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Abstract

Using tracked changes from a large open-source software platform, this pa-

per studies how working from home affected the output of individuals working

in tech. The basis of the natural experiment comes from idiosyncratic and state-

imposed workplace closures during the COVID-19 pandemic. I find a negative

but almost-negligible change in individual-level output of 0.5 percent (standard

error of 0.091 percent). Overall, and based on descriptive analyses of the time-

stamped data, tracked changes in software development cadences approximate

regular work activity and provide a useful avenue for future studies of work.
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I Introduction

Working from home (WFH) has been a staple discussion on employees’ productiv-

ity since the pandemic. Flexibility and autonomy are commonly cited reasons why

WFH improves productivity (e.g., BBC 2020b; Khanna 2020). The company Fitjitsu

believes that “increased autonomy offered to its workers will help to improve the

performance of teams and increase productivity” (BBC 2020a). Less time com-

muting is also a commonly cited reason, although it conflates the intensive and

extensive margin (Whiting 2020; Barrero et al. 2021). Yet another reason is office

distractions (Banbury and Berry 1998).

For employees in information and tech-related industries, the argument nar-

rows. Conventional wisdom suggests they are well-suited for remote work (e.g.,

Alipour et al. 2020; Gottlieb et al. 2020; Lerman and Greene 2020). However, re-

cent press coverage reveals contrasting opinions (e.g., BBC 2020c). Some, like Fu-

jitsu, suggest productivity gains (BBC 2020a,b; Whiting 2020). Others, the CEO of

Netflix, for instance, claim that WFH “has no positive effects and makes debating

ideas harder” (BBC 2020d).

This study assesses the extent to which WFH has led to measurable changes in

the output of individuals working in tech. Previous studies on WFH focus on non-

tech work contexts with routine tasks, finding an increase in WFH productivity

(e.g., Bloom et al. 2015). However, the impact of WFH on non-routine tasks is less

clear. Focusing on tech workers who deal with ad-hoc troubleshooting, problem-

solving, and non-routine tasks can shed light on WFH output gains for the broader

working population. In addition to being vital to the economy, these information

and communications technology professionals, perfectly suited for remote work

(Gottlieb et al. 2020), provide a useful bound on WFH output gains.

To quantify and identify the impact of WFH on the output of individuals, I con-

struct a novel dataset by combining real-time data tracked changes in open-source

software development with state-imposed lockdown data by geocoding individuals
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to regions. The timing of workplace closures worldwide, orthogonal to individual-

level output, and the geographical dispersion of individuals in the sample provide a

plausibly exogenous source of variation. This setting forms the basis of the natural

experiment in this study. If WFH confers output gains, then the measured output

of an individual should be higher during WFH periods.

To measure individual-level output, I start with a census of timestamped tracked

changes in projects from GitHub, an open-source software platform. These tracked

changes are designed with the intention of archiving snapshots of a project for ver-

sion control. I demonstrate that these tracked changes have utility as a way to

monitor the output of individuals insofar as the tracked changes constitute itera-

tive and incremental contributions to a project.

Given the unconventional use of tracked changes in projects as a metric of out-

put, I start by unpacking descriptive findings into four themes that provide some

sense of the reliability of tracked changes as office work activity. First, the subset

of tracked changes originating from users who report their companies reveals a set

of well-known and traditional tech companies. Second, tracked changes have a ca-

dence consistent with the five-day workweek, where changes are most frequent on

the weekdays. In addition, tracked changes respond to salient federal and national

holidays. Third, tracked changes have a cadence consistent with traditional office

hours. Moreover, tracked changes are sensitive to lunch and dinner breaks at the

end of a workday. Finally, I show that, on average, there is no discernible differ-

ence in the user-perceived quality of projects active before and after the pandemic.

Although the tracked change capture only open-source projects, I argue later in Sec-

tion II.C that open-source is of high quality and the default when developers look

for solutions. Overall, these findings suggest that the real-time tracked changes

from GitHub are a viable avenue for studies on output.

Using the variation in workplace closures across regions, I estimate the differ-

ence in tracked changes of individuals before and after WFH. Subject to the validity
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of the identifying assumption that the precise timing of state-imposed WFH, for re-

gions that eventually imposed WFH, is uncorrelated with the output dynamics of

individuals, I find a negative but modest reduction in tracked changes. Relative to

the periods with no WFH, the largest estimated decline in tracked changes at the

individual level during the required WFH periods is 0.5 percent.

Using tracked changes at the individual-project level to account for project-

specific cadences in software delivery yields similar findings. The largest estimated

decline in tracked changes is only 0.8 percent. One concern is that the small mag-

nitude of the estimates is caused by attenuation bias coming from individual WFH

periods not corresponding perfectly with their locations. Iteratively dropping indi-

viduals in the sample with progressively lower quality of region geocoding does not

substantially affect the estimates.

A question of interest is whether the tracked changes come from employees at

work. Later in Section II.C, I turn to developer surveys which suggest that people

who write code purely as a hobby are rare. In Section IV, I address this concern

analytically using two different datasets. The first dataset uses only users who list

the organization they work at. The second dataset sieves out only tracked changes

occurring during the workday office hours. In both cases, the estimates are fairly

consistent with those from the main results. The observed change in output during

lockdowns is negative but modest.

One shortcoming of the natural experiment employed in this study is that we

cannot measure how many individuals in the sample switch to working from home

once the lockdowns start. The estimates, therefore, fall under an intention-to-treat

basis instead of the WFH treatment itself. In the discussion Section V.A, I argue

that the main source of non-compliance, and therefore bias under the exclusion

restriction violation, comes from individuals already working from home during

normal times. I turn to survey numbers on pre-pandemic remote work to help

bound the compliance rate. This exercise suggests that the estimated decline in
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output when WFH is small (less than a full one percent) even for compliance rates

lower than what surveys suggest.

While the pandemic has gradually revealed broader concerns about the impact

of WFH, such as with teamwork and communication (e.g., Bloom 2020; Ford et al.

2021; Forsgren 2020; Gibbs et al. 2021; McDermott and Hansen 2021), concerns

regarding individual-level output persist in the impetus to return to offices (e.g.,

Barrero et al. 2021; Ozimek 2020; Yang et al. 2022; YouGov 2020). Moreover, con-

cerns about teamwork and communication ultimately relate to output as a bottom

line. Since the study uses the COVID-19 pandemic as an event study, the esti-

mates cannot be interpreted causally as in randomized controlled trials (e.g., in

Bloom et al. 2015; Emanuel and Harrington 2021). However, the setting provides

evidence that the change in objective output metrics of individuals when WFH is

negative but minimal.

This study focuses on a specific part of the labor market: programmers and

people who write code. The findings, however, have broader implications. Software

work is well-suited for remote work (Alipour et al. 2020; Gottlieb et al. 2020; Lerman

and Greene 2020). Hence the switch to WFH constitutes less of an adjustment. If

such individuals encounter a dramatic decline in output when shifting to WFH,

what more for the broader working population who require a bigger adjustment to

WFH. Fortunately, for managers and policymakers, this is not the case.

More generally, the study contributes to our understanding of changes in work

patterns for occupations that do not deal with repetitive and transactional work in

their day-to-day tasks. Software work involves problem-solving like other white-

collar occupations. This is as opposed to work revolving around repetitive tasks,

such as call center representatives as in Bloom et al. (2015).1 Like many other

professions, issues arise on an ad-hoc basis for people who write code in their work

duties. Troubleshooting unexpected problems, liaising with peers and managers,

1 Emanuel and Harrington (2021) obtain similar results as Bloom et al. (2015) with a similar

experimental setting, although their study goes beyond WFH productivity impact.
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and checking confusing documents for potential solutions are part of their day-to-

day. The GitLab 2018 developer survey reports that unclear directions, changing

project requirements, and unrealistic deadlines are top reasons for fruitless efforts.

Another survey, the Stack Exchange 2019 survey, reports that having to attend

meetings, having insufficient manpower, and a lack of support from management

are top impediments to productivity. In this sense, occupations where the work

involves writing code are not that different from the rest of the workforce, where

WFH is a realistic option.

A key advantage of this study is that the output metrics are more objective.

Many studies on the WFH impact rely on self-perceived changes in output, which

is problematic (Uddin et al. 2022; Ralph et al. 2020). Self-perceived productivity,

for example, may correlate more with manager appraisals (Baruch 1996) than with

output. The natural experimental setting also avoids both the Hawthorne Effect

and Goodhart’s law, where individuals are aware their work is being tracked and

manipulate the metrics accordingly to appear productive (Baltes and Diehl 2018;

Chrystal and Mizen 2003; Goodhart 1984).

Considering that this study finds little change in output after lockdowns among

people in tech, perhaps the problem is not whether workers can deliver on work

tasks when WFH. Rather, the problem lies in monitoring output and incentivizing

workers. Managers prefer staff to be in the office because working in office aids in

monitoring efforts. This interpretation is consistent with the finding in this pa-

per. For general work context where tasks are non-repetitive and involves problem

solving, like in software work, WFH does not have the kind of varied and dramatic

impact cited in the media (e.g. BBC 2020a,b,c; Whiting 2020; BBC 2020d).

In the discussion, I further place my findings in the context of key-related stud-

ies. One set of studies examines software developers’ output which also relies on

various records of tracked changes (e.g., Bao et al. 2020; Ford et al. 2021; Forsgren

2020; McDermott and Hansen 2021). Another set looks at the output of information
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workers since software exists to track what windows are active on work computers

(e.g., Gibbs et al. 2021; Yang et al. 2022). Overall, they find a limited impact on

output. While this study finds limited WFH impact on output, the study by Fors-

gren (2020) and McDermott and Hansen (2021) using the same data source find a

tangible impact on the working hours of individuals after the pandemic, a finding

shared by studies using other data sources (e.g., DeFilippis et al. 2022; Friedman

2020).

Other related studies include Choudhury et al. (2021) who estimate a substan-

tial 4.4 percent increase in a WFA (work-from-anywhere) vs. WFH setting. More

broadly, this paper contributes to the literature on remote working in the context of

the pandemic, such as those on public goods contribution (Choudhury et al. 2020;

Kummer et al. 2020; Ruprechter et al. 2021), changes in emails patterns (DeFilippis

et al. 2020), uneven household costs (Stanton and Tiwari 2021), and employment

and health impacts (Angelucci et al. 2020). Finally, a set of studies look into the

share of jobs that can be done WFH (Alipour et al. 2020; Bartik et al. 2020; Bloom

2020; Brynjolfsson et al. 2020; Gottlieb et al. 2020).

The next Section II provides tracked changes from GitHub as a metric of output.

Section III unpacks four set of descriptive findings. Section IV reports the results.

Section V discusses the findings and limitations. Section VI concludes.

II Data and Background

II.A Approximating Productive Output

The ideal and canonical productivity metric has some units of output scaled by

some units of input. The productivity metric in Bloom et al. (2015) and Emanuel

and Harrington (2021), for instance, have this form. Their experimental context is

with call-center operatives. The output unit is the number of calls completed, and

the input unit is the number of hours clocked. However, this form of productivity
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Table 1—Work-From-Home (WFH) Coding from OxCGRT

OxCGRT

WFH indicator Type Description from Oxford’s Blavatnik School of Government (Petherick et al. 2020)

0 Non-binding No measures

1 Non-binding Recommended closing (or recommended work from home)

2 Binding Required closing (or work from home) for some sectors or categories of workers

3 Binding Required closing (or work from home) for all-but-essential workplaces (e.g. grocery stores, doctors)

SWE

TWN

ITA JPN

[26Jan, 05Mar)
[05Mar, 12Mar)
[12Mar, 19Mar)
[19Mar, 26Mar)
[26Mar, 02Apr)
[02Apr, 17Jun]
No lockdown
record

Figure 1: Staggered Timing in State-Imposed WFH
Notes—Map shows the timing of state-imposed WFH where workplaces are "required" to close. Underlying dates are for the

date at which the OxCGRT WFH indicator first switches from {0, 1} to {2, 3}, that is, from no closing/recommended closing

to a required closing for either some sectors or all-but-essential sectors (Table 1). Darker shades indicate later workplace

closures. Countries without state-imposed WFH in the sample period (Jan–Jun 2020) are shaded in gray.

metric is rarely available outside of an experimental setting and in a work context

that is less routine and transactional.

To gain empirical traction on the WFH impact outside of an experimental set-

ting, and for work that is less routine, I use tracked changes on the GitHub platform

as metrics of output.

GitHub is a platform where developers (and also some researchers) host, (Git)

version control, and collaborate on projects. On the official website, GitHub states

that it is “where the world builds software” and is the “largest and most advanced

development platform in the world.” The platform is free and open-source, with

effectively zero barriers to entry. For a sense of scale, GitHub states that it has

over 56 million users, 100 million repositories, and 3 million organizations. The

users on GitHub are usually in the Information and Communications Technology

(ICT) sector, and thus have work that is less routine than the work context in Bloom

et al. (2015) for instance.2 3

2 Retrieved at time of writing from ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❛❜♦✉t. GitHub includes some of the

most prominent organizations: Apple, Facebook, GitHub (dogfooding), Google, Microsoft, and Twit-

ter, with repositories and users in the order of thousands. Google Maps, for instance, have several

projects hosted on GitHub (❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❣♦♦❣❧❡♠❛♣s). See also Figure 4 and Figure 5
3 See Papamichail et al. (2016) and Sanatinia and Noubir (2016) for a computing description of
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II.B Tracking Changes in GitHub Projects

Using tracked changes of GitHub users in their repositories (projects) imply that

we can track the activity of individuals. Here, I describe how we can approximate

productive activity using the tracked changes from GitHub.4

In the Git workflow are two key milestones. First are commits, which are the

first level of tracked changes in a project pipeline. These changes, for example,

could be in a text file in the form of code or writing. When ready, users archive

these changes, in a potentially modular fashion, to the local repository (which are

then eventually pushed to the corresponding remote repository). To the extent that

commits as tracked changes represent incremental improvements to code and, more

generally, projects, I use commits as one metric of output.5

A second and usually larger milestone is a pull request. In the workflow, when

an individual is happy with the (set of) changes—which could be a bug fix, issue

resolution, or feature addition—they submit a pull request. Once the request is

submitted, other members working on the same project can review and discuss

and, upon approval, merge back to the main branch, which is always stable for

production release.

Commits and pull requests are also metrics used by large tech companies such

as Microsoft to monitor developer velocity (Spataro 2020). Commits are common

metrics in modern software engineering (Baltes and Diehl 2018), and pull requests

are a useful complementary metric since a single productivity metric is intrinsically

problematic (Jaspan and Sadowski 2019). Figure A2 illustrates commits and pull

requests as part of a branching workflow.

the GitHub platform.
4 GitHub is not the only platform that allows researchers and managers to observe tracked

changes in a context related to software development. Indeed, the studies by Bao et al. (2020)

and Ford et al. (2021) also exploit tracked changes from partnering companies to study the WFH

impact d the pandemic. I discuss these studies in Section V.B.
5 In the related but separate relational database workflow, a “commit” is when a user com-

mits computational resources to make a set of changes permanent and visible to other users in

the pipeline. Changes from queries entered before committing are not reflected in the database.
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Figure 2: Rollout of WFH
Notes—Panel (a) plots the cumulative proportion of countries implementing state-imposed WFH across dates in the sample

period. Panel (b) plots the cumulative proportion of countries rolling back state-imposed WFH (Table A1 lists these countries

that roll back state-imposed WFH in the sample period). The first and second vertical gray lines mark the dates at which

approximately 10 and 90 percent of countries have imposed WFH.

It is worth noting two things about pull requests. First, they usually involve

more serious projects, larger projects, and projects already in production, as the

pull requests increase the barrier to making changes to the main pipeline. Pull

requests also usually involves projects with collaborators.

In summary, I consider commits and pull requests as metrics of output and use

them (separately) as the main outcome variables of interest for the rest of the study.

I emphasize that GitHub does not track how long a user worked on a particular

tracked change. Therefore, tracked changes are only metrics of productive output

rather than the canonical form of productivity and should not be interpreted as

such.

II.C Open-source Users and Projects

GitHub hosts open-source projects of all kinds and is open to all users. From the

sample metadata, it is not possible to distinguish between commits and pull re-

quests for work vs. those for hobby projects. However, according to the Stack Ex-

change (2022) survey, individuals who code only as a hobby and not work are rare,

at less than 6 percent.

Using a survey (Zlotnick 2017) drawn from 5,500 GitHub users reveals that 70%
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of respondents working on open-source repositories are employed. 85% of them

contribute to open-source software in their day job (Section III.C later shows that

open-source contributions follow regular day-job cadences). Most of these respon-

dents (94%) are also end-users of open-source in their professional work, 81% use

it frequently, and 65% contribute back to open-source as part of their work duties.

Overall, most people write code only when it is necessary for work. Section IV

later shows that including only individuals who list their organizations, and only

including tracked changes during hours consistent with a day-job, do not change the

findings. This approach does not guarantee that the tracked changes exclude hobby

projects but should better approximate tracked changes for the tasks at which in-

dividuals want to remain productive.

It is also worth noting that even open-source contributions that are not directly

related to work duties can be productive for professional work. Virtually all pro-

fessional developers have taught themselves a new language, framework, or tool.

The Stack Exchange (2019) survey reports that 43 percent do so by contributing to

open-source. This is 2.5 times more than those who go through full-time developer

training bootcamps or industry certification programs. Other than online courses

(presumably because of low entry costs), only on-the-job training has a higher pro-

portion.

Finally, this study includes only open-source software and projects. However,

the overwhelming consensus in the software development community is that the

quality of open-source software is of the same, if not higher, quality than propri-

etary or closed-source software (Stack Exchange 2019). Open-source is the default

when choosing software (GitLab 2018; Zlotnick 2017). The above factors suggest

that contributions to open-source software are a viable avenue to study changes in

individual-level output.
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II.D Data Summary

To build the panel, I first query Google BigQuery’s archive of GitHub timestamped

commits in the period Jan 2020–Jun 2020, which includes author and repository

names. Only public repositories are included; private repositories (opted out of

public view) are not.

I use GitHub’s Search API and User API to retrieve the location strings en-

tered in the authors’ user-profiles and then map users to countries by querying

the ❖♣❡♥❙tr❡❡t▼❛♣ API. Approximately half the users have a geolocation string in

their user-profile, and most users with geolocation strings (98%) are successfully

geocoded to a country. From this pipeline, I end up with approximately 300k users,

350k commit records, and 290k pull request records.6

To retrieve the WFH status for countries (and US states for the US) for any given

date, I use the OxCGRT’s repository of COVID-19 government responses trackers

(Petherick et al. 2020). Table 1 lists the four types of OxCGRT WFH coding. Fig-

ure 1 shows the geographical variation in the start of state-imposed WFH, while

Figure 2 shows the rollout of WFH across time.

For all the main analyses, I treat the recommended WFH from OxCGRT as

non-binding while treating the two required WFH codings from OxCGRT (2 and 3)

as binding and with a homogeneous effect. This assumes that the compliance of

those working in ICT-related fields is the same for the two levels of state-imposed

WFH. The assumption here is that software developers and researchers, and more

broadly workers in the ICT sector, are one of the earliest workers who WFH during

the pandemic. See also the studies by Alipour et al. (2020); Bartik et al. (2020);

Bloom (2020); Brynjolfsson et al. (2020); Gottlieb et al. (2020) for the type/share of

jobs that can WFH.7

6 Appendix A.1 describes the data build in greater detail, while Appendix E of the Online Ap-

pendix provides randomly-sampled examples of both failed and successful geocoding, which I hand

check. The formal results in Section IV include a robustness test for subsamples of the micro-level

data depending on the quality of geocoding.
7 In the event studies in the Online Appendix, for example, “Day 0” is defined as the date when
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(a) Commits sample
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(b) Pulls requests sample

Figure 3: Geocoded vs Out-of-Geocoded Sample
Notes—Differences in means for geocoded records vs out-of-geocoded records (those not successfully geocoded, see Appendix E

in the Online Appendix for examples). Units are in standard deviations (except the two indicator variables for scaling

purposes only). Estimates derived from regressing the variables on the geocoded dummy and performing a t-test for the

dummy. Number of individual observations are 44,894 and 120,614 for the commits and pulls request sample, respectively.

Age refers to age of the individual’s user account (creation date minus 1 Jan 2020). Repositories refer to the number of public

repositories listed in the account. Followers and following are the number of accounts the individual follows and the number

of accounts following the individual. Gists are the number of mini-blogs/code snippets. The last two dummies indicate

whether the account type is an organization and whether the individual reports the company they work at. Tables A3 to A4

of the Online Appendix tabulates the above results. Robust standard errors clustered by countries (non-geocoded counts as

a "country"). ***, **, and * denotes significance at the 1, 5, and 10 percent level, respectively.

III Descriptives

This section provides quantitative descriptions of commits and pull requests as

tracked changes and unpacks four themes.

III.A Geocoded Individuals and Companies

The analyses below in Section IV include only GitHub users who have been suc-

cessfully geocoded. So the natural question arises as to what separates users who

have and have not been geocoded.

Figure 3 suggests that, by far, individuals who are successfully geocoded and

therefore included in the analyses are the more prominent GitHub users. They have

been on the platform for longer, have more projects, more followers, follow more

people, and are more likely to report the company they work for (e.g., Microsoft).

This stylized fact is true for both the commits sample and for the pull requests

sample.

Figure 4 shows the proportion of commits that can be geocoded. In addition, the

the OxCGRT WFH indicator switches from a 0 or 1 to a 2 or 3.
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(a) Users listing company

Company Count Company Count

0 google 182 15 freelancer 13

1 microsoft 81 16 jetbrains 13

2 red hat 78 17 stanford university 13

3 alibaba 53 18 elastic 13

4 tencent 43 19 yandex 12

5 baidu 29 20 alipay 11

6 freelance 28 21 netease 11

7 bytedance 28 22 amazon 11

8 ibm 23 23 pingcap 11

9 facebook 20 24 shopify 10

10 automattic 18 25 esri 10

11 github 15 26 redhat 10

12 wso2 15 27 intel 10

13 thoughtworks 14 28 mercari 9

14 vmware 13 29 mit 9

(b) Most frequent companies

Figure 4: Distribution of Companies (Commits Sample)

Notes—Left panel shows the distribution of commits where the users have or have not self-report their companies on their

user profile. Full sample is based on the total initial set of records. The geocoded sample is based on commits record where

the user location is successfully geocoded. Right panel shows list of 30 most frequent appearing companies in the commits

sample. Company names are derived using minimal preprocessing of the raw text.

60.2%
(357,997)

39.8%
(236,633)

84.2%
(256,241)

15.8%
(48,251)

35.1%
(101,756)

64.9%
(188,382)

0

25

50

75

Full sample Not geocoded Geocoded

 Company not listed  Company listed

(a) Users listing company

Company Count Company Count

0 google 949 15 linkedin 61

1 red hat 573 16 netflix 58

2 microsoft 500 17 automattic 57

3 ibm 157 18 thoughtworks 54

4 facebook 115 19 adobe 53

5 freelance 103 20 intel 50

6 vmware 98 21 amazon web services 50

7 mozilla 98 22 datadog 50

8 shopify 94 23 uber 49

9 github 91 24 alibaba 48

10 freelancer 84 25 aws 48

11 suse 74 26 elastic 47

12 tencent 63 27 salesforce 47

13 spotify 61 28 nvidia 45

14 hashicorp 61 29 yandex 45

(b) Most frequent companies

Figure 5: Distribution of Companies (Pulls Requests Sample)

Notes—Left panel shows the distribution of commits where the users have or have not self-report their companies on their

user profile. Full sample is based on the total initial set of records. The geocoded sample is based on commits record where the

user location is successfully geocoded. Right panel shows list of 30 most frequent appearing companies in the pull requests

sample. Company names are derived using minimal preprocessing of the raw text.

figure shows the top thirty companies captured by the commits via the self-reported

company of users. These companies are easily recognizable since they are some of

the biggest tech companies.

Figure 5 shows the same picture for the pull requests sample. The list of most

frequent companies is similar to those in the commits sample. What is different is

that pull requests are more heavily represented by users who work for tech com-

panies. Broadly, Figure 4 and Figure 5 suggest that the GitHub tracked changes

can capture work activity from the well-known tech companies, and this is most
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Figure 6: Day-of-Week Cadence Notes—

Bar plots show the differences in log of (1+) commits by

day-of-week (DoW) from regressing commits on the day-of-

week dummies, plus user and repository fixed effects for the

user-repository-DoW panel. The baseline day is Sunday—

first bar—so that the standard errors for subsequent bars

are for the estimates of the additional effects of Mon–Sat

relative to Sunday. Robust standard errors are clustered at

users and repositories.

pronounced with the pull requests since they constitute a key milestone in larger

and collaborative workflows.

III.B Day-of-Week Patterns

Figure 6 shows systematically higher levels of commits on the weekdays, relative to

Sunday. This implies most high-frequency output occurs on traditional workdays.

This cadence manifests visually as an inverted U-shaped hump for commits from

Sunday to Saturday.8

Figure 7 also shows the inverted U-shaped from the raw data. Panel (a) points

out Memorial Day—a federal holiday in the US falling on a Monday in the US

sample. The figure shows a distinct break in the day-of-week cadence since the

relative inactivity over the weekend extends into Memorial Day on Monday before

going back to normal on Tuesday. Notably, this break in the daily cadence is absent

for the rest of the world in panel (b).

Panel (c) of Figure 7 shows how commits have a dramatic dip that directly co-

incides with the Chinese New Year holidays (between 2–7 holidays depending on

region) for users geocoded to countries with high Chinese ethnic concentration.

Panel (d) shows that the pronounced dip during the Chinese New Year is absent for

8 To do this, I aggregate the commits log record up to the user-repository-DoW level, and then

estimate

ln(1 + commits)ijd = α+
∑

d∈{1,...,6}

πdDoWd + individuali + repositoryj + uijd,

where Sunday (d = 7) is the reference day.
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Figure 7: Day-of-Week Cadence and Holidays
Notes—The first row shows the path plot (unsmoothed) of commits around May 2020 for US sample vs. the rest of the world.

Black dashed line indicates Memorial Day on 25 May. Gray vertical bars indicate weekends (Sat–Sun). The second row

shows the path plot (unsmoothed) of commits around Jan–Feb 2020, with the gray area indicating the Chinese New Year

(CNY) period over a 15-days period plus the eve, 24 Jan–8 Feb. Panel (c) includes countries that celebrate the CNY: China,

Indonesia, Korea, Malaysia, Singapore, and Vietnam. Majority of these are from China. Subfigure (d) includes users from

the rest of the world.

the rest of the world.

Figures A14 to A15 in the Online Appendix make similar observations for the

Martin Luther King Jr. Day for the US sample and the May Spring Bank Holiday

in the UK. Broadly, the results from Figures 6 to 7 suggest that the metrics of out-

put can indeed capture the expected day-of-week cadence as well as salient federal

holidays.

III.C Time-of-Day Patterns

To push how far we can interpret commits and pull requests as metrics of output

as office work activity, I start by converting the standard timestamps of commits to

the local time. Figure 8 plots the density of commits across all 24 hours of a day
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Figure 8: Time-of-Day Cadence
Notes—Kernel density estimate plot of the time-of-

day-based cadence of the timestamped commits in 24-

hour time. Only commits from users who are suc-

cessfully geocoded are included. Minimal smoothing

applied. Solid thick line is local time (UTC offset

± hh based on inferred local timezone). Thin gray

dashed line is the timezone-agnostic timestamp from

the commits records. The two vertical dotted lines are

the start and end time of “office hour” (9am to 5pm).

The two gray shaded areas indicate the two standard

meal times (noon to 2pm for lunch time; 6pm to 8pm

for dinner time).

based on the local time (inferred by matching self-reported location to geographical

coordinates, which then maps to specific timezones).

I draw two key observations from Figure 8. First, commits are highest during

office hours. Office hours are loosely characterized as 9 am to 5 pm for convenience,

although this varies by region, company, and worker. Second, compared to univer-

sal time, commits based on local time are more pronouncedly bimodal. In partic-

ular, commits peak at two different timings. Once right before the standard lunch

hours and once right at the end of a workday. The lunchtime dip squares with

developers rarely skipping meals to be productive (Stack Exchange 2018).

I extend the analysis in Figure 8 to different days of the week. Panel (a) of Fig-

ure 9 shows that commits follow the average time-of-day cadence for all workdays

(Mon–Fri), are much more likely to peak just before dinner time on Saturdays, and

much flatter on Sundays. Pull requests in panel (b) of Figure 9 are also bimodal,

but the second peak occurs approximately three hours before the end of the day on

workdays. Otherwise, the cadence of pull requests is flat during the day hours of

weekends.9

9 One conjecture for why the second peak of pull requests occurs hours before the end of the day

is that such timing allows team members in the same timezone to review the pull request before

the end of the day. It is also generally bad practice to submit a pull request at the end of a workday,

leaving colleagues little time to review proposed changes.
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Figure 9: Time-of-Day and Day-of-Week
Notes—Kernel density estimate plot of commits and pull requests by time-of-day and week-of-day. Minimal smoothing ap-

plied. Solid lines are weekdays. Dashed line is Saturdays. Dashed-dotted line is Sundays. The two vertical dotted lines are

the start and end time of "office hours" (9am to 5pm). The two gray shaded areas indicate the two standard meal times (noon

to 2pm for lunch time; 6pm to 8pm for dinner time).

III.D User-Perceived Quality of Projects

One concern with comparing output before and after state-imposed WFH, and more

generally, before and after the COVID-19 pandemic, is the quality of the work.

Similar to the problem of measuring productivity, approaching the quality of

output is non-trivial. One popular approximation for repository quality on the

GitHub platform is to use user-perceived code quality using stars (Papamichail

et al. 2016; Sanatinia and Noubir 2016). When users like a project on GitHub and

want to bookmark it for their use, they can “star” a repository, indicating project

quality.

While Figure A4 suggests that there are systematic differences in stars for

projects active before and after WFH, this does not account for the evolution of

a project’s popularity over time. Figure 10 shows this evolution over the lifespan of

projects. If anything, projects active during WFH has better quality than those be-

fore WFH, although this difference is not substantial. As a similar exercise, using

the number of contributors to a project does not suggest a substantial difference in

project size before and after WFH.10

10 Figures A17 to A19 in the Online Appendix show that separating the recommended WFH period

(WFH=1) does not change the findings. Alternative metrics of user-perceived project quality, like

the number of forks, do not change the conclusion as well (Figure A20 and Figure A21).
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Figure 10: Metrics of Quality and Size
Notes— Blue solid line is repositories active during required WFH period. Black dashed line is repositories outside of the

required WFH period. Lines are from a locally weighted smoothing with minimal smoothing. Repository age is defined by

the repository create date relative to Jan 1, 2020. Shaded area indicates bootstrapped 95% confidence interval (n = 1, 000).

Figures A17 to A19 in the Online Appendix suggest similar patterns for the pull request sample and when the recommended

WFH (WFH = 1) is separated.

Broadly, the descriptions from Figures 3 to 10 provide a sense of the composition

of users active on the GitHub. Further, they provide some sense of how closely the

cadence of tracked changes follows regular office work cadence and that the quality

of projects active before and after the pandemic is similar.

IV Results

To examine if the state-imposed WFH affects output, I bin the tracked changes into

individual-WFH arm cells (Bertrand et al. 2004) and estimate:11

(1) ln(1 + tracked changes)ik = αi +
∑

k∈{0,1,(2,3)}

γk1{WFH = k}i + εik,

where the outcome is the log of commits, and separately, pull requests, per user i

per day in the WFH arm = k period.

11 This specification does not use the variation across region and time since the tracked changes

are relatively infrequent at the user, project, and day (or even weeks and months) level. However,

the event study analyses fully reported in the Online Appendix use the variation across regions and

days (see Footnote 12). The findings are broadly similar. While there are distinct changes in the

observed activity after day 0 of lockdowns, and while there is a slight trend in the observed effect,

the change in output following lockdowns is minimal once we control for the profile of the active

users.
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I collapse the OxCGRT WFH coding (Table 1) for 2 and 3 into a single dummy

that captures binding state-imposed WFH. αi is the individuals fixed effects to ac-

count for user-specific cadences in software delivery since different GitHub users

will have different priors about how many bundled changes should happen before

they commit resources to archive those changes. In software engineering terms,

one key assumption regarding the individual fixed effects is that the commits and

pull requests of individuals, when scaled by the size of code changes, are the same

before and after lockdowns (see Jaspan and Sadowski 2019).

Subject to the identifying assumptions, the γk estimates capture the impact of

state-imposed WFH on the individual work pattern of developers. The key identi-

fying assumption is that the precise timing of state-imposed WFH, for regions that

eventually imposed WFH, is independent of the dynamics in output. In the specific

context of this study, the state-imposed WFH timing should be uncorrelated with

individual-specific cadences in software delivery. The panel is balanced in that it

includes only users active during the non-WFH period (WFH = 0) and active during

at least one of the recommended WFH (WFH = 1) or required WFH (WFH = 2, 3)

periods. Standard errors are clustered by the regions to allow for correlation in

work patterns between individuals residing in the same region.12

Figure 11 reports the results from estimating Equation (1) for commits and pull

requests separately. Panel (a) suggests that state-imposed WFH has no negative

impact on commits at the user level. The estimate of -.0045 for γ2,3 implies that

commits per user-day decrease by only approximately .5 percent, but this is not

statistically significant. For recommended WFH, the estimate is positive and im-

plies a 5.4 percent increase in output (p < 0.01).

12 An empirical test of the assumption that state-imposed WFH timing is uncorrelated with output

dynamics is to test how output evolves leading up to the start of WFH. While this test is not readily

an option because tracked changes for any given individual and project are not at a sufficiently

high frequency, Appendix D in the Online Appendix shows no pre-trends in the output metrics at

the region-day, using an event study specification with a 21–day window before and after the start

of WFH. These exercises in the Online Appendix are cognizant of, but do not dive fully into, the

emerging difference-in-differences literature on the variation of treatment timing across groups of

units in the sample (Baker et al. 2021; Callaway and Sant’Anna 2020; Goodman-Bacon 2019).
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Figure 11: WFH Impact on Tracked Changes (User Level)
Notes—Figure plots the estimated impact (estimates of γk from Equation (1)) of state-imposed WFH at the user-day level.

The dependent variables are commits and pull requests per individual per day in a WFH arm. The first bar in each subfigure

indicates the baseline—WFH=0 (no WFH). Subsequent bars add back the estimated impacts to the baseline estimate (γ0+γℓ,

ℓ = 1 or 2, 3). Annotated estimates in figures are the estimates of γk. ***, **, and * denotes significance at the 1, 5,

and 10 percent level, respectively. Parenthesized numbers (Nk) below bars indicate size of the individual observations for

the corresponding WFH arm. Capped vertical bars are 95% confidence intervals from robust standard errors clustered by

country.

Panel (b) of Figure 11 reports the estimates for pull requests as the metric of

output. The estimate of -.0045 for γ2,3 implies that pull requests per user-day de-

crease by approximately .5 percent (p < 0.01). The decrease in pull requests is

larger during the recommended WFH period, with the estimate of -.0082 implying

that pull requests per user-repository-day fell by .8 percent (p < 0.01).

Figure 12 shows the results when the unit of analysis is defined at the user-

repository-WFH arms. This approach, with repository fixed effects, allow for project-

specific cadences. The findings are similar, except that the estimated impact of

WFH for commits is now negative and statistically significant. However, the con-

clusion of a limited WFH impact on output still holds. Since the estimates are

precise, one can rule out even modest gains in output (confirmed by one-sided t-

tests).13

13 The coefficients from Figure 12 are from

(2) ln(1 + tracked changes)ijk = αi + αj +
∑

k∈{0,1,(2,3)}

γk1{WFH = k}i + εijk,

where the outcome is log commits or log pull requests per user i in repository j per day in the WFH

arm = k period. αi and αj are the user and repository fixed effects to account for user- and project-

specific cadences in software delivery. γk estimates capture the impact of state-imposed WFH on

the individual work pattern of developers. Standard errors are clustered by the countries.

The repository fixed effects subsume programming language fixed effects (see Table A1 and Ta-

ble A2 in the Online Appendix for the distributions of languages). Projects with different languages

21



g1 = -.0164***

g2,3 = -.0076***

0

.025

.05

.075

(N0 = 19,603) (N1 = 14,907) (N2,3 = 31,561)

WFH = 0 WFH = 1 (RCMD) WFH = 2,3  (Required)

(a) Commits

g1 = -.0024***

g2,3 = -.0013***

0

.004

.008

.012

(N0 = 35,061) (N1 = 22,572) (N2,3 = 58,726)

(b) Pull requests

Figure 12: WFH Impact on Tracked Changes (User-Repository Level)
Notes—Figure plots the estimated impact (estimates of γk from Equation (2)) of state-imposed WFH. The dependent variables

are commits and pull requests per individual-repository per day in a WFH arm. The first bar in each subfigure indicates the

baseline—WFH=0 (no WFH). Subsequent bars add back the estimated impacts to the baseline estimate (γ0+γℓ, ℓ = 1 or 2, 3).

Annotated estimates in figures are the estimates of γk. ***, **, and * denotes significance at the 1, 5, and 10 percent

level, respectively. Parenthesized numbers (Nk) below bars indicate size of the individual-repository observations for the

corresponding WFH arm. Capped vertical bars are 95% confidence intervals from robust standard errors clustered by

country.

One concern is that any changes in output we observe are an artifact of more or

fewer work duties because more bugs are being discovered due to more users on the

GitHub platform after lockdowns. In Appendix D of the Online Appendix, I show

using event studies with a 42–days window that there are no discernible changes

in the opening and closing of issues (which include bug reporting) after lockdowns.

This should mitigate concerns that changes observed in output arise because of an

increase or decrease in software bug discovery.

Figure 13 shows that the main estimates are insensitive to the quality of the

geocoding of user self-reported location to regions. I iteratively drop users, starting

with the worse geocoding quality, from the sample and re-estimate Equation (2)

where the estimates do not vary dramatically.

A different question of interest is how well the tracked changes on GitHub ap-

proximate the output of employees of firms. This affects the interpretation of what

type of activity is changing during lockdowns. In Section II.C above, I cite developer-

centric surveys reporting how coding purely as a hobby instead of work is very rare.

(or frameworks) might have different sizes. For example, C++ projects are larger and more compli-

cated than Java projects at Baidu. In addition, certain (C++) projects require connection to more

powerful remote machines for unit testing, which induces additional logistical complications when

WFH (see Bao et al. 2020).
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Figure 13: Sensitivity to Geocoding
Notes—Plot shows how the required WFH estimates (γ2,3), from estimating Equation (2) and as reported in the micro-sample

results in Figure 12, changes when activities from users that are less confidently matched to regions are progressively

dropped from estimation. The “Confidence” number, as returned by the OSM API, increases as the API is less certain

about the geocoded region. This is also corroborated by a random sample of a 1,000 geocodings, which I check by hand (see

Appendix E in the Online Appendix). The first marker in red diamond is the main result as reported in Figure 11.

In Section III, the descriptive results suggest that tracked changes follow the reg-

ular workdays and office hours cadence. Here, I address the concern analytically.

The metadata from the archive does not directly contain information on whether

commits are from employees or non-employees. However, the metadata includes

the organization that individuals work at, should they choose to list it. I repeat the

analyses for only those individuals who list their organizations, with the estimates

reported in Figure A5.

Additionally, I build a new panel that includes only tracked changes during office

hours on workdays (Mon–Fri). The office hours are between 8 am to 6 pm local time

as inferred by the local timezone. This is one more hour before and one more hour

after the 9 am to 5 pm “office hours”. The longer hours accommodates findings

from the literature about longer work hours during the pandemic (e.g. DeFilippis

et al. 2022; Forsgren 2020; Friedman 2020; McDermott and Hansen 2021). Using

this new panel of tracked changes that occur only during workday office hours, I

re-analyze how output changes after lockdowns. The estimates are reported in

Figure A6.

The two approaches need not necessarily capture commits and pull requests as

strictly company-required work activities. But they get us closer to the concept of
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work activity as opposed to hobby projects (as discussed in Section II.C). In both

cases, using only (i) the sample of users with organizations in Figure A5 and (ii)

using only tracked changes occurring during workday office hours in Figure A6, the

estimates remain statistically negative and are the same magnitude as the main

estimates.

V Discussion

V.A Non-compliance With WFH Policies

Ideally, one can observe whether individuals in the sample work from home or of-

fice. Such information lets us know which individuals comply with the mandatory

WFH policy. In reality, compliance with WFH policies is unobserved. All estimates,

therefore, fall under an intention-to-treat basis (ITT, Angrist et al. 1996) since we

observe assignment to state-imposed WFH but not compliance.

The ITT estimates show how output changed after the state-imposed mandatory

WFH policy. This is the most policy-relevant question. From the results Figure 11

in Section IV, there is little detected effect (< 0.5 percent with a standard error of

0.091 percent) of mandated WFH on output. This estimate, however, encompasses

both the types of individuals who do and do not comply with the WFH mandates.

The proportion of compliers (compliance rate) and how the non-compliers are af-

fected by WFH affect the estimate of WFH on people who switched to WFH once

the lockdown starts.

The discussion below, therefore, addresses three points: (i) the sources of non-

compliance, (ii) why the individuals already WFH before the pandemic are the main

source of non-compliance, and (iii) how the effect of WFH on individual output

should still be small even high levels of non-compliance.

In the ITT framework, compliers are individuals who comply with the manda-
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tory WFH policies by working from home during WFH periods and working from

office during non-WFH periods. These are the individuals of interest if one is con-

cerned about how WFH affected output. Compliers, however, are not the only pos-

sible type of individuals in this policy setting. The ITT framework classifies three

groups of non-compliers: defiers, never-takers, and always-takers. The proportion

of these non-compliers will affect the estimate of how WFH affects the output of

individuals.

First, defiers are individuals who WFH pre-pandemic and return to work from

office during the WFH periods while everyone else in their region is working from

home. I rule out individuals with this peculiar behavior. The second group of non-

compliers, the never-takers, are individuals who never WFH before or after the

pandemic. Given that the sample of individuals is GitHub users who mostly work

in ICT, I find it reasonable to rule out such never-takers, who never WFH even

after lockdowns have started. If anything, never-takers more accurately describe

workers in the essential services.14

The final group of non-compliers is the always-takers, who have been working

from home since before the pandemic began. Since tasks such as writing code can

be easily done remotely, it is not reasonable to rule such individuals out. Hence,

one needs to consider how large the always-takers are in the sample. The larger

the proportion of individuals in the sample who have always been working from

home since before the pandemic, the smaller the compliance rate.

Figure 14 illustrates how the compliance rate affects the back-of-envelope es-

timate of how the WFH policy affected the output of compliers. The smaller the

compliance rate, the larger the implied effect WFH has on their output. Since ac-

tual compliance rates are unobserved, I turn to survey results to understand what

compliance rates are reasonable to assume.

14 Ruling out of defiers is the monotonicity assumption. So that under the ITT framework (Angrist

et al. 1996), the πD · ITTD for defiers drops out from the proportion-weighted average of the ITT ef-

fects by group: ITT =
∑

g∈G πg ·ITTg, with G ∈ {C,D,AT,NT} for compliers, defiers, always-takers,

and never-takers. Ruling out never-takers further eliminates πNT · ITTNT from the proportion-

weighted average. This means we are left with: ITT = πC · ITTC + πAT · ITTAT .
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All lines assume no defiers and never-takers, so the

only non-compliers are the always-takers. γ̂2,3 =
−0.45% is from panel (b) of Figure 11.

According to the Stack Exchange (2015) developer-centric survey, 29 percent of

developers work at least partially remotely. The more recent Stack Exchange (2019)

survey indicates that 18 percent work at least partially remotely. Another study by

Yang et al. (2022) who uses employees from Microsoft reports similar numbers—

approximately 18 percent of workers WFH before the pandemic.15 16

Having 29 percent of developers who WFH at least half the time before the

pandemic implies that the compliance rate with WFH policy is 71 percent in the

absence of defiers and never-takers. To help bound the estimated effect, I assume

a 50 percent compliance rate. This is lower than the compliance rate implied by

the surveys (Stack Exchange 2015, 2019; Yang et al. 2022). With a 50 percent

compliance rate, the ITT estimate of 0.45 percent for pull requests suggests that

the negative impact of WFH on output is still less than a full one percent (the red

dotted line in Figure 14).

Moreover, the implied negative impact of less than one percent is overstated if

15 The 29 percent in Stack Exchange (2015) is derived from 10.4 percent “full-time remote” plus

18.6 percent “part-time remote”. 48.1 percent “rarely work remote” and 22.8 percent “never”. The

18 percent in Stack Exchange (2019) is derived from 12 percent “full-time remote” plus 3.4 percent

“more than half” plus 2.8 percent “about half the time”.
16 The Stack Overflow annual developer surveys provide less conservative estimates of pre-

pandemic WFH rates than the broader studies and surveys. Bartik et al. (2020) find that the share

of employees who can WFH in normal times is low. Bloom (2020) reports that the share of working

days spent WFH is low at 5 percent of working days in a year. Alipour et al. (2020) likewise de-

scribes low WFH rates: 3.5 percent in Germany, 5.1 percent in the U.K., and 4 percent in the U.S.

from their calculations and two cited studies (Watson 2020; Mas and Pallais 2017). These numbers

are low because of the broader occupations considered and because they do not distinguish between

entirely WFH and only partially WFH.
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the WFH policies also affected those individuals who were already working from

home before the pandemic. The closure of workplaces, for instance, will coincide

with closures of schools and recreational points of interest that might negatively

affect work cadence. In this case, the implied negative impact is even lower (the

dashed lines in Figure 14). Overall, even if there is low compliance and if the WFH

policies negatively affected individuals who were already working from home, the

implied negative effect of WFH on output is still smaller than a full one percent.17

V.B Key Related Studies

I place my findings in context with key related studies on WFH productivity and

productive output.

First, the finding in this study complements the Bloom et al. (2015) seminal

study on the causal effect of WFH on productivity using a randomized controlled

trial in Ctrip, a travel agency in China. The study’s 249 participants (before at-

trition) are call center representatives whose work essentially involves answering

calls from customers, taking orders, and making calls to hotels and airlines to place

the orders. Ensuring that employees in both the WFH and control group have the

same IT equipment and internet access, Bloom et al. (2015) find that WFH im-

proves productivity. Specifically, they find increases along both the extensive and

intensive margin. The 13 percent increase in productivity comes from a 9 percent

increase in working time and a 4 percent increase in calls per minute.

Using observational data from individuals in tech-related industries comple-

17 The WFH policies also affecting individuals already working from home violate the exclusion

restriction assumption. The bias is of the form
(

−ITTAT · πAT

πC

)

, where C refers to individuals com-

plying with WFH policies, AT refers to individuals who were already working from home before the

pandemic, and ITTAT is the effect that the WFH policies have on the AT individuals.

There are a few plausible reasons why the exclusion restriction fails in this context. First, the

state-imposed WFH is essentially a government response to the pandemic. This coincides with other

fiscal responses that might impact both employee and employer behavior, including work arrange-

ments and work cadence. Second, the closure of workplaces also coincides with the closure of other

places (e.g., parks and recreation), which also potentially alters work patterns. Third, closure of

workplaces also applies to cohabitants, including kids, during closures of schools, which potentially

affects work output. Each of these concerns applies to different subgroups of the population.
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ments the Bloom et al. (2015) study. The type of work captured in Bloom et al.

(2015) is well-defined with obvious metrics for productivity. Since short-run out-

puts in tech-related (or even science-related) work have no obvious milestones (e.g.,

how many bugs will appear and how many features to add are seldom clear from

the onset of a project), this study provides insight into how output is affected when

work is non-transactional and non-routine.

The second set of studies I highlight, which surfaced during the pandemic, can

be broken down into two strands. One looks at production from software developers

(e.g., Bao et al. 2020; Ford et al. 2021; Forsgren 2020; McDermott and Hansen 2021)

because of the tracked changes in a pipeline. The other, more broadly, is in the

ICT sector (e.g., Gibbs et al. 2021; Yang et al. 2022) because work machines have

software that monitors work activity.

The GitHub team in Forsgren (2020) is the first to my knowledge that uses the

GitHub tracked activity data to study how the pandemic broadly affected output.

Their analysis of trends suggests minimal impact to GitHub activity but a change to

daily work patterns. In particular, Forsgren (2020) finds that developers are now

working longer hours, a finding corroborated by McDermott and Hansen (2021).

McDermott and Hansen (2021) focus on key metropolitan areas and, using past

years as a counterfactual, find more work reallocated outside of traditional office

hours. These two studies use the same type of activity to approximate productivity,

but with very different approaches and focus than this study. Their findings about

longer workdays are consistent with other studies in the literature (DeFilippis et al.

2022; Friedman 2020).

The studies by Bao et al. (2020) and Ford et al. (2021), on the other hand, focus

on the productivity of software developers in one firm. Bao et al. 2020 use data from

Baidu. Ford et al. 2021 use data from Microsoft. Both have descriptive estimates,

and, similar to this study, both find minimal WFH impact on productivity.

More broadly, Gibbs et al. 2021; Yang et al. 2022 study WFH impact on ICT work-
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ers using a large Asian IT firm and Microsoft, respectively. The study by Gibbs et al.

2021 uses data from software installed on work machines that track employee ac-

tivity and performance. They have input and output measures and can thus study

productivity in the canonical definition. They find that productive activity is stable

and that longer working hours are what drives observed falls in productivity from

WFH. Yang et al. 2022 uses the COVID-19 pandemic as a natural experiment as

well and find that collaborations among Microsoft employees suffered when WFH.

Finally, while the motivation of this study is to use real-time data as an alterna-

tive to survey-based approaches, WFH can impact intangibles (Gibbs et al. 2021).

For these richer WFH concerns, a survey-based approach seems to be the way to

go (e.g.,Bloom 2020; Barrero et al. 2021). Results from both can be useful comple-

ments.

V.C Limitations

This study is not without limitations, and it bears laying them out. First is the mea-

surement of productivity. As stated in Section II.A, the canonical form of productiv-

ity is some units of output scaled by some units of input. The randomized controlled

trials in Bloom et al. 2015 and Emanuel and Harrington 2021, and the studies us-

ing work trackers from companies (e.g., Ford et al. 2021; Gibbs et al. 2021), have this

form. No metric for observable work time is available from GitHub. Instead, only

metrics of output, such as commits and pull requests, are available and should only

be interpreted as such. However, given that this study finds a small and negative

WFH impact on output, and to the extent that other studies find longer working

hours (e.g., Forsgren 2020; McDermott and Hansen 2021; Gibbs et al. 2021), one

can still draw about changes in productivity. Still, a broad stroke conclusion that

the pandemic, or WFH in general, leads to lower productivity is likely misleading

since there are gains from (not) commuting (Barrero et al. 2021).

A second issue is that we only observe the state-imposed WFH timings of re-
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gions rather than of individuals. This is because GitHub does not directly provide

information about whether a user is working from the office or home. This implies

the results can only be interpreted as intention-to-treat effects. Section V.A dis-

cusses this in more detail. Broadly, the reliability of the estimates on individuals

who comply and WFH during lockdowns will depend on compliance rate and, if

there is a violation in the exclusion restriction, on the ratio of the non-compliance

to compliance rate (with the bias attenuating with compliance in Figure 14).

A related issue is that since the variation comes from workplace closures during

a pandemic, the findings here do not directly generalize to WFH in other scenarios.

Nonetheless, to the extent that the estimates reveal the impact of WFH on output

in times of adversity, given the COVID-19 pandemic, one can expect a net zero or

even a positive gain in output from WFH in less arduous settings.

VI Conclusion

This study provides evidence from a large open-source and cloud-hosted software

development platform on how WFH has affected individual-level output from tracked

changes. While the natural experiment setting in the pandemic may not yield clean

causal estimates like those in randomized experiments, this study uses output met-

rics and finds a negligible change during lockdowns. Output is only 0.5–0.8 percent

lower when WFH. The standard errors are small, which helps rule out a dramatic

impact of WFH on productivity.

Perhaps one lesson we are learning is the importance of monitoring output.

Switching work environments and its effect on output may not be the biggest is-

sue. Instead, incentivizing and monitoring staff output is the issue. The inability

to monitor is why managers prefer staff to work in offices. According to the experi-

mental setting of this study, when work cadence can be tracked objectively, it turns

out that WFH has a minimal measurable impact.
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As a whole, the study’s findings suggest only a limited negative impact of WFH.

This contributes to resolving the fundamental concern in the debate on returning

to offices. Moreover, unpacking the descriptive analyses of the granular tracked

changes suggests that tracked changes approximate the output of individuals. Tracked

changes in a work setting are, therefore, a promising asset for big data analytics to

understand both the quantity and quality of outputs.
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A Appendix

A.1 Data build details

To build the user-repository-WFH panels, I proceed as follows:

1. From GitHub’s open-access public dataset on Google BigQuery, I query user

commits from ❏❛♥✕❏✉♥ ✷✵✷✵. This gives a user-commit log record with times-

tamps, author names, and repository name.

2. I curate a list of usernames in four ways: (a) using the author name of a

commit through the GitHub search API, (b) using the username string from

the repository name (e.g. ❥♦❤♥①✴♣r♦❥❡❝t❛ implies ♣r♦❥❡❝t❛ belongs to user

❥♦❤♥①), and later from (c) users who raise/close issues, and (d) users who sub-

mit a pull request. To retrieve user-level information (e.g. location, user type,

repositories, etc.) from the list of usernames, I query GitHub’s User API. The

majority of usernames are successfully queried (620,922 of 626,488 or 99.1%),

with the minority having 404 or 502 HTTP response error codes at the time

of query.

3. Geocoding. To geocode the users from GitHub to a country (or U.S. state), I

query the ❖♣❡♥❙tr❡❡t▼❛♣ ✭◆♦♠✐♥❛t✐♠✮ ❆P■ from the Python ❣❡♦❝♦❞❡r library,

using the location strings that users enter into their account. Approximately

half the users have a location string (309,247 or 49.4%). Each successful query

returns a hierarchy of geographical information ❝♦✉♥tr②✲st❛t❡✲❝✐t②✲❝♦✉♥t②,

with a confidence score for reliability of the result (see Table Appendix E). For

geocoding to country-dates to get the government-enforced WFH status, I re-

tain only country for non-U.S. countries and states for the U.S. observations

(because this is the level of granularity in the OxCGRT, see below).

Almost all users with a location string can be geocoded to a country/U.S. state

(303,403 or 98.1%). Almost all location strings can be geocoded—there are

47,681 unique location strings from all the users in the sample, of which

42,552 (89.24%) can be successfully geocoded.

4. WFH records. From the geocoding, each activity record (commits, raise/closing

of issues, pull requests) have a (❝♦✉♥tr②✴❯✳❙✳ st❛t❡ ✲ ❞❛t❡) tuple that I can

then map to government enforced-WFH (work from home/closure of work-

places) policies in the OxCGRT. This is their ❈✷❴❲♦r❦♣❧❛❝❡ indicator. Cog-

nizant that federal and state governments may vary in their timing, I retain

the flag indicators for when a policy was targeted at sub-regions instead of

a nation-wide enforcement (for subsequent robustness checks). This is their

❈✷❴❋❧❛❣.

In the panels, for all non-U.S. countries, the WFH indicator for each user-repo-

WFH cell is the WFH based on the user’s country. For those users geocoded

to the U.S. states, the WFH indicator is based on the individual U.S. states,

since this is the level of granularity that the OxCGRT currently offers.
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Alternatively, for county-level policies of the U.S. sample, I combine two sources

of business closure records: a complete record at the state level from the

COVID-19 US State Policy Database18 and a partial record of 569 counties

from crowdsourcing19. Where available, I use the [❜✉s✐♥❡ss❴❝❧♦s❡❞❴❞❛t❡]

record from the county-level crowdsourced records. For the remaining coun-

ties, I use their state-level [❈❧♦s❡❞ ♦t❤❡r ♥♦♥✲❡ss❡♥t✐❛❧ ❜✉s✐♥❡ss❡s] record.

From these, 258 counties have earlier localized closures relative to the state,

while 37 counties have later closures.

5. Repository records. Records directly from the commits archive contains 245,506

repositories. To get their repo-level information (e.g. contributors, language,

open issues, etc.), I use the GitHub Repository API. Most of the repositories

can be succesfully queried at the time of query (240,150 or 97.9%).

A minority of commits in the sample are to multiple repositories (usually the

same project under different forks). I map these multi-repository commits to

the original repository (forked = False), so that language, contributors, and

open issues records etc. belong to the original repository.

6. Pull requests and issues record. From the initial repository records, I also

query their historical record of pull requests and issues (both opening and

closing), retaining only records created in the year 2020. These records, with

the user record, are mapped to a WFH status as described above. For closure

of issues, I use the recorded assignee as the user who "resolved the issue".

This step yields 39,958 closed issues that can be geocoded (included in analy-

ses); 253,632 opened issues, and 288,175 pull requests.

7. Standard to local timezone inference and conversion. The GitHub archive

of commits come with Unix timestamps. These are the number of seconds

elapsed since Unix epoch on ✵✵✿✵✵✿✵✵ ❯❚❈ ♦♥ ✶ ❏❛♥✉❛r② ✶✾✼✵. To convert the

commits from standard time to local time, I first convert the Unix timestamps

back to UTC (Coordinated Universal Time) with zero offset, where UTC is now

the worldwide standard and bypasses problems and confusion about daylight

saving time.

Then, to convert the timzone-agonstic timestamps to local time based on the

user-reported location, I first query ❖♣❡♥❙tr❡❡t▼❛♣s to retrieve longitude and

latitude coordinates. I then lookup the timezone for the given set of geo-

coordinates. This step relies on the Olson database where timezones are rep-

resented by polygons and timezone membership is based on the longitude-

latitude coordinate. See Figure A9 in Appendix B of the Online Appendix for

details.

Finally, I convert the timezone-agnostic timestamps to local time based on

18 ❤tt♣✿✴✴✇✇✇✳t✐♥②✉r❧✳❝♦♠✴st❛t❡♣♦❧✐❝②s♦✉r❝❡s.
19 ❤tt♣s✿✴✴❞♦❝s✳❣♦♦❣❧❡✳❝♦♠✴s♣r❡❛❞s❤❡❡ts✴❞✴✶✸✸▲r②✲❦✽✵✲❇❢❞P❳❤❧❙✵❱❍s▲❊❯◗❤✺❴

❯✉tq❆t✼❝③❩❞✼❡❦✴❡❞✐t★❣✐❞❂✵.
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the inferred local timezone. All analyses involving timestamps are in 24-hour

local time.

A.2 Figures and Tables
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Figure A1: Self-Reported Impact of WFH on Productivity
Notes—Plot shows YouGov 2020 survey responses of 1,000 US respondents, conducted May 2020, on whether WFH improves

productivity. Y-axis is percentage. Numbers do not add up to 100 percent because those who responded "not sure" are not

included.

Source: YouGov (2020).

Figure A2: Git Branching Workflow
Notes—Figure shows the basic Git workflow, focusing on commits and pull requests in the context of a main deployable

branch. Graphic taken directly from source.

Source: https://guides.github.com.
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Table A1—List of Countries That Rollback WFH in Sample

Country WFH Day 0 Rollback Day 0 WFH rolled back to

Turkmenistan 24Mar 1Apr 0

Ghana 30Mar 20Apr 1

Greenland 18Mar 27Apr 0

Cameroon 18Mar 1May 0

Italy 22Feb 4May 1

Greece 12Mar 5May 0

Lesotho 18Mar 6May 1

Mali 25Mar 10May 1

Luxembourg 16Mar 11May 1

Burkina Faso 21Mar 14May 0

Australia 23Mar 15May 1

Slovenia 20Mar 18May 0

Botswana 2Apr 20May 1

Czech Republic 13Mar 25May 1

Timor-Leste 28Mar 27May 0

Bangladesh 19Mar 31May 1

Laos 30Mar 1Jun 0

Rwanda 21Mar 2Jun 0

Slovak Republic 13Mar 3Jun 0

Thailand 17Mar 6Jun 1

Tunisia 22Mar 8Jun 0

Mauritius 20Mar 12Jun 0

Guinea 27Mar 15Jun 1

Falkland Islands 26Mar 16Jun 0

Romania 12Mar 17Jun 1

Singapore 7Apr 19Jun 1

Saudi Arabia 16Mar 21Jun 1

Cayman Islands 23Mar 22Jun 0

Morocco 20Mar 24Jun 1

Ireland 27Mar 26Jun 1

Dominica 1Apr 27Jun 0

Notes—Table enumerates countries that rolled back state-imposed WFH during the sample period

of Jan–Jun 2020, corresponding to timing of rollbacks in Figure 2. Second column shows the first

day of state-imposed WFH (OxCGRT WFH ∈ {2, 3}). Third column shows the first day of rolling

back state-impose WFH; that is, having the WFH indicating step down from either 2 or 3 to a 0 or

1.
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Table A2—Selected Treated Countries as Reference

Country Day 0 Commits Users

Portugal 12Mar 2,348 676

Norway 12Mar 2,179 733

Romania 12Mar 1,064 356

Greece 12Mar 614 253

Austria 16Mar 3,359 1,059

Turkey 16Mar 2,159 676

Hungary 16Mar 1,705 562

Chile 16Mar 1,239 278

Luxembourg 16Mar 1,015 287

Sri Lanka 16Mar 868 312

Egypt 16Mar 460 187

Lithuania 16Mar 430 82

Honduras 16Mar 138 53

France 17Mar 15,457 5,508

Russia 17Mar 8,441 3,013

Switzerland 17Mar 3,661 1,546

Ukraine 17Mar 3,173 1,023

Brazil 17Mar 3,143 1,224

Thailand 17Mar 329 165

Bosnia and Herzegovina 17Mar 173 54

Seychelles 08Apr 143 54

Japan — 20,305 6,340

Sweden — 4,317 1,627

Taiwan — 1,807 668

Bulgaria — 1,477 276

Belarus — 1,061 367

Notes—Selected treated countries for reference with Figure A25. Countries shown here are those

with WFH enforcement starting on 12 March, 16 March, 17 March, and 8 April for the year 2020.

Those countries with small sample share (commits < 100) are not shown. Countries sorted by WFH

enforcement date and commits size in the sample period (Jan–Jun 2020).
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(b) Pull requests sample

Figure A3: US vs. Rest of World
Notes—Difference in means for the micro-samples. Difference is between the US vs. the rest-of-world, estimated by regress-

ing the baseline covariates on the US dummy and performing a t-test for the dummy. Tables A9–A12 Standard errors are

robust. ***, **, and * denotes significance at the 1, 5, and 10 percent level, respectively.
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Figure A4: Differences in Observables (Commits)
Notes—Differences in means for WFH=0 (no state regulation), WFH=1 (recommended WFH), WFH=2,3 (required WFH),

using the microsample from the commits records. Units in standard deviations. For the repository characteristics, repository

age is defined as creation date minus 1 Jan 2020; contributions is total number of commits, pull requests, or number of issues

opened; the dummy for forked indicates whether the repository was branched out from a preexisting one; stars is a measure

of impact (used as a like or bookmark); forks is the number of branching out by other users; and open issues refers to

the number of unresolved issues listed in the project. Tables A5–A6 of the Online Appendix tabulates the above results.

Number of individuals and repositories captured are 22,183 and 25,859. The individual and repository level observations

are clustered by country and programming language, respectively. ***, **, and * denotes significance at the 1, 5, and 10

percent level, respectively.
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Figure A5: WFH Impact on Tracked Changes (User-Repository Level, Reported

Organizations)
Notes—Figure plots the estimated impact (estimates of γk from Equation (2)) of state-imposed WFH. The specification is

similar to Figure 12, except that only users who self-report the organization they work at are included in the estimation.

Parenthesized numbers (Nk) below bars indicate size of the individual-repository observations for the corresponding WFH

arm. Capped vertical bars are 95% confidence intervals from robust standard errors clustered by country.
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Figure A6: WFH Impact on Tracked Changes (User-Repository Level, Office

Hours on Workdays)
Notes—Figure plots the estimated impact (estimates of γk from Equation (2)) of state-imposed WFH. The specification is

similar to Figure 12, except that only tracked changes (commits and pull requests) during office hours and workdays are

included in computing tracked changes per day. “Office hours” are between 8 am to 6 pm local time (as inferred by the

timezones). Later than usual office hours accommodates findings from the literature about longer workdays after lockdowns

(e.g. DeFilippis et al. 2022; Forsgren 2020; Friedman 2020; McDermott and Hansen 2021). Parenthesized numbers (Nk)

below bars indicate size of the individual-repository observations for the corresponding WFH arm. Capped vertical bars are

95% confidence intervals from robust standard errors clustered by country.
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