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Abstract

This paper examines the trading performances of several technical oscillators created using crypto

assets pricing methods for short-term bitcoin trading. Seven pricing models proposed in the profes-

sional and academic literature were transformed into oscillators, and two thresholds were introduced

to create buy and sell signals. The empirical back testing analysis showed that some of these methods

proved to be profitable with good Sharpe ratios and limited max drawdowns. However, the trading

performances of almost all methods significantly worsened after 2017, thus indirectly confirming an

increasing financial literature that showed that the introduction of bitcoin futures in 2017 improved

the efficiency of bitcoin markets.
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1 Introduction

In 2008, an anonymous developer named Satoshi Nakamoto published a white paper titled “Bitcoin: A

Peer-to-Peer Electronic Cash System”, which proposed a new decentralized encrypted digital currency

called Bitcoin (BTC) based on blockchain technology. In simple terms, the purpose of Bitcoin was to

create a means for people to send money via the Internet as an alternative to traditional methods to

transfer money. The blockchain is a public record-keeping system based on a linear chain that consists of

blocks. The transaction information is recorded in the blocks and each block contains the cryptographic

hash value and the timestamp of the previous block: given that each block has a hash pointer to the

previous block, the data structure is similar to a chain. Once we know the hash value of the previous block,

it can be compared with the hash value in the current block to determine whether or not its recorded

transactions have changed, thus allowing a major defense against data tampering. A ”miner” records

the new transactions information and transfers them into a block, and then it has to solve a complex

mathematical puzzle named Proof-of-work (PoW), which is a decentralized consensus mechanism that

is employed to prevent anybody from gaming the system. The first miner that successfully solves this

mathematical puzzle receives a reward and transaction fees in bitcoin for the confirmed block. At the

start of 2009, the reward for each block was 50 BTC, and it is halved approximately every four years.

As of 2022, the reward for one new block is 6.5 bitcoin. The total amount of new bitcoin to be issued is

limited to 21 million, and this number will be reached around 2140.

Bitcoin and several other thousands crypto-assets are traded daily on a large number of crypto-

exchanges 1, with a total daily trading volume that -in some days- was higher than 100 billion dollars.

In this regard, several methods have been proposed to estimate the fundamental value of Bitcoin, see

Burniske and Tatar (2018), Fantazzini (2019) and Goutte et al. (2022) for an introduction at the textbook

level. Besides, there is an increasing financial literature that proposed advanced non-linear models to

predict Bitcoin returns using popular technical indicators representing market trend, momentum, volume,

and sentiment, see e.g. Nakano et al. (2018), Huang et al. (2019), Gradojevic et al. (2021), Ortu et al.

(2022) and references therein.

In this work, we followed in the footsteps of Woo (2018) and Kalichkin (2018), who were the first to

use moving averages and z-scores to convert pricing models into technical oscillators, and we examined

seven pricing models proposed in the professional and academic literature to create oscillators for bitcoin

daily trading. We then computed two thresholds based on the quantiles of these oscillators to create buy

and sell signals. Even though professional traders often use technical oscillators based on pricing models

for crypto assets, such an approach is rarely discussed in the academic literature. This paper differs from

1At the end of the first quarter of 2022, there were almost 300 exchanges listed on
https://coinmarketcap.com/rankings/exchanges.
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the aforementioned studies in that it is among the first to examine the profitability of a set of technical

indicators based on pricing methods for crypto assets using more than ten years of Bitcoin data.

Our empirical back-testing analysis showed that some of these methods proved to be profitable with

good Sharpe ratios and limited max drawdowns. . However, the trading performances of almost all

methods significantly worsened after 2017, thus indirectly confirming an increasing financial literature

that showed that the introduction of bitcoin futures in 2017 improved the efficiency of bitcoin markets.

We remark that crypto-assets can suffer from significant credit risk, which can take two forms: either

the crypto asset ”dies” (that is, a situation when its price drops significantly and it becomes illiquid),

or the crypto exchange closes due to a bankruptcy, or a fraud, or a hacking attack. We did not consider

such type of risk in our analysis, and we refer to Fantazzini and Zimin (2020), Fantazzini and Calabrese

(2021), and Fantazzini (2022) for a detailed discussion.

The rest of this paper is organized as follows. Section 2 reviews the literature devoted to crypto

assets valuation, while the technical oscillators proposed for trading bitcoin are discussed in Section 3.

The empirical results are reported in Section 4, while two robustness checks are discussed in Section 5.

Section 6 concludes.

2 Literature review

The last years have witnessed the emergence of several professional analyses and academic papers propos-

ing a wide range of models to price crypto assets. We focus below on a specific selection of approaches

that will be useful for our work, while we refer the interested reader to Goutte et al. (2022) -chapter 9-

for a larger review.

2.1 Cost analysis

Berengueres (2018) performed a valuation of several crypto coins by using the net present value. He

examined the hardware and software costs of crypto mining and highlighted a paradox: new miners are

not profitable because old miners are simply able to update their old equipment in their farms (such as

CPUs, GPUs or other infrastructure). Therefore, existing miners have a significant capital advantage

over new mining groups. Thum (2018) analyzed the cost of a single miner, assuming that a new miner

enter in a free market with an expected profit equal to zero. According to his model, the miner cost

must equal the value of newly mined bitcoins.

Delgado-Mohatar et al. (2019) performed an analysis of the energy consumption of Bitcoin and

argued that miners would not be profitable if the electricity price were to exceed $0.14/kWh, showing

that the marginal cost of mining Bitcoin was approximately $1,952. Instead, Benetton et al. (2019)

3



focused mainly on environmental issues and attempted to construct a tax model for the crypto-coin

mining industry. They noted that the total energy consumption of crypto coins is incredibly high: for

example, in 2018, 0.3% to 0.5% of the energy consumed globally was used in mining, and crypto-coins

accounted for 5% to 12% of carbon emission quotas. They noted that the growth of the market size of

the Bitcoin network was not feasible due to its proof-of-work mining model. They suggested that the

government could introduce a tax if the energy consumption due to mining were to create a pollution

externality. They also introduced a “local decision model” including the average temperature, electricity

prices, and the distance to the nearest power station, to help investors identify the optimal mining

locations. They showed that, while crypto-coin mining can improve the local economy (more consumers

and workers) and generate more tax revenues, it may also create energy shortages and increased use of

fossil fuels.

2.2 Crypto-coin valuation

Romanchenko et al. (2018) analyzed different methods to assess the intrinsic value of crypto-coins using

data from April 2014 until November 2018. They argued that crypto coins could be considered to be

a currency-based commodity and that the intrinsic value of crypto coins can be divided into two parts:

the commodity part that can be measured by the amount of labor involved, and the currency part that

can be measured by the money velocity. However, they also admitted that the price of crypto coins can

be influenced by the investors’ willingness to buy and sell.

Hargrave et al. (2019) suggested that there are three different categories of crypto coins: currency

tokens, platform tokens, and asset-backed tokens. Currency tokens can be used for buying and selling

goods and services in the real world and a typical example is bitcoin. Platform tokens can be used to

run transactions and smart connections on the blockchain, and a typical example is Ethereum (ETH).

Asset-backed tokens are tied to an underlying asset in the real world so that a coin unit can represent

real estate ownership (for example). Hargrave et al. (2019) also noted that the value of crypto-coins

depends on investor confidence, and ICOs should use a variety of methods for maintaining high market

confidence. Moreover, they also suggested that the use of the Metcalfe’s law is appropriate for measuring

the value of crypto coins (more about this topic below).

Jernej (2021) provides a review of the crypto-coin valuation models currently used in practice, which

includes both professional approaches and academic approaches: the quantity theory of money, Chris

Burniske’s INET model, Evans’ Volt model, ARK Invest model, and the Black-Scholes model. Finally,

Kaal, Evans and Howe (2022) reviewed the asset valuation methods commonly used for stock pricing,

and they found that these traditional valuation methods could hardly be applied to digital assets. Even
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though there are commonalities, digital assets require a different analysis for pricing purposes. The

methodologies currently proposed for digital asset valuation may vary significantly, and the lack of

standards for the valuation of these assets can lead to uncertainty and confusion among investors and

managers.

2.3 Social network analysis for cryptoassets modelling

Social network analysis (SNA) investigates social structures by using networks and graph theory. Net-

worked structures are represented in terms of nodes, which can be individual actors, people, or items

within the network, and the ties or links that connect them, which can be relationships or interactions.

SNA can process a large amount of relational data and describe the general relational network structure.

Moreover, the communication structure and the position of all individuals can be fully described by

analyzing nodes, clusters and their relations, see Otte and Rousseau (2002) for an introductory survey,

while Wasserman (1994), Yang et al. (2016) and Borgatti et al. (2018) for a discussion at the textbook

level.

There is an increasing body of the financial literature that explores the key features of blockchains’

network structures and how they affect the price dynamics of these crypto-assets. More specifically,

a blockchain can be modeled directly through a social network because the social network nodes can

represent the blockchain addresses, while its arcs can denote the transactions between the addresses

corresponding to the involved nodes. Social Network Analysis based techniques can then be used to

extract knowledge about the behavior of the blockchain actors involved, see Baumann et al. (2014),

Kondor et al. (2014), Liang et al. (2018), Ferretti and D’Angelo (2019), Vallarano et al. (2020), Ao et

al. (2022), and Bonifazi et al. (2022), just to name a few.

The network structures may differ significantly across blockchains: for example, Chang and Svetinovic

(2016) found that the Bitcoin network has grown denser over time, with more nodes tending to be

connected with each other, leading to a strong community while Namecoin has shown a decrease in

density, resulting in an unclear community structure.

This literature has found significant effects of network features on economic variables such as price

and volatilities. For example, Motamed and Bahrak (2019) found that the price of Bitcoin, Ethereum

and Litecoin are positively correlated with the size of the graph and the number of nodes and edges,

while Vallarano et al. (2020) showed that the price of Bitcoin is negatively correlated with the average

outdegree2. Bovet et al. (2019) used a Granger causality test and found that the past degree distributions

(especially the outdegree of the Bitcoin trading network) can predict future price increases, while Li

et al. (2019) built an ARIMA time-series model to forecast price anomalies using network features.

2 Outdegree is the number of edges that are directed out of a node in the directed network graph.
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Finally, Bonifazi et al. (2021) presented a SNA-based approach to investigate user behavior during the

speculative bubble involving Ethereum in the years 2017 and 2018 to extract knowledge patterns about

this phenomenon, and to identify the speculators who were behind this Ethereum bubble.

2.4 Active addresses and Metcalfe’s law

Alabi (2017) considered the number of unique addresses participating daily on the Bitcoin and Ethereum

networks as a relative measure of the number of active users. He showed that the growth in the value

of the network was significantly related to the number of unique addresses participating actively on the

network. In this regard, the Metcalfe’s Law of network value, which associates the value of the network

with the square of its number of active users, was shown to model the networks quite well. In addition,

he also proposed a new model that was derived and compared with Metcalfe’s Law, which included a

30-day moving average filter. This model was found to be suitable for catching a bubble because if a

higher price is not related to the growth of active addresses, it could potentially be a bubble.

Peterson (2018) compared the features of crypto coins with a now-defunct Italian telephone token

called the Gettone, an ecosystem that married a telecommunications network with a currency, and which

was active from 1927 to 2001. Gettone tokens were originally made of physical metal materials, but they

were later replaced by magnetic calling cards in 1983. Gettone tokens could be used in daily life for

telephone calls, as well as a form of currency to buy goods and services. One gettone was valued 50 lire

up to 1980, 100 lire up to 1984, and 200 lire from 1984. It remained at this value until the introduction

of the euro in 2001 in Italy, and it lost its monetary value since then. Peterson noted the similarities

between the Gettone tokens and crypto coins. He then built a regression model based on Metcalfe’s law

and showed that bitcoin’s medium- to long-term price followed this law quite closely with an R2 over

80%.

Garcia-Monleon et al. (2021) discussed the intrinsic values for different type of cryptocurrencies,

including initial coin offerings (ICOs), single layer, and multiple layer coins. The purpose of an ICO is

simply to raise funds for a specific coin project, whereas a single-layer coin works as a payment system

to transfer currency, and its value is based on the active users in the network. A multiple-layer coin is

Touring-complete and can be used to develop decentralized applications based on the needs of individuals

or businesses. The operation of a new crypto-currency requires initial capital, which can be considered

the initial intrinsic value of the crypto coins. If crypto-coins are accepted by the market and they can

be used in daily life, the payments for goods and services can be used to measure the intrinsic value

of crypto-coins. Garcia-Monleon et al. (2021) suggested the use of Metcalfe’s law for measuring the

intrinsic value of crypto coins. They argued that if popular online payment methods such as Visa and
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PayPal could be valued in this way, then Metcalfe’s law could also be applied to single-layer and multiple

layers coin, given that PayPal, Visa and crypto-coin networks all possess similar characteristics.

Stylianou, Spiegelberg, Herlihy and Carter (2021) analyzed the impact of network effects (user-based

growth) and crypto-coin trends. They considered data for six crypto coins up to January 2020 and

assumed that the growth of the network value was proportional to the number of users on the network.

They concluded that network effects affected crypto-coin prices, but these effects did not provide crypto-

coins with any competitive advantage.

Sabalionis, Wang and Park (2021) analyzed how the amount of Google search interest, the number of

tweets, and the number of active addresses on the blockchain impacted the prices of Bitcoin and Ethereum

over time. They used vector autoregressive (VAR) models with multivariate generalized autoregressive

conditional heteroskedasticity (GARCH), and data between July 2017 and February 2018. They found

that the number of active addresses was the most significant variable influencing the price movements of

these crypto-assets, whereas Google searches and the number of tweets had weaker effects. There is also

an increasing literature that investigated the determinants of the returns and volatility of cryptocurrencies

using different measures of social media sentiment, the Economic Policy Uncertainty index, gold prices

and herding behaviors, see Papadamou et al. (2021a,b), Kyriazis et al. (2022) and references therein.

2.5 Ratios of crypto-coins

The Network Value to Transactions (NVT) ratio first made its appearance in February 2017 in a tweet,

but was discussed in more details in an article published on Forbes later in 2017 by Willy Woo (2017).

Kalichkin (2018) later improved the NVT-ratio by proposing the NVTS (NVT Signal), which is the

network value divided by the 90-day moving average of the daily transaction value and provides more

insight for forecasting price tops. Partly inspired by the NVTS ratio, Mahmudov and Puell (2018)

proposed the Market-Value-to-Realized-Value (MVRV), which is the market value divided by the realized

value. The market value is the current last known price multiplied by the current circulating supply,

while the realized value considers the lost and unmoved bitcoins and it is calculated by summing the

products of price per bitcoin and the so called “Unspent Transaction Output” (UTXO). By dividing the

market value by the realized value, an indication of Bitcoin’s real value emerges: Mahmudov and Puell

(2018) found that, historically, a MVRV-ratio above 3.7 denotes overvaluation, whereas a MVRV-ratio

below one indicates undervaluation.

Liu (2019) and Liu and Zhang (2022) found that fundamental market ratios have relatively little

impact on short-term bitcoin returns. They employed machine learning methods and deep learning

methods to create trading strategies: they found that the Price-to-Earning (PE) is not a good crypto-
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coin indicator, and they highlighted the limitations of the network value-to-transaction (NVT) ratio,

which ignores the store-of-value function. Given this evidence, they proposed a new ratio called the

price-to-utility (PU) ratio and built a trading strategy that gives a buy signal when the PU ratio goes

below the 10% quantile and a sell signal when the PU ratio exceeds the 90% quantile. They argued that

this strategy outperforms traditional moving average crossover strategies, and that the token utility is

a leading indicator for the token price. However, the main limitation of this kind of ratios is that they

cannot be used to compare the valuations of coins with different features (such as Bitcoin and Ethereum,

for example), as recently highlighted by Gotte et al. (2022).

3 Materials and Methods

The previous literature review found no detailed analysis of the profitability of the proposed pricing

methods for short-term trading, and all these approaches focused on medium and long-term evaluation.

Among all the methods reviewed, the approaches using the ratios of crypto-coins and the metrics based

on active addresses appeared to be the most apt for short-term trading. Therefore, given that the goal

of our work was to examine the trading performances of technical oscillators created using crypto assets

pricing methods, we selected seven pricing models proposed in the previously reviewed professional and

academic literature.

Before presenting the results of the empirical analysis, we briefly review these crypto-assets pricing

methods, and we discuss in detail how to use them to create technical oscillators and buy and sell trading

signals.

3.1 Network-to-transactions ratio (NVT)

The network-to-transactions (NVT) ratio was originally proposed by Woo (2017), and it is reported

below,

NV T =
Network V alue

Transaction V alue
=

Market Capitalization

Transaction V alue
(1)

where the network value is usually measured with the crypto-asset market capitalization in US dollars

(USD), while the transaction value is the total transaction volume in USD that took place in a specific

period (daily, monthly, or yearly).

The proposed model was originally developed from the price-to-earnings (PE) ratio, which is a tra-

ditional method used in financial analysis. If the NVT ratio is too high, so the network value is much

greater than the total transferred on-chain value for a specific period, it means that the market is over-

valued and it has high expectations for this crypto asset. If the NVT ratio is too low, the network value
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is much smaller than the total transferred on-chain value, which means that the market is undervalued

and it has low future expectations.

If we use the definition of market capitalization and transaction value,

Market Capitalization = SupplyToken · PriceToken

Transaction V alue = Transaction V olumeToken · PriceToken

And we substitute them into the NVT ratio, we obtain

NV T =
SupplyToken ∗ PriceToken

Transaction V olumeToken ∗ PriceToken

=
SupplyToken

Transaction V olumeToken

Given that the token transaction volume over the token supply is the money velocity, the NVT is the

reciprocal of the money velocity:

NV T =
1

V elocity

The NVT ratio is very volatile, so using this ratio as an indicator is rather difficult. To solve this

problem, Kalichkin (2018) modified the ratio (1) as follows,

NV TS =
Network V alue

MATransaction V alue

(2)

where he used the moving average (MA) of the transaction value to smooth the NVT ratio. Woo

(2018) modified the Kalichkin’s NVTS model (2) to the so-called ”adjusted-NVTS ratio”, which is an

oscillator indicator able to generate buy and sell signals. However, he did not provide any formula, and

he simply stated that ”the adjusted-NVTS displays how many standard deviations NVTS is above or

below its historical norm. The historical norm is the 2-year moving average of NVTS, similarly, the

standard deviation calculation uses a 2-year sampling” (Woo, 2018). Therefore, it appears that he used

the well-known z-score to standardize the NVTS ratio,

NV TSZ(a, b) =
NV TS − µ

σ
(3)

where µ is the mean value of the NVTS ratio computed over a specific period of time b (with b=2 years),

σ is the standard deviation over the same period b, while a is the time sample used to compute the

moving average of the network transaction value in eq. (2).
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3.2 Network value to realized value ratio (NVRV)

The network value to realized value (NVRV) ratio was first introduced by Mahmudov and Puell (2018),

and it is computed as follows,

NV RV =
Network V alue

Realized V alue
(4)

where the network value and realized value are measured in USD, and they are given by,

Network V alue = Last trade coin price · All coins in circulation

Realized V alue =
∑

i

Last trade price of each coini

Unlike traditional stock markets, each crypto-coin transaction and the last trade price for each coin can be

tracked, and their summation gives the realized value of the coin market capitalization, see Coinmetrics

(2018) for more details. When the NVRV ratio is greater than one, the market is overvalued and in a

stage of euphoria. Conversely, if the NVRV ratio is lower than one, the market is undervalued and in a

stage of capitulation-despondency.

A variant of this ratio using the z-score was originally introduced by Wonder (2018):

NV RV Z(a, b) =
NV RV − µ

σ
(5)

where µ is the mean value of the NVRV ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average of the

NVRV in equation (4).

3.3 Network value to hashrate ratio (NVHR)

The network value to hashrate ratio measures a crypto asset network value in dollars per unit of hashrate,

see 21Shares (2020) for more details. Its formula is reported below:

NVHR =
Network V alue

Hash Rate

The NVHR ratio measures the expectations of investors for a specific coin: when the NVHR is high,

investors have positive expectations and are willing to invest more, but if it is low, they have negative

expectations and are willing to invest less or exit the market. Another possible interpretation is that a

higher value of the NVHR ratio suggests that an investor is willing to pay more to receive the economic

security granted by the current crypto asset hashrate, whereas a lower value of the NVHR ratio suggests

that an investor is willing to pay less for the economic security granted by the current asset’s hashrate.
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Given that the NVHR ratio can fluctuate wildly, it is smoothed using a moving average of the daily

hashrate value,

NVHRS =
Network V alue

MAHash Rate

Similar to previous ratios, we transform it into an oscillator using the z-score for trading purposes,

NVHRSZ(a, b) =
NVHRS − µ

σ
(6)

where µ is the mean value of the NVHR ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average of the

hashrate.

To smooth the jitter at the peaks and troughs of the previous ratio (6), a variant using the exponential

moving average (EMA) can be employed:

NVHRSZ(a, b, c) = EMA

(

NVHRS − µ

σ

)

(7)

where c is the number of days used to compute the exponential moving average.

3.4 Active addresses metrics.

Active addresses metrics are based on the addresses of crypto coins that are recognized as unique indi-

vidual accounts (21Shares, 2020). Active addresses include all account addresses, independently of the

fact that they are sending, receiving, or both. Another factor is the network value, which is measured

by the coin market capitalization. These metrics are quite similar to the number of ”daily active users”

and to their daily activities, and they can be presented in two forms, using Metcalfe’s law or Odlyzko’s

law.

Metcalfe’s law was originally proposed to model the network effect of fax machines, telephones,

networks, and other communication technology. It was formulated in the current form by George Gilder

in 1993 who attributed it to Robert Metcalfe in regard to his work with Ethernet in the 1980s, see

Shapiro et al. (1998) and Metcalfe (2013) for more details.

According to Metcalfe’s law, the value of a telecommunications network is proportional to the square

of the number of connected users of the system:

ML V alue = A · n2

where A is a coefficient and n is the number of connected system users. Odlyzko et al. (2006) improved
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this model and showed that the incremental value of adding one person to a network of n people is

approximately the n-th harmonic number, so the total value of the network is given by,

OL V alue = n log n

3.4.1 Network value to Metcalfe’s law ratio

If we assume that the Metcalfe’s law for crypto-coins can be approximated as follows,

ML ≈ (Active Addresses)
2

then the network value to Metcalfe’s law (NVML) ratio is given by,

NVML =
Network V alue

ML

A moving average can be used to smooth the previous ratio,

NVMLS =
Network V alue

MAML

while the traditional z-score can be employed to standardize it and create an oscillator for trading

purposes:

NVMLSZ(a, b) =
NVMLS − µ

σ
(8)

where µ is the mean value of the NVML ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average. Again,

to smooth the jitter at the peaks and troughs of the previous ratio (8), a variant using the exponential

moving average (EMA) can be employed:

NVMLSZ(a, b, c) = EMA

(

NVMLS − µ

σ

)

(9)

where c is the number of days used to compute the exponential moving average.

3.4.2 Network value to Odlyzko’s law ratio

If we assume that the market value of a crypto asset depends on Odlyzko’s law as follows,

OL ≈ Active Addresses · log(Active Addresses)
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then the network value to Odlyzko’s law (NVOL) ratio is given by,

NV OL =
Network V alue

OL

A moving average can be used to smooth the previous ratio,

NV OLS =
Network V alue

MAOL

while the traditional z-score can be employed to standardize it and create an oscillator for trading

purposes:

NV OLSZ(a, b) =
NV OLS − µ

σ
(10)

where µ is the mean value of the NVML ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average. Again,

to smooth the jitter at the peaks and troughs of the previous ratio (10), a variant using the exponential

moving average (EMA) can be employed:

NV OLSZ(a, b, c) = EMA

(

NV OLS − µ

σ

)

(11)

where c is the number of days used to compute the exponential moving average.

3.5 A variant of the INET model for short-term trading.

The INET model was developed by Burniske (2017) to value the (fictitious) INET Token program. His

starting point is the quantity theory of money, which argues that the price level of goods and services is

proportional to the amount of money in circulation, and it builds upon the following equation,

M0V = PQ = Y

where M0 is the monetary base, V is the money velocity, P is the price of the digital resource that

is being provisioned, Q is the quantity of this digital resource, while Y is the gross domestic product

(GDP) of the crypto-economy based on this digital asset.

If we use the expenditure method to measure the GDP of crypto-assets, we have that,

Y = Transfer V alue for consumers = P$ ·MC

where MC is the total transferred coins on-chain for consumption, while P$ is the price of the crypto
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asset measured in US dollars. We already know from section 3.1 that the NVT ratio is the reciprocal of

the money velocity V, so that V can be obtained as

V =
1

NV T

If we combine the previous equations together, we can get the so-called monetary-based crypto-coin value

in US dollars M0$,

M0$V =
M0$

NV T
= P$ ·MC , ⇒

M0$ = P$ ·MC ·NV T

If we compare M0$ and the total supply of the crypto-asset M0, we get:

P ′

$ =
M0$

M0

=
P$ ·MC ·NV Tt

M0

= P$ ·

(

MC

M0

·NV Tt

)

Since we already know that the NVT is the ratio of the total coin supply M0 over the transaction volume

MT , we can rewrite the previous equation as follows:

P ′

$ =

(

MC

M0

·
M0

MT

)

· P$ =

(

MC

MT

)

· P$ ⇒

e =
P ′

$

P$

=

(

MC

MT

)

where e can be considered a sort of reciprocal ratio of M2/GDP for the crypto-economy based on this

crypto asset.

Even though every single transaction is recorded on the blockchain, determining the purpose of

a specific transaction can be difficult due to the anonymity of the blockchain network. Instead, the

speculation volume is easy to identify for bitcoin and most crypto assets: these transactions are performed

via crypto exchanges and can be analyzed in a straightforward manner. Therefore, if the speculation

volume substitutes the consumption volume, we get the following ratio3:

InetSpe =

(

Me

MT

)

(12)

where Me is the speculation volume. If this indicator is high, the proportion of speculative transactions

has increased, whereas if it is low, the proportion of speculative transactions has decreased. This ratio is

often used for trading purposes. We remark that in the original Chris Burniske’s model for annual data,

3 The name of the ratio InetSpe was chosen to show tha this ratio is a variant of the INET model for short−

term trading, that is for speculation purposes.
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there is an additional part used for computing the present value of a coin. However, we focus here on

daily data for short-term trading, so this part is not considered.

We can transform the ratio (12) into an oscillator using the usual standardization procedure:

InetSpeZ(a, b) =
InetSpe− µ

σ
(13)

where µ is the mean value of the InetSpe ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average.

3.6 Volt valuation model.

Alex Evans (2018) proposed a framework for modelling the money velocity using the Baumol-Tobin

model, which is related to the transaction demand for money, transaction costs, and the risk-free rate

of investment interest4. He assumes that a player in the economy will spend all his/her annual income

during a specific year and that the player has two choices: either hold his money in cash, or save his

income in an interest bearing bank and then make partial withdrawals when necessary. The last choice

makes the player earn some money, but it also implies a lot of transaction costs. To find the optimal

choice, the player must find the optimal number N of withdrawals needed to maximize his/her earnings.

Evans found that the optimal N is given by,

NV olt =

√

R · Y

2C

where R is the nominal free-risk interest rate, Y is the average payment per user per year and C is the

transaction cost, while the money demand function is estimated as,

MV olt =

√

Y · C

2R

A ratio for trading purposes can be computed by comparing the network value to the Volt money

demand for a specific coin,

NV V olt =
Network V alue

MV olt

(14)

while an oscillator can be built using (14) as follows:

NV V oltZ(a, b) =
NV V olt− µ

σ

4 V OLT is the name of Evans′ fictitious token.
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where µ is the mean value of the NVVolt ratio computed over a specific period of time b, σ is the standard

deviation over the same period b, while a is the time sample used to compute the moving average. To

smooth the jitter at the peaks and troughs, the exponential moving average can be used again in the

usual way:

NV V oltZ (a, b, c) = EMA

(

NV V olt− µ

σ

)

(15)

where c is the number of days used to compute the exponential moving average.

3.7 Trading strategy.

Once all models were converted into oscillators, we had to compute the two thresholds used for trading

purposes, that is the short threshold and the long threshold. Both thresholds were computed using the

oscillators’ quantiles: following Romano et al. (2019), Liu (2019) and Liu and Zhang (2022), we used the

5% quantile as the signal to enter a long position and the 95% quantile as the signal to sell and close our

position 5. More specifically, when the oscillator was less than the long threshold, the crypto-coin was

considered to be in the oversold zone, but when the oscillator started crossing above the long threshold,

the crypto-coin was considered to be leaving the oversold zone, and the model created a long signal.

Similarly, when the oscillator was greater than the short threshold, the crypto-coin was considered to be

in the overbought zone, but when the indicator crossed below the short threshold, the crypto-coin was

believed to be leaving the overbought zone and falling back, so the model created a short signal.

We remark that short-selling always involves a liquidation risk, particularly with high-risk finan-

cial assets such as crypto-coins. Therefore, we only considered long positions in this work, whereas

short-selling was discarded. For testing the profitability performance of an oscillator, we used the most

straightforward strategy: when the indicator gave a buy signal, one bitcoin was purchased, while it was

later sold when a sell signal was triggered. Theoretically, a trading strategy should include take-profits

and stop-losses, but such strategies strongly vary among individuals: some people may prefer to exit

when the floating loss is greater than 5%, whereas others prefer 10%. Aggressive investors may place

stops at 40% or 50% of the initial position. Moreover, some traders may set up more complex stop-loss

strategies involving options to hedge losses. In this work, we did not consider stop-loss (or take-profit)

strategies, and we focused only on the profitability of the buy and sell signals that were generated by

the competing models. We leave this issue as a topic for future research. For simplicity, we considered

an account with initial equity equal to 500 thousand USD.

5The two thresholds could have been optimized, but this computation would have added a layer of complexity (and
potentially also over-fitting) to our work. This is why we did not consider such an extension here, and we leave it as an
avenue for further research.
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3.7.1 Parameters of the moving averages and z-scores

These parameters can be chosen arbitrarily and there is no definitive method. For example, in the case

of the well-known MACD oscillator, some investors employ the 200-day and 50-day moving averages as

signals, while others prefer the 100-day and 50-day moving averages as signals. In the case of crypto-

assets, Kalichkin (2018) believed that a moving average of 90 days ”is a better proxy for long-term

fundamental value”. Quarterly reports are also known to have an impact on the stock market and they

are generally released a few weeks after the conclusion of a quarter. The effect of quarterly reports on the

crypto-coins market is currently unknown: for example, it is known that Tesla CEO Elon Musk is one of

the main promoters of crypto-coins and his tweets can impact the crypto-coin market (see Huynh (2022)

and references therein), but it is unknown whether Tesla’s quarterly reports can affect crypto-coins.

Microsoft, Tesla, PayPal, Coinbase, and other large companies that are supportive of crypto coins are

generally listed on the US stock market: considering the quarterly reports of these companies, a sample

of 120 days may be a good choice for computing the z-scores. Given this evidence, we employed 90 days

to compute the moving averages, while a sample of 120 days to compute the z-scores of our trading

models. As for the EMAs, whose purpose was to reduce the jitter of the oscillators at the peak, we

employed samples of 7 or 14 days, depending on the specific model used. We justify this choice because

larger samples may make the oscillators too flat, and no more useful for providing trading signals.

3.7.2 Trading strategy evaluation metrics

To backtest the trading performances of the models discussed in this work, we employed several metrics

implemented in the blotter R package. The blotter R package provides transaction infrastructure for

defining transactions, portfolios and accounts for trading systems and simulation. Moreover, it provides

portfolio support for multi-asset class and multi-currency portfolios. We refer to the help manuals

available at https://github.com/braverock/blotter for more details. We remark that the blotter

package computes a much larger set of performance metrics, which are not reported here for sake of

space and interest. The full results are available from the authors upon request. These metrics are

briefly discussed below in Table 1:
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Metrics’ acronym Meaning

Net.Trading.PL Net trading profit and loss
Ann.Sharpe Annualised Sharpe ratio.

Max.Drawdown Maximum drawdown. It is the maximum accumulated loss
for a portfolio position from its peak to its trough, before
a new peak is attained. It is an indicator of downside risk
over a specified period.

Profit.To.Max.Draw Profit to max drawdown. It is a risk-adjusted return mea-
sure used as an alternative to the Sharpe ratio. This indi-
cator represents profit expectations per unit of drawdowns.

Max.Equity Maximum floating profit of the entire strategy during the
backtest period

Min.EquityNum.Txns Maximum floating loss of the entire strategy during the
backtest period
Number of transactions

Table 1: Evaluation metrics’ acronyms and meaning.

4 Results

4.1 Data

We used daily bitcoin data (BTC) from August 17, 2011 to March 30, 2022 obtained from Glassnode,

and whose download links are reported in the Appendix A. A brief description of the variables used in

the empirical analysis is reported in Table 2, while their plots are reported in Figures 1-7.

Factor Unit Description

Price USD Daily close price
Network value USD Market capitalization

Transaction value USD The total estimated value of daily
transactions on the block chain

Realized value USD Market capitalization measured by the
last trade price of each coin

Active addresses Number The number of addresses that were
sent or received

Network hashrate Number The hashrate of the total Bitcoin net-
work

Transaction in exchanges Number The total estimated value of daily
transactions within exchanges

Risk-free rate Number United States 10-year Treasury Rate

Table 2: Description of the variables used in the empirical analysis.
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Figure 1: Bitcoin price and network value.

Figure 2: Bitcoin price and daily transaction value.
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Figure 3: Bitcoin price and realized value.

Figure 4: Bitcoin price and active addresses.
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Figure 5: Bitcoin price and network hashrate.

Figure 6: Bitcoin price and daily transactions value within exchanges.
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Figure 7: Bitcoin price and risk-free rate.

The descriptive statistics, the Jarque-Bera normality test statistics and p-values, and the KPSS unit

root test statistics for the BTC price, BTC log-returns and for the seven technical oscillators are reported

in Table 3, while the Figures A1-A7 in the Appendix B reports the technical oscillators computed for

each trading strategy.

BTC (price) BTC (log-ret.) NVTS Z NVRV Z NVHRS Z NVMLS Z NVOLS Z INETSPE Z VOLT

Mean 8879.61 0.00 0.03 0.23 -0.08 0.11 0.36 0.02 0.51
Median 1183.81 0.00 -0.05 0.05 -0.62 -0.12 0.32 -0.26 0.52
Maximum 67589.01 0.34 4.83 3.74 3.95 4.12 4.25 3.47 4.42
Minimum 4.55 -0.68 -5.41 -3.31 -3.05 -3.49 -3.48 -2.66 -3.05
Skewness 2.16 -1.48 0.18 0.27 0.70 0.37 0.21 0.87 0.12
Kurtosis 6.60 29.00 2.49 2.38 2.43 2.32 2.28 3.53 1.99
Jarque-Bera 4831 104600 58 102 353 153 106 506 163
P-value JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KPSS test 4.36* 0.18 0.11 0.16 0.22 0.31 0.15 0.07 0.38

* The null hypothesis of stationarity is rejected at the 5% probability level.

Table 3: Descriptive statistics, Jarque-Bera normality test statistic and p-value, and KPSS unit root test
statistics for the BTC price, BTC log-returns and for the seven technical oscillators.

As expected, Bitcoin prices are not stationary but their log-returns are stationary, and so are the

seven technical oscillators. Interestingly, the oscillators are not normally distributed, but their empirical

skewness estimates are close to zero and their empirical kurtosis close to 3.
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4.2 Trading performance of each model

We report in Table 4 the previous evaluation metrics for all seven trading strategies to have an idea of

their relative performances. Table 4 also reports the test for equality of each Sharpe ratio to zero in

case of not independent and identically distributed elliptical returns, see Pav (2021, chapter 3) for more

details. Moreover, it also reports the test by Wright et al. (2014) for the equality of all Sharpe ratios,

which holds under the general assumption that the excess returns are stationary and ergodic.

Figures A1-A7 in the Appendix B reports the technical oscillators computed for each trading strategy,

the bitcoin (BTC) price, the cumulative profit/loss, the long and short thresholds computed using the

5% and 95% quantiles of the technical oscillators, respectively, and the long and short orders. Note that

a short order imply that that all previously bought bitcoins must be sold at that time.

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe Profit.To.Max.Drawdown Num.Txns
NVTS 86,002 -97,656 147,472 -1,126 0.31 0.88 38
NVRV 46,685 -35,065 61,577 -574 0.41* 1.33 15
NVHR 37,728 -55,538 47,901 -7,636 0.20 0.68 17
NVML 43,439 -18,847 50,224 -2,739 0.47* 2.3 20
NVOL 45,589 -41,460 53,747 -2,877 0.30 1.1 18
INET 49,862 -16,249 58,375 0 0.55** 3.07 104
VOLT 24,424 -74,012 52,552 -20,116 0.12 0.33 16

Wright et al. (2014) test for the equality of all Sharpe ratios. P-value: 0.57

** Significantly different from zero at the 5% probability level.
* Significantly different from zero at the 10% probability level.

Table 4: Selected evaluation metrics for all trading strategies.

The NVTS strategy had the largest net trading profit, but also the largest max drawdown. Consid-

ering it had also the largest floating profit during the trading period, probably its performance could be

improved using a profit-taking strategy: given that this goes beyond the scope of this work, we leave it

as an avenue of further work.

Another interesting strategy is the one using the Network value Metcalfe’s law (NVML), which has

a high Sharpe ratio, a low max drawdown of -18,857 USD (approximately 4% of the initial capital), and

the second highest profit to max drawdown equal to 2.3. The strategy using the Network value Odlyzko’s

law (NVOL) has performance metrics that are rather similar to the strategy using the network value

Metcalfe’s law, even though they are generally slight worse than the latter. Moreover, the max drawdown

and the profit to max drawdown (1.10) are much worse than the approach using the Metcalfe’s law.

The strategy that employed the network value to realized value (NVRV) ratio had a more balanced

performance than the NVTS model. However, it requires a good fine-tuning of the moving averages’

parameters because this model tends to generate trading signals one to three weeks in advance.

The Network value to hash rate (NVHR) ratio provided good long-side entry signals but poor short

signals, so this model must be used in conjunction with other strategies to determine when to exit the
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market: we leave this issue as an avenue of further work.

On the other side of the spectrum, the VOLT model had the worst performance measures in almost

all cases: interestingly, this model experienced also the largest floating losses during the trading period,

thus highlighting that it is not effective in creating short trading signals.

Finally, the modified INET model showed the lowest drawdown, no floating losses during the trading

period, the highest profit to max drawdown ratio, and it was the only strategy with a Sharpe ratio

statistically different from zero at the 5% probability level. This empirical evidence make this trading

strategy one of the most interesting considered so far. However, despite all these differences, we remark

that the test by Wright et al. (2014) did not reject the null hypothesis that the annualized Sharpe ratios

of all strategies are equal.

The empirical evidence seems to confirm the past successes of the INET model and the Metcalfe’s

law. The variant of the INET model that we presented in section 3.5 is particularly useful to quickly

measure any change in the speculation activity, which makes it an interesting tool for short-term trading.

Its main limit is probably the large number of transactions involved, which may results in a large number

of transaction fees to pay and much lower trading profits. However, given that several crypto-exchanges

have recently launched zero trading fees for spot trading (most notably, Binance and Bybit), this issue

may be less problematic than it was in the past. As for Metcalfe’s law, it is known since the work by

Alabi (2017) that blockchain networks can be fairly well modeled by Metcalfe’s Law, which identifies the

value of a network as proportional to the square of the number of its nodes, or end users. Moreover,

it is a useful model to identify potential price bubbles when the market price deviates too much from

the underlying model and is not accompanied by any significant increase in the number of participating

users, or any other development that could explain the higher market prices. Our back-testing results

for trading purposes appear to confirm this past evidence.

5 Robustness checks

5.1 Trading performances in different time samples

We considered the performances of the previous trading strategies in different time samples to better

understand their dynamics in different market situations. In this regard, we followed an increasing

literature that has showed that there was a financial bubble in bitcoin prices in 2016-2017 that burst at

the end of 2017, see Fry (2018), Corbet et al. (2018), Gerlach et al. (2019), and Xiong et al. (2020).

Moreover, there is also a debate on whether the introduction of bitcoin futures in December 2017 crashed

the market prices, see Köchling et al. (2019), Liu et al. (2020), Fantazzini and Kolodin (2020), Baig et al.
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(2020), Jalan et al. (2021), Hattori and Ishida (2021), and Fantazzini (2022). Following this evidence, we

divided our dataset into two sub-samples consisting of data before and after 10 December 2017, which is

the day when the first bitcoin futures were introduced on the CBOE. Tables 5 and 6 show the evaluation

metrics for all seven trading strategies in these two sub-samples. We remark that all open long positions

were closed on December 9, 2017 in the first sample, and on March, 30 2022 in the second sample.

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe Profit.To.Max.Drawdown Num.Txns
NVTS 14412 -5070 14748 -1139 0.97** 2.84 20
NVRV 10575 -2078 12653 -539 0.87** 5.08 5
NVHR 4928 -1247 5334 -309 0.99** 3.94 11
NVML 1348 -855 2195 -171 0.52* 1.57 8
NVOL 1078 -719 1755 -512 0.40 1.49 9
INET 8798 -2078 10876 0 0.72** 4.23 63
VOLT -109 -690 147 -547 -0.08 -0.16 4

Wright et al. (2014) test for the equality of all Sharpe ratios. P-value: 0.10

** Significantly different from zero at the 5% probability level.
* Significantly different from zero at the 10% probability level.

Table 5: Selected comparison of trading strategies: 17-08-2011 / 09-12-2017

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe Profit.To.Max.Drawdown Num.Txns
NVTS 32014 -36974 33052 -6059 0.47 0.87 12
NVRV 32119 -32552 52609 -2009 0.53 0.98 6
NVHR 27986 -48321 52183 -1360 0.35 0.58 7
NVML 60025 -22965 64808 -6758 0.77* 2.61 11
NVOL 67803 -65104 99413 -6675 0.51 1.04 10
INET 25554 -18611 28727 -4749 0.50 1.37 58
VOLT 35319 -97656 87840 -11490 0.21 0.36 8

Wright et al. (2014) test for the equality of all Sharpe ratios. P-value: 0.87

** Significantly different from zero at the 5% probability level.
* Significantly different from zero at the 10% probability level.

Table 6: Selected comparison of trading strategies: 10-12-2017 / 30-03-2022.

The two samples show quite different results: the first data sample up to the end of 2017 is character-

ized by low drawdowns, very large profit to max drawdown ratios, and Sharpe ratios that are significantly

different from zero. Instead, the second sample has much larger drawdowns, very small profit to max

drawdown ratios, and Sharpe ratios that are not significantly different from zero in almost all cases.

Therefore, these results seem to indirectly confirm the findings by Köchling et al. (2019), Baig et al.

(2020), and Ruan et al. (2021) who showed that the introduction of bitcoin futures in December 2017

improved the efficiency of bitcoin markets.

5.2 Trading performances with different thresholds

We also performed a sensitivity analysis where we changed the thresholds of the trading strategies by

a small amount (we used the 10% and 90% quantiles, instead of the 5% and 95% quantiles) and we

examined how the results changed compared to the baseline case. Table 7 shows the evaluation metrics

for all seven trading strategies with the modified thresholds to generate buy and sell signals.
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Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe Profit.To.Max.Drawdown Num.Txns

NVTS 90,167 -84,680 131,147 -1,825 0.36 1.06 51
NVRV 56,476 -78,834 94,966 -2749 0.24 0.72 20
NVHR 58,045 -17,061 58,434 -7,471 0.59** 3.40 26
NVML 64,323 -26,204 65,491 -2,788 0.45* 2.45 24
NVOL 65,536 -80,873 104,576 -7,520 0.29 0.81 24
INET 38,272 -18,715 49,711 -1,415 0.39** 2.04 238
VOLT 8,171 -80,873 48,166 -32,706 0.04 0.10 17

Wright et al. (2014) test for the equality of all Sharpe ratios. P-value: 0.36

** Significantly different from zero at the 5% probability level.
* Significantly different from zero at the 10% probability level.

Table 7: Selected comparison of trading strategies: 10% and 90% quantiles

The smaller quantiles made the trading strategies more aggressive and involved a higher number of

transactions. However, the effects were not homogenous across the competing strategies: the NVTS,

NVRV, NVML and the NVOL models show higher final trading profits and maximum floating profits,

but also much worse max drawdowns compared to the baseline case. The NVHR ratio was the only model

that significantly improved all the evaluation metrics, whereas the INET and VOLT models worsened all

metrics. In general, it appears that an optimization of the thresholds used to create buy and sell signals

could potentially improve the models’ performances. However, this goes beyond the scope of this paper

and we leave it as an avenue for further research.

6 Discussion and Conclusions

This paper investigated the trading performances of several technical oscillators created using crypto

assets pricing methods for short-term bitcoin trading. More specifically, we employed seven pricing

models proposed in the professional and academic literature to create technical oscillators for daily

trading. Two thresholds based on the quantiles of these oscillators were then used to generate buy

and sell signals. The empirical back-testing analysis showed that some of these methods proved to be

profitable with good Sharpe ratios and limited max drawdowns. However, the trading performances

of several methods significantly worsened after 2017, thus indirectly confirming an increasing financial

literature that showed that the introduction of bitcoin futures in 2017 improved the efficiency of bitcoin

markets.

The strategy using the Network-to-transactions ratio (NVT) model had both the largest profit and

the max drawdown: if it were combined with a profit-taking strategy, its performance could improve

considerably, so we leave this issue as an avenue for further study.

The strategy that employed the network value to realized value (NVRV) ratio had a more balanced

performance than the NVT model. In general, this model generated trading signals one to three weeks

in advance, so we delayed the trade signals in our back-testing analysis with a 14-day moving average. If
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this model were used in actual trading, the parameters of the moving average would have to be optimized

to better synchronize the trading signals with asset price movements.

The Network value to hash rate (NVHR) ratio provided good long-side entry signals but poor short

signals, so this model must be used in conjunction with other strategies to determine when to exit the

market.

The strategy based on the network value to Metcalfe’s law (NVML) ratio provided one of the few

statistically significant Sharpe ratios, a low max drawdown and a high profit to max drawdown, thus

showing to be suitable for long-term investment. In this regard, we note that this was the only strategy

that improved its trading performance after the introduction of bitcoin futures in December 2017. The

strategy using the network value to Odlyzko’s law (NVOL) ratio had similar metrics to the NVML ratio,

but its max drawdown and profit to max drawdown were much worse and, in general, its metrics worsened

after 2017.

A variant of the Chris Burniske’s (2017) INET modified for short-term trading had the lowest max

drawdown and the highest annualized Sharpe ratio for the whole sample. However, its performance

worsened considerably after 2017. Finally, the VOLT model had the worst performance for almost all

metrics and in all time samples: this model was found to be good in generating long signals, but bad in

generating short signals.

Our empirical analysis offers two conclusions. First, it confirmed again the importance of Metcalfe’s

Law for valuing crypto assets, according to which the value of a network is proportional to the square of

the number of users. Metcalfe’s Law has been usually employed for long-term evaluation and to identify

potential price bubbles when the market price deviated too much from the underlying fundamental

level. However, our back-testing results showed that such an approach can also be useful for short-term

trading in different market conditions. Second, the bitcoin market has become more efficient since the

introduction of futures trading at the end of 2017, and traders must be able to endure much larger

drawdowns if they want to have significant trading profits. Needless to say, not all traders may have

such possibility because ”the market can remain irrational longer than you can remain solvent”, as John

Maynard Keynes supposedly once said in the 1930s6.

We remark that this increase in market efficiency after 2017 resulted in the stabilization of the number

of Bitcoin active addresses per day (around 900,000) and in the number of confirmed transactions per

day (around 250,000). Unfortunately, it did not affect Bitcoin electricity consumption, which has kept

on slowly increasing over time, despite improvements in the mining equipment energy efficiency and a

6There is now an open debate about the origin of this quote, given that there is evidence that this comment was possibily
said by a financial advisor named Gary Shilling in 1986: “In conclusion, this saying appeared in print by the 1986 and was
closely associated with the financial analyst A. Gary Shilling. Based on current evidence it is likely that Shilling crafted of
this apothegm. The evidence linking the quote to Keynes is very weak, and may be due to confusion with another saying
attributed to Keynes as mentioned above”, https://quoteinvestigator.com/2011/08/09/remain-solvent .
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more diverse energy mix, see the Cambridge Bitcoin Electricity Consumption Index (CBECI) provided

by the University of Cambridge for more details (https://ccaf.io/cbeci). This apparent contradiction is

due to the continuous increase in the Bitcoin hashrate (see www.blockchain.com/explorer/charts/

hash-rate), for which several reasons have been proposed: for example, blockchain data analytics firm

Glassnode believes that the “hashrate rise is due to more efficient mining hardware coming online and/or

miners with superior balance sheets having a larger share of the hash power network”7. Sarkar (2022)

suggested three additional reasons: falling mining rig prices, increasing crypto-friendly jurisdictions, and

the Ethereum transition from a proof-of-work (PoW) to a proof-of-stake (PoS) consensus that forced

Ethereum miners to sell off or repurpose their equipment toward mining Bitcoin. Whatever the real

reasons are, increased trading is not one of them.

It is important to highlight also the limitations of this study: first of all, we did not try to optimize the

parameters of the technical oscillators, given that the choice of specific model parameters may strongly

vary across investors according to their risk-return profile. Moreover, we remark that a complete trading

strategy requires not only trading signals, but also reliable trade management and stop-loss strategies:

considering that almost all examined models proved to be profitable without the use of a stop-loss

strategy, complete trading strategies for actual trading would have probably shown better performances.

These additional issues are left as a possibility of future work.

Another limit of our analysis is the complete focus on Bitcoin. Even though it is still the most traded

crypto-asset, its dominance has decreased over time (see e.g. coinmarketcap.com/charts). An interesting

avenue of further research would be to expand the analysis discussed in this paper with other crypto

assets and with different variants of the technical indicators presented in this paper. Moreover, we did

not consider transaction fees and short-sales. Even though there is a trend in decreasing fees over time

across all crypto-exchanges, they can still affect trading profits. As for short-sales, they can improve net

profits, but they also involve liquidation risks and can cause major losses. We leave all these issues as

topics for future research.

Finally, we remark that the success of Metcalfe’s law for short-term trading makes an analysis using

approaches based on Social Network Analysis a natural extension to understand the ultimate reasons

behind the phenomena reported in this work. We leave this issue as an interesting avenue for further

research.

7See https://insights.glassnode.com/the-week-onchain-week-40-2022 .
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Appendix A: Data sources

1. Price data: this is free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.PriceUsdClose

2. Network value: this is free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.MarketcapUsd

3. Realized value: this is not free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.MarketcapRealizedUsd

4. Active addresses: this is free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=addresses.ActiveCount

5. Network hashrate: this is free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=mining.HashRateMean

6. Transaction in exchange: this is not free data and the source is as follows:

https://studio.glassnode.com/metrics?a=BTC&category=&m=transactions.TransfersVolumeWithinExchangesSum

7. Risk-free rate: this is free data and the source is as follows:

https://fred.stlouisfed.org/series/GS10

32



Appendix B: Trading Strategies performances

Figure 8: NVTS-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,

left-hand-side), NVTS-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines, right-

hand-side), long orders (red points) and short orders (green points).

Figure 9: NVRV-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,

left-hand-side), NVRV-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines, right-

hand-side), long orders (red points) and short orders (green points).
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Figure 10: NVHRS-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,
left-hand-side), NVHRS-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines,
right-hand-side), long orders (red points) and short orders (green points).

Figure 11: NVMLS-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,
left-hand-side), NVMLS-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines,
right-hand-side), long orders (red points) and short orders (green points).
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Figure 12: NVOLS-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,
left-hand-side), NVOLS-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines, right-
hand-side), long orders (red points) and short orders (green points).

Figure 13: InetSpe-Z strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,
left-hand-side), InetSpe-Z ratio (brown line, right-hand-side), long and short thresholds (blue lines, right-
hand-side), long orders (red points) and short orders (green points).
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Figure 14: VOLT strategy: BTC price (orange line, left-hand-side), cumulative profit/loss (red line,
left-hand-side), VOLT ratio (brown line, right-hand-side), long and short thresholds (blue lines, right-
hand-side), long orders (red points) and short orders (green points).
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