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Abstract

In order to mitigate climate change, the energy sector undergoes a transformation towards a climate-

neutral future based on renewable energy sources. Energy system models generate insights and support

decision making for this transformation. In the face of, e.g., growingly complex and important environ-

mental assessments and stakeholder structures, considering multiple objectives in these models becomes

essential to realistically reflect existing interests. However, there is a lack of highly adaptable energy sys-

tem models incorporating multiple objectives. We present an implementation of the augmented epsilon-

constraint method with the highly adaptable energy system optimisation framework Backbone. It enables

the simultaneous optimisation of multiple objectives, such as the minimisation of costs, CO2 emissions

or self-sufficiency for a broad range of energy systems including different sectors and scales. For this

purpose, new objective functions and constraints are implemented in Backbone. They are used by an

external algorithm in a sequence of parallelised optimisations to cope with the complexity of real-world

applications. The method is adaptable to further objectives and scalable to large and complex systems.

Applications to the Western and Southern European power sector in 2050 and a sector-coupled mixed-

integer household-level model demonstrate its benefits and adaptability. Pareto fronts, technology use

and trade-offs are analysed and quantified. In the European power sector, emission reductions of up to

90% can be achieved at marginal CO2 abatement costs of below 100EUR/(t CO2). For the household,

energy imports from the public grids can be reduced by 70% at 20% higher cost and average cost of

self-sufficiency of 2.6 ct/kWh. We expect that the presented methods and models reveal new valuable

insights to modellers and decision makers.

Keywords: Energy system modeling, Multi-objective optimization, Renewable energy, Energy planning,

Pareto front, Trade-off

1. Introduction

Anthropogenic climate change has disastrous consequences for people and ecosystems (Cook et al.,

2013; St Louis & Hess, 2008). Hence, a global effort to mitigate against and adapt to climate change

is necessary. Many mitigation measures focus on the reduction of greenhouse gas (GHG) emissions

(Intergovernmental Panel on Climate Change, 2014). The energy sector, including power, heat and
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transport, is responsible for a significant share of anthropogenic GHG emissions (EUROSTAT, 2017).

Therefore, policy plans on various levels, e.g. the Paris Agreement (United Nations, 2015) or the EU

Green Deal (European Commission, 2020a), aim at transforming the energy sector towards a climate-

neutral future based on renewable energy sources (RES).

As part of this transformation, the energy sector undergoes a number of structural changes: (i) an

increased utilisation of intermittent RES reduces the dispatchable share of electricity generation (Brouwer

et al., 2014); (ii) decentralised electricity generation breaks with the paradigm of few, centralised gen-

eration sites and leads to prosumers entering the market (Allan et al., 2015; Mehigan et al., 2018); (iii)

coupling of the power, transport and heat sectors is necessary to achieve emission reduction targets and

creates new interactions and interdependencies (Brown et al., 2019); (iv) besides prosumers, an increased

number of stakeholders with diverse and conflicting, e.g. environmental, interests or objections to energy

infrastructure becomes involved in energy markets and policy (Bertsch & Fichtner, 2016). These struc-

tural changes come with technical, environmental, economic and social challenges, thus increasing the

complexity of decision making in the context of energy system planning.

As one of these challenges, flexibility requirements rise in order to achieve the necessary balance of

electricity supply and demand at any time and in any place. Referring to the structural changes (i), (ii)

and (iii), respectively, flexibility has a temporal, a spatial and a sectoral dimension. Storages, demand

response, energy transmission lines and coupling of energy sectors are some measures to provide the

required flexibility (Brown et al., 2018b; Orths et al., 2019; Schreiber et al., 2021). Another challenge

has been described by a shift from the energy trilemma (economic sustainability, ecological sustainability,

energy security) towards an energy quadrilemma (Hauff et al., 2011), taking into account the increased

importance of public acceptance in energy policy (Fitiwi et al., 2020).

In view of these challenges and the resulting increase in complexity of energy systems and related

decisions, energy system models (ESMs) are an important tool. ESMs support decision making by

providing analyses of and generating insights to the energy sector. Cost-minimising models are most

commonly used. However, considering multiple objectives becomes increasingly important due to the

above-mentioned structural changes: First, in order to balance interests of various stakeholders. Second,

to account for the increasing importance of environmental sustainability. The latter is a multi-criteria

concept in itself as recent efforts (Xu et al., 2020; Junne et al., 2020; Fuss & Xu, 2021) to combine ESMs

with life cycle assessment (LCA) illustrate (Antunes & Henriques, 2016).

Decision makers’ (DMs) preferences play an important role when optimising for multiple objectives.

There are three major approaches to finding a solution desired by the DM: (i) In a priori methods,

preferences are expressed before the optimisation. This typically leads to a single real objective function,

for example by assigning weights to the individual objectives. (ii) In a posteriori methods, preferences are

expressed after the optimisation, i.e. multiple objectives are optimised at the same time. When optimising

multiple real objective functions simultaneously, the intuitive notion of optimality on R, induced by the

partial order ≤, does not suffice. Therefore, the notion of Pareto-optimality is employed, where, roughly
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speaking, a solution to an optimisation problem is called Pareto-optimal, if improvements of one objective

can only be achieved by deterioration of another one. The set of all images through the objective function

of Pareto-optimal solutions is called Pareto front. (iii) In interactive methods, preferences are expressed

and optimisations are carried out iteratively (Miettinen et al., 2016).

Deciding on preferences a posteriori or interactively is advantageous compared to methods using a pure

a priori or single-objective approach. First, knowing the Pareto front helps understanding the objectives’

relations. Its shape shows whether objectives correlate positively or conflict with each other and further

analyses allow to quantify trade-offs, see e.g. (Pelet et al., 2005; Ren et al., 2010; Cambero & Sowlati, 2016;

Limleamthong & Guillén-Gosálbez, 2017; Prina et al., 2020c). If, for example, costs and emissions are two

objectives, the slope of the Pareto front (or its inverse) corresponds to marginal CO2 abatement costs.

Second, knowing the Pareto front helps understanding the scope for decision-making. Boundaries of the

Pareto front indicate the objectives’ feasible optimal range, e.g. maximum attainable emission reductions

or minimal costs, while each of its elements represents one feasible, optimal alternative. Both, knowledge of

the Pareto front and trade-offs between objectives, supports decision making and preference determination

(Morton & Fasolo, 2009; Eisenführ et al., 2010). Third, the feasibility of energy scenarios depends on

the acceptance of various stakeholders, for example local acceptance of energy infrastructure like onshore

wind turbines (Enevoldsen & Sovacool, 2016). Pure cost-minimisations fail to represent existing interests

as well as societal and behavioural aspects and are therefore prone to generate practically infeasible

outcomes (Bertsch et al., 2016, 2017; Roddis et al., 2018; Huckebrink & Bertsch, 2021). Considering

multiple objectives can be one step towards generating interest-optimal energy scenarios, which therefore

have increased societal feasibility. Fourth, when considering multiple objectives, solutions, which are

sub-optimal with respect to each single objective, are obtained. These solutions would not be obtained

in a single-objective optimisation and may exhibit large differences in variable space, but only small

differences in objective space. These solutions can present appealing alternatives for decision makers and

reduce systematic uncertainties (DeCarolis, 2011; DeCarolis et al., 2016). Finally, for all solutions in

the Pareto front, optimality with respect to each objective is guaranteed. Generally, this is not the case

for single-objective optimisations or policy plans. When considering a cost-minimal or policy plan-based

scenario (see e.g. Prina et al., 2020c), for example, emissions could potentially be further reduced without

increasing costs. Therefore, multi-objective optimisations can avoid inefficient decisions.

For both, a posteriori and iterative multi-objective optimisation approaches, methods to generate

a subset of the Pareto front are needed. To analyse energy systems and support decision making, an

ESM that incorporates such a multi-objective optimisation method would be required. To achieve high

efficiency, one highly adaptable multi-objective ESM that covers the diverse range of relevant applications

is desirable. However, as a following review will show—to the authors’ knowledge—no ESM exists that

combines multiple objectives with high adaptability. The aim of this paper is to fill that gap and to

demonstrate such a model’s capabilities for analysing and planning energy systems.

The remainder of this paper is organised as follows. Section 2 reviews existing ESMs. Section 3
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introduces the implementation of the augmented epsilon-constraint method with the energy system op-

timisation framework Backbone. Section 4 presents two very distinct models, to which the implemented

method is applied. Results are presented and discussed in Section 5. Section 6 concludes.

2. Reviewing energy system models

In the following, we specify relevant characteristics of ESMs and define criteria to assess their universal

applicability.

2.1. Selection criteria

Arising from the structural changes and challenges in the energy sector and depending on the specific

purpose, especially the research question and the energy system studied, we consider the following seven

criteria to be potentially important for the suitability of ESMs. In particular, an ESM should perform

well in all these criteria to be considered highly adaptable.

(i) temporal resolution significantly influences modelling results, for example storage expansion and

power plant operation (Slednev et al., 2017; Cao et al., 2019);

(ii) spatial resolution and scope are important to accurately represent system characteristics like grid

infrastructure (Cao et al., 2019) and balancing effects resulting from a larger number of system

participants;

(iii) coverage of multiple energy sectors allows to investigate their coupling potential and interactions, for

example in the form of demand response via heat pumps (Sperber et al., 2020), industrial processes

(Kirchem et al., 2020) or electric vehicles (Lund & Kempton, 2008), and ensures global optimality

of the pathway towards a more sustainable, integrated multi-sector system;

(iv) technological details and operational aspects significantly impact flexibility demand and provision

as well as sectoral interactions (Helistö et al., 2019a, 2021);

(v) considering stochastic parameters enables treatment of uncertainties (Möst & Keles, 2010), e.g.

related to extreme weather conditions;

(vi) transparency and free availability of models and associated data promotes more efficient energy

research and decision support while enabling reproduction and verification of results (DeCarolis

et al., 2012; Pfenninger et al., 2017);

(vii) a multi-objective approach helps to understand the range of and relation between different altern-

atives and increases the feasibility and efficiency of decisions.

These criteria are in line with criteria used in the existing literature, e.g. (Pfenninger et al., 2014; Hall

& Buckley, 2016; Oree et al., 2017; Helistö et al., 2019a; Prina et al., 2020b) and the wiki page1 of the

openmod initiative, to group or categorise ESMs.

1https://wiki.openmod-initiative.org/wiki/Open_Models [Accessed 23 December 2021]
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2.2. Existing models

The number of ESMs is enormous and ever increasing. A comprehensive review is therefore beyond

the scope of this work. However, we refer to existing reviews and additional publications to show that—to

our knowledge—no multi-objective ESM exists that performs well in all the above criteria.

Prina et al. (2020b) review 22 bottom-up ESMs. They find that many long-term models, e.g. LEAP

(Heaps, 2021), MARKAL/TIMES (Loulou et al., 2004, 2005), OSeMOSYS (Howells et al., 2011), Temoa

(Hunter et al., 2013), MESSAGE (IIASA, 2012), LUT (Bogdanov & Breyer, 2016; Sadiqa et al., 2018)

and Mahbub et al. (2017), have high resolution in sector coupling, while only some (Balmorel (Wiese

et al., 2018), Mahbub et al. (2017), LUT) have high resolution in time. All reviewed short-term models

demonstrate high resolution in time and many of them also in space (Oemof (Hilpert et al., 2017a,b),

Calliope (Pfenninger & Pickering, 2018), Genesys (Bussar et al., 2016), PyPSA (Brown et al., 2018a;

Hörsch et al., 2018), PLEXOS (Energy Exemplar, no date), DESSTINEE (Staffell, no date), GAMAMOD

(Hauser et al., 2018), Ficus (Atabay, 2017), REMix (Gils et al., 2017)) or sector coupling (EnergyPLAN

(Lund, 2014), Oemof, Calliope, Ficus, REMod (Henning & Palzer, 2014; Palzer & Henning, 2014), REMix,

Batas Bjelić & Rajaković (2015), Mahbub et al. (2016)). Across short- and long-term models the authors

identify PyPSA, PLEXOS and eMix (Wierzbowski et al., 2016) as models with high resolution in techno-

economic detail. However, the review concludes that none of the examined models achieves high resolution

in all four categories time, space, techno-economic detail and sector coupling.

Helistö et al. (2019b) briefly review ESMs. Some of the reviewed models, e.g. PRIMES (E3MLab,

2016), PERSEUS (Rosen, 2008), SCOPE (Gerhardt et al., 2015) and ReEDS (Short et al., 2011), can

consider multiple energy sectors while others, e.g. SMART (Powell et al., 2012) is capable of incorporating

stochastic behaviour and uncertainty. The authors conclude, however, that none of the reviewed models

is suited for investment and operational optimisations of large systems at high temporal and spatial

resolution while taking into account stochastic phenomena.

Prina et al. (2020a) review 30 ESMs. All reviewed models, except TIMES-VTT (Pursiheimo et al.,

2017), Calliope and OSeMOSYS, have hourly time steps. All but EnergyPLAN, Dorotić et al. (2019),

Komušanac et al. (2016), ReMod, Oemof, OSeMOSYS, NEMO (Elliston et al., 2016) and Mahbub et al.

include multiple nodes. According to the authors, EnergyPLAN, Dorotic et al., Komusanac et al., TIMES,

REMix, OSeMOSYS, Enertile (Fraunhofer ISI, 2021), PyPSA-Eur, BVMC (Samsatli et al., 2015) and

STeMES (Samsatli & Samsatli, 2015) cover the electricity, heat and transport sectors, while Dorotic et

al., Komusanac et al., BVCM, STeMES, Samsatli & Samsatli (2018), Bracco et al. (2013), Gabrielli et al.

(2018), Morvaj et al. (2016, 2017), Fazlollahi et al. (2012) and Mahbub et al. include multiple objectives.

However, the authors conclude that none of the examined models includes multiple nodes, hourly time

steps, multiple sectors and a suitable multi-objective optimisation approach at the same time.

Many multi-objective studies model only a very specific energy system with limited system boundaries

and do therefore not meet the sectoral, technological or spatial requirements for modelling the extens-

ive scope of a global or continental energy transition. Some focus on distributed generation systems
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(Ren et al., 2010; Bracco et al., 2013), microgrids (Mohammadkhani et al., 2018; Sedighizadeh et al.,

2018), district heating networks (Fazlollahi et al., 2012), bioenergy and -fuel (Hombach & Walther, 2015;

Cambero & Sowlati, 2016; Cambero et al., 2016; Rabbani et al., 2018; Razm et al., 2019), scheduling of

hydro-thermal-wind power systems (Yuan et al., 2015), photovoltaic-wind-battery systems (Mazzeo et al.,

2020), optimal reactive power flow (Lashkar Ara et al., 2012) or general methods to further analyse Pareto

fronts (Limleamthong & Guillén-Gosálbez, 2017).

The same applies to the models examined by Antunes & Henriques (2016) and Cui et al. (2017).

Antunes & Henriques (2016) review multi-objective power generation expansion and operation planning

models, focussing on computational methods used to calculate Pareto-optimal solutions. Many of the in-

cluded studies are fairly old and the ones published in 2010 and thereafter only incorporate the electricity

sector. Among these, Zangeneh et al. (2011), Niknam et al. (2011), El-Zonkoly (2011) and Soroudi &

Afrasiab (2012) focus on distributed generation and model distribution grids. Arnette & Zobel (2012),

Zhang et al. (2012) and Aghaei et al. (2012) have low technological detail and are not suited for oper-

ational planning while Katsigiannis et al. (2010), Dufo-López et al. (2011) and Fadaee & Radzi (2012)

model stand-alone power systems. Cui et al. (2017) review the application of multi-objective methods to

renewable energy generation optimisation, e.g. stand-alone, hybrid and distributed generation systems,

energy saving and emission reduction. Some of the reviewed models are already discussed above. Others

focus for example on the optimisation of wind farms (Rodrigues et al., 2016), stand-alone systems (Clarke

et al., 2015), microgrids (Chaouachi et al., 2013; Borhanazad et al., 2014) and buildings (Asadi et al.,

2012; Fesanghary et al., 2012; Asadi et al., 2014; Schwartz et al., 2016).

Other multi-objective ESMs are more generic and not limited to such a specific application. However,

they exhibit some characteristics limiting their adaptability and universal applicability. Unsihuay-Vila

et al. (2011) present the electricity expansion planning model MESEDES. It considers and optimises three

objectives related to costs, GHG emissions and diversification of the generation mix, respectively, and

uses weighting factors to obtain best compromise solutions. Prina et al. (2018, 2019, 2020c) couple the

deterministic simulation model EnergyPLAN with a multi-objective evolutionary algorithm to develop

the models EPLANopt and EPLANoptTP. They cover the electricity, heat and transport sectors at hourly

resolution following a single-node approach. Multiple objectives are optimised, e.g. cost, CO2 emissions

and renewable energy generation share. Tietze et al. (2020) develop the model LAEND by integrating

energy system modelling and environmental impact assessment, based on Oemof and openLCA. It serves

for investment and dispatch optimisations of decentralised systems. Various environmental impact indic-

ators as well as costs are used for minimisations, either as single objectives or as a weighted sum. Prina

et al. (2020a) develop oemof-moea by coupling the bottom-up dispatch optimisation model Oemof to a

multi-objective evolutionary algorithm for expansion planning. It incorporates the electricity, thermal

and transport sectors and two objectives for costs and CO2 emissions, respectively, at hourly resolution.

However, the dispatch model neglects some technological details, e.g. regarding reserves and unit oper-

ation, and the expansion planning neglects some technologies, e.g. offshore wind turbines and hydrogen
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storages. Yamchi et al. (2021) present a model for integrated planning of electricity and gas networks.

They optimise the expansion of solar photovoltaic and natural gas-fired units as well as electricity and gas

transport infrastructure. Costs and power plant emissions are considered as two objectives and optimised

simultaneously.

We acknowledge that the above review and the choice of sources is to some extent subjective and

incomplete. However, it shows that—to our knowledge—no ESM exists that combines multiple objectives

with high adaptability as described in Section 2.1.

3. Methodology

In this section, we present a highly adaptable multi-objective energy system optimisation model build-

ing on the open source energy system modelling framework Backbone (Helistö et al., 2019b) and the

augmented epsilon-constraint method (Mavrotas, 2009).

3.1. The energy system modelling framework Backbone

Backbone is a mixed-integer linear optimisation framework for investment planning and scheduling

purposes. It is highly adaptable, because the framework has a very general structure and large parts of the

models are defined by input data. The network structure of Backbone, as illustrated in Figure A.8 in the

Appendix, consists of nodes, possibly connected by lines and grouped into grids. It allows for any desired

spatial resolution and mixing of scales, as defined by the input data. Nodes can have a state, representing

stored energy, and various constraints, e.g. related to energy balances and reserve requirements, can be

enforced at nodes. Typically, grids are used to group nodes with the same type of energy, e.g. electricity,

gas or heat. Backbone is not limited to any predefined types of energy. Every energy type can be modelled

by adequate input data. Lines can exchange energy between nodes in the same grid, either intentionally

via transfer or unintentionally via diffusion. Units can provide and use energy at a node or convert energy

between nodes in different grids. Moreover, a unit’s input can come from commodity nodes, e.g. natural

gas, or flows, e.g. solar radiation, where the consumption of commodities can cause emissions, e.g. CO2.

If desired, investments in units and lines can be permitted.

The temporal structure of Backbone allows for any desired resolution, as appropriate for the model

under examination and depending on data availability, and a model can have different resolutions for

different parts of the time horizon. Myopic optimisation models are also possible. Stochastic models can

be realised using samples or forecasts, where samples are intended for long-term investment planning and

forecasts for short-term scheduling models. The technological structure of units in Backbone includes

methods to represent start-up and shutdown trajectories, detailed variable conversion efficiencies, as well

as division into sub-units or aggregation. Integer variables can be used to model the online status of units

or restrict unit investments to the multiple of an integer. Finally, the structure of Backbone includes

ancillary services and policy-related constraints. Different frequency-related reserve categories can be

included and reserve requirements can be based on other model parametersReserves can be provided by
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units, depending on the reserve category and the units’ online status, where constraints for the time of

reserve allocation decisions can be incorporated for each category. Further constraints include but are not

limited to capacity margins, maximum emissions and energy provided by a certain type of unit.

The currently implemented objective function for the minimisation of total system costs in Backbone

is given by

vcostObj =
∑

f, t

pprobabilityf,t ·
(

vvomCost
f,t + vfuelCost

f,t + vstartupCost
f,t + vshutdownCost

f,t + vrampCost
f,t + vstateCost

f,t + vpenaltiesf,t

)

+ vfomCost + vunitInvestCost + vlineInvestCost

(1)

and comprises costs related to investments in units vunitInvestCost and lines vlineInvestCost, operation and

maintenance (variable vvomCost
f,t and fixed vfomCost), start-up vstartupCost

f,t , shutdown vshutdownCost
f,t and ramp-

ing vrampCost
f,t of units, fuel use vfuelCost

f,t (including emissions) and change in energy state vstateCost
f,t . Addi-

tionally, penalties vpenaltiesf,t can result from violation of certain constraints to ensure feasibility and help

debugging. Cost terms depending on the model time step t and forecast f are summed over all time steps

and forecasts, while using a probability factor pprobabilityf,t to weight different forecasts. For each emission

type e, e.g. CO2, an emission limit pemissionCap
e can be included in Backbone. The respective constraint is

given by
∑

f, t

pprobabilityf,t ·
(

vgenerationEmission
f,t,e + vstartupEmission

f,t,e

)

≤ pemissionCap
e , (2)

where vgenerationEmission
f,t,e and vstartupEmission

f,t,e are the emissions of type e due to energy generation and unit

start up, respectively. The mathematical nomenclature, including parameters, variables, indices, sets and

functions, is summarised in Table A.3 in the Appendix. For more details on the framework formulation

and its GAMS implementation, please refer to (Helistö et al., 2019b) and the source code2.

Several studies apply Backbone to models of different spatial and temporal scope and resolution

and furthermore illustrate its adaptability regarding e.g. sector coupling (Rasku & Kiviluoma, 2019;

Lindroos et al., 2021; Ikäheimo et al., 2022), stochastic forecasts (Rasku et al., 2020) and operational

detail (O’Dwyer & Flynn, 2019; Helistö et al., 2021). From the framework description and these studies,

it is clear that Backbone performs well in all above categories except from (vii), the multi-objective

approach. The implementation of a multi-objective approach into Backbone is described in Section 3.3.

3.2. The augmented epsilon-constraint method (AUGMECON)

This section covers methods to solve multi-objective optimisation problems. The following definitions,

as illustrated in Figure 1, form the basis for this discussion. The mathematical nomenclature is summarised

in Table A.3 in the Appendix.

2https://gitlab.vtt.fi/backbone/backbone [Accessed 23 December 2021]
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Figure 1: Illustration of relevant definitions for the minimisation of two objective functions. Note that this figure displays

the objective space and the term solution refers to the image of a solution under the objective function.

Consider the following setting. Let V ⊂ R
n be the possibly constrained feasible variable set and

f = (f1, f2, . . . , fk) : V → O ⊂ R
k multiple objective functions, where K = {1, 2, . . . , k} and O is the

feasible objective set. Further consider the multi-objective minimisation problem

min
x∈V

{f1(x), f2(x), . . . , fk(x)}. (3)

A solution x ∈ V with image f(x) = (f1(x), . . . , fk(x)) ∈ O is called Pareto-optimal if there does not

exist any x′ ̸= x in V such that

fi(x
′) ≤ fi(x) ∀ i ∈ K and fj(x

′) < fj(x) for at least one j ∈ K. (4)

Accordingly, such a solution is called weakly Pareto-optimal if there does not exist any x′ ̸= x in V

such that fi(x
′) < fi(x) ∀ i ∈ K. The images of such solutions under the objective function are called

Pareto-optimal or weakly Pareto-optimal as well. To describe not only a single solution, but the set of all

optimal solutions, the set of all Pareto-optimal solutions is called Pareto set P ⊂ V and its image Pareto

front P ∗ = f(P ) ⊂ O. Furthermore, two not necessarily feasible points in the objective space are used to

describe the range of the Pareto front, the utopia point U ∈ R
k and the nadir point N ∈ R

k, which are

given by

U =

(

min
x∈V

f1(x),min
x∈V

f2(x), . . . ,min
x∈V

fk(x)

)

and N =

(

max
x∈V

f1(x),max
x∈V

f2(x), . . . ,max
x∈V

fk(x)

)

. (5)

From now on following the notation above, various methods exist to generate Pareto-optimal solutions

to a multi-objective optimisation problem, see e.g. (Miettinen, 2008), (Arora, 2012), (Wiecek et al., 2016)

or (Cui et al., 2017) for an overview. The weighted sum method, where weights wi ≥ 0,
∑

i∈K wi = 1

are assigned to the objectives and their sum
∑

i∈K wifi(x) is minimised, or the non-dominated sorting

genetic algorithm and its variants, e.g. NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014), are two well

known examples.

Based on the existing formulation of Backbone, containing a cost objective function and an emission

constraint, the implementation of an epsilon-constraint method is arguably the most intuitive approach.
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In epsilon-constraint methods, all but one objective function of the initial multi-objective optimisation

problem are reformulated into constraints with upper bounds εi and only the remaining one is optimised:

min
x∈V

fj(x) s.t. fi(x) ≤ εi ∀ i ∈ K \ {j}. (6)

A solution to problem (6) is weakly Pareto-optimal but not necessarily Pareto-optimal (Miettinen, 1999).

By introducing k − 1 positive slack variables si > 0, i ∈ K \ {j}, a positive constant c ≈ 10−6 . . . 10−3

and transforming the constraints from inequalities into equations, Mavrotas (2009) further reformulated

this problem into

min
x∈V

(

fj(x) + c
∑

i∈K

si

)

s.t. fi(x) + si = εi ∀ i ∈ K \ {j}, (7)

calling it augmented epsilon-constraint method (AUGMECON). A solution to problem (7) is Pareto-

optimal and by varying the upper bounds εi, different elements of the Pareto front can be obtained.

To identify the lowest and highest sensible values for εi, a method to determine the boundaries of the

Pareto front minx∈P ∗ fi(x) and maxx∈P ∗ fi(x) for i ∈ K, i.e. the utopia and nadir points, is needed. A

lexicographic optimisation, for example

min
x∈V

fk(x) s.t.

[

fk−1(x) = min
x∈V

fk−1(x) s.t.

(

fk−2(x) = min
x∈V

fk−2(x) . . . s.t. f1(x) = min
x∈V

f1(x)

)]

(8)

can be used for this purpose.

AUGMECON does not require convexity (Miettinen, 2008) or continuity (Mavrotas, 2009) of the

optimisation problem. While convexity is given in Backbone as all constraints and objectives are linear

in all variables, continuity is violated when using integer variables.

When solving problem (7) multiple times in a suitable setting, the number and distribution of Pareto-

optimal solutions can well be controlled by choosing appropriate upper bounds εi for the constraints

(Mavrotas, 2009). However, two characteristics of the optimisation problem can lead to infeasible or

redundant solution attempts. First, more than two objectives in the original optimisation problem imply

more than one constraint in the AUGMECON formulation, which can lead to infeasibility. AUGMECON

(Mavrotas, 2009) and AUGMECON-R (Nikas et al., 2020) address this issue by introducing early exits

from this constraint grid and can significantly reduce the number of infeasible model runs by avoiding

solution attempts with even stricter constraints once a constraint combination turned out to be infeasible.

Second, discrete or integer variables can lead to a non-connected Pareto front. Model solves using a

constraint with upper bound in a gap of the Pareto front lead to the same Pareto-optimal solution at the

border of this gap. AUGMECON2 (Mavrotas & Florios, 2013) and AUGMECON-R (Nikas et al., 2020)

address this issue by introducing bypass coefficients to avoid this redundancy by comparing the realised

value of a slack variable, which contains information about the size of a potential gap in the Pareto front,

with the distance to the next closest point in the constraint grid.

3.3. Implementing the augmented epsilon-constraint method with Backbone

An implementation of AUGMECON with Backbone enables multi-objective optimisations of energy

systems. Relevant objectives could be costs, global warming potential, other LCA-related impact categor-
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(a) Determine Pareto front boundaries (b) Decide on caps for objectives transformed into constraints

(c) Calculate Pareto-optimal solutions (d) Conduct further analyses

Figure 2: Four steps for multi-objective energy system optimisations using the AUGMECON implementation. The individual

steps have to be carried out successively from (a) to (d), but within each step, parallelisation is possible. The axis labels

refer to costs and CO2 emissions as examplary objectives.

ies like use of resources and land or quantities related to peoples’ acceptance, e.g. effects on scenicness.

In this work, we use the method for bi-objective optimisations of costs and CO2 emissions and cost and

self-sufficiency, respectively. However, newly introduced objectives and constraints3 are formulated more

generally: in the case of CO2 emissions for any emission resulting from fuel combustion and in the case

of self-sufficiency for energy in- or output from any group of units. These formulations are intended to

serve as illustrative examples and can be further extended to more and other objectives.

The method has four main steps: (a) determine Pareto front boundaries, (b) decide on caps for

objectives transformed into constraints, (c) calculate Pareto-optimal solutions and (d) conduct further

analyses. They are illustrated in Figure 2 for the example of costs and CO2 emissions and described in

more detail in the following, where, for the sake of simplicity, we often refer explicitly only to the case of

costs and emissions.

(a) Determine Pareto front boundaries. To determine the Pareto front boundaries, i.e. the components

of the utopia and nadir points, two lexicographic optimisations as per Eq. (8) are carried out, e.g. in the

3The newly implemented objective functions and constraints are freely available from the Backbone repository https:

//gitlab.vtt.fi/backbone/backbone.
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case of cost and emissions

min
x∈V

cost(x) s.t. emission(x) = min
x∈V

emission(x) and (9)

min
x∈V

emission(x) s.t. cost(x) = min
x∈V

cost(x). (10)

Backbone can already perform single-objective cost minimisations with constrained emissions, but the

single-objective minimisation of emissions and energy imports, respectively, with constrained costs are

newly implemented. This is realised by introducing a new objective function

vemissionObj
e =

∑

f, t

pprobabilityf,t ·
(

vgenerationEmission
f,t,e + vstartupEmission

f,t,e + vpenaltiesf,t

)

, (11)

which comprises all emission terms of type e from the original emission constraint Eq. (2) as well as

penalties, and a new objective function

vgenerationObj
G,io =

∑

f,t

pprobabilityf,t ·

(

pweightG ·
∑

u∈G

vgenerationf,t,u,io + vpenaltiesf,t

)

, (12)

which comprises the (possibly weighted) sum of all energy in- or outputs io from units in a group G.

Additionally, a new cost constraint

∑

f, t

pprobabilityf,t ·
(

vvomCost
f,t + vfuelCost

f,t + vstartupCost
f,t + vshutdownCost

f,t + vrampCost
f,t + vstateCost

f,t

)

+ vfomCost + vunitInvestCost + vlineInvestCost ≤ pcostLimit

(13)

limits the total costs from the original cost objective function Eq. (1) except penalties to a maximum

pcostLimit and a new generation constraint

∑

f,t

pprobabilityf,t ·

(

pweightG ·
∑

u∈G

vgenerationf,t,u,io + vpenaltiesf,t

)

≤ pgenerationLimit
G,io (14)

limits the in- or outputs from a group of units to a maximum pgenerationLimit
G,io . The solution of Eq. (9) is

the Pareto-optimal solution with lowest emission plowestEmission
CO2

and highest cost whereas the solution of

Eq. (10) is the Pareto-optimal solution with lowest cost and highest emission phighestEmission
CO2

.

(b) Decide on caps for objectives transformed into constraints. For each further Pareto-optimal solu-

tion, a cap for the objectives not transformed into constraint is needed in the next step, e.g. an emission

cap pemissionCap
CO2

in the case of CO2 emissions. Depending on their desired number and distribution, the

caps can be any finite subset of the interval [plowestEmission
CO2

, phighestEmission
CO2

].

(c) Calculate Pareto-optimal solutions. To calculate further Pareto-optimal solutions, the AUGME-

CON method as described by Eq. (7) is implemented in Backbone. This is realised by introducing a

positve slack variable s > 0 and new constraints and objectives. In the case of cost and emissions, we use

a cost objective

vcostObj
AUGMECON = vcostObj + c · s (15)

based on Eq. (1) and an emission constraint

∑

f, t

pprobabilityf,t ·
(

vgenerationEmission
f,t,e + vstartupEmission

f,t,e

)

+ s = pemissionCap
e (16)
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based on Eq. (2). In the case of cost and self-sufficiency, we use a generation objective

vgenerationObj
G,io,AUGMECON = vgenerationObj

G,io + c · s (17)

based on Eq. (12) and a cost constraint

∑

f, t

pprobabilityf,t ·
(

vvomCost
f,t + vfuelCost

f,t + vstartupCost
f,t + vshutdownCost

f,t + vrampCost
f,t + vstateCost

f,t

)

+ vfomCost + vunitInvestCost + vlineInvestCost + s = pcostLimit

(18)

based on Eq. (13). For each cap from the previous step, this optimisation is done once to obtain a Pareto-

optimal solution. As discussed in Section 3.2, this problem is feasible for all caps between the components

of the utopia and nadir points, e.g. in the interval [plowestEmission
CO2

, phighestEmission
CO2

].

(d) Conduct further analyses. Building on the three previous steps, the studied energy system can be

analysed further. First, all Pareto-optimal solutions represent scenarios with different realised objective

values. As such, they can be compared with respect to invested energy conversion technologies, use of

energy storages or any other quantity derived from Backbone variables to study for example emission

reduction strategies. Second, by varying assumptions and conducting the steps (a) - (c) for each set of

input data, different Pareto fronts can be generated as depicted by the dashed black lines in Figure 2d. This

allows for investigating the effect of certain assumptions and to carry out sensitivity analyses.4 Third, by

putting exogenously determined solutions, e.g. policy targets or market-based projections, in the context

of the Pareto front, their optimality can be analysed. As illustrated by the red dot and arrows in Figure

2d, potential cost or emission savings can be identified. Fourth, trade-offs between the two objectives can

be analysed and quantified. For the example of costs and emissions, the trade-off between them can be

interpreted as marginal CO2 abatement costs. Due to emission trading and taxation mechanisms, this

is a highly relevant quantity. Visually, the shape of the Pareto front gives qualitative information about

trade-offs. Discretely, when interpolating linearly between two Pareto-optimal solutions, the resulting

slope quantifies average trade-offs. In Figure 2d, this is illustrated by the orange bars, which refer to

the right ordinate. Continuously, the Pareto front can, if it is connected, be approximated by a smooth

function, as illustrated by the black solid line in Figure 2d. The trade-offs between the two objectives

can then be approximated continuously by this function’s derivative. Finally, the method can be used for

interactive decision support as for example described by (Mavrotas, 2009). For this purpose, steps (a) -

(c) are carried out once with a coarse resolution. Based on this result, the DM can express preference for

some region of the Pareto front. Then, steps (b) and (c) are carried out again for the region of preference,

providing a higher resolution of this region for the DM. This iterative process can be repeated until the

DM is satisfied with a solution.

4Note that two different notions of “scenarios” (regarding objective values and regarding model assumptions) are studied

together. Different assumptions lead to different Pareto fronts, each of which contains solutions with different objective

values. Thereby, we can analyse and vividly illustrate combinations of assumptions and objective values. For example, the

effect of varying cost prdictions across different CO2 reduction targets can be examined.
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To save computation time and modellers’ resources, Python code5 is developed as described in Al-

gorithm 1 for the example of costs and emissions, which automatedly uses the different objectives and

constraints implemented in Backbone to obtain a representative subset of m elements in the Pareto front.

It follows the procedure illustrated in Figure 2: steps (a) - (d) have to be carried out successively, but

within each step, parallelisation is possible. In step (a), referring to lines 1 to 6 in Algorithm 1, the two lex-

icographic optimisations described in Equations (9) and (10), respectively, are executed in parallel, where

each of the two consists of two single-objective optimisations, which have to be run successively. For step

(b), implicitly included in the for loop in line 7, the modeller has to provide the desired number, in this

case m− 2, and distribution of emission caps between the highest and lowest emission values determined

in the previous step. This is represented by some map, e.g. d : R2 → (plowestEmission
CO2

, phighestEmission
CO2

)m−2.

In step (c), referring to line 8, the model has to be solved once for each cap, typically making it the most

computationally heavy part of the whole method. However, after the decision on emission caps has been

made in step (b), the individual optimisations according to the AUGMECON method are mutually inde-

pendent. Therefore, all individual optimisations in this step are parallelised. These parallelisations can

reduce computation time significantly. If computational resources allow, the m+2 required optimisations

can be carried out in only three successive blocks with 2, 2, and m−2 parallel optimisations, respectively.

This ensures the scalability of the whole method to large or complex systems and enables the calculation

of a high number of Pareto-optimal solutions.

Algorithm 1: Calculating a subset of a cost-emission Pareto front in parallel

Input: Energy system data, number and distribution of emission caps represented by d(·, ·)

Output: Subset of Pareto front, energy system designs

1 do in parallel

2 plowestEmission
CO2

= minx∈V vobjCO2
(x)

3 plowestCost = minx∈V vobjBB(x)

4 do in parallel

5 phighestCost = minx∈V vobjBB(x) s.t. emission(x) = plowestEmission
CO2

6 phighestEmission
CO2

= minx∈V vobjCO2
(x) s.t. cost(x) = plowestCost

7 for pemissionCap
CO2

in d(plowestEmission
CO2

, phighestEmission
CO2

) do in parallel

8 minx∈V vobjAUGMECON(x) s.t. emission(x) = pemissionCap
CO2

+ s

9 return Energy system model outputs of all optimisations

4. Energy system models

In this section, in order to highlight the method’s adaptability, we present two energy system models,

which differ with respect to the selection criteria from Section 2.1 as summarised in Table 1. Although

5It is freely available at https://gitlab.ruhr-uni-bochum.de/ee/backbone-tools.
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Table 1: Comparison of the two energy system models studies with respect to the selection criteria from Section 2.1.

European power sector model Sector-coupled household-level model

Space 14 nodes, each represents a country 1 node, represents a household

Time one year, hourly resolution one year, hourly resolution

Sectors electricity heat and electricity

Technology linearised integer investment variables

Statistics none two samples for demand profiles

Objectives cost, CO2 emissions cost, self-sufficiency

they are simplified in certain aspects to focus on the extended possibilities through the multi-objective

approach, they are complex models using real-world data.

4.1. Southern and Western European power sector model

First, we present a Western and Southern European power sector model for the year 2050. It includes

eleven countries of Southern and Western Europe (Austria, Belgium, Denmark, France, Germany, Italy,

Luxembourg, Netherlands, Portugal, Spain and Switzerland) and one year at hourly resolution. Trans-

mission grid infrastructure, existing conventional power plants and demand and weather time series is

acquired and clustered by PyPSA-Eur (Hörsch et al., 2018) and converted into input data for Backbone.

The network model is aggregated by PyPSA-Eur to a resolution of one node per country, except for Den-

mark, Italy and Spain, where island networks require a second node each. A map is shown in Figure A.9

in the Appendix. For further details on PyPSA-Eur, please refer to the source code6 and documentation7.

The second main source of data, used for costs, lifetimes and efficiencies of generation and storage

units, emission factors and costs of fuels, as well as projections of annual electricity demands, is a recent

work by Pietzcker et al. (2021). For each country, the demand time series from 2018 is scaled up to

the year 2050 using the annual demand projections. Although specific GHG emissions from burning

biomass are similar to those from coal, their contribution to global warming is discussed controversially

(e.g. by Millward-Hopkins & Purnell, 2019) and they are not counted towards the European Union’s

Emission Trading System (EU ETS) (Pietzcker et al., 2021). Thereofore, we assume specific emissions of

0 tCO2/MWh from biomass-based electricity generation. Furthermore, a maximum installable capacity

of 2MW/km2 is used for onshore and offshore wind turbines (Center for Sustainable Systems, University

of Michigan, 2021). For all storages, cyclic bounds are enforced, i.e. the energy content of a storage can

be non-zero at the start of the model as long as it has the same value at the end. For the investable

hydrogen and battery storages, first, charging and discharging capacities have to be equal at each node

for each of the two technologies, and, second, the energy to power ratio is fixed to the default value of

6https://github.com/PyPSA/pypsa-eur [Accessed 23 December 2021]
7https://pypsa-eur.readthedocs.io/en/latest/ [Accessed 23 December 2021]
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PyPSA-Eur, namely 6 h for batteries and 168 h for hydrogen. A collection of techno-economic data used

is given in Table A.2 in the Appendix.

For this power sector model, Backbone carries out an investment and dispatch planning. Investment

options are onshore and offshore wind turbines, solar photovoltaic (PV) systems and closed cycle gas

turbines for electricity generation as well as battery and hydrogen storages. For these technologies,

except gas turbines, a green field planning is done, i.e. no capacities are already installed. Because

marginal CO2 abatement costs are determined as a result for different CO2 emission caps, no CO2 price

is included in the model. To analyse energy systems across the whole Pareto front without wide-ranging

political restrictions, the planned phase outs of coal and nuclear power plants are excluded from the base

scenario. Thereby, it serves as a reference for the coal exit and nuclear exit scenarios, which are considered

separately based on current political decisions.

In addition to the base scenario, four further scenarios are studied: a sensitivity analysis for storage

costs with a high and a low cost scenario and the already mentioned coal and nuclear exit scenarios. For

the storage cost sensitivity analysis, the investment and fixed operation and maintenance costs are varied

by ±15% for hydrogen and ±25% for batteries. For the coal exit scenario, based on the National Energy

and Climate Plans (NECPs) (European Commission, 2020b), it is assumed that no country uses coal for

electricity generation in 2050. This assumption is based on the submitted by each member state to the

European Union in 2019. For the nuclear exit scenario, it is assumed that Belgium, Germany and Spain,

according to their NECPs (European Commission, 2019), operate no nuclear power plants in 2050 and

that the nuclear generation capacities in the other countries remain unchanged.

With regard to model complexity, the optimisation problem has approximately 5.5 million variables,

15.5 million non-zeros and 4 million equations.

4.2. Sector-coupled household-level model

Second, we present a sector-coupled model of a residential building. Synthetic electricity and heat

demand profiles are taken from Forschungsstelle für Energiewirtschaft e.V. (FfE) (2020a,b) based on

measurements from the year 2015. To reflect uncertainty regarding the house’s residents, e.g. from a

landlady’s point of view, two demand profiles, each comprising a full year at hourly resolution, are used

as samples with equal weight: one for a household with two pensioners and one for a household with a

full-time, a part-time working person and a child. For PV generation, weather data from the year 2015

for a location in Munich, Germany is used (Pfenninger & Staffell, 2016). The building is connected to

the public electricity and gas grids and has a gas boiler already installed. As objectives, total system

cost and energy consumption from the public grids (electricity and natural gas) should be minimised,

i.e. maximising self-sufficiency is the second objective. To achieve this, investments in rooftop solar PV,

battery storage and an air-sourced heat pump are possible. Techno-economic data from PyPSA-Eur

(Hörsch et al., 2018) is used for the PV, battery, heat pump and gas boiler units. This includes costs,

efficiencies, lifetimes and discount rates. Electricity and gas prices of 32.63 ct/kWh and 6.68 ct/kWh,
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respectively, are used based on average end-user prices in Germany in 2021 (Bundesnetzagentur and

Bundeskartellamt, 2022). To reflect the effect of discrete unit sizes for small-scale systems, all investment

variables are integers. Up to 20 PV panels with a capacity of 0.3 kW each, up to 6 batteries with 1 kW

(dis)charging and 6 kWh storage capacity each and an air-sourced heat pump with a capacity of none,

1/3, 2/3 or all of the peak demand of approximately 10.5 kW can be installed.

5. Results and discussion

In this section, we present and discuss the results of applying the implementation of AUGMECON

with Backbone from Section 3 to the two energy system models from Section 4.

5.1. Southern and Western European power sector model

A subset of 20 Pareto-optimal solutions is obtained and the whole Pareto front is approximated

continuously by fitting costs as a polynomial in the logarithm of emissions. The results are shown in Figure

3 in objective space. The objective values of Pareto-optimal solutions range approximately from 110 ×

109 EUR to 160× 109 EUR and 0 tCO2 to 5.2× 108 t CO2. Marginal CO2 abatement costs are displayed

at the right ordinate of Figure 3 with logarithmic scale and range approximately from 4EUR/(t CO2) to

2000EUR/(t CO2). They are calculated in two different ways, first by linearly interpolating between each

two elements of the Pareto front and second as the derivative of the continuous Pareto front approximation.

Emission reductions8 of up to 90%, as compared to the Pareto-optimal solution with lowest costs and

highest emissions, have marginal costs of less than 100EUR/(t CO2).

The Pareto-optimal solutions represent different emission reduction scenarios. Across these scenarios,

the use of different technologies for electricity generation and storage is illustrated in Figures 4 and 5,

respectively. Emission reductions are mainly achieved by replacing the dispatchable and CO2-intensive

energy sources hard coal, lignite and natural gas with intermittent RES, predominantly solar PV. The

RES share reaches its maximum of approximately 75% at zero emissions. For emission caps above

approximately 50%, more than 10% of the total electricity demand is met by hard coal and lignite

together. This value decreases with stricter emission caps and equals less than 1% for emission caps below

15%. This leads to increased flexibility requirements, which can, in our model, be met by investments

in storages and, as a transitional substitution, natural gas turbines. Since generation through gas is

less CO2-intensive and, without a CO2 price, more costly than coal-based generation, it is phased out

together with coal for slight emission reductions. For significant reductions, when coal is phased out

almost completely, natural gas-based generation increases again until, finally, flexibility provision through

natural gas turbines decreases for very ambitious emission targets and is infeasible for the zero emission

target. This is reflected by a peak at around 15% of the maximum emissions and, besides the global

minimum at zero emissions, a second local minimum at around 40%.

8In this section, the reference for realised emissions, their reductions and caps p
emissionCap
CO2

is always the value of the

Pareto-optimal solution with lowest costs and highest emissions, phighestEmission
CO2

.
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Figure 3: Pareto front (left ordinate) and marginal CO2 abatement costs (right ordinate). The discrete Pareto-optimal

solutions (black dots) result directly from applying the presented AUGMECON implementation to the Southern and Western

European power sector model. The Pareto front (black solid line) is continuously approximated by fitting costs as a function

of emissions to the discrete solutions. The marginal CO2 abatement costs are determined in two ways. First, by linearly

interpolating between the discrete solutions, resulting in the green bars, and second, as the derivative of the Pareto front

approximation, resulting in the green dashed line.

Figure 4: Electricity generation by technology across different Pareto-optimal emission reductions scenarios. Values on the

abscissa represent the emissions of the respective scenario as a share of the maximum emission across all Pareto-optimal

scenarios. All values are aggregated for all countries and the whole time horizon. The following technologies are aggregated:

hard coal and lignite to “Coal”; biomass, run of river and hydro damns to “Other RES”; open and closed cycle gas turbines

to “Natural gas”.
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Figure 5: Electricity released from storages by technology across different Pareto-optimal emission reduction scenarios. The

values are aggregated for all countries and the whole time horizon.

Significant investments in storages are made in all scenarios with emissions below approximately 60%,

referring to a renewable electricity share of 45% to 50%. For higher emissions and lower renewable

shares, only the existing pumped hydro storage (PHS) capacities are used. Generally, storage use, i.e. the

amount of energy released from storages, increases with decreasing emissions. The use of newly invested

storages never exceeds approximately 1.5 times the use of already installed pumped hydro storages.

Hydrogen storage is used less than batteries and only for very low emissions. Due to conversion losses,

the overall electricity generation increases with decreasing emissions from approximately 2.7× 109MWh

to 2.9× 109MWh.

For some of the Pareto-optimal alternatives, differences in decision variable space are significantly

larger than in objective space. Consider, for example, all solutions with costs of not more than 5%

above the global minimum, i.e. the seven rightmost bars in Figure 4. Across these scenarios, electricity

generation from offshore wind turbines and coal varies approximately by a factor of two each. Similarly,

consider the solutions with emissions from 38% to 56% of the global maximum in Figure 5. Across these,

the objective value varies by a factor of approximately 1.5, but the battery use by a factor of 5.

The sensitivity analysis for storage investment costs and the nuclear and coal exit scenarios are shown

in Figure 6. For solutions with emissions above 3 × 108 t CO2, where no storage investments are made

in the base scenario, the Pareto fronts of all three storage cost scenarios coincide. With decreasing

emissions, and increasing storage investments, the cost difference between the scenarios rises up to the

maximum of approximately ±5% at zero emissions. The nuclear exit scenario exhibits higher costs of

approximately 5% to 10% across the different emission reductions, with larger cost differences for lower

emissions. Further analyses show that the reduced nuclear capacities are compensated by higher renewable

investments and use of gas turbines. For emissions below approximately 0.7× 107 t CO2, when no coal is

used in the base scenario, the coal exit scenario coincides with the latter. Due to higher cost and lower

emissions of gas as compared to coal, high emissions of above approximately 1.1 × 108 t CO2 cannot be

realised in a Pareto-optimal way in this scenario.

The model is run on a Linux machine with a total of 96 AMD 2.30GHz processor cores and 256GB
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Figure 6: Pareto fronts of the base, high storage cost, low storage cost, nuclear and coal exit scenarios. The lines are

polynomials in log x fitted through the respective discrete Pareto-optimal solutions. For the high and low storage cost

scenarios, investment and fixed operation and maintenance costs are varied by ±15 % for hydrogen storage and ±25 % for

batteries. For the nuclear exit scenario, the existing nuclear electricity generation capacities in Belgium, Germany and Spain

are set to zero. For the coal exit scenario, the existing hard coal and lignite electricity generation capacities are set to zero.

memory. As Backbone itself is not optimised for utilising many cores efficiently, we restrict each model

solve to using 2 processor cores and 2.5GB memory. Under these conditions, the computation time for

each single optimisation varies from approximately 1 h to 10 h.

5.2. Sector-coupled household-level model

A number of Pareto-optimal solutions to the household-level model is shown in Figure 7. Total

system costs and energy imported from the public grids range from 1800EUR to 3200EUR and 3.6MWh

to 18.3MWh, respectively. Marginal costs of self-sufficiency range approximately from 1.5 ct/kWh to

865 ct/kWh not consumed from the public grids. Due to integer investment variables, the Pareto front is

not connected with three large and more smaller gaps. The large gaps are due to heat pump investments,

which increase monotonically with decreasing imports, and are indicated by orange solid arrows. The

smaller gaps associated with marginals above 300 ct/kWh around 5MWh and below 4MWh are due to

battery investments, which change non-monotonically across the Pareto front, and are indicated by blue

dotted arrows and ellipses. Battery investments are constantly 2 kW across the linear and connected

parts of the Pareto front from 3.7MWh to 5MWh and from 5MWh to 11MWh. Towards the left end of

these parts, there is a small kink, where it increases to 3 kW and the following three disconnected points

are linked to increasing investments of 4, 5 and 6 kW, respectively. The number of PV panels is 10 for

the least-cost solution, increases quickly and monotonically for decreasing energy imports and attains the

maximum of 20 for imports of 11.4MWh and below. The two linear and connected parts of the Pareto

front, indicated by purple dashed lines and ellipses, are related to an increased utilisation of the heat

pump, and thus a shift in imports from gas to electricity. With a coefficient of performance above one,

20



Figure 7: Pareto-optimal solutions (left ordinate) and marginal cost of self-sufficiency (right ordinate) for the household-level

model. The discrete Pareto-optimal solutions result directly from applying the presented AUGMECON implementation

to the sector-coupled household-level model. The marginal cost of self-sufficiency is determined by linearly interpolating

between the discrete solutions. The orange and blue fractions refer to installed and maximum installable capacities of heat

pumps and batteries, respectively.

this can reduce total energy imports, but comes with higher costs due to the electricity price, which is

approximately five times higher than the gas price. The resulting constant marginal cost of self-sufficiency

is 5 ct/kWh.

The additional cost of increased self-sufficiency, when calculated not as a “marginal” but between

two more distant elements of the Pareto front, varies significantly. Between the lowest and highest level

of self-sufficiency, it amounts to approximately 9.6 ct/kWh, while slightly lower import reductions to

3.8MWh come at about 800EUR additional annual cost and on average 5.4 ct/kWh as compared to the

least-cost solution and can be achieved by investing in a 7 kW heat pump, 6 kW PV and 2 kW batteries.

By investing in a 3.5 kW heat pump, 6 kW PV and 3 kW batteries, energy imports can be reduced to

5.1MWh at average cost of 2.6 ct/kWh.

Around the Pareto front gaps related to heat pump and battery investments, solutions are similar

in one objective, but differ significantly with respect to investment variables and the other objective.

Identifying this variety of alternatives across the Pareto front is essential to a cost-efficient increase of

self-sufficiency, but difficult when using a single-objective approach.

5.3. Discussion

As for all studies using data-driven models, the main purpose of the modelling is not to obtain

results per se but to generate insights. The case studies demonstrate the capability of the AUGMECON
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extension of the ESM Backbone to generate new insights for very diverse energy systems and different

objectives. These are related to (non-connected) Pareto fronts, trade-offs between alternative Pareto-

optimal solutions, the impacts of exogenous political and techno-economic factors across different emission

reduction targets as well as the relation of variations in objective and decision variable space. While some

aspects of the systems have been simplified for illustrative reasons, the data used are real-world data

leading to complex multi-objective optimisation problems.

Besides the general trends of generation and storage use under different emission reductions and

scenario assumptions, findings of the European power sector model are in line with other studies, e.g.

CO2 prices from Pietzcker et al. (2021), generation shares of solar PV and wind for zero emissions from

Child et al. (2019) and the order of magnitude of total system costs from Zappa et al. (2019). However,

there are some limitations to this model. First, although an increased electricity demand due to sector

coupling is included in the demand data, only the electricity sector is modelled explicitly. Changing load

profiles are not considered. Second, the geographical scope of the model is only a part of the synchronous

grid of Continental Europe and investments in transmission lines are not allowed. This underestimates

the provision of sectoral and spatial flexibility, respectively. Third, bio- and nuclear energy as two low-

carbon and dispatchable technologies are not considered as investment options, which underestimates the

provision of temporal flexibility. Especially at high shares of variable renewable generation, this threefold

underestimation could result in higher storage investments, higher renewable generation investments in

sub-optimal technologies or sub-optimal locations as well as increased curtailment of variable RES. As a

consequence, system costs and thus marginal CO2 abatement costs would be overestimated. However, the

spatial, sectoral and technological limitations can also have other, even contrary, effects. For example, if

the limited countries or time period considered exhibit particularly favourable conditions for renewable

electricity generation, marginal CO2 abatement costs could be underestimated. While the cost objective

considers operation- and investment-related costs, the objective for CO2 emissions only takes into account

the operation phase. This can benefit investments in new, mainly renewable, generation as compared to

utilising existing, mainly conventional, capacities.

For this model, five scenarios with 20 solutions each are studied. Algorithm 1 has only three successive

steps with multiple parallelised model solves each. Therefore, provided resources allow, the computation

time for each scenario is only three times the amount for a single model solve. This parallelisation leads

to time savings of approximately 85% as compared to a total of 22 successive runs per scenario.

For the sector-coupled household-level model, the maximum PV capacity of 6 kW together with 2 kW

to 3 kW batteries and heat pump capacities equal to one to two thirds of the peak heat demand seem to

be the most cost-efficient technology mix for increasing self-sufficiency. Additional heat pump or battery

investments come with significantly higher marginal cost, while generally, utilising ambient air as a second

“internal” energy source is necessary to significantly decrease energy imports from the public grids. Only

limited extrapolation to regional or national systems is possible as the model is not representative for the

existing building stock on any larger scale. Although it is generally limited by the choice of parameters and
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available technologies, real-world data is used and the building and technologies are typical for existing

residential single-household buildings.

For this model, the use of AUGMECON is particularly beneficial. First, where integer variables lead

to large gaps in the Pareto front filled with weakly Pareto-optimal solutions, it ensures that all obtained

solutions are Pareto-optimal and thus avoids inefficient system designs. Second, AUGMECON ensures

that Pareto front boundaries are known and a representative subset is obtained. Due to non-connectedness

and drastically varying marginals, this is essential for informed and efficient decision making.

6. Conclusion and outlook

The undergoing energy sector transformation comes with technical, environmental, economic and

social difficulties and imposes new challenges for decision making. Environmental sustainability and

public acceptance become increasingly important objectives and each involve many criteria. Therefore,

energy system models considering multiple objectives are a key tool to inform and support decision makers.

However, existing energy system models are not sufficiently adaptable to the diverse range of relevant

energy systems and objectives. This refers in particular to openly available models optimising systems

with multiple sectors and stochastic phenomena at high temporal and spatial resolution and a high level

of technological detail for environmental and other acceptance-related objectives.

The main contribution of this paper is the efficient implementation of AUGMECON with the energy

system optimisation framework Backbone as a way to equip an already very flexible energy system model

with an adaptable multi-objective optimisation method. It enables the optimisation of a broad range of

energy systems with respect to various objectives and is at the same time parallelisable and therefore

scalable. In this paper, we incorporate costs, direct CO2 emissions and self-sufficiency as three illustrative

objectives and apply them to two energy system models including different sectors, scales, technologies and

statistics and linear as well as integer variables. The implementation extends and improves possibilities

for energy system analyses, in particular regarding optimality with respect to all considered objectives,

quantification of trade-offs, scenario analyses across entire Pareto fronts and varying energy system designs

leading to similar objective values.

The method is first applied to a Southern and Western European power sector model with several

million variables, non-zeros and equations. It shows different cost-emission-optimal emission reduction

scenarios for the year 2050 and quantifies trade-offs between them. Heeding the call for climate protection,

it demonstrates that CO2 emission reductions of up to 90% can be achieved at approximately 20%

higher total system costs and marginal abatement costs of below 100EUR/(t CO2). The use of electricity

generation and storage technologies is analysed across different emission reduction targets and linked

to the implications of four scenarios for coal exit, nuclear exit and high and low storage investment

cost, respectively. Furthermore, some Pareto-optimal alternatives with similar costs or emissions, but

significant differences in energy system design are highlighted.
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The method is then applied to a sector-coupled household-level model to obtain cost-self-sufficiency-

optimal system designs under uncertain energy demand. Emphasising the relevance of integer variables

for small-scale systems, it shows a non-connected Pareto front with drastically and non-monotonously

varying trade-offs between the two objectives. The results highlight that a single-objective approach

could lead to highly inefficient decisions and that, in combination with high investments in solar PV,

moderate installations of heat pumps and batteries are a cost-efficient way of increasing self-sufficiency.

We suggest three main directions for future work. First, more and other objectives could be incor-

porated. This includes environmental impacts, for example life cycle assessments of land or metal use, or

aspects related to behaviour and acceptance, e.g. comfort or scenicness. Secondly, the method could be

advanced for three and more objectives. This includes reducing computation time by avoiding redundant

optimisations. Furthermore, analysing and visualising a more than three-dimensional Pareto front comes

with challenges. Using a real-time interactive method like Pareto navigation (Monz et al., 2008) could

ease these difficulties and further support decision making. Thirdly, because solutions might be similar

in objective space but differ significantly in decision variable space, incorporating aspects of Modelling to

Generate Alternatives (DeCarolis, 2011; DeCarolis et al., 2016) into the method could further enrich the

alternatives available for decision making and reduce systematic uncertainties of the modelling process.
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Münster, M., & Ravn, H. (2018). Balmorel open source energy system model. Energy Strategy Reviews, 20 , 26–34.

doi:10.1016/j.esr.2018.01.003.

Xu, L., Fuss, M., Poganietz, W.-R., Jochem, P., Schreiber, S., Zoephel, C., & Brown, N. (2020). An Environmental

Assessment Framework for Energy System Analysis (EAFESA): The method and its application to the European energy

system transformation. Journal of Cleaner Production, 243 , 118614. doi:10.1016/j.jclepro.2019.118614.

Yamchi, H. B., Safari, A., & Guerrero, J. M. (2021). A multi-objective mixed integer linear programming model for integrated

electricity-gas network expansion planning considering the impact of photovoltaic generation. Energy , 222 , 119933.

doi:10.1016/j.energy.2021.119933.

34



Yuan, X., Tian, H., Yuan, Y., Huang, Y., & Ikram, R. M. (2015). An extended NSGA-III for solution multi-objective

hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management , 96 , 568–578. doi:10.

1016/j.enconman.2015.03.009.

Zangeneh, A., Jadid, S., & Rahimi-Kian, A. (2011). A fuzzy environmental-technical-economic model for distributed gener-

ation planning. Energy , 36 , 3437–3445. doi:10.1016/j.energy.2011.03.048.

Zappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050?

Applied Energy , 233-234 , 1027–1050. doi:10.1016/j.apenergy.2018.08.109.

Zhang, Q., Mclellan, B. C., Tezuka, T., & Ishihara, K. N. (2012). Economic and environmental analysis of power generation

expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model. Energy , 44 ,

986–995. doi:10.1016/j.energy.2012.04.051.

Appendix A. Further material

Figure A.8: An illustrative network structure in Backbone. The network consists of nodes (circles) in grids (coloured areas),

connected by coloured lines. Units (black sqaures) convert energy with possibly multiple inputs and outputs (black arrows).

Inputs can come from nodes or flows (sun) and outputs can go to nodes or emissions (cloud). Nodes in one grid have the

same type of energy and the nodal state (partially filled rectangles) represents the energy content of a node.
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Figure A.9: Geographical scope of the Southern and Western European power sector model. For each green land area,

transformer stations are aggregated to one grid node with the adjacent blue area being for offshore wind turbines. Figure

created using Geo Data Viewer for Visual Studio Code.

Table A.2: Selected techno-economic data for power generation and storage units as well as fuels. The investment costs for

storage units in this table are the sum of charging unit, discharging unit and reservoir. Abbreviations: O&M = operation

and maintenance, PV = photovoltaic, n.a. = not applicable, CCGT = closed cycle gas turbine, OCGT = open cycle gas

turbine, n.i. = not investable.

Technology Investment cost

(EUR/kW)

Fixed O&M

(%/yr)

Lifetime

(yr)

Variable O&M

(EUR/MWh)

Efficiency

(%)

Fuel cost

(EUR/MWh)

Fuel emissions

(kgCO2/MWhth)

Solar PV 326 1 25 0 n.a. n.a. n.a.

Onshore wind 923 3 25 0 n.a. n.a. n.a.

Offshore wind 1700 3 25 0 n.a. n.a. n.a.

CCGT 900 3 45 4 57 32 200

Battery 768 1 20 0 64 n.a. n.a.

H2 storage 1246.8 2 20* 0 31.5 n.a. n.a.

OCGT n.i. n.i. n.i. 3 41 32 200

Hard coal n.i. n.i. n.i. 6 44 13 347

Lignite n.i. n.i. n.i. 9 41.5 3.6 387

Oil n.i. n.i. n.i. 3 42 69.5 290

Nuclear n.i. n.i. n.i. 5 33 7.2 0

Biomass n.i. n.i. n.i. 6 42 72 0

Hydro n.i. n.i. n.i. 0 100 n.a. n.a.

Run of river n.i. n.i. n.i. 0 90 n.a. n.a.

Geothermal n.i. n.i. n.i. 0 23.9 n.a. 26

Pumped Hydro n.i. n.i. n.i. 0 100 n.a. n.a.

*20 years for electrolysis and reservoir, 40 years for fuel cell

36



Table A.3: List of mathematical nomenclature.

Symbol Meaning

v
costObj
(AUGMECON) Variable for cost objective function (for AUGMECON)

vemissionObj
e Variable for emission objective function

v
generationObj
G,io,(AUGMECON) Variable for generation objective function (for AUGMECON)

vvomCost
f,t Variable for variable operation and maintenance cost

vfuelCost
f,t Variable for fuel cost

v
startupCost
f,t Variable for startup cost

vshutdownCost
f,t Variable for shutdown cost

v
rampCost
f,t Variable for ramping cost

vstateCost
f,t Variable for cost related to nodal state

v
penalties
f,t Variable for penalties

vfomCost Variable for fixed operation and maintenance cost

vunitInvestCost Variable for unit investment cost

vlineInvestCost Variable for transmission line investment cost

v
generationEmission
f,t,e Variable for generation-based emissions

v
startupEmission
f,t,e Variable for startup emissions

p
probability
f,t Parameter for probability

pemissionCap
e Parameter for emission cap of e

pcostLimit Parameter for cost limit

p
generationLimit
G,io Parameter for generation limit

p
Weight
G Parameter for weighting generation from group G

plowestEmission
CO2

Parameter for lowest CO2 emissions

p
highestEmission
CO2

Parameter for highest CO2 emissions

f, t, e Indices for forecast, time step and emission type

G, io Index for group and in- or output

V ⊂ R
n Variable set

O ⊂ R
k Objective set

K = {1, . . . , k} Index set

P ⊂ V Pareto set

P ∗ ⊂ O Pareto front

i, j ∈ K Indices

k,m, n ∈ N Indices

x, x′ ∈ V Variables

s, si ∈ R Slack variables

f = (f1, ..., fk) Objective functions

wi Objective weights

d Distribution and number of emission caps

N,U ∈ R
k Nadir and utopia point

εi ∈ R Constraint for objective i

c ∈ R Small constant for AUGMECON

37


	Introduction
	Reviewing energy system models
	Selection criteria
	Existing models

	Methodology
	The energy system modelling framework Backbone
	The augmented epsilon-constraint method (AUGMECON)
	Implementing the augmented epsilon-constraint method with Backbone

	Energy system models
	Southern and Western European power sector model
	Sector-coupled household-level model

	Results and discussion
	Southern and Western European power sector model
	Sector-coupled household-level model
	Discussion

	Conclusion and outlook
	Further material

