statistic appears to be to avoid UC and UCR. Everything apart

from that, i.e., whether one uses unrestricted or restricted residuals to construct the test or which

specific heteroskedasticity-correction one decides to use, seems to be a comparably irrelevant part

of the problem once the right (i.e., smallest size-controlling) critical value is used. We shall see

in the next subsection that this conclusion very much depends on the scenario considered here

and does not generalize beyond, illustrating the danger of drawing conclusions from a limited

numerical study.

11.2.2 A high-leverage design matrix

In this section, we consider testing β2 = 0 in a model with intercept and a single regressor

x = (10, cos(2), cos(3), . . . , cos(n))′. Obviously, the regressor has a dominant first coordinate,

leading to diagonal elements hii of X(X ′X)−1X ′ such that the ratio of largest to smallest hii

is roughly 26 (maxhii ≃ 0.879, minhii ≃ 0.033). Hence, the design matrix X provides (on

purpose) an extreme case, which leads to quite interesting results. We consider again the case

n = 30 and α = 0.05, but now show power functions for Σ∗
a, a = 0, . . . , 4, where

Σ∗
a = n−1 diag

(

7a+ 1,
n− 7a− 1

n− 1
, . . . ,

n− 7a− 1

n− 1

)

∈ CHet.

Note that Σ∗
0 = n−1In and that increasing a from 0 to 4 leads to covariance matrices that

approach the degenerate matrix e1(n)e1(n)
′. All conditions in Theorems 5.1 and 6.4 are seen

to be satisfied in this example: As no vector ei(n) belongs to span(X) (and thus also not to

M
lin
0 ), Assumptions 1 and 2 as well as the sufficient condition for size control (8) are obviously

satisfied. The size control conditions (10) and (17) have been checked numerically, as has been

the condition that none of the test statistics HC0R-HC4R is constant on Rn\B̃.

As in the preceding subsection, the critical values for each test statistic are again chosen as

the smallest critical value guaranteeing size control over CHet and they are presented in Table 5

below. [Existence follows from our theory since all assumptions are satisfied as noted before.] For

their computation the same algorithms were used as in Section 11.2.1, with a similar statement

applying to the numerical routines used for computing the power functions. Note that the critical

values for the test statistics UC, HC0-HC3 are large, reflecting the high-leverage in the design

matrix; an exception is HC4, the reason being that some of the HC4-weights are considerably
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larger than the weights for HC0-HC3. Similarly as in the preceding subsection, the tests based

on HC0 and HC1 coincide (since HC0 and HC1 differ only by a multiplicative constant and since

smallest size-controlling critical values are being used), and the same is true for the tests based

on HC0R-HC4R, see Remarks 5.3 and 6.5. It is easily checked that the ratios of the respective

critical values provided in Table 5 are in good agreement with the theoretical ratios predicted

by theory. Furthermore, the tests based on UC and UCR coincide (see Section 6.2.1), and the

critical values for UC and UCR in Table 5 are in excellent agreement with their theoretical

relationship found in Section 6.2.1.

Table 5 shows that in this example the smallest size-controlling critical values are – except

in one case – always larger, sometimes considerably larger, than Cχ2,0.05 ≈ 3.8415, once more

showing that the latter critical value is not effecting size control in general. In the exceptional

case, namely when the HC4 test statistic is used, Cχ2,0.05 is considerably larger than the smallest

size-controlling critical value, which is 1.12; while in this case Cχ2,0.05 effects size-control, using

the smaller size-controlling critical value 1.12 can only be advantageous in terms of power.

UC HC0 HC1 HC2 HC3 HC4
217.58 355.56 333.31 121.89 29.34 1.12

UCR HC0R HC1R HC2R HC3R HC4R
25.69 5.41 5.45 5.34 5.29 5.44

Table 5: Smallest size-controlling critical values for the high-leverage design matrix.

The power functions, when the size-controlling critical values from Table 5 are being used,

are shown in Figure 3. Readers are referred to the online version for a colored figure. Again, as

predicted by theory, the power functions of the tests based on HC0 and HC1 shown in Figure 3

coincide, as do the power functions of the tests based on HC0R-HC4R; the same is true for the

power functions of the tests based on UC and UCR. The figure furthermore shows that in the

setting considered here, there is now a marked difference between tests based on HC0-HC4 and

on HC0R-HC4R, respectively: the power of the tests based on HC0R-HC4R is nowhere greater

than α, their power function being even non-monotonic, whereas the tests based on HC0-HC4

have increasing power as a function of δ. In contrast to the example considered in the preceding

subsection, the power functions of the tests based on HC0-HC4 and on UC are now all markedly

different and typically intersect, an exception being the case of Σ∗
4 where the test based on UC

offers the highest power for that covariance matrix. Overall, however, there is no clear ranking

between the tests using unrestricted residuals in the example considered here, although we note

that the test based on UC (or, equivalently, on UCR) performs very badly in the case of Σ∗
0. This

is not surprising as Σ∗
0 corresponds to homoskedasticity and the critical value used here is much

larger than the classical critical value one would use given knowledge of this homoskedasticity.

Furthermore, and in contrast to the results in the preceding subsection, the different forms of

heteroskedasticity considered have a noticeable effect on the power functions. The main takeaway

is that tests based on HC0R-HC4R (and probably on UC and UCR) should rather be avoided.
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Figure 3: Power functions for the design matrix considered in Section 11.2.2. Left column: tests
based on unrestricted residuals (cf. legend). Right column: tests based on restricted residuals
(cf. legend). The rows from top to bottom correspond to Σ∗

a for a = 0, 1, 2, 3, 4, the case a = 0
corresponding to homoskedasticity. The abscissa shows δ. See text for more explanations.
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12 Conclusion

The usual heteroskedasticity robust test statistics such as THet (using HC0-HC4 weights) or T̃Het

(using HC0R-HC4R weights), used in conjunction with conventional critical values obtained from

the asymptotic null distribution, are often plagued by overrejection under the null. This has been

clearly documented in the literature for THet, and is shown numerically for T̃Het (as well as for

THet) in Section 11 above. Not surprisingly, similar observations apply to the “uncorrected” test

statistics Tuc and T̃uc. We show theoretically that all these test statistics can be size-controlled

under quite weak conditions by an appropriate choice of critical values.

From the above discussion and the numerical results in Section 11 it transpires that smallest

size-controlling critical values rather than conventional critical values should be used in order to

avoid the risk of overrejection. For the computation of smallest size-controlling critical values we

provide algorithms which have been implemented in the R-package hrt (Preinerstorfer (2021))

and thus are readily available for the user.

An additional advantage from using smallest size-controlling critical values over conventional

critical values is that this typically leads to improved power in instances, where conventional

critical values lead to underrejection (i.e., lead to worst-case rejection probability under the null

less than the nominal significance level) as is sometimes the case; see Sections 6.2.2 and 11.2.

If smallest size-controlling critical values are adopted (as they should), the numerical results

in Section 11 suggest that the test statistic T̃Het (with the usual weights HC0R-HC4R) should be

avoided, as the resulting tests may have very poor power properties (see the example in Section

11.2.2). The test statistic THet seems to perform better in terms of power, with no clear ranking

emerging with regards to the weights HC0-HC4 being used. The “uncorrected” test statistics Tuc

and T̃uc appear to be inferior to THet in terms of power in almost all of the numerical examples

considered. We also point out that – when using smallest size-controlling critical values – the

tests based on THet employing the HC0 and the HC1 weights, respectively, in fact coincide; and

the same holds for tests based on T̃Het employing the HC0R and the HC1R weights, respectively.

Also the tests based on Tuc and T̃uc then (essentially) coincide. See Remarks 5.3, 6.5, and Section

6.2.1 as well as the pertaining discussion in Section 11 for more information, including additional

equivalencies when the design matrix X and the restriction R have certain special properties.
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A Appendix: Size control over other heteroskedasticity

models

As already noted earlier, if size control is possible over CHet, then the same is true over any

conceivable class of heteroskedasticity structures, since these can (possible after normalization)

be cast as a subset C of CHet; and, in fact, any critical value delivering size control over CHet

also delivers size control over any such C, but even smaller critical values may already suffice for

size control over C. Also, for some heteroskedasticity models C ⊆ CHet, the sufficient conditions

employed in Theorems 5.1 and 6.4 (which imply size control over CHet) may be unnecessarily

restrictive, if one wants to establish size control over C only. For this reason, we show in the

following how the general theory laid out in Section 5 of Pötscher and Preinerstorfer (2018) can

be used to derive size control results tailored to various subsets C by exemplarily treating the

cases C = C(n1,...,nm) and C = CHet,τ∗
defined below. Size control results over other choices of C

can be derived from the results in Section 5 of Pötscher and Preinerstorfer (2018) in a similar

manner, see Subsection A.1.2 further below for some discussion. Here C(n1,...,nm) is defined as

follows: Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Set n+
j =

∑j
l=1 nl and

define

C(n1,...,nm) =
{

diag(τ21, . . . , τ
2
n) ∈ CHet : τ

2
n+
j−1+1

= . . . = τ2
n+
j

for j = 1, . . . ,m
}

with the convention that n+
0 = 0. This may be a natural heteroskedasticity model when the

observations come from m groups and when it is reasonable to assume homoskedasticity within

groups.61 Note that in case nj = 1 for all j, then m = n and C(n1,...,nm) = CHet hold; and in

case m = 1 we have C(n1,...,nm) = {n
−1In}, i.e., we have homoskedasticity. Furthermore, CHet,τ∗

is given by

CHet,τ∗
=
{

diag(τ21, . . . , τ
2
n) ∈ CHet : τ

2
i ≥ τ2∗ for all i

}

,

where the lower bound τ∗, 0 < τ∗ < n−1/2, is set by the user.

A.1 Size control results for THet and Tuc

A.1.1 Size control over C(n1,...,nm)

Proofs of the results in this subsection can be found in Appendix C.

Theorem A.1. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Then:

(a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(Tuc ≥ C(α)) ≤ α (25)

61As long as we assume that the grouping is known, there is little loss of generality to assume that the elements
belonging to the same group are numbered contiguously, since we otherwise only need to relabel the data.
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holds, provided that

span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ span(X) for every j = 1, . . . ,m with (n+
j−1, n

+
j ]∩I1(M

lin
0 ) ̸= ∅.

(26)

Furthermore, under condition (26), even equality can be achieved in (25) by a proper choice of

C(α), provided α ∈ (0, α∗]∩(0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(Tuc ≥ C)

is positive and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with

C = C(n1,...,nm), T = Tuc, N
† = span(X), and L = M

lin
0 (with neither α∗ nor C∗ depending on

the choice of µ0 ∈M0).

(b) Suppose Assumption 1 is satisfied. Then for every 0 < α < 1 there exists a real number

C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(THet ≥ C(α)) ≤ α (27)

holds, provided that

span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ B for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅.

(28)

Furthermore, under condition (28), even equality can be achieved in (27) by a proper choice of

C(α), provided α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(THet ≥

C) is positive and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018)

with C = C(n1,...,nm), T = THet, N
† = B, and L = M

lin
0 (with neither α∗ nor C∗ depending on

the choice of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a criti-

cal value C(α) satisfying (25) ((27), respectively), a smallest critical value, denoted by C♦(α),

satisfying (25) ((27), respectively) exists for every 0 < α < 1. And C♦(α) corresponding to Part

(a) (Part (b), respectively) is also the smallest among the critical values leading to equality in

(25) ((27), respectively) whenever such critical values exist. [Although C♦(α) corresponding to

Part (a) and (b), respectively, will typically be different, we use the same symbol.]62

It is easy to see that the discussion in the first paragraph following Theorem 5.1 applies

mutatis mutandis also to the above theorem. Similarly, Remarks 5.2, 5.3, 5.4, 5.6, 5.9, and

Proposition 5.5 carry over. Furthermore, we have the following result corresponding to Proposi-

tion 5.7:

Proposition A.2. (a) If (26) is violated, then supΣ∈C(n1,...,nm)
Pµ0,σ

2Σ(Tuc ≥ C) = 1 for every

choice of critical value C, every µ0 ∈M0, and every σ2 ∈ (0,∞) (implying that size equals 1 for

every C). As a consequence, the sufficient condition for size control (26) in Part (a) of Theorem

A.1 is also necessary.

(b) Suppose Assumption 1 is satisfied.63 If (26) is violated, then supΣ∈C(n1,...,nm)
Pµ0,σ

2Σ(THet ≥

62Cf. also Appendix A.3.
63If this assumption is violated then THet is identically zero, an uninteresting trivial case.
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C) = 1 for every choice of critical value C, every µ0 ∈ M0, and every σ2 ∈ (0,∞) (implying

that size equals 1 for every C). [In case X and R are such that B = span(X), conditions (26)

and (28) coincide; hence the sufficient condition for size control (28) in Part (b) of Theorem A.1

is then also necessary in this case.]

Remark A.3. (Homoskedasticity) Theorem A.1 allows also for the case m = 1, in which case

C(n1,...,nm) =
{

n−1In
}

, i.e., errors are homoskedastic. In this case it is easy to see that the

sufficient conditions for size control in the theorem are trivially satisfied and size control for THet

(and Tuc) is possible.64 Of course, this is in line with the fact that THet and Tuc are obviously

pivotal under the null if the errors are homoskedastic.

Remark A.4. (Behrens-Fisher problem) Consider again the problem of testing the equality of

the means of two independent normal populations as in Example 5.4 with the only difference that

the variance within each of the two groups is now assumed to be constant, i.e., the heteroskedas-

ticity model used is now given by C(n1,n2), where n1 ≥ 2 and n2 ≥ 2 are the group sizes. This is

the celebrated Behrens-Fisher problem. The square of the two-sample t-statistic tFB , say, often

used in this context coincides with THet for the choice di = (1− hii)
−1

. The size controllability

of THet over CHet established in Example 5.4 therefore a fortiori implies size controllability of

THet (and hence of t2FB) over C(n1,n2). Of course, this does not add anything new to the lit-

erature on the Behrens-Fisher problem, since it is known that under the null hypothesis |tFB |

is stochastically not larger than a t-distributed random variable with min(n1, n2) − 1 degrees

of freedom when C(n1,n2) is the heteroskedasticity model, see Mickey and Brown (1966). For

more on the Behrens-Fisher problem see Kim and Cohen (1998), Ruben (2002), Lehmann and

Romano (2005), Belloni and Didier (2008), and the references cited therein.

A.1.2 Further size control results

In this subsection it is understood that Assumption 1 is maintained when discussing results

relating to THet.

(i) Given a heteroskedasticity model C (i.e., ∅ ≠ C ⊆ CHet), with the property that J(Mlin
0 ,C)

is empty (where the collection J(Mlin
0 ,C) is defined on p. 421 of Pötscher and Preinerstorfer

(2018), see also Appendix B further below), the tests based on Tuc and THet are always size

controllable over C. This follows from Corollary 5.6 and Remark 5.7 in Pötscher and Preiner-

storfer (2018). In fact, exact size control is then possible for every α ∈ (0, 1) as a consequence

of Proposition 5.12 in the same reference upon noting that then C∗ = −∞ and α∗ = 1 hold.

[We note in passing that for such a heteroskedasticity model C the size of the rejection region

{Tuc ≥ C} ({THet ≥ C}, respectively) is less than 1 for every C > 0 (this follows from Proposi-

tion 5.2 and Remark 5.4 in Pötscher and Preinerstorfer (2018) as well as Part 6 of Lemma 5.15

64A related but slightly different argument proceeds by directly noting from its definition that
J(Mlin

0 ,C(n1,...nm)) is empty in case m = 1 (cf. Apendix B), and then to appeal to Remark 5.7 (or Proposi-
tion 5.12) in Pötscher and Preinerstorfer (2018).
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in Preinerstorfer and Pötscher (2016)).]65

(ii) A particular instance of the situation described in (i) is provided by heteroskedasticity

models C that are subsets of a set of the form CHet,τ∗
(0 < τ∗ < n−1/2), as in this case J(Mlin

0 ,C)

is easily seen to be empty.

(iii) More generally, the tests based on Tuc (on THet, respectively) are size controllable over a

heteroskedasticity model C, provided any S ∈ J(Mlin
0 ,C) is not contained in span(X) (B, respec-

tively). This follows easily from Corollary 5.6 and Proposition 5.12 in Pötscher and Preinerstorfer

(2018), the latter proposition also providing an exact size result, which we refrain from spelling

out in detail. Again there is a (partial) converse: If an S ∈ J(Mlin
0 ,C) exists with S ⊆ span(X),

then the size over C of the rejection region {Tuc ≥ C} ({THet ≥ C}, respectively) is equal to 1;

see Theorem 3.1 in Pötscher and Preinerstorfer (2019). Furthermore, lower bounds for critical

values that lead to size less than 1 (in particular, for size-controlling critical values) can be had

with the help of Corollary 5.17 in Preinerstorfer and Pötscher (2016), Lemma 5.11 and Propo-

sition 5.12 in Pötscher and Preinerstorfer (2018), or Lemma 4.1 in Pötscher and Preinerstorfer

(2019).

A.2 Size control results for T̃Het and T̃uc

The proof of the subsequent theorem is given in Appendix D. We note that the first statement

in Part (a) of the subsequent theorem is actually trivial, since T̃uc is bounded as has been shown

in Section 6.2.1.

Theorem A.5. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Then:

(a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(T̃uc ≥ C(α)) ≤ α (29)

holds. Furthermore, even equality can be achieved in (29) by a proper choice of C(α), provided

α ∈ (0, α∗]∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(T̃uc ≥ C) and where C∗

is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = T̃uc,

N† = M0, and L = M
lin
0 (with neither α∗ nor C∗ depending on the choice of µ0 ∈M0).

(b) Suppose Assumption 2 is satisfied. Suppose further that T̃Het is not constant on Rn\B̃.66

Then for every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(T̃Het ≥ C(α)) ≤ α (30)

65The verification of the assumptions in Corollary 5.6 and Propositions 5.2 and 5.12 of Pötscher and Preiner-
storfer (2018) proceeds as in the proofs of Theorems 5.1 and A.1.

66Cf. Footnote 37.
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holds, provided that for some µ0 ∈M0 (and hence for all µ0 ∈M0)

µ0 + span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ B̃ for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅.

(31)

Furthermore, under condition (31), even equality can be achieved in (30) by a proper choice of

C(α), provided α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(T̃Het ≥

C) and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with C =

C(n1,...,nm), T = T̃Het, N
† = B̃, and L = M

lin
0 (with neither α∗ nor C∗ depending on the choice

of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a critical

value C(α) satisfying (29) ((30), respectively), a smallest critical value, denoted by C♦(α), sat-

isfying (29) ((30), respectively) exists for every 0 < α < 1.67 And C♦(α) corresponding to Part

(a) (Part (b), respectively) is also the smallest among the critical values leading to equality in

(29) ((30), respectively) whenever such critical values exist. [Although C♦(α) corresponding to

Part (a) and (b), respectively, will typically be different, we use the same symbol.]68

It is easy to see that the discussion in the first paragraph following Theorem 6.4 applies mu-

tatis mutandis also to the above theorem. Similarly, Remarks 6.5, 6.6, 6.8, 6.11, and Proposition

6.7 carry over.

A discussion of size control results for T̃uc and T̃Het over other choices of C based on the

results in Section 5 of Pötscher and Preinerstorfer (2018) can also be given (cf. the discussion in

Subsection A.1.2), but we refrain from spelling out the details. We only note that the test based

on T̃Het is always size controllable over CHet,τ∗
(0 < τ∗ < n−1/2), and the same is trivially true

for T̃uc.

A.3 A useful observation

Let C be an arbitrary heteroskedasticity model (i.e., ∅ ≠ C ⊆ CHet), let 0 < α < 1, and

let T stand for Tuc or THet, respectively, where in case of T = THet we assume that As-

sumption 1 is satisfied. Suppose that T is size-controllable at significance level α (i.e., that

supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥ C) ≤ α holds for some real C). Then a smallest size-

controlling critical value C♦(α) always exists.69 And if a critical value C ∈ R exists such that

supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥ C) = α holds, then C♦(α) is also the smallest among

these critical values. This follows from Remark 5.10 and Lemma 5.16 in Pötscher and Preiner-

storfer (2018) combined with Remark C.1 in Appendix C. The same is true for T = T̃uc and

T = T̃Het, where in case of T = T̃Het we assume that Assumption 2 is satisfied and that T̃Het

67Note that there are in fact no assumptions for Part (a). We have chosen this formulations for reasons of
brevity.

68Cf. also Appendix A.3.
69Note that this, e.g., covers the case discussed in Example 5.5, where size-control can be established for THet

despite the fact that the sufficient conditions in Theorem 5.1 are not satisfied (and hence Part (c) of that theorem
can not be used).
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is not constant on Rn\B̃. This follows again from Remark 5.10 in Pötscher and Preinerstorfer

(2018) now together with Lemma D.1 in Appendix D.

B Appendix: Characterization of J(L,C) for C = CHet and

C = C(n1,...,nm)

A key ingredient in the proof of size control results such as Theorem 5.1 or 6.4 is a certain

collection J(L,C) of linear subspaces of Rn introduced in Pötscher and Preinerstorfer (2018).

For the convenience of the reader we reproduce this definition, specialized to the present setting,

below. The leading case in the applications will be the case L = M
lin
0 .

Definition B.1. Let C be a heteroskedasticity model (i.e., ∅ ̸= C ⊆ CHet). Given a linear

subspace L of Rn with dim(L) < n and an element Σ ∈ C, we let

L(Σ) =
ΠL⊥ΣΠL⊥

∥ΠL⊥ΣΠL⊥∥

and L(C) = {L(Σ) : Σ ∈ C}. Furthermore, we define

J(L,C) =
{

span(Σ̄) : Σ̄ ∈ cl(L(C)), rank(Σ̄) < n− dim(L)
}

,

where the closure cl(·) is to be understood w.r.t. Rn×n.

Recalling the definition of I0(L), it is easy to see that I0(L) =
{

i : 1 ≤ i ≤ n, πL⊥,i = 0
}

holds, where πL⊥,i denotes the i-th column of ΠL⊥ . Also recall that I1(L) is nonempty in case

dim(L) < n holds. The characterization of J(L,CHet) is now given in the next proposition.

Proposition B.1. Suppose dim(L) < n holds. Then the set J(L,CHet) is given by

{

span
({

πL⊥,i : i ∈ I
})

: ∅ ≠ I ⊆ I1(L), dim
(

span
({

πL⊥,i : i ∈ I
}))

< n− dim(L)
}

. (32)

This proposition is a special case of Proposition B.2 given below since CHet coincides with

C(n1,...,nm) in case m = n and nj = 1 for all j = 1, . . . ,m.

We next turn to the characterization of J(L,C(n1,...,nm)), where C(n1,...,nm) has been defined

in Appendix A. Here m ∈ N, and nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Consider the

partition of the set {1, . . . , n} into the intervals (n+
0 , n

+
1 ], (n

+
1 , n

+
2 ],..., (n

+
m−1, n

+
m] where n+

j has

been defined in Appendix A. Let I(n1,...,nm) consist of all non-empty subsets I of {1, . . . , n} that

can be represented as a union of intervals of the form (n+
j−1, n

+
j ].

Proposition B.2. Suppose dim(L) < n holds. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m
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satisfy
∑m

j=1 nj = n. Then the set J(L,C(n1,...,nm)) is given by

{

span
({

πL⊥,i : i ∈ I
})

: I ∈ I(n1,...,nm), ∅ ≠ I ∩ I1(L), dim
(

span
({

πL⊥,i : i ∈ I
}))

< n− dim(L)
}

.

(33)

Note that in (33) we have span
({

πL⊥,i : i ∈ I
})

= span
({

πL⊥,i : i ∈ I ∩ I1(L)
})

.

Proof: Suppose S is an element of J(L,C(n1,...,nm)). Then there exist a sequence Σm ∈

C(n1,...,nm) such that ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ converges to a limit Σ̄, say, in Rn×n with

span(Σ̄) = S. Now,

ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ = ∥ΠL⊥ΣmΠL⊥∥−1
n
∑

i=1

τ2i (m)πL⊥,iπ
′
L⊥,i

= ∥ΠL⊥ΣmΠL⊥∥−1
m
∑

j=1

∑

i∈(n+
j−1,n

+
j
]

τ2i (m)πL⊥,iπ
′
L⊥,i

=
∑

j:(n+
j−1,n

+
j
]∩I1(L) ̸=∅

∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m)
∑

i∈(n+
j−1,n

+
j
]

πL⊥,iπ
′
L⊥,i,

where τ2i (m) denotes the i-th diagonal element of Σm. Here we have used the fact that variances

are constant within groups, as well as that πL⊥,i = 0 for all i ∈ (n+
j−1, n

+
j ] if (n+

j−1, n
+
j ] is

disjoint from I1(L). Also note that the outer sum extends over a nonempty index set since

card(I1(L)) ≥ 1 must hold in view of dim(L) < n. Since the l.h.s. converges to the limit

Σ̄ ∈ Rn×n, since the r.h.s. is bounded from below in the Loewner order by

∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m)
∑

i∈(n+
j−1,n

+
j
]

πL⊥,iπ
′
L⊥,i,

for every j appearing in the range of the outer sum, and since πL⊥,i ̸= 0 for at least one

i ∈ (n+
j−1, n

+
j ] holds when (n+

j−1, n
+
j ] ∩ I1(L) ̸= ∅, it follows that the sequence

(∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m) : m ∈ N)

is bounded for every j satisfying (n+
j−1, n

+
j ]∩ I1(L) ̸= ∅. Possibly after passing to a subsequence,

we may thus assume that these sequences converge to nonnegative real numbers γj for such j.

It follows that

Σ̄ =
∑

j:(n+
j−1,n

+
j
]∩I1(L) ̸=∅

γj

∑

i∈(n+
j−1,n

+
j
]

πL⊥,iπ
′
L⊥,i

=
∑

j:(n+
j−1,n

+
j
]∩I1(L) ̸=∅

∑

i∈(n+
j−1,n

+
j
]

γ
1/2
j πL⊥,i

(

γ
1/2
j πL⊥,i

)′

.

Let I be the union of those intervals (n+
j−1, n

+
j ] satisfying (i) (n+

j−1, n
+
j ] ∩ I1(L) ̸= ∅ and (ii)
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γj > 0. Note that I cannot be the empty set as this would imply Σ̄ = 0, which is impossible

since it is the limit of a sequence of matrices residing in the unit sphere of Rn×n. Furthermore,

by construction, I ∈ I(n1,...,nm) and I ∩ I1(L) ̸= ∅ hold. Using the fact that span(
∑L

l=1 AlA
′
l) =

span(A1, . . . , AL) holds for arbitrary real matrices of the same row-dimension, we obtain S =

span(Σ̄) = span
({

πL⊥,i : i ∈ I
})

for the before constructed set I. [Note that πL⊥,i = 0 if

i ∈ (n+
j−1, n

+
j ] but i /∈ I1(L).] Since S, being an element of J(L,C(n1,...,nm)), satisfies dim(S) <

n− dim(L), we have established that S is also an element of (33).

To prove the converse, suppose that S is an element of (33), i.e., that S = span
({

πL⊥,i : i ∈ I
})

for some I ∈ I(n1,...,nm) with ∅ ≠ I ∩ I1(L) and that dim (S) < n − dim(L) holds. Note that

card(I) < n holds, since otherwise S = L⊥ would follow, contradicting dim (S) < n − dim(L).

Also note that card(I) ≥ 1 as ∅ ≠ I∩I1(L). Define diagonal n×n matrices Σm via their diagonal

elements

τ2i (m) =

{

(card(I))
−1 − δm if i ∈ I

(card(I)/(n− card(I))) δm if i /∈ I

where 0 < δm < 1/ card(I) with δm → 0 for m→∞. Then τ2i (m) > 0 as well as
∑n

i=1 τ
2
i (m) = 1

hold, and τ2
n+
j−1+1

(m) = . . . = τ2
n+
j

(m) holds for j = 1, . . . ,m since I ∈ I(n1,...,nm). That is, Σm

belongs to C(n1,...,nm). Obviously, Σm converges to a diagonal matrix Σ∗ with diagonal elements

given by

τ∗2i =

{

(card(I))
−1

if i ∈ I

0 if i /∈ I
.

Consequently, ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ converges to Σ̄ := ΠL⊥Σ∗ΠL⊥/ ∥ΠL⊥Σ∗ΠL⊥∥, since

ΠL⊥Σ∗ΠL⊥ ̸= 0 in view of

ΠL⊥Σ∗ΠL⊥ =

n
∑

i=1

τ∗2i πL⊥,iπ
′
L⊥,i = (card(I))

−1
∑

i∈I

πL⊥,iπ
′
L⊥,i

and the fact that ∅ ≠ I ∩ I1(L) holds and thus πL⊥,i ̸= 0 must hold at least for one i ∈ I. Again

using span(
∑L

l=1 AlA
′
l) = span(A1, . . . , AL) we arrive at

span(Σ̄) = span(ΠL⊥Σ∗ΠL⊥) = span

(

(card(I))
−1
∑

i∈I

πL⊥,iπ
′
L⊥,i

)

= span
({

πL⊥,i : i ∈ I
})

= S.

Because we have assumed that dim (S) < n − dim(L) holds, the preceding display shows that

S ∈ J(L,C(n1,...,nm)). ■

Remark B.3. Note that J(L,C(n1,...,nm)) is empty if m = 1 (as can be seen directly from the

definition of J(L,C(n1,...,nm)) or from (33)).

Remark B.4. It is easy to see that the concentration spaces of CHet in the sense of Preinerstor-

fer and Pötscher (2016) are precisely given by all spaces of the form span ({ei(n) : i ∈ I}) where

I varies through all subsets of {1, . . . , n} that satisfy 0 < card(I) < n. More generally, the con-
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centration spaces of C(n1,...,nm) are precisely given by all spaces of the form span ({ei(n) : i ∈ I})

where I ∈ I(n1,...,nm) satisfies 0 < card(I) < n. [In view of Remark 5.1(i) in Pötscher and Prein-

erstorfer (2018) these results correspond to the case dim(L) = 0 in the preceding propositions.]

C Appendix: Proofs for Section 5 and Appendix A.1

The facts collected in the subsequent remark will be used in the proofs further below.

Remark C.1. (i) Suppose Assumption 1 holds. Then the test statistic THet is a non-sphericity

corrected F-type test statistic in the sense of Section 5.4 in Preinerstorfer and Pötscher (2016).

More precisely, THet is of the form (28) in Preinerstorfer and Pötscher (2016) and Assumption

5 in the same reference is satisfied with β̌ = β̂, Ω̌ = Ω̂Het, and N = ∅. Furthermore, the set N∗

defined in (27) of Preinerstorfer and Pötscher (2016) satisfies N∗ = B. And also Assumptions 6

and 7 of Preinerstorfer and Pötscher (2016) are satisfied. All these claims follow easily in view

of Lemma 4.1 in Preinerstorfer and Pötscher (2016), see also the proof of Theorem 4.2 in that

reference.

(ii) The test statistic Tuc is also a non-sphericity corrected F-type test statistic in the sense of

Section 5.4 in Preinerstorfer and Pötscher (2016) (terminology being somewhat unfortunate here

as no correction for the non-sphericity is being attempted). More precisely, Tuc is of the form

(28) in Preinerstorfer and Pötscher (2016) and Assumption 5 in the same reference is satisfied

with β̌ = β̂, Ω̌ = σ̂2R (X ′X)
−1

R′, and N = ∅. Furthermore, the set N∗ defined in (27) of

Preinerstorfer and Pötscher (2016) satisfies N∗ = span(X). And also Assumptions 6 and 7 of

Preinerstorfer and Pötscher (2016) are satisfied. All these claims are evident (and obviously do

not rely on Assumption 1).

(iii) We note that any non-sphericity corrected F-type test statistic (for testing (3)) in the

sense of Section 5.4 in Preinerstorfer and Pötscher (2016), i.e., any test statistic T of the form

(28) in Preinerstorfer and Pötscher (2016) that also satisfies Assumption 5 in that reference, is

invariant under the group G(M0). Furthermore, the associated set N∗ defined in (27) of Preiner-

storfer and Pötscher (2016) is even invariant under the larger group G(M). See Sections 5.1 and

5.4 of Preinerstorfer and Pötscher (2016) as well as Lemma 5.16 in Pötscher and Preinerstorfer

(2018) for more information.

Proof of Theorem 5.1: We first prove Part (b). We apply Part (b) of Theorem A.1 with

nj = 1 for j = 1, . . . , n = m observing that then C(n1,...,nm) = CHet and that condition (28)

reduces to (10) (exploiting that B is a finite union of proper linear subspaces as discussed in

Lemma 3.1). This establishes (9). The final claim in Part (b) of the theorem follows from Part

(b) of Theorem A.1, if we can show that α∗ and C∗ given there can be written as claimed in

Theorem 5.1: To this end we proceed as follows:70 Choose an element µ0 of M0. Observe that

I1(M
lin
0 ) ̸= ∅ (since dim(Mlin

0 ) = k − q < n), and that for every i ∈ I1(M
lin
0 ) the linear space

70Alternatively, one could base a proof on Lemma C.1 in Pötscher and Preinerstorfer (2019).

58



Si = span(Π
(Mlin

0 )
⊥ei(n)) is 1-dimensional (since Si = {0} is impossible in view of i ∈ I1(M

lin
0 )),

and belongs to J(Mlin
0 ,CHet) (since n− k+ q > 1 = dim(Si) holds) in view of Proposition B.1 in

Section B. Since THet is G(M0)-invariant (Remark C.1 above), it follows that THet is constant

on (µ0 + Si)\ {µ0}, cf. the beginning of the proof of Lemma 5.11 in Pötscher and Preinerstorfer

(2018). Hence, Si belongs to H (defined in Lemma 5.11 in Pötscher and Preinerstorfer (2018))

and consequently for C∗ as defined in that lemma

C∗ ≥ max

{

THet(µ0 +Π
(Mlin

0 )
⊥ei(n)) : i ∈ I1(M

lin
0 )

}

must hold (recall that Π
(Mlin

0 )
⊥ei(n) ̸= 0). To prove the opposite inequality, let S be an arbitrary

element of H, i.e., S ∈ J(Mlin
0 ,CHet) and THet is λµ0+S -almost everywhere equal to a constant

C(S), say. Then Proposition B.1 in Section B shows that Si ⊆ S holds for some i ∈ I1(M
lin
0 ).

Because of Condition (10) we have Si ⫅̸ B since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ only by an element

of Mlin
0 ⊆ span(X) and since B + span(X) = B. Thus µ0 + Si ⫅̸ B by the same argument as

µ0 ∈M0 ⊆ span(X). We thus can find s ∈ Si such that µ0 + s /∈ B. Note that s ̸= 0 must hold,

since µ0 ∈M0 ⊆ span(X) ⊆ B. In particular, THet is continuous at µ0+s, since µ0+s /∈ B. Now,

for every open ball Aε in Rn with center s and radius ε > 0 we can find an element aε ∈ Aε ∩ S

such that THet(µ0 + aε) = C(S). Since aε → s for ε → 0, it follows that C(S) = THet(µ0 + s).

Since s ̸= 0 and since THet is constant on (µ0 +Si)\ {µ0} as shown before, we can conclude that

C(S) = THet(µ0 + s) = THet(µ0 +Π
(Mlin

0 )
⊥ei(n)), where we recall that Π

(Mlin
0 )

⊥ei(n) ̸= 0. But

this now implies

C∗ = max

{

THet(µ0 +Π
(Mlin

0 )
⊥ei(n)) : i ∈ I1(M

lin
0 )

}

.

Using G(M0)-invariance of THet we conclude that

C∗ = max
{

THet(µ0 + ei(n)) : i ∈ I1(M
lin
0 )
}

.

The expression for α∗ given in the theorem now follows immediately from the expression for α∗

given in Part (b) of Theorem A.1.

We next prove Part (a): Apply Part (a) of Theorem A.1 with nj = 1 for j = 1, . . . , n = m

observing that then C(n1,...,nm) = CHet and that condition (26) reduces to (8) (exploiting that

span(X) is a linear space). This establishes (7). The final claim in Part (a) of the theorem

follows similarly as the corresponding claim of Part (b) upon replacing the set B by span(X) in

the argument and by noting that Tuc is G(M0)-invariant.

Part (c) follows from Part (c) of Theorem A.1 upon setting nj = 1 for j = 1, . . . , n = m (and

upon noting that then the conditions in Theorem A.1 reduce to the conditions of the present

theorem). ■

Proof of Proposition 5.5: Follows from Part A.1 of Proposition 5.12 of Pötscher and
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Preinerstorfer (2018) and the sentence following this proposition. Note that the assumptions of

this proposition have been verified in the proof of Theorem 5.1 (see also the proof of Theorem

A.1, on which the proof of Theorem 5.1 is based), where it is also shown that the quantity

C∗ used in Proposition 5.12 of Pötscher and Preinerstorfer (2018) coincides with C∗ defined in

Theorem 5.1. ■

We note that the result for THet in Proposition 5.5 can also be obtained from Theorem 4.2

in Preinerstorfer and Pötscher (2016).

Proof of Proposition 5.7: (a) This can be seen as follows (cf. also the discussion on p.302

of Preinerstorfer and Pötscher (2016)): By Remark C.1 above, Tuc satisfies the assumptions in

Corollary 5.17 in Preinerstorfer and Pötscher (2016) (with β̌ = β̂, Ω̌(y) = σ̂2(y)R (X ′X)
−1

R′,

N = ∅, and N∗ = span(X)). Let ei(n) be one of the standard basis vectors with i ∈ I1(M
lin
0 )

that does belong to span(X). Set Z = span(ei(n)) and note that this is a concentration space

of CHet, cf. Remark B.4 in Appendix B. The nonnegative definiteness assumption on Ω̌ in

Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) is clearly satisfied. We also have

Ω̌(λei(n)) = 0 (since ei(n) ∈ span(X)) for every λ ∈ R and Rβ̂(λei(n)) ̸= 0 for every λ ∈ R\{0}

(since ei(n) ∈ span(X) but ei(n) /∈ M
lin
0 in view of i ∈ I1(M

lin
0 )). Part 3 of Corollary 5.17 in

Preinerstorfer and Pötscher (2016) then proves the claim for C > 0. A fortiori it then also holds

for all real C.

(b) This follows for C > 0 from Part 3 of Theorem 4.2 in Preinerstorfer and Pötscher (2016)

upon observing that a vector ei(n) satisfying ei(n) ∈ span(X) for some i ∈ I1(M
lin
0 ) clearly

satisfies B(ei(n)) = 0 (as ei(n) ∈ span(X)) and Rβ̂(ei(n)) ̸= 0 (since ei(n) ∈ span(X) but

ei(n) /∈M
lin
0 in view of i ∈ I1(M

lin
0 )). A fortiori it then also holds for all real C. ■

Proof of Theorem A.1: We first prove Part (b). We wish to apply Part A of Proposition

5.12 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = THet, L = M
lin
0 , and

V = {0}. First, note that dim(Mlin
0 ) = k − q < n. Second, under Assumption 1, THet is a non-

sphericity corrected F-type test with N∗ = B, which is a closed λRn -null set (see Remarks 3.2 and

C.1 as well as Lemma 3.1). Hence, the general assumptions on T = THet, on N† = N∗ = B, on

L = M
lin
0 , as well as on V in Proposition 5.12 of Pötscher and Preinerstorfer (2018) are satisfied

in view of Part 1 of Lemma 5.16 in the same reference. [Alternatively, this can be gleaned from

Lemma 3.1 and the attending discussion.] Next, observe that condition (28) is equivalent to

span

({

Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]

})

⫅̸ B

for every j = 1, . . . ,m, such that (n+
j−1, n

+
j ]∩ I1(M

lin
0 ) ̸= ∅, since Π

(Mlin
0 )

⊥ei(n) and ei(n) differ

only by an element of Mlin
0 ⊆ span(X) and since B + span(X) = B (as noted in Lemma 3.1).

In view of Proposition B.2 in Appendix B, this implies that any S ∈ J(Mlin
0 ,C(n1,...,nm)) is not

contained in B, and thus not in N†. Using M0 ⊆ span(X) and B + span(X) = B, it follows

that µ0 + S ⫅̸ B = N† for every µ0 ∈ M0. Since µ0 + S is an affine space and N† = B is

a finite union of proper affine (even linear) spaces under Assumption 1 as discussed in Lemma
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3.1, we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and its proof)

that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. This completes the

verification of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer (2018) that are

not specific to Part A (or Part B) of this proposition. We next verify the assumptions specific to

Part A of this proposition: Assumption (a) is satisfied (even for every C ∈ R) as a consequence

of Part 2 of Lemma 5.16 in Pötscher and Preinerstorfer (2018) and of Remark C.1(i) above.

And Assumption (b) in Part A follows from Lemma 5.19 of Pötscher and Preinerstorfer (2018),

since THet results as a special case of the test statistics TGQ defined in Section 3.4 of Pötscher

and Preinerstorfer (2018) upon choosing W∗
n = n−1 diag(di). Part A of Proposition 5.12 of

Pötscher and Preinerstorfer (2018) now immediately delivers claim (27), since C∗ <∞ as noted

in that proposition. That C∗ and α∗ do not depend on the choice of µ0 ∈M0 is an immediate

consequence of G(M0)-invariance of THet. Also note that α∗ as defined in the theorem coincides

with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018) in view of G(M0)-

invariance of THet. Positivity of α∗ then follows from Part 5 of Lemma 5.15 in Preinerstorfer and

Pötscher (2016) in view of Remark C.1(i), noting that λRn and Pµ0,Σ are equivalent measures

(since Σ ∈ CHet is positive definite); cf. Remark 5.13(vi) in Pötscher and Preinerstorfer (2018).

In case α < α∗, the remaining claim in Part (b) of the theorem, namely that equality can be

achieved in (27), follows from the definition of C∗ in Lemma 5.11 of Pötscher and Preinerstorfer

(2018) and from Part A.2 of Proposition 5.12 of Pötscher and Preinerstorfer (2018) (and the

observation immediately following that proposition allowing one to drop the suprema w.r.t. µ0

and σ2, and to set σ2 = 1); in case α = α∗ < 1, it follows from Remarks 5.13(i),(ii) in Pötscher

and Preinerstorfer (2018) using Lemma 5.16 in the same reference.

The proof of Part (a) proceeds along the same lines with some minor differences: Observe

that Tuc is a non-sphericity corrected F-type test with N† = N∗ = span(X), which obviously

is a closed λRn -null set (see Remark C.1(ii)), showing similarly that the general assumptions on

T = Tuc, on N† = N∗ = span(X), as well as on L = M
lin
0 in Proposition 5.12 of Pötscher and

Preinerstorfer (2018) are again satisfied (with C = C(n1,...,nm)). A similar, even simpler argument

as in the proof of Part (b), again shows that condition (26) implies λµ0+S(N
†) = 0 for every

S ∈ J(Mlin
0 ,C(n1,...,nm)) and every µ0 ∈M0, thus completing the verification of the assumptions

of Proposition 5.12 of Pötscher and Preinerstorfer (2018) that are not specific to Part A (or Part

B) of this proposition. Verification of Assumption (a) in Part A of Proposition 5.12 of Pötscher

and Preinerstorfer (2018) proceeds exactly as before. For Assumption (b) we now use Lemma

5.19(iii) of Pötscher and Preinerstorfer (2018), since Tuc results as a special case of the test

statistics TE,W defined in Section 3 of Pötscher and Preinerstorfer (2018) upon choosing W as

n(n−k)−1In. Part A of Proposition 5.12 of Pötscher and Preinerstorfer (2018) then delivers the

claim (25), again since C∗ < ∞ as noted in that proposition. Again, G(M0)-invariance of Tuc

implies that C∗ and α∗ do not depend on the choice of µ0 ∈M0, and that α∗ as defined in the

theorem coincides with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018).

Positivity of α∗ follows exactly as before making now use of Remark C.1(ii). The remaining
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claim in Part (a) is proved completely analogous as the corresponding claim in Part (b).

We finally prove Part (c): The claims follow from Remark 5.10 and Lemma 5.16 in Pötscher

and Preinerstorfer (2018) combined with Remark C.1 above; cf. also Appendix A.3. ■

Proof of Proposition A.2: (a) This follows from Part 3 of Corollary 5.17 in Preinerstorfer

and Pötscher (2016): As shown in the proof of Proposition 5.7(a) Tuc satisfies the assump-

tions of this corollary (with β̌ = β̂, Ω̌(y) = σ̂2(y)R (X ′X)
−1

R′, N = ∅, and N∗ = span(X)).

Set now Z = span({ei(n) : i ∈ (n+
j−1, n

+
j ]}), where j is such that (n+

j−1, n
+
j ] ∩ I1(M

lin
0 ) ̸= ∅

and Z ⊆ span(X) hold. Note that Z is not contained in M
lin
0 by construction. Observe that

Z is a concentration space of C(n1,...,nm) in view of Remark B.4 in Appendix B (note that

card((n+
j−1, n

+
j ]) < n must hold in view of Z ⊆ span(X) and k < n, while 0 < card((n+

j−1, n
+
j ])

is obvious). The nonnegative definiteness assumption on Ω̌ in Part 3 of Corollary 5.17 in Prein-

erstorfer and Pötscher (2016) is clearly satisfied. Obviously Ω̌(z) = 0 holds for every z ∈ Z since

Z ⊆ span(X). It remains to establish that Rβ̂(z) ̸= 0 holds λZ -everywhere: Clearly, Rβ̂(z) = 0

for z ∈ Z occurs precisely for z ∈ Z ∩Mlin
0 since Z ⊆ span(X). But Z ∩Mlin

0 is a λZ -null set in

view of the fact that Z is not contained in M
lin
0 as noted before (and hence Z ∩Mlin

0 is a proper

linear subspace of Z). Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) then proves

the claim for C > 0. A fortiori it then also holds for all real C.

(b) This follows in the same way as Part (a) by applying Part 3 of Corollary 5.17 in Prein-

erstorfer and Pötscher (2016) now to THet (with β̌ = β̂, Ω̌ = Ω̂Het, N = ∅, and N∗ = B).

■

We note that Propositions 5.7 and A.2 could also be proved by making use of Theorem 3.1

in Pötscher and Preinerstorfer (2019).

Remark C.2. (i) Condition (8) ((10), respectively) in Theorem 5.1 can equivalently be written

as span({π
(Mlin

0 )
⊥
,i
}) ⫅̸ span(X) (⫅̸ B, respectively) for every i ∈ I1(M

lin
0 ) as discussed in the

proof. Since the spaces span({π
(Mlin

0 )
⊥
,i
}) are one-dimensional for i ∈ I1(M

lin
0 ) and since 1 <

n−k+ q = n−dim(Mlin
0 ), it follows that these spaces are necessarily elements of J(Mlin

0 ,CHet);

in fact, they are precisely the minimal elements of J(Mlin
0 ,CHet) w.r.t. the order induced by

inclusion.

(ii) Condition (26) ((28), respectively) in Theorem A.1 can equivalently be written as

span({Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]}) ⫅̸ span(X) ( ⫅̸ B, respectively)

for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅ as discussed in the proof. However, in

this more general case, it can happen that such a space appearing on the l.h.s. of the non-

inclusion relation has a dimension not smaller than n− dim(Mlin
0 ), and hence is not a member

of J(Mlin
0 ,C(n1,...,nm)). In light of the general results in Pötscher and Preinerstorfer (2018) (e.g.,

Corollary 5.6) one may wonder if requiring the non-inclusion condition in (26) (28, respectively)

for such spaces does not add an unnecessary restriction. However, this is not so as this non-
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inclusion is easily seen to be automatically satisfied for such spaces.71 Furthermore, the collection

of all spaces of the form span({Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]}) for j = 1, . . . ,m, such that

(n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅ and such that the dimension of these spaces is smaller than n −

dim(Mlin
0 ) is precisely the collection of minimal elements of J(Mlin

0 ,C(n1,...,nm)) w.r.t. the order

induced by inclusion. [Note that J(Mlin
0 ,C(n1,...,nm)) may be empty.]

Proposition C.3. Suppose we are in the setting of Example 5.5 with nj ≥ 2 for all j. Then

THet is size controllable over CHet, i.e., (9) holds for every 0 < α < 1.

Proof: Note that B is a subset of

S := {y ∈ Rn : ûi(y) = 0 for some i = 1, . . . , n} ,

and that S is a λRn -null set, as it is a finite union of λRn -null sets (since ei(n) /∈ span(X) in

view of nj ≥ 2 for all j). Also note that Sj > 0 holds for y /∈ S. Now, for y /∈ S, by the

Sherman-Morrison formula, the inverse of S1ιι
′ + diag(S2, . . . , Sk) equals

diag(S−1
2 , . . . , S−1

k )− diag(S−1
2 , . . . , S−1

k )ιι′ diag(S−1
2 , . . . , S−1

k )/
k
∑

j=1

1/Sj .

We may thus write

THet(y) =

k
∑

j=2

(ȳ(1) − ȳ(j))
2

Sj
−





k
∑

j=2

ȳ(1) − ȳ(j)

Sj





2

/

k
∑

j=1

1/Sj for every y /∈ S. (34)

As noted in Remark 3.3, for any invertible q × q-dimensional matrix A, the test statistic

THet based on R and the analogous test statistic, but computed with AR instead of R, coincide

everywhere (note r = 0). We apply this observation in the following way: fix l ∈ {2, . . . , k},

and choose A with l-th column (−1, . . . ,−1)′, l-th row(0, . . . 0,−1, 0, . . . , 0), and such that after

deleting the l-th column and the l-th row we obtain Iq−1. Then

AR = RPl,

where Pl is the k × k permutation matrix that interchanges the first and l-th coordinate (and

keeps all other coordinates fixed). By a similar computation as the one that led to the expression

in (34), but now with RPl in place of R, we can now conclude that for every l ∈ {1, . . . , k} we

71Note that any such space is necessarily equal to
(

Mlin
0

)⊥
. If now

(

Mlin
0

)⊥
were contained in span(X) (B,

respectively), then Rn would also have to be contained in span(X) (B, respectively), since Rn can be written as

the direct sum of
(

Mlin
0

)⊥
and Mlin

0 and since span(X) (B, respectively) are invariant under addition of elements

of Mlin
0 . However, span(X) is a proper subspace of Rn (since we always assume k < n) and B is a finite union of

proper linear subspaces of Rn under Assumption 1. This gives a contradiction.
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have

THet(y) =

k
∑

j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj
−





k
∑

j=1,j ̸=l

ȳ(l) − ȳ(j)

Sj





2

/

k
∑

j=1

1/Sj for every y /∈ S.

For y /∈ S we may thus upper bound THet(y) by
∑k

j ̸=l(ȳl − ȳj)
2/Sj , and we are free to choose

l. Setting l = l(y) ∈ argminj=1,...,k Sj , the upper bound for THet(y) just derived, together with

Sj ≥ (Sj + Sl)/2 > 0, gives for y /∈ S

THet(y) ≤
k
∑

j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj
≤ 2

k
∑

j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj + Sl

≤ 2
k
∑

i,j=1,i ̸=j

(ȳ(i) − ȳ(j))
2

Si + Sj
= 2

k
∑

i,j=1,i ̸=j

Ti,j(y),

where Ti,j(y) = (ȳ(i) − ȳ(j))
2/(Si + Sj). Note that the quantity to the far right does not depend

on our particular choice of l. For y ∈ S, define Ti,j by the same formula as long as Si + Sj > 0

and as Ti,j = 0 else. Since S is a λRn -null set, we have for any C > 0

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(THet ≥ C) ≤

k
∑

i,j=1,i ̸=j

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(Ti,j ≥ C/2(k2−k)).

Now observe that Ti,j depends only on the coordinates of y corresponding to groups i and j and

furthermore coincides with the test statistic of the form (4) for a two sample mean comparison

as considered in Example 5.4 (with sample size being equal to ni+nj). A simple argument then

shows that the terms in the sum on the r.h.s of the preceding display can be rewritten as the

sizes of the test statistic (4) as considered in Example 5.4 with sample size now being given by

ni + nj . Hence, all these terms can be made arbitrarily small by choosing C large enough by

what has been established in Example 5.4. ■

We provide here a further example, where the sufficient condition of Part (b) of Theorem 5.1

fails, but size control is possible.

Example C.1. Suppose we are given k ≥ 2 integers nj describing group sizes satisfying n1 ≥ 2

and nj ≥ 1 for j ≥ 2. Sample size is n =
∑k

j=1 nj . Clearly k < n is then satisfied. The regressors

xti indicate group membership, i.e., they satisfy xti = 1 for
∑i−1

j=1 nj < t ≤
∑i

j=1 nj and xti = 0

otherwise. The heteroskedasticity model is again given by CHet. Let R = (1, 0, . . . , 0), i.e., the

coefficient of the first regressor is subject to test. Then I0(M
lin
0 ) = {

∑j
l=1 nl : nj = 1, j =

2, . . . , k}. With regard to Tuc we immediately see that ei(n) /∈ span(X) for i ∈ I1(M
lin
0 ) holds,

and thus the sufficient condition (8) for size control of Tuc is satisfied. Turning to THet, observe

that Assumption 1 is satisfied as is easily seen. Furthermore, it is not difficult to see that

B = {y ∈ Rn : y1 = . . . = yn1}. Note that span(X) ⊆ B, but B ̸= span(X), except if nj = 1 for
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all j ≥ 2 holds. In the latter case it is then easy to see that ei(n) /∈ span(X) = B for every

i ∈ I1(M
lin
0 ) holds, and thus the sufficient condition (10) for size control of THet is satisfied. But

if nj > 1 for some j ≥ 2 holds, then for any index i satisfying
∑j−1

l=1 nl < i ≤
∑j

l=1 nl we have

i ∈ I1(M
lin
0 ) as well as ei(n) ∈ B. Consequently, the sufficient condition (10) for size control

of THet is not satisfied and hence Theorem 5.1 does not inform us about size controllability of

THet in this case. However, the following argument shows that size control for THet is possible

also in this case: The test statistic THet for the given problem coincides with a corresponding

test statistic (again of the form (6) for an appropriate choice of di’s) in the “reduced” problem

that one obtains by throwing away all data points for t > n1 and by also deleting all regressors

from the regression model but the first one. This leads one to the heteroskedastic location

model discussed in Example 5.3 albeit with sample size reduced to n1. It is now not difficult

to see that the size of THet in the original formulation of the problem coincides with the size

of the corresponding test statistic in the “reduced” problem, which – in light of the discussion

in Example 5.3 – shows that size control for THet in the original problem is possible also in the

case where nj > 1 for some j ≥ 2 holds. [If n1 = 1 and if nj ≥ 2 for some j, condition (8) in

Theorem 5.1(a) is violated, implying – in view of Proposition 5.7 – that the size of the rejection

region {Tuc > C} is 1 for every choice of C; and that the test statistic THet is identically zero

(since Assumption 1 is violated and, in fact, Ω̂Het is identically zero). The case where all nj are

equal to 1 even falls outside of our framework since we always require n > k.]

Remark C.4. Alternatively to the argument given in Example C.1 for the case where nj > 1 for

some j ≥ 2 holds, size controllability of THet can also be established by the following reasoning:

Keep the sample of size n, but replace the regressors x·i for 2 ≤ i ≤ k by new regressors

given by the standard basis vectors ej(n) for j > n1 (the number of regressors now being

k∗ = n−n1+1 < n and R = (1, 0, . . . , 0) now being 1×k∗). Then one observes that (i) this does

not affect the test statistic, (ii) makes the set M0 at most larger, and (ii) in the new model the

sufficient condition (10) is now satisfied (as in the new model nj = 1 holds for j > n1). Hence, size

control (even over the larger M0) follows. A third possibility to establish the size-controllability

result is to observe that the test statistic THet as well as the set B in the original model are

– additional to being G(M0)-invariant – also invariant w.r.t. addition of the elements ei(n)

for i > n1 and then to appeal to a generalization of Theorem 5.1 that exploits this additional

invariance and provides sufficient conditions for size control that can be seen to be satisfied in

the model considered in this example. Such a generalization of Theorem 5.1, which we refrain

from stating, can be obtained from the general size control results presented in Pötscher and

Preinerstorfer (2018).

Remark C.5. Example C.1 is an instance of the following observation: Suppose X is block-

diagonal of rank k with blocks X1 and X2 where Xi is ni× ki with n1+n2 = n and k1+ k2 = k.

Assume k1 < n1 (which entails k < n). Assume that the q × k restriction matrix R is of rank

q and has the form R = (R1 : 0) with R1 of dimension q × k1. The heteroskedasticity model is

given by CHet. Then, using the same reasoning as in Example C.1, we see that the question of

65



size control of THet is equivalent to the question of size control of the corresponding test statistic

in the “reduced” problem where one considers the regression model with regressor matrix equal

to X1 using only observations with t ≤ n1 (and as heteroskedasticity model the analogue of CHet

for sample size n1). As Example C.1 has shown, it is possible that the sufficient conditions for

size control of THet are violated in the “original” problem, while at the same time the sufficient

conditions may be satisfied in the “reduced” problem. Alternatively, one can argue similarly as

in Remark C.4.

D Appendix: Proofs for Section 6 and Appendix A.2

Lemma D.1. (a) Let S be a linear subspace of Rn and µ an element of Rn such that T̃uc

restricted to µ+S is not equal to a constant λµ+S-almost everywhere. Then λµ+S(T̃uc = C) = 0

holds for every C ∈ R.

(b) λRn(T̃uc = C) = 0 holds for every C ∈ R .

(c) Let S be a linear subspace of Rn and µ an element of Rn such that T̃Het restricted to

µ + S is not equal to a constant λµ+S-almost everywhere. Then λµ+S(T̃Het = C) = 0 holds for

every C ∈ R.

(d) Suppose Assumption 2 holds and T̃Het is not constant on Rn\B̃. Then λRn(T̃Het = C) = 0

holds for every C ∈ R.

Proof: (a) Since T̃uc is constant on M0 by definition, it follows that µ + S ̸⊆ M0 must

hold, and hence M0 is a λµ+S -null set (cf. the argument in Remark 5.9(i) in Pötscher and

Preinerstorfer (2018)). Consequently, T̃uc restricted to (µ + S)\M0 is not constant. Suppose

now there exists a C ∈ R so that λµ+S({y ∈ Rn : T̃uc(y) = C}) > 0. Then, since M0 is a λµ+S -

null set as just shown, it follows that even λµ+S({y ∈ Rn\M0 : T̃uc(y) = C}) > 0 must hold,

which can be written as λµ+S({y ∈ Rn\M0 : p(y) = 0}) > 0, with the multivariate polynomial

p given by p(y) = (Rβ̂ (y) − r)′
(

R(X ′X)−1R′
)−1

(Rβ̂ (y) − r) − Cσ̃2(y). This implies that p

restricted to µ + S vanishes on a set of positive λµ+S -measure. Since p restricted to µ + S can

clearly be expressed as a polynomial in coordinates parameterizing the affine space µ + S, it

follows that p vanishes identically on µ+ S. But this implies that T̃uc restricted to (µ+ S)\M0

is constant equal to C, a contradiction (as M0 is a λµ+S -null set).

(b) Follows from Part (a) upon choosing S = Rn, if we can show that T̃uc is not λRn -almost

everywhere constant. Given that T̃uc is continuous on Rn\M0 (the complement of a proper

affine subspace), it suffices to show that T̃uc is not constant on Rn\M0. To this end consider

first y = Xβ with Rβ − r ̸= 0 (such a β obviously exists). Observe that σ̃2(y) ̸= 0 as y /∈ M0

and that Rβ̂(y) − r = Rβ − r ̸= 0. Hence, T̃uc(y) ̸= 0 for this choice of y. Next, choose

y = Xβ + w, where Rβ − r = 0 (such a β obviously exists) and where w ̸= 0 is orthogonal to

span(X) (which is possible since k < n is always maintained). Then β̂(y) = β = β̃(y), implying

Rβ̂(y)− r = Rβ − r = 0 and σ̃2(y) = w′w/(n− (k − q)) ̸= 0. Note that y /∈M0. It follows that

T̃uc(y) = 0 holds for this choice of y. This establishes non-constancy of T̃uc on Rn\M0.
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(c) Completely analogous to the proof of Part (a) except that T̃uc andM0 are replaced by T̃Het

and B̃, respectively, and that p now takes the form p(y) = (Rβ̂ (y) − r)′ adj(Ω̃Het(y))(Rβ̂ (y) −

r) − C det(Ω̃Het(y)), where adj(·) denotes the adjoint of the square matrix indicated, with the

convention that the adjoint of a 1 × 1 dimensional matrix equals one. [We note that under

the assumptions for Part (c) the set B̃ cannot coincide with Rn (since otherwise T̃Het would be

constant equal to zero), and thus Assumption 2 must hold.]

(d) Follows from Part (c) upon choosing S = Rn, if we can show that T̃Het is not λRn -almost

everywhere constant. Given that T̃Het is continuous on Rn\B̃ (the complement of a finite union

of proper affine subspaces by Lemma 6.1), this follows from the assumed non-constancy on Rn\B̃.

■

Remark D.2. The additional assumption that T̃Het is not constant on Rn\B̃ in Part (d) of the

preceding lemma can not be dropped as can be seen from the following example: Consider the

case where k = q = 1, R = 1, r = 0, the regressor is given by e1(n), and the constants d̃i satisfy

d̃i = 1 for all i. Then M0 = M
lin
0 = {0}, Assumption 2 is satisfied, and B̃ = span(e1(n))

⊥.

Furthermore, T̃Het(y) = 1 for every y ∈ Rn\B̃. As a point of interest we note that T̃Het is

trivially size controllable for every 0 < α < 1, but that the condition (17) for size controllability

is violated since ej(n) ∈ B̃ for j > 1. [Of course, neither a smallest size-controlling critical

value exists (when considering rejection regions of the form {T̃Het ≥ C}) nor can exact size

controllability be achieved for 0 < α < 1.] An extension of this example to the case q = k > 1 is

discussed in the proof of Remark 6.10 given further below.

Lemma D.3. Let C be a given critical value. Then the rejection probabilities Pµ0,σ
2Σ(T̃uc ≥ C)

as well as Pµ0,σ
2Σ(T̃Het ≥ C) for µ0 ∈ M0, σ2 ∈ (0,∞), Σ ∈ CHet, do not depend on r. [It

is understood here that the constants d̃i appearing in the definition of T̃Het have been chosen

independently of the value of r.]

Proof: Fix µ0 ∈M0. Observe that T̃Het(y) = T̃ 0
Het(y − µ0), where

T̃ 0
Het (z) =







(Rβ̂ (z))′
(

Ω̃0
Het(z)

)−1

(Rβ̂ (z)) if rank B̃0 (z) = q,

0 if rank B̃0 (z) < q,

where

Ω̃0
Het(z) = R(X ′X)−1X ′ diag

(

d̃1(ũ
0
1 (z))

2, . . . , d̃n(ũ
0
n (z))

2
)

X(X ′X)−1R′,

where ũ0 (z) = Π(Mlin
0 )⊥z, and where B̃0 (z) = R(X ′X)−1X ′ diag(e′1(n)Π(Mlin

0 )⊥(z), . . . , e
′
n(n)Π(Mlin

0 )⊥(z)).

Here we have made use of (13) and the fact that ũ (y) = ũ0(y − µ0). Now

Pµ0,σ
2Σ(T̃Het(y) ≥ C) = Pµ0,σ

2Σ(T̃
0
Het(y − µ0) ≥ C) = P0,σ2Σ(T̃

0
Het(z) ≥ C)

and the far right-hand side does not depend on r as T̃ 0
Het does not depend on r. The proof for
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T̃uc is completely analogous, noting that T̃uc(y) = T̃ 0
uc(y − µ0), where

T̃ 0
uc (z) =

{

(Rβ̂ (z))′
(

(σ̃0(z))2R(X ′X)−1R′
)−1

(Rβ̂ (z)) if z /∈M
lin
0 ,

0 if z ∈M
lin
0 ,

and where (σ̃0(z))2 = (ũ0 (z))′ũ0 (z) /(n− (k − q)). ■

Proof of Theorem 6.4: We first prove Part (b). We apply Part (b) of Theorem A.5 with

nj = 1 for j = 1, . . . , n = m observing that then C(n1,...,nm) = CHet and that condition (31)

reduces to (17) (exploiting that B̃ − µ0 is a finite union of proper linear subspaces as discussed

in Lemma 6.1). This establishes (16). The final claim in Part (b) of the theorem follows from

Part (b) of Theorem A.5, if we can show that C∗ given there can be written as claimed in

Theorem 6.4: To this end we proceed as follows:72 Choose an element µ0 of M0. Observe that

I1(M
lin
0 ) ̸= ∅ (since dim(Mlin

0 ) = k − q < n), and that for every i ∈ I1(M
lin
0 ) the linear space

Si = span(Π
(Mlin

0 )
⊥ei(n)) is 1-dimensional (since Si = {0} is impossible in view of i ∈ I1(M

lin
0 )),

and belongs to J(Mlin
0 ,CHet) (since n − k + q > 1 = dim(Si) holds) in view of Proposition B.1

in Section B. Since T̃Het is G(M0)-invariant (Remark 6.2), it follows that T̃Het is constant on

(µ0 + Si)\ {µ0}, cf. the beginning of the proof of Lemma 5.11 in Pötscher and Preinerstorfer

(2018). Hence, Si belongs to H (defined in Lemma 5.11 in Pötscher and Preinerstorfer (2018))

and consequently for C∗ as defined in that lemma

C∗ ≥ max

{

T̃Het(µ0 +Π
(Mlin

0 )
⊥ei(n)) : i ∈ I1(M

lin
0 )

}

must hold. To prove the opposite inequality, let S be an arbitrary element of H, i.e., S ∈

J(Mlin
0 ,CHet) and T̃Het is λµ0+S -almost everywhere equal to a constant C(S), say. Then Propo-

sition B.1 in Section B shows that Si ⊆ S holds for some i ∈ I1(M
lin
0 ). Because of Condition

(17) we have µ0 + Si ⫅̸ B̃ since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ only by an element of Mlin

0 and

since B̃ + M
lin
0 = B̃. We thus can find s ∈ Si such that µ0 + s /∈ B̃. Note that s ̸= 0 must

hold, since µ0 ∈ M0 ⊆ B̃ (see Lemma 6.1). In particular, T̃Het is continuous at µ0 + s, since

µ0 + s /∈ B̃. Now, for every open ball Aε in Rn with center s and radius ε > 0 we can find an

element aε ∈ Aε ∩ S such that T̃Het(µ0 + aε) = C(S). Since aε → s for ε → 0, it follows that

C(S) = T̃Het(µ0+ s). Since s ̸= 0 and since T̃Het is constant on (µ0+Si)\ {µ0} as shown before,

we can conclude that C(S) = T̃Het(µ0 + s) = T̃Het(µ0 + Π
(Mlin

0 )
⊥ei(n)), where we recall that

Π
(Mlin

0 )
⊥ei(n) ̸= 0. But this now implies

C∗ = max

{

T̃Het(µ0 +Π
(Mlin

0 )
⊥ei(n)) : i ∈ I1(M

lin
0 )

}

.

72Alternatively, one could base a proof on Lemma C.1 in Pötscher and Preinerstorfer (2019).

68



Using G(M0)-invariance of T̃Het we conclude that

C∗ = max
{

T̃Het(µ0 + ei(n)) : i ∈ I1(M
lin
0 )
}

.

We next prove Part (a): Apply Part (a) of Theorem A.5 with nj = 1 for j = 1, . . . , n = m,

observing that then C(n1,...,nm) = CHet. This establishes (15).73 The final claim in Part (a) of

the theorem follows similarly as the corresponding claim of Part (b) upon replacing the set B̃

by M0 in the argument, by noting that T̃uc is G(M0)-invariant, and that µ0 + Si ⫅̸ M0 holds

because of i ∈ I1(M
lin
0 ).

Part (c) follows from Part (c) of Theorem A.5 upon setting nj = 1 for j = 1, . . . , n = m (and

upon noting that then the conditions in Theorem A.5 reduce to the conditions of the present

theorem). ■

Proof of Proposition 6.7: Follows from Part A.1 of Proposition 5.12 of Pötscher and

Preinerstorfer (2018) and the sentence following this proposition. Note that the assumptions of

this proposition have been verified in the proof of Theorem 6.4 (see also the proof of Theorem

A.5, on which the proof of Theorem 6.4 is based), where it is also shown that the quantity

C∗ used in Proposition 5.12 of Pötscher and Preinerstorfer (2018) coincides with C∗ defined in

Theorem 6.4. ■

Proof of Remark 6.10: (i) From the definition of B̃(y) and since here ũ(y) = y − µ0 we

obtain for i = 1, . . . , n

B̃(µ0 + ei(n)) = R(X ′X)−1 (0, . . . , 0, x′
i·, 0, . . . , 0)

where x′
i· appears in the i-th position (recall that x′

i· is the i-th column of X ′). But then

rank(B̃(µ0 + ei(n))) ≤ 1 < q, implying that µ0 + ei(n) ∈ B̃. [In case q = k = 1, rank(B̃(µ0 +

ei(n))) = 1 = q for every i = 1, . . . , n whenever the matrix X has no zero entry. This then

implies that (17) is satisfied. However, if X contains a zero at the m-th position, say, then

B̃(µ0 + em(n)) = 0 < 1 = q, implying that µ0 + em(n) ∈ B̃, thus leading to violation of (17) as

I1(M
lin
0 ) = {1, . . . , n}.]

(ii) Define β0 = (X ′X)−1X ′µ0 and note that Rβ0 = r holds. Observing that R is nonsingular,

that d̃i > 0 for 1, . . . , n, and that ũ(y) = y − µ0, we obtain for y /∈ B̃

T̃Het(y) = (y − µ0)
′
X
[

X ′ diag
(

d̃1ũ
2
1(y), . . . , d̃nũ

2
n(y)

)

X
]−1

X ′ (y − µ0)

= ũ(y)′X
[

X ′ diag
(

d̃1ũ
2
1(y), . . . , d̃nũ

2
n(y)

)

X
]−1

X ′ũ(y)

≤

(

min
1≤i≤n

d̃i

)−1

e′A(y) [A′(y)A(y)]
−1

A′(y)e ≤ n

(

min
1≤i≤n

d̃i

)−1

where e = (1, . . . , 1)′ and A(y) = diag(ũ1(y), . . . , ũn(y))X. Note that A′(y)A(y) is nonsingular

73This argument is actually superfluous since T̃uc is bounded as noted in Section 6.2.1.
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for y /∈ B̃ and that the matrix in the quadratic form is a projection matrix. For y ∈ B̃ we have

T̃Het(y) = 0. Hence, T̃Het(y) is bounded from above, and is trivially bounded from below as

T̃Het(y) ≥ 0 for every y ∈ Rn.

(iii) In the following examples we always set µ0 = 0 (i.e., r = 0) for the sake of simplicity.

Remark D.2 provides an example where T̃Het is constant on Rn\B̃. This example has q = k = 1.

It can be easily extended to the case q = k ≥ 2 by considering a design matrix X, the columns

of which are given by the first k standard basis vectors, by setting R = Iq, and d̃i = 1 for every

i = 1, . . . , n. Then T̃Het(y) = k for every y ∈ Rn\B̃ = {y ∈ Rn : y1 ̸= 0, . . . , yk ̸= 0}. An

example where T̃Het is not constant on Rn\B̃ is in case q = k = 1 given by the location model:

Here T̃Het(y) = (
∑n

t=1 yt)
2/
∑n

t=1 y
2
t for every y ∈ Rn\B̃ = {y ∈ Rn : y ̸= 0}, which obviously is

not constant (as n > k = 1).74 This example can again be extended to the case q = k > 1 as

follows: Let R = Iq and let X be the design matrix where each of the columns correspond to a

dummy variable describing membership in one of k disjoint groups Gj , each group of the same

cardinality n1 with n1 > 1. Consequently, n = kn1. W.l.o.g., we may assume that the elements

G1 have the lowest indices, followed by the elements of G2, and so on. It is then easy to see that

T̃Het(y) =
k
∑

j=1

[

(
∑

t∈Gj

yt)
2/
∑

t∈Gj

y2t

]

(35)

for y ∈ Rn\B̃ =
⋂k

j=1{y ∈ Rn : yt ̸= 0 for at least one t ∈ Gj}. Obviously, the expression in

(35) is not constant: Choosing y = e gives the value kn1 = n, whereas choosing y such that

y1 = yn1+1 = y2n1+1 = . . . = y(k−1)n1+1 = 1 with all the other coordinates being zero gives a

value of k < n = kn1 since n1 > 1.

Proof of Theorem 6.12: From the definition of C∗ we see that C∗ is nonnegative and

finite. Let C be arbitrary but satisfying C∗ < C < supy∈Rn T̃Het(y). We can then choose

y0 ∈ Rn with T̃Het(y0) > C > 0. In view of the definition of T̃Het it follows that y0 /∈ B̃, and

hence T̃Het is continuous at y0. We can thus find an open neighborhood U(y0) of y0 in Rn such

that T̃Het is larger than C on U(y0). In particular, Pµ0,Σ(T̃Het ≥ C) ≥ Pµ0,Σ(U(y0)) > 0 for

every µ0 ∈M0 and every Σ ∈ CHet. This establishes α
∗ > 0. Choose δ > 0 such that δ ≤ α and

δ < α∗. Then the size of the rejection region {T̃Het ≥ C♦(δ)} is exactly equal to δ by Parts (b)

and (c) of Theorem 6.4. Consequently, {T̃Het ≥ C♦(δ)} is not a λRn -null set. By construction,

C♦(α) ≤ C♦(δ) holds, and hence {T̃Het ≥ C♦(α)} contains {T̃Het ≥ C♦(δ)}, which completes

the proof. ■

Proof of Theorem A.5: We first prove Part (b). We wish to apply Part A of Proposition

5.12 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = T̃Het, L = M
lin
0 , and

V = {0}. First, note that dim(Mlin
0 ) = k − q < n. Second, under Assumption 2, T̃Het is clearly

Borel-measurable and is continuous on the complement of B̃, where B̃ is a closed λRn -null set

74In this example condition (17) is satisfied as ei(n) /∈ B̃ for every i = 1, . . . , n. To arrive at an example
where again T̃Het is not constant on Rn\B̃ but where condition (17) is not satisfied, consider the case where
X = (1, . . . , 1, 0)′ with n ≥ 2. Observe that then I1(Mlin

0 ) = {1, . . . , n}.

70



(see Lemma 6.1 and the paragraph following this lemma). Because of Remark 6.2, we hence see

that the general assumptions on T = T̃Het, on N† = B̃, on L = M
lin
0 , as well as on V = {0}

in Proposition 5.12 of Pötscher and Preinerstorfer (2018) are satisfied. Next, observe that the

validity of condition (31) clearly does not depend on the choice of µ0 ∈M0 since B̃+M
lin
0 = B̃

as shown in Lemma 6.1. For the same reason condition (31) can equivalently be written as

µ0 + span

({

Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]

})

⫅̸ B̃

for every j = 1, . . . ,m, such that (n+
j−1, n

+
j ]∩ I1(M

lin
0 ) ̸= ∅, since Π

(Mlin
0 )

⊥ei(n) and ei(n) differ

only by an element of Mlin
0 . In view of Proposition B.2 in Appendix B, this implies that µ0 + S

for any S ∈ J(Mlin
0 ,C(n1,...,nm)) is not contained in B̃, and thus not in N†. Since µ0 + S is an

affine space and N† = B̃ is a finite union of proper affine spaces under Assumption 2 as discussed

in Lemma 6.1, we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and

its proof) that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. This

completes the verification of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer

(2018) that are not specific to Part A (or Part B) of this proposition. We next verify the

assumptions specific to Part A of this proposition: Assumption (a) is satisfied (even for every

C ∈ R) as a consequence of Part (d) of Lemma D.1 (note that we have assumed that T̃Het is not

constant on Rn\B̃). And Assumption (b) in Part A follows from Part (c) of Lemma D.1. Part A

of Proposition 5.12 of Pötscher and Preinerstorfer (2018) now immediately delivers claim (30),

since C∗ < ∞ as noted in that proposition. That C∗ and α∗ do not depend on the choice of

µ0 ∈M0 is an immediate consequence of G(M0)-invariance of T̃Het. Also note that α∗ as defined

in the theorem coincides with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer

(2018) in view of G(M0)-invariance of T̃Het. In case α < α∗, the remaining claim in Part (b)

of the theorem, namely that equality can be achieved in (27), follows from the definition of C∗

in Lemma 5.11 of Pötscher and Preinerstorfer (2018) and from Part A.2 of Proposition 5.12 of

Pötscher and Preinerstorfer (2018) (and the observation immediately following that proposition

allowing one to drop the suprema w.r.t. µ0 and σ2, and to set σ2 = 1); in case α = α∗ < 1, it

follows from Remarks 5.13(i),(ii) in Pötscher and Preinerstorfer (2018) using Part (d) of Lemma

D.1. [In case α∗ = 0, there is nothing to prove.]

The proof of Part (a) proceeds similarly, but with some differences: Noting that T̃uc is

clearly Borel-measurable and is continuous on the complement of M0, where M0 is a closed

λRn -null set, and using Remark 6.2, we now see that the general assumptions on T = T̃uc, on

N† = M0, on L = M
lin
0 , as well as on V = {0} in Proposition 5.12 of Pötscher and Preinerstorfer

(2018) are satisfied (again with C = C(n1,...,nm)). Let now S ∈ J(Mlin
0 ,C(n1,...,nm)). In view

of Proposition B.2 in Appendix B, S must then contain an element of the form Π
(Mlin

0 )
⊥ei(n)

for some i ∈ I1(M
lin
0 ). Observe that Π

(Mlin
0 )

⊥ei(n) /∈ M
lin
0 must hold, since otherwise we

would have ei(n) ∈ M
lin
0 , contradicting i ∈ I1(M

lin
0 ). It follows that S ⫅̸ M

lin
0 , and thus

µ0 + S ⫅̸ M0 for every µ0 ∈ M0. Since µ0 + S is an affine space and N† = M0 is a proper
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affine space we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and its

proof) that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. We have

thus now completed the verification of the assumptions of Proposition 5.12 of Pötscher and

Preinerstorfer (2018) that are not specific to Part A (or Part B) of this proposition. We next

verify the assumptions specific to Part A of this proposition: Verification of Assumptions (a)

and (b) in Part A of Proposition 5.12 of Pötscher and Preinerstorfer (2018) proceeds similar as

before except for now using Parts (b) and (a) of Lemma D.1. Part A of Proposition 5.12 of

Pötscher and Preinerstorfer (2018) now immediately delivers claim (29), again since C∗ < ∞

as noted in that proposition.75 Again, G(M0)-invariance of T̃uc implies that C∗ and α∗ do not

depend on the choice of µ0 ∈ M0, and that α∗ as defined in the theorem coincides with α∗ as

defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018). The remaining claim in Part

(a) is proved completely analogous as the corresponding claim in Part (b) except for now using

Part (b) of Lemma D.1.

We finally prove Part (c): The claims follow from Remark 5.10 in Pötscher and Preinerstorfer

(2018) and Lemma D.1; cf. also Appendix A.3. ■

E Appendix: Algorithms

In this appendix, we discuss in more detail algorithms for determining (i) rejection probabili-

ties, (ii) the size of a test based on one of the test statistics THet, Tuc, T̃Het, or T̃uc together

with a given candidate critical value, and (iii) size-controlling critical values. We discuss these

algorithms under the Gaussianity assumption made in Section 2, but recall from Section 7.1

that the algorithms as given here can also be used to calculate null rejection probabilities, size,

and size-controlling critical values in the elliptically symmetric case without any changes. Fur-

thermore, we restrict ourselves to the heteroskedasticity model CHet; adapting the algorithms

to subsets C of CHet is rather straightforward (basically one has to appropriately constrain the

optimization routines involved, appropriately redefine some of the quantities like Clow, and refer

to the size-control conditions pertinent to the given heteroskedasticity model C).

E.1 Computing rejection probabilities

Suppose that a G(M0)-invariant test statistic T : Rn → R has the following property: for some

(and hence any) µ0 ∈M0 and a critical value C ∈ R, there exists a symmetric n×n matrix AC ,

such that

T (µ0 + z) ≥ C ⇔ z′ACz ≥ 0 holds for λRn -almost every z ∈ Rn. (36)

75This argument is actually superfluous since T̃uc is bounded as noted in Section 6.2.1. However, verification
of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer (2018) is essential for the proof of the other
claims in Part(a) of Theorem A.5.
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If this property is satisfied, then for all choices of Σ ∈ CHet, µ0 ∈M0, µ ∈M, and σ2 ∈ (0,∞),

setting ν := σ−1Σ−1/2(µ− µ0), we may write

Pµ,σ2Σ({z ∈ Rn : T (z) ≥ C}) = Pν,In({ζ ∈ Rn : ζ ′Σ1/2ACΣ
1/2ζ ≥ 0}); (37)

in case µ ∈M0, we may set µ0 = µ to further simplify the right-hand-side in (37) to

P0,In({ζ ∈ Rn : ζ ′Σ1/2ACΣ
1/2ζ ≥ 0}). (38)

The probability that a Gaussian quadratic form is not less than 0 (such as (37) or (38)) can

numerically be determined by standard algorithms such as Davies (1980). Relation (36) can thus

be exploited for efficiently computing rejection probabilities (for a given critical value), and thus

plays an instrumental rôle in numerically determining the size of a test, size-controlling critical

values, or the power function of a test.

For the important case q = 1 we now show that the above approach can indeed be used. It

follows from the subsequent lemma that for any critical value C the property in (36) holds for

the following test statistics: (i) THet provided Assumption 1 holds; (ii) Tuc; (iii) T̃Het provided

Assumption 2 holds; (iv) T̃uc. Recall from Lemmata 3.1 and 6.1 that under Assumption 1

(Assumption 2, respectively), the set B (B̃, respectively) is a λRn -null set. Note that v defined

in the lemma satisfies v ̸= 0.

Lemma E.1. Suppose q = 1. Let v = vR,X := X(X ′X)−1R′. Then, for every C ∈ R and every

µ0 ∈M0, we have:

(a) If µ0 + z /∈ B, then THet(µ0 + z) ≥ C (≤ C) is equivalent to z′AHet,Cz ≥ 0 (≤ 0), where

AHet,C := vv′ − CΠspan(X)⊥ diag
(

v21d1, . . . , v
2
ndn

)

Πspan(X)⊥ . (39)

(b) If µ0 + z /∈ span(X), then Tuc(µ0 + z) ≥ C (≤ C) is equivalent to z′Auc,Cz ≥ 0 (≤ 0), where

Auc,C := vv′ − C
v′v

n− k
Πspan(X)⊥ . (40)

(c) If µ0 + z /∈ B̃, then T̃Het(µ0 + z) ≥ C (≤ C) is equivalent to z′ÃHet,Cz ≥ 0 (≤ 0), where

ÃHet,C := vv′ − CΠ(Mlin
0 )⊥ diag

(

v21 d̃1, . . . , v
2
nd̃n

)

Π(Mlin
0 )⊥ . (41)

(d) If µ0 + z /∈M0, then T̃uc(µ0 + z) ≥ C (≤ C) is equivalent to z′Ãuc,Cz ≥ 0 (≤ 0), where

Ãuc,C := vv′ − C
v′v

n− (k − 1)
Π(Mlin

0 )⊥ . (42)

Proof: We first observe that there is nothing to prove in Part (a) (Part (c), respectively) if

Assumption 1 (Assumption 2, respectively) is violated, since then B = Rn (B̃ = Rn, respectively)
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by Lemma 3.1 (Lemma 6.1, respectively). In the following we hence may assume for Part (a)

(Part (c), respectively) that Assumption 1 (Assumption 2, respectively) hold, in which case B (B̃,

respectively) is a λRn -null set. The expressions in (39), (40), (41), and (42) now follow directly

from the definitions of the test statistics since q = 1, recalling in particular that û(µ0 + z) =

Πspan(X)⊥(µ0 + z) = Πspan(X)⊥z, and ũ(µ0 + z) = Π(Mlin
0 )⊥((µ0 + z) − µ0) = Π(Mlin

0 )⊥z, and

noting that for q = 1

Rβ̂(µ0 + z) = r + v′z,

Ω̂Het(µ0 + z) = z′Πspan(X)⊥ diag(v21d1, . . . , dnv
2
n)Πspan(X)⊥z,

Ω̃Het(µ0 + z) = z′Π(Mlin
0 )⊥ diag(v21 d̃1, . . . , d̃nv

2
n)Π(Mlin

0 )⊥z,

σ̂2(µ0 + z) =
z′Πspan(X)⊥z

n− k
, σ̃2(z) =

z′Π(Mlin
0 )⊥z

n− (k − 1)

hold. ■

Remark E.2. The algorithm in Davies (1980) applied to (37) requires that the matrix AC is

not the zero matrix. In (i)-(iii) below we always have q = 1.

(i) It is easy to see that AHet,C , Auc,C , and Ãuc,C are never equal to the zero matrix: Note

that v′AHet,Cv = (v′v)2 > 0, since v ∈ span(X) and v ̸= 0. The same argument applies to

Auc,C . Furthermore, for C = 0 the matrix Ãuc,C is obviously not the zero matrix; for C ̸= 0 let

w ∈ (Mlin
0 )⊥, w ̸= 0, w orthogonal to v, then w′Ãuc,Cw = −w′wCv′v/(n − (k − 1)) ̸= 0 (note

that such a w exists, since v ∈ (Mlin
0 )⊥ and dim((Mlin

0 )⊥) = n− (k − q) > n− k ≥ 1 hold).

(ii) For ÃHet,C we have the following: Since v ∈ (Mlin
0 )⊥ holds, v′ÃHet,Cv = (v′v)2 −

Cv′ diag(v21 d̃1, . . . , v
2
nd̃n)v, which is zero only for C = C0 where C0 =

∑n
i=1 v

2
i /
∑n

i=1 v
4
i d̃i (note

that the ratio is well-defined since all the d̃i are positive and since v ̸= 0). Hence, ÃHet,C is

not the zero matrix, except possibly for C = C0. We now show that – in case Assumption

2 is satisfied – ÃHet,C0
= 0 is equivalent to T̃Het(y) being constant for y ∈ Rn\B̃: Suppose

ÃHet,C0
= 0. Since C0 > 0, we obtain Π(Mlin

0 )⊥ diag(v21 d̃1, . . . , v
2
nd̃n)Π(Mlin

0 )⊥ = vv′/C0 and thus

ÃHet,C = vv′(1 − C/C0). Fix µ0 ∈M0 arbitrary. For every C > C0 we have z′ÃHet,Cz ≤ 0 for

every z, and hence for every z with µ0 + z /∈ B̃ (note that Rn\B̃ is nonempty under Assumption

2). By Lemma E.1 we can conclude that T̃Het(µ0 + z) ≤ C for every µ0 + z /∈ B̃. By the same

token, we obtain that T̃Het(µ0 + z) ≥ C for every µ0 + z /∈ B̃ when C < C0 holds. We conclude

that T̃Het(µ0+z) = C0 for every µ0+z /∈ B̃, i.e., T̃Het(y) = C0 for every y ∈ Rn\B̃. To prove the

converse, assume T̃Het(y) = C1 for every y /∈ B̃. Fix µ0 ∈M0 arbitrary. Then T̃Het(µ0+ z) = C1

for every z with µ0 + z /∈ B̃. By Lemma E.1 we get z′ÃHet,Cz ≥ 0 (≤ 0, respectively) for

C ≤ C1 (C ≥ C1, respectively) for every z /∈ B̃ − µ0. Under Assumption 2 the set B̃ − µ0 is a

λRn -null set, hence its complement is dense in Rn. By continuity of the quadratic forms, we get

z′ÃHet,Cz ≥ 0 (≤ 0, respectively) for C ≤ C1 (C ≥ C1, respectively) for all z ∈ Rn. We thus

obtain z′ÃHet,C1
z = 0 for every z ∈ Rn. Since ÃHet,C1

is symmetric, ÃHet,C1
= 0 follows and

C1 = C0 must hold.
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(iii) Before applying the algorithm in Davies (1980) to (37) with T = THet and AC = AHet,C

we first check that Assumption 1 holds since otherwise Part (a) of the preceding lemma does

not apply. In case of T = T̃Het and AC = ÃHet,C we check that Assumption 2 holds for similar

reasons; and, in case this assumption is satisfied, we then always also compute C0 and check

numerically that ÃHet,C0 (and hence any ÃHet,C) is not the zero matrix.

In case q > 1, the algorithm in Davies (1980) could also be used to compute rejection

probabilities for the tests based on Tuc and T̃uc as is easy to see. Since this is not so for THet

and T̃Het, we do not proceed in this way for reasons of comparability. In case q > 1 we thus

compute the required rejection probabilities by Monte Carlo.

E.2 Determining the size of a test

For simplicity throughout this subsection T denotes any one of the test statistics UC, HC0-HC4,

UCR, HC0R-HC4R. In case of HC0-HC4 we assume in our discussion that the design matrix

X and R are such that Assumption 1 is satisfied, and in case of HC0R-HC4R we assume that

Assumption 2 holds and that the test statistic is not constant on Rn\B̃.76 These conditions should

be checked either theoretically or numerically before using the algorithms described below. Such

numerical checks are implemented in the R-package hrt (Preinerstorfer (2021)) realizing these

algorithms.

We now discuss algorithms for determining the size (over CHet) of the test that rejects if

T ≥ C for a given critical value C > 0 (note that any C ≤ 0 leads to a trivial test that always

rejects). By G(M0)-invariance of T , for any given µ0 ∈M0, the size of this test simplifies to

sup
Σ∈CHet

Pµ0,Σ(T ≥ C), (43)

which is what the algorithms described below compute numerically.

Before trying to determine the size numerically, it is advisable to check whether C is not less

than the pertinent lower bound C∗ for size-controlling critical values obtained in our theoretical

results in Propositions 5.5 and 6.7 (and the attending footnotes), since otherwise one already

knows that the size of the test is equal to 1, and hence there is no need to run the algorithm. The

implementations of the algorithms in the R-package hrt (Preinerstorfer (2021)) have an option

that provides such a check and outputs 1 if the check fails without running the algorithm.

Of course, the design matrixX, the restriction (R, r), and the particular choice of test statistic

from the above list, are inputs to all the algorithms that are discussed in this and the subsequent

section E.3, but we do not show these inputs explicitly in the descriptions of the algorithms given

further down.

76This rules out trivial cases only.
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E.2.1 Case q = 1

In the important special case q = 1 we can use (38) and Lemma E.1 to compute the rejection

probabilities Pµ0,Σ(T ≥ C) appearing in (43) efficiently via, e.g., Davies (1980) (referred to as

DA in what follows). A generic algorithm based on this observation is summarized in Algorithm

1.

Algorithm 1 Computing the size in case q = 1.

1: Input A real number C > 0 and positive integers M0 ≥M1 ≥M2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Choose a candidate Σj ∈ CHet.
5: Obtain p̃j := Pµ0,Σj

(T ≥ C) using DA.
6: end for
7: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities p̃j to obtain Σ1:M0
, . . . ,ΣM1:M0

, the initial values for the next stage.
8: Stage 1: Coarse localized optimizations
9: for j = 1 to j = M1 do

10: Obtain Σ∗
j by running a numerical algorithm for the optimization problem (43) initialized

at Σj:M0 and obtain p̄j,Σ∗

j
:= Pµ0,Σ

∗

j
(T ≥ C) (using DA to evaluate probabilities).

11: end for
12: Rank the obtained matrices Σ∗

j according to the value (from largest to smallest) of the
corresponding p̄j,Σ∗

j
to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

13: Stage 2: Refined localized optimization
14: for j = 1 to j = M2 do
15: Obtain Σ∗∗

j by running a (refined) numerical algorithm for the optimization problem (43)
initialized at Σ∗

j:M1
and obtain ¯̄pj,Σ∗∗

j
:= Pµ0,Σ

∗∗

j
(T ≥ C) (using DA to evaluate probabilities).

16: end for
17: Return maxj=1,...,M2

¯̄pj,Σ∗∗

j

Remark E.3. The initial values Σj in Stage 0 of Algorithm 1 can, for example, be obtained

randomly (e.g., by sampling the diagonal elements of Σj from a uniform distribution on the unit

simplex in Rn). Such random choices may then be supplemented by “special” elements of CHet,

e.g., matrices that are close to ei(n)ei(n)
′, i = 1, . . . , n, or the matrix n−1In, or a matrix Σ that

maximizes the expectation of the quadratic form y 7→ y′Σ1/2ACΣ
1/2y under P0,In (where AC is

obtained via Lemma E.1, cf. also the discussion preceding that lemma), the latter choice being

motivated by (38). For the particular choice of initial values used in the R-package hrt and in

our numerical calculations see Preinerstorfer (2021) and Appendix F.

Remark E.4. If Algorithm 1 is to be applied to a relatively large critical value C (say C larger

than 5 times the (1 − α)-quantile of the cdf of P0,IN ◦ T ), then one may run Algorithm 1 on

a smaller critical value first (e.g., the just mentioned quantile), and use the covariance matrix

realizing the maximal rejection probability for this smaller critical value (in line 17 of Algorithm

1) as an additional initial value when running Algorithm 1 for determining the size corresponding
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to the originally given C. This can help to ameliorate numerical difficulties due to the rejection

probabilities being close to zero over large portions of CHet. The just described procedure is

available as an option in the R-package hrt.

Remark E.5. The concrete choice of the numerical optimization algorithm used in Stages 1

and 2 of Algorithm 1 is left unspecified here, but may, for example, be a constrained Nelder

and Mead (1965) algorithm (as provided in R’s “constrOptim” function), where in Stage 2 the

parameters in this algorithm (and in principle also in DA) should be chosen to guarantee a higher

accuracy. For the particular choice of optimization routines used in the R-package hrt and in

our numerical calculations see Preinerstorfer (2021) and Appendix F.

Remarks E.3 and E.5 also apply to other algorithms introduced further down, and will not

be repeated.

E.2.2 General case

An algorithm that is similar to Algorithm 1, but uses Monte-Carlo simulation instead of DA to

compute the rejection probabilities Pµ0,Σ(T ≥ C) is discussed in Algorithm 2; this algorithm

is a modification of Algorithm 2 in Pötscher and Preinerstorfer (2018).77 In Algorithm 2 the

number of replications used in the Monte-Carlo simulations (and thus their accuracy but also their

runtime) is increased in each stage, leading to an improved accuracy in the rejection probabilities

computed. While this algorithm is also applicable in case q = 1, Algorithm 1 is to be preferred

(and is automatically applied by the R-package hrt in this case), as it is based on a preferable

way of computing the rejection probabilities.

E.3 Determining smallest size-controlling critical values

Again, in this subsection T denotes any one of the test statistics UC, HC0-HC4, UCR, HC0R-

HC4R. In case of HC0-HC4 we assume in our discussion that the design matrix X and R are

such that Assumption 1 is satisfied, and in case of HC0R-HC4R we assume that Assumption

2 holds and that the test statistic is not constant on Rn\B̃.78 Furthermore, we assume that

size-controlling critical values exist. These conditions should be checked either theoretically or

numerically before using the algorithms described below. The last mentioned existence can be

guaranteed by checking (theoretically or numerically) the respective sufficient conditions for size

control in Theorems 5.1 and 6.4.79 We note that the implementations of the algorithms presented

below in the R-package hrt (Preinerstorfer (2021)) include such numerical checks.

77This algorithm involves evaluating the test statistic T . Since the definition of T depends on invertibility of a
covariance matrix estimator, an invertibility check is required. We use the same invertibility check as discussed
in the second paragraph in Appendix E.3 of Pötscher and Preinerstorfer (2020), with a tolerance parameter that
can be specified by the user.

78This rules out trivial cases only.
79In case the respective sufficient conditions are violated, but size-controlling critical values nevertheless exist

(as, e.g., in Example 5.5 or in Remark 6.10), the algorithm still works.
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Algorithm 2 Computing the size for general q.

1: Input A real number C > 0 and positive integers M0 ≥M1 ≥M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
5: Obtain a candidate Σj ∈ CHet.

6: Compute p̃j = N−1
0

∑N0

i=1 1[C,∞)(T (µ0 +Σ
1/2
j Zi)).

7: end for
8: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities p̃j to obtain Σ1:M0 , . . . ,ΣM1:M0 , the initial values for the next stage.
9: Stage 1: Coarse localized optimizations

10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1

from P0,In .

12: Define p̄j,Σ = N−1
1

∑N1

i=1 1[C,∞)(T (µ0 +Σ1/2Zi)) for Σ ∈ CHet.
13: Obtain Σ∗

j by running a numerical optimization algorithm for the problem supΣ∈CHet
p̄j,Σ

initialized at Σj:M0 .
14: end for
15: Rank the obtained numbers Σ∗

j according to the value (from largest to smallest) of the
corresponding p̄j,Σ∗

j
to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2 from P0,In .

19: Define ¯̄pj,Σ = N−1
2

∑N2

i=1 1[C,∞)(T (µ0 +Σ1/2Zi)) for Σ ∈ CHet.
20: Obtain Σ∗∗

j by running a numerical optimization algorithm for the problem supΣ∈CHet
¯̄pj,Σ

initialized at Σ∗
j:M1

.
21: end for
22: Return maxj=1,...,M2

¯̄pj,Σ∗∗

j
.
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We now proceed to discussing several algorithms for determining the smallest critical value

C♦(α) such that the size of the test, which rejects if T ≥ C♦(α), does not exceed α (0 < α < 1).80

[In fact, for C♦(α) the size then equals α provided a critical value that results in size equal to α

actually exists.] Note that C♦(α) > 0 must hold, in view of Remarks 5.4 and 6.6 since α < 1.

By G(M0)-invariance, for some fixed µ0 ∈M0, the algorithms numerically compute the smallest

critical value that satisfies

sup
Σ∈CHet

Pµ0,Σ(T ≥ C) ≤ α, (44)

cf. the discussion surrounding (43). For later use we denote by FΣ the cdf of Pµ0,Σ ◦ T , which

by G(M0)-invariance does not depend on the particular choice for µ0 ∈M0.

E.3.1 Computing smallest size-controlling critical values via line search based on

algorithms in Section E.2

Given an algorithm A : (0,∞) → [0, 1] that for C > 0 returns the size of the test that rejects if

T ≥ C, one can use a line-search algorithm to determine the smallest critical value C = C♦(α)

satisfying A(C) ≤ α. To this end, one starts at the lower bound Clow = max(C∗, Chom), where

C∗ is given in the pertinent parts of Theorems 5.1 and 6.4, respectively (cf. also Propositions

5.5 and 6.7, respectively, and the attending footnotes), and Chom denotes the smallest 1 − α

quantile of FIn , i.e., of the cdf of the test statistic under homoskedasticity. Note that then

Pµ0,In(T ≥ Chom) = α and that Pµ0,In(T ≥ C) > α for C < Chom (to see this note that FIn

is continuous as {T = C} is a λRn -null set for all real C, cf. Lemma 5.16 in Pötscher and

Preinerstorfer (2018) and Lemma D.1 in Appendix D). Furthermore, Chom > 0 (since T ≥ 0 and

{T = 0} is a λRn -null set), and consequently Clow > 0 holds. Starting from Clow, one then keeps

increasing the critical value “in a reasonable way” until one obtains, for the first time, a C such

that A(C) ≤ α holds. This procedure is summarized in Algorithm 3, in which the particular

algorithm A used is an input to Algorithm 3. For A one may either use Algorithm 1 if q = 1, or

Algorithm 2 for general q. Note that one may need to terminate the while-loop after a maximal

number of iterations.

Remark E.6. (i) Note that a matrix Σ∗∗ as required for the while-loop in Algorithm 3 can easily

be obtained by implementing Algorithm 1 or 2 in such a fashion as to also return the covariance

matrix for which the maximal rejection probability is attained in the respective Stage 2.

(ii) A smallest C+ as required in line 5 of Algorithm 3 indeed exists since {T = C} is a

λRn -null set for all real C as noted before.

(iii) For details regarding the computation of Clow in the R-package hrt see Preinerstorfer

(2021) and Appendix F.2.

80Such a smallest size-controlling critical value indeed exists under the assumptions of this subsection (which
includes existence of a size-controlling critical value) in view of Appendix A.3.. [Under the sufficient conditions
for size control in the respective theorems, this can also be read off directly from these theorems.]
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Algorithm 3 Numerical approximation of the smallest size-controlling critical value via a line
search algorithm.

1: Input α ∈ (0, 1), A, Clow, ϵ ∈ [0, 1− α) (ϵ a small tolerance parameter).
2: C ← Clow

3: while A(C) > α+ ϵ do
4: Let Σ∗∗ be such that Pµ0,Σ

∗∗(T ≥ C) ≈ A(C).
5: Determine, by an upward line search initialized at C, the smallest value C+ such

that Pµ0,Σ
∗∗(T ≥ C+) ≤ α .

6: C ← C+.
7: end while
8: return C

E.3.2 Computing smallest size-controlling critical values via quantile maximization

For completeness and comparison with Pötscher and Preinerstorfer (2018), we briefly describe an

algorithm that is a modification of Algorithm 1 in Pötscher and Preinerstorfer (2018). In contrast

to the algorithm discussed in the previous section, it does not make use of size-computations,

but determines the smallest size-controlling critical value as

sup
Σ∈CHet

F−1
Σ (1− α) (45)

where F−1
Σ denotes the quantile function of the cdf FΣ. That (45) indeed gives the smallest

size-controlling critical value is not difficult to see keeping in mind that Pµ0,Σ(T = C) = 0 for

every real C, every µ0 ∈M0, and every Σ ∈ CHet (in view of λRn({T = C}) = 0 as noted before).

The algorithm is summarized in Algorithm 4.

F Appendix: Details concerning numerical computations

in Section 11

F.1 Details concerning Section 11.1

To obtain Tables 1 and 2, for each of the test statistics UC, HC0-HC4, UCR, HC0R-HC4R,

we repeated the procedure summarized in Algorithm 5 below 15 times (recall that n = 25,

R = (0, 1), and r = 0). Each time this algorithm returned a design matrix, the corresponding

size of the rejection region {T ≥ Cχ2,0.05} was obtained for the specific test statistic used, as

well as a corresponding lower bound for the smallest size-controlling critical value. Then, we

computed the maximum out of the 15 lower bounds, which (for each test statistic) is reported

in Table 1. We also computed the maximum out of the 15 sizes, which (for each test statistic)

is reported in Table 2. We also did the same with the critical value Cχ2,0.05 replaced by the

95%-quantile of an F1,n−k-distribution (n− k = 23), the corresponding results being reported in

Table 3.
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Algorithm 4 Numerical approximation of the smallest size-controlling critical value via quan-
tiles.

1: Input Positive integers M0 ≥M1 ≥M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
5: Obtain a candidate Σj ∈ CHet.

6: Compute F̃−1
j (1− α) where F̃j(x) = N−1

0

∑N0

i=1 1(−∞,x](T (µ0 +Σ
1/2
j Zi)) for x ∈ R.

7: end for
8: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities F̃−1
j (1− α) to obtain Σ1:M0

, . . . ,ΣM1:M0
, the initial values for the next stage.

9: Stage 1: Coarse localized optimizations
10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1 from P0,In .

12: Define F̄j,Σ(x) = N−1
1

∑N1

i=1 1(−∞,x](T (µ0 +Σ1/2Zi)) for x ∈ R and Σ ∈ CHet.
13: Obtain Σ∗

j by running a numerical optimization algorithm for the problem

supΣ∈CHet
F̄−1
j,Σ(1− α) initialized at Σj:M0 .

14: end for
15: Rank the obtained Σ∗

j according to the value (from largest to smallest) of the corresponding

F̄−1
j,Σ∗

j
(1− α) to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2 from P0,In .

19: Define ¯̄Fj,Σ(x) = N−1
2

∑N2

i=1 1(−∞,x](T (µ0 +Σ1/2Zi)) for x ∈ R and Σ ∈ CHet.
20: Obtain Σ∗∗

j by running a numerical optimization algorithm for the problem

supΣ∈CHet

¯̄F−1
j,Σ(1− α) initialized at Σ∗

j:M1
.

21: end for
22: Return maxj=1,...,M2

¯̄F−1
j,Σ∗∗

j
(1− α).
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In the description of Algorithm 5, the function f(x) is an abbreviation for C∗ = max{T (µ0+

ei(n)) : i ∈ I1(M
lin
0 )}, the lower bound for the size-controlling critical values (cf. Propositions

5.5, 6.7, and the attending footnotes), with the n×2 design matrix X given by an intercept e, say,

as the first column and a regressor x as the second one. Note that computing C∗ necessitates

the evaluation of the test statistic on a finite set of elements of Rn, and then determining

the maximum among the values obtained.81 Concerning the evaluation of test statistics, the

definition of which depends on the invertibility of a covariance matrix estimator, we used the

same invertibility check as discussed in the second paragraph in Appendix E.3 of Pötscher and

Preinerstorfer (2020) with a tolerance parameter of 10−8. For R = (0, 1) and for each matrix X

returned by Algorithm 5 all relevant assumptions (i.e., the assumptions in the pertinent parts of

Theorems 5.1 and 6.4, respectively) have been checked numerically.

Algorithm 5 Search procedure used for generating Tables 1, 2, and 3.

1: Initialize x← 0 ∈ Rn.
2: for i = 1 to i = 5 do
3: Generate an n-dimensional pseudo-random vector z of independent coordinates each from

a log-standard normal distribution.
4: Run a Nelder and Mead (1965) algorithm initialized at z to maximize f over Rn (with

a maximal number of iterations of 50, and otherwise the default parameters in R’s “optim”
function) to obtain z∗, say.

5: if i = 1, or i ≥ 2 and f(z∗) > f(x) then
6: x← z∗.
7: end if
8: if f(x) > 4 then
9: Go to line 12.

10: end if
11: end for
12: Use Algorithm 1 to determine the size of the test for the test statistic under consideration for

the design matrix (e, x) and based on either of the following two critical values: (i) Cχ2,0.05

and (ii) the 95% quantile of an F1,n−k distribution.
13: return x, f(x), and the two sizes determined in the previous step.

Algorithm 5 uses Algorithm 1 in determining the size of a given test. We made the following

choices concerning the parameters required in Algorithm 1 (and used default settings if not

mentioned otherwise):

1. The candidates in Stage 0 of Algorithm 1 were determined by combining the suggestions

in Remarks E.3 and E.4. That is, denoting Mp = 200 000, we combined: (i) sampling

Mp/4 − 1 points from the unit simplex in Rn, each corresponding to the diagonal of a

81In the present context Mlin
0 is spanned by the intercept. Thus, I1(Mlin

0 ) = {1, . . . , n} holds since n ≥ 2.
In general, to determine I1(Mlin

0 ) numerically, the algorithm implemented in the R-package hrt (Preinerstorfer
(2021)) first obtains a basis for Mlin

0 , and then checks for every i = 1, . . . , n whether or not the rank of the matrix
obtained by appending the basis with ei(n) increases. This is done by a rank computation analogous to the one
described in the last-but-one paragraph of Appendix E.3 of Pötscher and Preinerstorfer (2020), using the same
function “rank” referred to there, and with tolerance parameter 10−8.
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matrix in CHet, and sampling 3Mp/4 + 1 points ξ = (ξ1, . . . , ξn), say, analogously, each

point ξ giving rise to a diagonal of a matrix in CHet via (ξ21, . . . , ξ
2
n)/

∑n
i=1 ξ

2
i ; (ii) trying

all diagonal matrices with a single dominant coordinate 0.9999 and the other coordinates

all equal to 0.0001/(n− 1), so that the trace equals 1; (iii) n−1In; (iv) using a maximizer

of the quadratic form described in Remark E.3; and (v) using an additional initial value in

case of a “large” critical value C as described in Remark E.4, making use of the conventions

discussed in parentheses in that remark. This results in M0 = Mp+n+2 and possible one

more (in case C is large) candidates for initial values.

2. M1 was chosen as 500, the optimization algorithm run in Stage 1 was a constrained Nelder

and Mead (1965) algorithm (the default in R’s “constrOptim” function), which was run

with a relative tolerance parameter of 10−2 and a maximal number of iterations of 20n.

3. M2 was chosen as 1, the optimization algorithm run in Stage 1 was a constrained Nelder

and Mead (1965) algorithm (the default in R’s “constrOptim” function), which was run

with a relative tolerance parameter of 10−3 and a maximal number of iterations of 30n.

4. DA (used by Algorithm 1) was run with the parameters “acc = 10−3” and “lim = 30000”

using the function “davies” of the package CompQuadForm.

F.2 Details concerning Section 11.2

The smallest size-controlling critical values reported in Tables 4 and 5 in Section 11.2 were

obtained by running Algorithm 3 (with algorithm A given by Algorithm 1 and a maximal number

of 25 iterations in the while loop) as implemented in the R-package hrt (Preinerstorfer (2021))

version 1.0.0. Concerning A, the same input parameters as described in the enumeration at the

end of Appendix F.1 were used but with Mp = 500 000 (and with n = 30). Concerning Algorithm

3 we made the following choices for the required inputs:

1. Clow = max(C∗, Chom) is determined as follows: Chom is determined by a line-search

algorithm (using R’s uniroot function and monotonicity of the rejection probabilities in

the critical value) with the rejection probabilities obtained from DA (in case q = 1) or via

Monte Carlo, whereas C∗ is determined as described in Appendix F.1. For more detail see

Preinerstorfer (2021).

2. ϵ was set to 10−3.

For computing the power functions in Section 11.2, we made use of (37) with the matrices

AC given in Lemma E.1 together with the implementation of the algorithm by Davies (1980) in

the R-package CompQuadForm (Duchesne and de Micheaux (2010)) version 1.4.3 and with

default parameters.
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Figure 4: Power functions for n1 = 15. Left column: tests based on unrestricted residuals
(cf. legend). Right column: tests based on restricted residuals (cf. legend). The rows corresponds
to Σa for a = 1, 5, 9 from top to bottom. The abscissa shows δ. See text for more explanation.

F.3 Additional figures for Section 11.2

The power functions for n1 = 9 are given in Figure 4.

G Appendix: Comments on Chu et al. (2021) and Hansen

(2021)

In the special case of testing only one restriction (i.e., q = 1), Chu et al. (2021) and Hansen

(2021) recently considered an interesting alternative approach to obtain tests based on the test

statistics THet (for the commonly used choices of the weights di). Their suggestions are based

on the observation (cf. also Section E.1 above) that, assuming Gaussianity of the errors, the

null rejection probability of the test that rejects if THet exceeds a given critical value C can be

rewritten as the probability that a quadratic form in Gaussian variables is nonnegative, which

can efficiently be determined numerically for any given Σ ∈ CHet by a number of methods. That

is, if Σ were known, one could use this observation to numerically determine a critical value (an
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observation that is also exploited by our algorithms in case q = 1) or a p-value. Because Σ is,

however, not known, this approach is infeasible. One solution, put forward in the present paper,

is to work instead with a “worst-case” critical value, i.e., the smallest critical value that controls

size (if such a critical value exists). In contrast, the idea in Chu et al. (2021) and Hansen (2021)

to obtain a feasible test is a parametric bootstrap idea (cf. their papers for details):82 (i) replace

Σ by an estimate Σ̂; e.g.,

diag
(

d1û
2
1 (y) , . . . , dnû

2
n (y)

)

(46)

based on typical choices of di; (ii) numerically determine a critical value (or p-value) from the

cdf of the test statistic acting as if Σ = Σ̂ (e.g., as outlined above); and (iii) reject the null

hypothesis if the observed test statistic exceeds the so-computed critical value (or, equivalently,

if the corresponding p-value obtained is less than the desired significance level). Note that the

critical value in (ii) depends on the data Y through Σ̂ (and is thus data-dependent in this sense).

No theoretical guarantees concerning the size of the tests proposed in Chu et al. (2021) and

Hansen (2021) are given in these papers. Numerical results in both papers suggest that these

parametric bootstrap tests can work well for certain design matricesX and hypotheses (R, r), but

the authors also document some situations where the tests are considerably oversized. Hence,

these tests are not valid, in general, which is in contrast to the procedure we suggest in the

present paper. That a parametric bootstrap approach does not deliver size control is in line

with results in Loh (1985) (see also Leeb and Pötscher (2017)) showing that under appropriate

conditions parametric bootstrap procedures are oversized. It is also in line with a large body

of literature on size distortions of (other) bootstrap-based tests for the testing problem under

consideration, cf. Section 1 and Pötscher and Preinerstorfer (2020). As an aside we note that

any valid data-dependent critical value, i.e., one that leads to a test with correct size (which is

not the case for the proposals in Chu et al. (2021) and Hansen (2021)), must exceed the smallest

size-controlling critical value with positive probability (or must be equal to the smallest size-

controlling critical value with probability 1). Hence, a valid data-dependent critical value cannot

always be smaller than the smallest size-controlling critical values, an observation that seems to

have gone unnoticed in the discussion of the present article in the introduction of Hansen (2021)

(a discussion that also overlooks that one needs to take the square root of our critical values and

lower bounds when discussing them in the context of the corresponding t-statistics).

To demonstrate further that the parametric bootstrap tests in Chu et al. (2021) and Hansen

(2021) can be considerably oversized, we now report some numerical results for these tests. In

particular, we report null rejection probabilities for a selection of points in the null hypothesis

(i.e., for a selection of Σ’s) and demonstrate that procedures suggested by Chu et al. (2021) and

Hansen (2021) are not valid in the sense that these null rejection probabilities are considerably

larger than the nominal significance level α = 0.05 that is being used. Note that what we report

are lower bounds for the size of the procedures investigated, which can even be larger, i.e., the

overrejection problem can, in fact, be even more serious than what is seen in the tables below.

82A similar approach has already been put forward earlier by Welch (1938, 1951) and Satterthwaite (1946).

85



Throughout, we study the following procedures

C: the procedure in Chu et al. (2021), when THet based on HC0-HC4 weights, respectively,

is combined with the estimator Σ̂ in (46) using the same weights as in the construction of

the test statistic;

C3: the procedure as above, but where the estimator Σ̂ in (46) always makes use of the HC3

weights;

H: the procedure in Hansen (2021) when THet is based on HC0-HC4 weights, respectively, and

where for Σ̂ the estimator suggested in Section 7 of Hansen (2021) is used.

We note here that procedure C3 is not considered in Chu et al. (2021); we include it, because

Σ̂ based on HC3 weights can be expected to perform better than if, e.g., HC0 weights are used.

We also point out that Hansen (2021) only considers THet based on HC0-HC3 weights, but not

on HC4; we also report rejection probabilities for the latter choice, because, in the examples we

consider, it actually works better in terms of size than the choices considered in Hansen (2021).

Our implementations of the procedures in Chu et al. (2021) and Hansen (2021) rely on the

algorithm in Davies (1980) (cf. Section E.1) to decide whether or not to reject (i.e., in Step (ii) of

the description of that approach given further above in this section). To compute the rejection

probabilities for the tests we used a Monte Carlo sample of size 100.000 for each of them. The

nominal significance level used is α = 0.05 throughout.

We consider three testing problems: The testing problems considered in Sections 11.2.1 and

11.2.2, as well as an additional one. Note that in all these examples the test statistics are size

controllable and thus our test procedures based on smallest size-controlling critical values are

applicable. [For Examples G.1 and G.2 this has already been discussed in Sections 11.2.1 and

11.2.2, respectively. For Example G.3 validity of Assumption 1 is obvious while condition (10)

we have verified numerically.]

Example G.1. (Comparing the means of two groups) We here consider the same testing problem

and setting (same n, n1, n2, α) as in Section 11.2.1. Table 6 below shows the null rejection

probabilities for the procedures C, C3, and H for the case n1 = 3 and a = 3 (i.e., for Σ = Σ3

defined in Section 11.2.1). We see from that table that the procedures suggested in Chu et al.

HC0 HC1 HC2 HC3 HC4
C 0.14 0.14 0.12 0.11 0.10
C3 0.12 0.12 0.12 0.11 0.10
H 0.08 0.08 0.08 0.07 0.06

Table 6: Null-rejection probabilities of the procedures C, C3, and H for comparing the means of
two groups when n1 = 3 and a = 3.

(2021), i.e., procedures C, as well as the modification C3 are all considerably oversized (i.e., show

rejection probabilities greater or equal to 2α). The methods using the idea in Hansen (2021)
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(including the case using HC4 weights not considered in Hansen (2021)) are slightly oversized in

this example.

Example G.2. (High-leverage design) We here consider the same testing problem and setting

(same n, α, X) as in Section 11.2.2. Table 7 shows the null rejection probabilities for the

procedures C, C3, and H for the case a = 1 (i.e., for Σ = Σ∗
1 defined in Section 11.2.2). The

HC0 HC1 HC2 HC3 HC4
C 0.65 0.65 0.30 0.14 0.09
C3 0.18 0.18 0.17 0.14 0.10
H 0.16 0.16 0.15 0.12 0.08

Table 7: Null-rejection probabilities of the procedures C, C3, and H for the high-leverage design
matrix when a = 1.

methods based on the approach in Chu et al. (2021) i.e., procedures C, as well as the modification

C3 are all considerably oversized also in this example. The methods using the idea in Hansen

(2021) are now also considerably oversized. The test using the HC4 estimator (which was not

considered in Hansen (2021)) performs somewhat better and has a null rejection probability that

exceeds the nominal significance level α = 0.05 by a factor of 1.6.

The tables in the two preceding examples already show that the tests proposed by Chu et al.

(2021) and Hansen (2021) can be considerably oversized. Note that the overrejection problem

potentially is even more serious than what is seen from the tables as we have not searched over

the space of Σ matrices, i.e., we have not reported size but only the null rejection probability at

a particular value of Σ. Also, we have not made any attempt to search for design matrices X

where overrejection is even more pronounced, but have only used design matrices from Sections

11.2.1 and 11.2.2.

We have seen in the preceding examples that pairing the method in Hansen (2021) with a

HC4 based THet statistic performs more reasonably in these settings (it also is oversized, but

less so). The question then arises, if there is some hope that this generalizes to other settings.

The next example shows that this is unfortunately not the case.

Example G.3. We consider the same model and null hypothesis as in 11.2.2 except that the

regressor x (x ∈ Rn, n = 30) is different. Its entries xi can be found plotted (against the index

i) in Figure 5. For this scenario one can prove (using similar arguments as in Pötscher and

Preinerstorfer (2020)) that the size of the test obtained from pairing Hansen (2021)’s method

with a HC4 based THet statistic actually equals 1. We do not give the details here but rather

compute the null rejection probability of this test for Σ equal to the diagonal matrix with 0.999

at the 21st entry and the other diagonal entries constant so that the diagonal sums up to one.

We used a Monte Carlo simulation (with 100.000 replications) and obtained a null rejection

probability of 0.28, which is more than the five-fold nominal significance level.
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Figure 5: Regressor used in Example G.3.
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