
Munich Personal RePEc Archive

Returns to scale with a Cobb-Douglas

production function for a small italian

mechanical firm

Osti, Davide

20 November 2021

Online at https://mpra.ub.uni-muenchen.de/115629/

MPRA Paper No. 115629, posted 18 Dec 2022 08:51 UTC



Springer Nature 2021 LATEX template

Returns to scale with a Cobb-Douglas

production function for a small italian firm

Davide Osti
1*

1*Economic Research, Studio Osti - Sgarzi, Via della Zecca 1,
Bologna, 40121, Emilia Romagna, Italy.

Corresponding author(s). E-mail(s): devidosti@gmail.com;

Abstract

with this piece of evidence, I try to she light upon the effects of fixed
and variable costs on revenues for a firm operating in the sector of
leathing and milling in the neighbourhood of Bologna, on the Tus-
can - Emilian Appennines, through the estimation of a linear bivariate
simultaneous equation model where variable and fixed costs explain
revenues; with a sample of eleven years of annual data, I find that a
marginal increase in variable costs of 1 euro, keeping the fixed costs
constants, leads to higher revenues up to 1.155 euro; I further estimate
a cobb douglas production function, in order to find out whether the
returns to scale are increasing, constant or decreasing; I find support
for the hypothesis of slightly increasing returns to scale with the base-
line cobb douglas transformed in logarithms (with capital and labour
only), while multiplicatively including an additional regressor for raw
materials purchases, I find evidence for slightly decreasing returns to scale
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2 Returns to scale with a Cobb-Douglas production function

1 The problem of estimation: ordinary least
squares

the following sections on the theory of econometric estimation have largely
been borrowed by [2].

in order to represent the evolution and the causal relationship holding
together variable and fixed costs on the one side, and revenues on the other
side, we can set up the following simple bivariate linear simultaneous equation
model: Y = X′β + ε ↔ Y = X1β1 +X2β2 + ε, where

Y
(T×1)

=






y1
...
yT




; ε

(T×1)
=






ε1
...
εT




; X

T×k
=






x11 x12

...
...

xT1 xT2




; k = 2 is the number

of parameters to estimate,, that is, β
(2×1)

=

[
β1

β2

]

in our case in which X1 is a

column vector with time index t = 2011, . . . , 2021 containing the balance sheet
value of variable costs, in which each row is the sum of all the variable costs
of a single fiscal year; while X2 contains the values of fixed costs for each year
of the time - series at hand; and, finally, Y is made up of the revenues of each
of the 11 years of the sample.

the aim of the estimation exercise is to attribute a numerical value to
the vector of parameters β; the method of ordinary least squares chooses the
numerical values for the elements of the unknown parameters’ vector such
as to minimize the sum of squared residuals of the regression; we define the
following value:

e(β)
(T×1)

= Y
(T×1)

− X
(T×k)

β
(k×1)

; if Xβ can be considered a predictor of Y, e is

the corresponding prediction or forecast error; the sum of the squares of the
residuals is given by: S(β) = e(β)′e(β); the method of ordinary least squares

produces an estimate of β, with β̂ such that: S(β̂) = minβ S(β)

we denote the corresponding estimator of ε with ε̂ = Y −Xβ̂, such that
S(β̂) = ε̂′ε̂. ε̂ is defined as the vector of the resioduals of the ordinary least
squares estimator. at this point, we can obtain the estimator, considering that
the necessary and sufficient conditions allowing the existence of a vector β̂

defining a unique minumum S are the following:
i) X′ε̂ = 0;
ii) rank(X) = k.
the first condition imposes the orthogonality between the OLS residuals

and the variable included in the right hand side of the model (commonly known
as regressors);

the second condition imposes that the columns of the matrix X are linearly
independent among each others, in other words that none of the explanatory
variables can be expressed as a linear combination of each others; we note that
condition i) guarantees that the residuals of the OLS sum up to zero, and that
thus have null mean, whether a constant is included within the regressors;

from i), we can derive an expression for the OLS estimator:
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Xε̂ = X′(y −Xβ̂) = X′Y −X′Xβ̂ = 0

β̂ = (X′X)−1X′Y

1.1 properties of the OLS estimator

we derived the OLS estimator imposing a minimum set of hypotheses; we
now focus on its properties under a particular set of additional statistical
hypotheses; to this end, we shall review a few concepts of mean and variance
in vectors of statistical variables; for a vector of variables

x =
[
x1 . . . xT

]
′

we define the mean vector, expressed as E(x), as well as the mean matrix
of external products E(x′x) as follows:

E(x) =
[
E(x1) . . . E(xT )

]
′

where the symbol ’ stands for transposed, that is, a column vector rotated
of 90 degrees towards a row vector;

E(x′x) = E






x2
1 x1x2 x1xT

...
...

...
xTx1 . . . x2

T




 =






E(x2
1) E(x1x2) . . . E(x1xT )

...
...

. . .
...

E(xTx1) E(xTx2) . . . E(x2
t )






the variance-covariance matrix of x is thus defined as follows:
var(x) = E(x− E(x))(x− E(x))′ = E(xx′)− E(x)E(x)′

the variance-covariance matrix is symmetric and positive definite, by
construction, indeed for an arbitrary vector of dimensions T , A, we have:

var(A′x) = A′var(x)A
the former hypothesis to derive the statistical properties of the estimator

is that the various components of the sample at hand yt, x
′

t are extracted
independently within each others: no observation can help to predict the other
observations; in such a case, the hypothesis E(yt|xt) = x′

tβ becomes equivalent
to:

E(yt|x1, . . . ,xt, . . . ,xT ) = x′

tβ, for t = 1, . . . , T , or, in vector notation,
[A.1] E(y|X) = Xβ,
we note that hypothesis [A.1] is very restrictive and it applies in our empir-

ical issue at hand only as far as the supply side shocks hitting the various
competing firms are specific to these lasts (sectoral shocks) and are not cor-
related with the contemporaneously observed explanatory variables, for both
leads and lags; if this hypothesis is applicable to the sample at hand, it will
hardly be applicable to a sample of time - series; as a matter of facts, time
- series are characterized by the interdependence of the observations taken in
different points in time (lack of independence → autocorrelation); we should
thus use a sample of cross - sectional data (different variables for each firm at
a given point in time) to introduce the econometric methodology.

the second hypothesis we put forth, partially follows the first one and
strengthens it, imposing a constant variance of the shocks:

[A.2] E(εε′|X) = σ2I, where σ2 is a constant independent of X.
[A.3] rank(X) = k;
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under hypotheses [A.1]-[A.3] we can now derive the properties of the OLS
estimator.

property 1−→ the estimator ∃, in fact [A.3] guarantees that (X′X) is invert-
ible.
property 2−→ the mean of the estimatore, conditioned with respect to X, is
β; the OLS estimator is unbiased. indeed, we have:
β̂ = (X′X)−1X′(Xβ + ε)
= β + (X′X)−1X′ε

→ E(β̂|X) = β + (X′X)−1X′
E(ε|X)
︸ ︷︷ ︸

=0

= β, by hypothesis [A.1].
we point out that the result is valid for eachX, thus, even the unconditional

mean of the OLS estimator does not coincide with the vector of parameters to
be estimated;

property 3→ the variance of the OLS estimator, conditioned on X, is
σ2(X′X)−1:

var(β̂|X) = E
[
(β̂ − β)(β̂ − β)′|X

]

= E
[
(X′X)−1X′εε′X(X′X)−1|X

]

=
[
(X′X)−1X′

E(εε′|X)X(X′X)−1
]

=
[
(X′X)−1X′(σ2I)X(X′X)−1

]

= σ2(X′X)−1

we note that the expression for the conditional variance depends on X,
therefore it does not coincide with the non conditional variance.

property 4 (GAUSS-MARKOV THEOREM)→ the OLS estimator is the
estimator with minimal conditional variance within the class of linear unbiased
estimators (UMVUE and BLUE).

this property is important for it shows the optimality of the OLS estimator
with respect to a well defined criterion; we saw that the estimator is unbiased,
it is thus natural to think of the optimality with respect to the variance of
the estimator; the estimator with minimum variance is the most efficient, in
the sense that is employs the information contained in the data in the most
efficient way.

let us consider the class of linear estimators:
βL = Ly
such a class is defined within the set of matrices L of dimensions k × T ,

that are fixed when conditioning upon X; L can be constant, can depend on
X, but cannot be function of X; therefore:

var(βL|X) = E(Lεε′L′|X) = σ2LL′

we notice that, because L can depend on X, the expression for the non
conditional varianc does not generally coincide with that for the conditional
variance.
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at this point, we are ready to show that the OLS estimator is the most
efficient within the class of linear unbiased estimators, by showing that the con-
ditional variance of the OLS estimator differs from that of any other estimator
within the class for a positive semi-definite matrix1.

let us define D = L− (X′X)−1X′; LX = I; we wish that DX = 0:
LL′ = ((X′X)−1 +D)(X(X′X)−1 +D′)
= (X′X)−1X′X(X′X)−1 + (X′X)−1X′D′ +DX(X′X)−1 +DD′

= (X′X
−1

) +DD′

from which it follows that:
var(βL|X) = var(β̂|X) + σ2DD′

which shows that the symmetric matrix DD′ is positive semi-definite, for
every matrix D, not necessarily squared

1.2 Analysis of the residuals

in order to produce the analysis of the residuals, let us consider the following
representation:

ε̂ = y −Xβ̂ = y −X(X′X)−1X′y = My
where M = IT −Q and Q = X(X′X)−1X′; the matrices T × T Q and M

have the following properties:
i) are symmetric, Q = Q′

i) are idempotent, QQ = Q, M = M′;
iii) M is orthogonal to X (MX = 0), M is orthogonal to Q (MQ = 0),

QX = X.
notice that the OLS forecast for y can be written as Qy, ŷ = Xβ̂ = Qy,

notice also that ε̂ = My, from which the result follows, already commented, of
orthogonality between the OLS residuals and the OLS predictors; we further
have that My = MXβ + Mε, since MX = 0. there exists a well precise
relation between the OLS residuals and the errors in the econometric model,
that cannot however be used to get the errors given the residuals, as far as the
matrix M is singular and thus not invertible.

we have:
S(β̂) = ε̂′ε̂ = ε′M′Mε = ε′Mε

we may get an estimator of σ2 da S(β̂); for the derivation of the estimator,
it is necessary to introduce the concept of trace; the trace of a square matrix
is the sum of the elements on the main diagonal;

the trace enjoys some relevant properties, namely:
i) for every dyad of square matrices A and B, tr(A+B) = tr(A)+ tr(B);
ii) for every couple of matrices A and B, trAB = tr(BA), if both the

products are defined (the equality applied also to rectangular matrics, in such
case the matrices AB and BA are not of the same order2);

iii) the rank of an idempotent matrix is equal to its trace.

1a matrix is positive semi-definite if and only if the principal minors are all of the same sign
(greater than or equal to zero), or, analogously, if and only if all the eigenvalues are greater than
or equal to zero.

2the order of a matrix is its dimension: number of rows times number of columns.
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using the property ii) as well as the fact that a scalar is a matrix of
dimension 1× 1 and it coincides with its tracewe have that:

ε′Mε = trε′Mε = trMεε′

we have seen that the expected value of a matrix is the matrix of the
expected values, thus the expected value of a trace is the trace of expected
values:

E(S(β̂)|X) = E(trMεε′|X) = trE(Mεε′|X) = trME(εε′|X) = σ2trM =
T − k

which proves that the rank of M is T − k and that an unbiased estimator
of the variance σ2 is given by the following expression:

s2 = ε̂′ε̂
T−k

such a result resolves the first issues3, showing how the OLS estimation
residuals can be used to construct an unbiased estimator of the variance of
the residuals themselves; once obtained an expression for the variance of the
residuals, it is possible to reconstruct the (estimate of) the variance-covariance
matrix of the estimated parameters with the least squares method.

the analysis of the residuals allows also to shed light upon some aspect
connected to the second issue4;

given the orthogonality between the OLS forecasts and the residuals, we
may write:

var(y) = var(ŷ) + var(ǫ̂)
from which we can construct the following measure of goodness of fit of

the regression line to the data, which is defined in terms of the relationship
between the variance of y and that of the estimated y values:

R2 = var(ŷ)
var(y) = 1 − var(ε̂)

var(y) , with 0 < R2 < 1, where R2 = 1 if there is a

perfect fit of the regression line or the lines to the data, R2 = 0 if there is no
fit at all of the regression line(s) to the data.

in our empirical application to the turning and milling firm in the neigh-
bourhood of Bologna, the R2 are all quite close to 1, suggesting a good fit of
the model to the data, despite the residuals are very high for the estimated
model with the variables in levels, e.g. Y = AKαLβ .

to the information coming from the R2 is associated the one contained in
σ2, known as standard error of the regression, which represents the square root
of the variance estimate of the error term defined above;

we note that in a model specified in logarithms, the standard error of the
regession is a measure interpretable independently on the units of measure in
which the variables are expressed and the standard error in the regression can
be interpreted as the standard deviation of the forecast error.

3we have derived an expression for the OLS estimator which is a function of the sole observations
on the vectorial variable Y and on the matrix X; we have also derived an expression for the
variance of the OLS estimator that is function of both the observables and of the error term.

4we are evaluating the empirical results, comparing the estimated parameters with the model
forecasts; it could be the case to consider the residuals of the estimated model; in fact, what
is omitted from the estimated model contributes to form the residual and analyzing the resid-
uals seems like a very natural way of evaluating the goodness of fit of the chosen econometric
specification.
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1.3 elements of theory of the distributions

let us consider the distribution of an n-dimensional x vector together with the
distribution derived from vector y = g(x), a vector of invertible, continuous
functions, with inverse x = h(y); h = g−1.

Pr(x1 < x < x2) =
∫ x1

x2
f(x)dx and Pr(y1 < y < y2) =

∫ y1

y2
f∗(y)dy,

therefore
f∗(y) = f(h(y))J
where the jacobian matrix is

J
n×n

=

∣
∣
∣
∣
∣
∣
∣

∂h1

∂y1
. . . ∂hn

∂y1

...
. . .

...
∂h1

∂yn
. . . ∂hn

∂yN

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∂h

∂y′

∣
∣
∣
∣

1.3.1 the normal distribution

the standard normal univariate distribution has the following probability
density function:

f(z) =
1√
2π

exp
{

− 1

2
z2
}

E(z) = 0, var(z) = 1
considering the transformation x = σz + µ, let us derive the univariate

normal distribution:

f(x) =
1

σ
√
2π

exp
{

− (x− µ)2

2σ2

}

E(x) = µ, var(x) = σ2

let us consider the vector z = (z1, . . . , zn), such that

f(z) =

n∏

i=1

f(zi) = (2π)−n/2 exp
{

− 1

2
z′z

}

z, by construction, is a vector of mutually independent normal variables,
with zero mean and variance-covariance matrix equal to the identity matrix;
the conventional notation is z ∼ N(0, In).

let’s now consider a linear transformation of the following form

x = Az+ µ

where A is an n × n non-singular matrix; the proposed transformation is
an invertible continuous function with inverse z = A−1(x − µ), and jacobian
J = |A−1|= 1/|A|; applying the formula for the change of variable, we get:

f(x) = (2π)−n/2|A|exp
{

− 1

2
(x− µ)(A−1)′(A−1)(x− µ)

}

if we define the positive definite matrix Σ = AA′, we may rewrite the
density as follows:
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f(x) = (2π)−n/2|Σ−1/2 exp
{

− 1

2
(x− µ)′Σ−1(x− µ)

}

by convention, we denote the multivariate normal as x ∼ N(µ,Σ).
upon the multivariate normal distribution, it is useful to remind the

following result:
THEOREM 1 → any linear function of normal variables is normally

distributed.
x

n×1
∼ N(µ,Σ), given a generic matrix B

m×n
and a vector d

m×1
, if y = Bx+d,

then

y ∼ N(Bµ+ d,BΣB′)

applying the above defined theorem, we can show that, partitioning a nor-
mally distributed vector n× 1 in two vectors of dimensions n1 × 1 and n2 × 1,
where n1 + n2 = n, in the following way:

(
x1

x2

)

∼ N

[(
µ1

µ2

)

,

(
Σ11 Σ12

Σ21 Σ22

)]

,
the following results hold:
(i) x1 ∼ N(µ1,Σ11) attainable by applying the theorem with B =

(
In1

0
)

and d = 0;
(ii) x1|x2 ∼ N(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21), attainable by

applying the theorem with B =
(
In1

−Σ12Σ
−1
22

)
,d = Σ12Σ

−1
22 x2.

property (ii) illustrates how the non correlation within the field of the mul-
tivariate normal implies independence; such results, non always generally valid,
does not surprise us, given that the normal distribution is entirely described
by its first two moments.

1.3.2 distributions derived from the normal

let’s consider z
n×1

∼ N(=, I); the distribution of ω = z′z is defined chi - squared

with n degrees of freedom; such a distribution is tabulated for various values
of n; the first two moments are respectively equal to n and to 2n.

let us consider two vectors z1
n1×1

and z2
n2×1

for which it holds that:

(
z1
z2

)

∼
[

0,

(
In1

0
0 In2

)]

we notice that ω1 = z′1z1 ∼ χ2
n1
, ω2 = z′2z2 ∼ χ2

n2, z
′

1z1 + z′2z2 ∼ χ2
n1+n2

;
ω1 and ω2 are independent if and only if the elements of z1 and z2 are
independent; the distribution has the following properties:

THEOREM 2 → the sum of independent chi-squared is distributed as a
chi-squared with a number of degrees of freedom equal to the sum of the
degrees of freedom of the two distributions;

from our discussion on the multivariate normal, it follows:
THEOREM 3 → if x

n×1
∼ N(µ,σ2) −→ (x− µ)′Σ−1(x− µ) ∼ χ2

n;



Springer Nature 2021 LATEX template

Returns to scale with a Cobb-Douglas production function 9

a connected result is that:
THEOREM 4 → if z

n×1
∼ N(0, I) and M is an n × n symmetric and

idempotent matrix of rank r, then z′Mz ∼ χ2
r.

another family of distributions tabulated from the normal is the F dis-
tribution; it is obtained as the ration between two chi-squared distributions,
independent between themselves, each divided by the number of its degrees of
freedom; for example, given

ω1 ∼ χ2
n1
, ω2 ∼ χ2

n2
, reciprocally independent, we have that:

ω1/n1

ω2/n2
∼ Fn1,n2

a distribution very much linked to the F is the t of student (attributed to
W. S. Gosset) with n degrees of freedom, defined as:

tn =
√

F1,n

the most important application of the F distribution to our aims relies
upon the following result:

TEOREM 5 → due idempotent quadratic forms in the standard normal
vector z, z′Mz and z′Qz, are between themselves idempotent if MQ = 0.

combining theorems 4 and 5, we obtain the fundamental result for the
application of statistical inference to the linear model:

THEOREM 6 → if z
n×1

∼ N(=, I), and M and Q are symmetric,

idempotent matrices of rank respectively r and s and MQ = 0, then we have:

z′Qz

z′Mz

r

s
∼ F (s, r)

1.3.3 Inference in the linear regression model

having introduced the basic elements for the statistical analysis of the linear
model, we return to our first model and introduce another hypothesis: the
distribution of y conditioned with respect to X is an independent normal

y|X ∼ N(Xβ, σ2I)

or, equivalently,
[A.4]

u|X ∼ N(0, σ2I)

the first indication of hypothesis [A.4] regards the distribution of β̂|X,
which, being a linear function of u, is normal as well:

β̂|X ∼ N(β, σ2(XX)−1)

it shall be noticed how the conditional distribution of u does not depend on
X, thus it coincides with the non conditional distribution, while the conditional
distribution of β̂ depends on X.
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hypothesis [A.4] forms the basis for the construction of confidence inter-
vals and for the running of hypotheses tests on β; consider first the following
expression:

(β̂ − β)′X′X(β̂ − β)

σ2
=

u′X(X′X)−1X′X(X′X)−1X′u

σ2
=

u′Qu

σ2

now, u′Qu

σ2 |X ∼ χ2(k) �
based on theorem 4, because Q is an idempotent matrix, fixed when

conditioning upon X, and that, given [A.4],

1

σ
u|X ∼ N(0, I)

the above result is not applicable to the general case of the known variance,
nevertheless, applying the same arguments to derive �, we have:

S
( β̂

σ2

)

=
u′Mu

σ2
∼ χ2

T−kN
we know that the two quadratic forms are independent among themselves,

because MQ = 0; furthermore, both the � and the N are proportional to
the known variance, which disappears if we take the ration between these two
entities; we therefore reach the following result:

(β̂ − β)′X′X(β̂ − β)

ks2
=

(u′Qu)/kσ2

(u′Mu)/(T − k)σ2
∼ Fk,T−k•

the result • can be used obtaining from the tabulated distribution F the
critical value F ∗

α(k, T − k) such that

prob{(k, T − k) > F ∗

α,k,T−k} = α

0 < α < 1.
for different values of α, we are able to evaluate exactly inequalities of the

form

prob[(β̂ − β)′X′X(β̂ − β)] ≤ ks2F ∗

α(k, T − k)] = 1− α

which define the confidence intervals (geometrically some confidence ellip-

soids) for β, centered on β̂.
the hypotheses testing is strictly linked to the estimation of confidence

intervals, with the difference that a decision should be taken, based on the
sample evidence, whether to refuse or not the validity of specific restrictions
imposed on the basic model;

in such a context, the hypotheses [A.1] - [A.4] are identified as maintained
hypotheses and the reduced form of the model is identified with the null
hypothesis H0; in the hypotheses testing approach proposed by neyman and
pearson, we derive a statistic with known distribution under the null hypoth-
esis; letting the decision depend upon the absolute value of the statistic, it
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is therefore possible to fix the probability of making errors of the first type
(refusing H0 when H0 is instead “true”) at the level α; for example, a test of
level α of the null hypothesis β = β0, based on the F statistic, is given when
we do not refuse H0 if β0 lies within the confidence interval with associated
probability 1− α;

in practice, this way of verifying hypotheses is not very useful because the
hypotheses of interest for the economist are rarely so complete as to specify a
number of restrictions equal to the number of estimated parameters;

in general, the case of interest for the economist is the test of r restrictions
on the vector of coefficients, where β0.

1.3.4 an application: the significance tests

let’s consider a partitioned model of β in
[
β1 β2

]
:

y = X1β1 +X2β2 + ε

consider the partition of the “normal equations” X′Xβ̂ = X′y in
[
X′

1

X′

2

]
[
X1 X2

]
[
β̂1

β̂2

]

=

[
X′

1

X′

2

]

y

or[
X′

1X1 X′

1X2

X′

2X1 X′

2X2

] [
β̂1

β̂2

]

=

[
X′

1y
X′

2y

]

or
X′

1X1β̂1 +X′

1X2β̂2 = X′

1y

X′

2X1β̂1 +X′

2X2β̂2 = X′

2y
such a system in two blocks of equations can be solved in two steps; first

derive β̂2 from the second equation:
β̂2 = (X′

2X2)
−1(X′

2y −X′

2X1β̂1)
then substitute this in the first of the two equations of the system:
X′

1X1β̂1 +X′

1X2(X
′

2X2)
−1(X′

2y −X′

2X1β̂1) = X′

1y
from which
β̂1 = [X′

1X1 −X′

1X2(X
′

2X2)
−1X′

2X1]
−1[X′

1y −X′

1X2(X
′

2X2)
−1X′

2y]

β̂1 = [X′

1M2X1]
−1[X′

1M2y], with M2 = I−X2(X
′

2X2)
−1X′

2

notice that5, thanks to the idempotence of M2, we can write
β̂1 = [X′

1M
′

2M2X1]
−1[X′

1M
′

2M2y]

thus β̂1 can be seen as the result of the regression of y on M2X1, that is,
the regression of y on the matrix of the residuals of the regression of X1 on X2;
the result by which the coefficients of a multiple regression can be calculated
in a two step procedure known as the frisch - waugh theorem.

before returning to the hypotheses testing, consider the residuals of the
partitioned model:

ε̂ = y −X1β̂1 −X2β̂2

ε = y −X1β̂1 −X2(X
′

2X2)
−1(X′

2y −X′

2X1β̂1)

5an alternative way to reach this result is to adopt the well known formula of the inverse

of a partitioned matrix:

(

A B

C D

)

−1

=

(

E −EBD−1

−D−1CE D−1 + D−1CEBD−1

)

, where E =

(A − BD−1C)−1
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ε̂ = M2y −M2X1β̂1 = M2y −M2X1(X
′

1M2X1)
−1(X′

2M2y)
ε̂ = (M2 −M2X1(X

′

1M2X1)
−1(X′

1M2))y
from what already seen, we know that M =

(M2 −M2X1(X
′

1M2X1)
−1(X′

1M2));
this result is very useful to derive the form of test statistic for the hypothesis

testing of significance to which we will return;
the specific hypothesis states that X1 does not have any additional

explanatory power for y, once considering X2; put differently,
H0 : y = X2β̂2 + ε

(ε|X1,X2) ∼ N(0, σ2I)
notice that the statement
y = X2γ2 + ε

(ε|X2) ∼ N(0, σ2I)
is true in the realm of the hypotheses maintained in [A.1] - [A.4], even

though γ2 6= β2, unless the null hypothesis holds ; in such a case, the matrix
R(X′X)−1R of dimensions r × r is nothing but the north-western submatrix
of (X′X)−1 that, using the formula of the partitioned inverse introduced in
footnote 5, we know being equal to (X′

1M2X1)
−1; thus the test statistic takes

the form:
β̂′

1
(X′

1
M̂′

2
X1)β̂1

rs2 =
yM2X1(X

′

1
M2X1)

−1X′

1
M2y

y′My

(T−k)
r ∼ F (T − k, r)

given that M = (M2 −M2X1(X
′

1M2X1)
−1(X′

1M2)), we can rewrite the
statistic as

y′My−y′My

y′My

(T−k)
r

where r is the number of restrictions on the coefficients deriving from eco-
nomic theory, and the denominator is made up of the sum of the squared
residuals of the regression without the imposition of the null hypothesis, while
the numerator is made of the difference between the sum of the squared resid-
uals of the regression under the null hypothesis and the sum of the squared
residuals of the regression under the alternative;

our derivation establishes that the numerator is always positive;
let us consider the specific case in which r = 1 and β1 is a scalar; for the

reordering of the variables, the parameter considered can represent a whatever
element of the vector β;

the model is rewritten as

y
(T×1)

= X1
(T×1)

β1
(1×1)

+ X2
(T×1)

β2
(1×1)

+ ε
(T×1)

in this case, the formula for the F statistic takes the following peculiar
form:

β̂2
1

s2(x′

1
M2x1)−1 ∼ F (1, T − k) under H0 : β1 = 0, where (x′

1M2x1)
−1 is the

(1,1) element of the matrix (X′X)−1.
let us recall that the F (1, T−k) distribution coincides with the t2T−k, where

tT−k is the student t distribution with T − k degrees of freedom; rewriting the
statistic under the null hypothesis as
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β̂1

s(x′

1M2x1)−1/2
∼ tT−k

we have that the t - statistic in the form of the ratio between the coefficient
and the associated standard error, exactly coinciding with the results reported
in the third column of the regression; the associated level of probability to
these values allows to largely refuse the hypothesis of equality to zero of the
estimated coefficients at the conventional significance level of 5%;

we have thus developed the tools to establish the significance of the esti-
mated coefficient in the economic model of interest (relationship between
revenues and fixed/variable costs);

it also arises the problem of the correct specification of the econometric
model to be estimated and the characteristics of the data generating process,
from us not completely observed.

2 Effects of fixed and variable costs on revenues

after having reviewed the properties of the OLS estimator, we apply such a
simple estimation method and apply it to the model with fixed and variable
costs and revenues, defined as follows:

Y = X1β1 +X2β2 + ε

where X1 represents variable costs; X2 stands for fixed costs; Y is revenues
for years t = 2011, . . . , 2021; notice that the balance sheet from which the
data have been retrieved are the analytical financial statements of end of the
solar year, for all but 2021, for which we have data up to the end of the third
quarter (september 30); therefore, up to now, the length of the time series is
T = 11 years with yearly observation and k = 2, the number of parameters to
be estimated;

in particular, we considered as components of variable costs −→ the
following voices of the sequence of income statements of the firm:

purchases −→ purchase of raw materials, namely iron, aluminium, brass,
inox; purchase of finite goods from both italy and abroad ; production costs

−→ external processing, industrial lubricants, equipment and small parts,
cleaning and garbage collection, compressor maintenance, petrol/diesel trucks,
consumables, treatments, car fuel, truck fuel, truck insurance; sales costs

−→ transport for sales, travel and transfers, packaging for sales, commercial
expenses, passive commissions ; general expenses −→ postal and telegraph
expenses, telephone expenses, revenue stamps, bank expenses, administrative
services, mobile phone expenses, various rentals ;

as part of the fixed costs, we included the following components of the
income statements: cost of productive labour −→ gross workers’ salaries,
INPS and INAIL social security contributions for workers, severance indem-
nity ; production costs −→ electricity, maintenance and repairs, heating,
water consumption, insurance, car insurance, computer rental fees, truck
insurance, sylos system maintenance and repairs, truck maintenance and
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repairs, forklift truck repairs, heating system maintenance, electrical system
maintenance, washing machine maintenance and repair ; general expenses

−→ stationery and printed matter, legal and notary consultancy6, adminis-
trative consultancy, directors’ fees, computer programming assistance services,
contribution of 10% for self-employed workers, compliance with law 6267,
ISO 9002 compliance, board of statutory auditors compensation; cost of

administrative labour −→ administrative salaries, INPS and INAIL social
security contributions for employees, severance pay for employees;

finally, as part of the revenues, we choose the following: miscellaneous
revenues and income −→ sales of production in Italy, exports, sale of scrap
and various scraps, recovery of expenses and other indemnities, bank interest
income, interest income (coupons), contingent assets, capital gains.

we report in analytical and graphical form the data employed in the
analysis, arising from the illustrated aggregations.

Table 1 data on revenues (Y ), variable costs (X1), fixed costs (X2), capital (K), the cost
of productive labour (Lprod), and of administrative labour (Ladm)

t Y X1 X2 K Lprod Ladm L

2011 863,768 2,299,513 1,240,489 211,217 733,086.7 294,931.7 998,017.4
2012 2,815,571 1,361,284 1,107,425 1,161,120 543,928.8 271,331.5 815,260.3
2013 2,180,815 1,100,591 1,059,961 1,151,168 519,649 266,106.8 785,755.9
2014 2,239,722 1,095,824 1,035,184 1,088,539 507,263 296,094.9 776,357.9
2015 2,265,955 1,238,506 1,043,427 1,129,489 496,639.9 281,116.4 764,756.3
2016 2,271,333 967,703 1,064,599 1,041,229 447,950 260,831.2 708,781.2
2017 2,383,581 1,195,590 1,071,085 1,091,207 551,940.8 235,179.5 787,120.3
2018 768,506.3 302,473.2 290,349.2 1,488,349 593,765.3 259,711.7 853,476.8
2019 2,159,723 984,404 1,079,349 1,103,705 577,075.3 261,118.2 838,193.5
2020 1,814,393 740,421.8 1,025,192 2,014,860 853,476.8 241,305.5 724,987.1
2021 1,846,034 861,581.5 845,405.9 1,631,942 378,328.1 202,075 580,403.1

Table 2 descriptive statistics

Variable Obs Mean Std. Dev. Min Max

y 11 2,429,347 579,151.1 1,814,393 3,863,768
X1 11 1,182,414 423,947.8 705,503.7 2,265,687
X2 11 1,110,932 116,349.9 845,405.9 1,288,783

we hereby report the various specifications of the models which we esti-
mate with STATA 13.0 SE, that depart from the basic version of the bivariate
equation with the variables in contemporaneous time, allowing for some lagged
independent variables to appear on the right side of the equation:

yt = X1tβ1 +X2tβ2 + εt (1)

6due to their occasional occurrence.
7safety on the job for the workers.
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yt = X1t−1β1 +X2t−1β2 + εt (2)

yt = X1t−1β11 +X1tβ12 +X2t−1β21 +X2tβ22 + εt (3)

yt = X1t−2β11 +X1t−1β12 +X2t−2β21 +X2t−1β22 + εt (4)

y = X1t−2β11+X1t−1β12+X1tβ13+X2t−2β21+X2t−1β22+X2tβ23+εt (5)

the idea is that, especially fixed costs, may take time to produce effects
on the revenues, since they are connected with fixed assets, which have a
relatively long economic life; therefore, we consider equations with one to two
lags, combining various layers of complication; below are reported the results
of the regressions, where the number of the columns corresponds to the number
of the equations:

Table 3 exploratory regressions of revenues on variable and fixed costs, with and without
time lags in the independent variables

dependent variable −→ revenues of the year

{1} {2} {3} {4} {5}

X1t 1.155*** 0.999*** 0.805*
(0.0987) (0.223) (0.272)

X2t 0.956*** 0.852 1.341
(0.110) (0.508) (0.682)

X1t−1 0.264 0.165 0.748 -0.0457
(0.308) (0.104) (1.251) (0.369)

X2t−1 1.721*** 0.0705 0.268 0.135
(0.346) (0.407) (3.697) (0.957)

X1t−2 -0.504 -0.0650
(0.706) (0.199)

X2t−2 1.517 -0.0849
(3.267) (0.935)

observations 11 10 10 9 9
R-squared 0.998 0.983 0.999 0.982 0.999

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

equation (1) is the most relevant one, as far as it allows to best exploit
the information at hand, regressing the current values of revenues on those of
two categories of costs within the same year (i.e. contemporaneous effect of
variable and fixed costs on revenues); while in equation (2) we consider a case
where the regression is of revenues each year on the fixed and variable costs
of the year before; in equation (3) we see the effect of variable costs of a year
on the revenues of the same year and of the subsequent year as well; equation
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(4) we consider the independent variables lagged of two and of one year; and,
finally, in equation (5) we insert a lag of two years, one year, and no lag;

despite the lagged structure of fixed costs on output, the most significant
estimated coefficients seem to be those of the first regression, which points to
the direction that marginal increases in variable costs lead to higher revenues,
while, paradoxically, increases in fixed costs tend to reduce revenues; in par-
ticular, a marginal increase in variable costs of 1% should lead to an increase
in revenues of about 1.55%; while an increase in fixed costs seems to be neg-
atively related with revenues, being the associated coefficient point estimate
slightly lower than 1; both the estimates are highly statistically significant;

the trend seems to invert when we move on to consider lagged variable
and fixed costs on revenues: as a matter of facts, lagged fixed costs have a
positive and statistically significant effect on revenues, raising them, while
keeping variable costs constant, of 1.72% after a 1% increase in their entity;
on the other hand, a marginal increase in variable costs keeping the fixed
constant, does not seem to have a statistically significant effect on revenues of
the subsequent year;

in the third model, with the regressors both contemporaneous to the depen-
dent variable and lagged of one period, it appears that the variable costs
reduce revenues and that the fixed cost raise revenues, instead; here, only the
coefficient estimate associated with contemporaneous variable costs seems to
be statistically significant, though, raising doubts on the validity of such a
specification;

similar considerations hold for the fourth and fifth model as well; the firth
regression presents similar results to the third one; we feel like the bivariate
regression most likely to capture the relationships between fixed and variable
costs, and revenues is the first one, with the condition that assumptions [A.1],
[A.2], [A.3] for the OLS estimator seen in the previous sections hold; only if
such a case happens to be holding, these econometric estimates could have a
causal interpretation.

if that happened to be the case, it would be worthy for the firm in con-
sideration to raise variable costs with the reasonable expectation of producing
a higher share of output and thus having higher revenues, especially on the
voices of cost most related with raw materials purchases.

the stochastic frontier model with the same contemporaneous variables as
before, as of the STATA syntax, happens to produce similar results than the
ordinary least squares estimation, especially in the case without a constant
term in the regression; a marginal increase in one unit of variable costs, keeping
fixed costs constant, seems to cause an increase in revenues of 1.55 units; while
an increase in fixed costs of one unit, keeping the variables constant, seems
to reduce revenues by about 0.05 units; considering an intercept, we obtain a
slightly higher coefficient associated with X1 and a slightly lower coefficient
associated with X2, slightly polarizing the effects of the no-intercept case.
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Table 4 stochastic frontier model with and without an intercept

variables Y lnσ2v lnσ2u Y lnσ2v lnσ2u

[1a] [1b] [1c] [2a] [2b] [2c]

X1t 1.155*** 1.185***
(0.0893) (0.107)

X2t 0.956*** 0.763*
(0.0997) (0.408)

constant 22.98*** -12.15 181,638 22.96*** -5.481
(0.426) (41,250) (443,927) (0.426) (9.442e+06)

Observations 11 11 11 11 11 11

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

3 Properties of production sets

PRODUCTION SETS8 −→ in an economy with L commodities, a production
vector is a vector y = (y1, . . . , yL) ∈ R

L, that describes the net output of the
L commodities from a production process9;

Y ⊂ R
L −→ production set; any y ∈ Y is possible, any y /∈ Y isn’t. a

production set is a primitive datum of the theory; technological constraints
→ legal restrictions or prior contractual commitment → F (.): transformation
function, Y = {y ∈ R

L : F (y) ≤ 0} and F (0) = 0 if and only if y is an element
of the boundary of Y ;

{y ∈ R
L : F (y) = 0} → boundary ≡ transformation frontier;

MRTlk(ȳ) =
∂F (ȳ)
∂yl

∂F (ȳ)
∂yk

, ∀l, k, l 6= k goods, marginal rate of transformation of

good l for good k at ȳ;
∂F (ȳ)
∂yk

· dyk + ∂F (ȳ)
∂yl

· dyl = 0

z = (z1, . . . , zL−M ) ≥ 0 → firm’s L−M inputs;
q = (q1, . . . , qM ) ≥ 0 → outputs;
single output technology → f(z) → max. amount of q that can be produced

using input amounts z = (z1, . . . , zL−1) ≥ 0; if the output is good L → Y =
{(z1, . . . , zL−1, q) : q − f(z1, . . . , zL−1) ≤ 0 and (z1, . . . , zL−1) ≥ 0};

MRTSlk(z̄) =
∂f(z̄)
∂zl

∂f(z̄)
∂zk

→ marginal rate of technical substitution;

the cobb - douglas production function can be expressed as f(z1, z2) =

zα1 z
β
2 , and, if α+ β = 1 → f(z1, z2) = zα1 z

1−α
2

(i) Y is non-empty10→ the firm has something to plan to do;
(ii) Y is closed −→ the set Y includes its boundary, the limit of a sequence

of feasible input - output vectors is also feasible; yn → y and yn ∈ Y → y ∈ Y ;

8see also [1] and [3].
9this section is largely based upon chapter 5 of [4], pp. 128 - 136.
10the production set.
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(iii) no free lunch −→ y ∈ Y and y ≥ 0 so that y doesn’t use any
inputs; this property −→ this production vector cannot produce output either;
Y ∩ R

L
+ ⊂ {0}

it’s not possible to produce something out of nothing;
(iv) possibility of inaction −→ 0 ∈ Y ; the point in time at which pro-

duction possibilities are being analyzed is often important for the validity of
this assumption; if we see a firm that could access a set of technological pos-
sibilities but hasn’t yet been organized −→ inaction is clearly possible; but
otherwise (decisions already taken or irrevocable contracts signed), inaction
isn’t possible → sunk costs;

the firm is already committed to use at least −ȳ1 units of good 1;
ց the set is a restricted production set, reflecting the firm’s remaining

choices from some original production set Y like the ones in the previous
graphs;

v. free disposal → holds if the absorption of any additional amount of
inputs without any ց in output is always possible, if y ⊂ Y and y′ ≤ y (so
that y′ produces at most the same amount of outputs using at least the same
amount of inputs) → y′ ∈ Y ; Y −R

L
+ ⊂ Y ↔ the extra amounts of inputs (or

outputs) can be disposed of or eliminated at no cost;
vi. irreversibility → y ∈ Y and y 6= 0;
−y /∈ Y ; it’s impossible to reverse a technologically possible production

vector to transform an amount of output into the same amount of input that
was used to generate it;

drawing 5 — drawing 6 — drawing 7
vii. non ր returns to scale → the production technology Y exhibits

non ր returns to scale if for any y ∈ Y , we’ve αy ∈ Y for all scalars α ∈ [0, 1];
any feasible input - output vector can be scaled down;
viii. non ց returns to scale → if ∀y ∈ Y → αy ∈ Y for any scale α ≥ 1.

any feasible input - output vector can be scaled up;
ix. constant returns to scale → the production set Y exhibits constant

returns to scale if y ∈ Y → αy ∈ Y , for any scalar α ≥ 0. Y is a cone;
for single output technologies → properties of the production set translate

into properties of the production function, f(.); Y satisfies constant returns to

scale if and only if f(.) is homogeneous of degree 1. f(2z1, 2z2) = 2α+βzα1 z
β
2 =

2α+βf(z1, z2);
when α+ β < 1 → ց returns to scale;
when α+ β = 1 → constant returns to scale;
when α+ β > 1 → ր returns to scale; �
x. additivity → or free entry → y ∈ Y and y′ ∈ Y → y + y′ ∈ Y ↔

Y + Y ⊂ Y → e.g. ky ∈ Y , ∀k ∈ N+; output here is available only in integer
amounts. perhaps because of indivisibilities, the economic interpretation is that
both y and y′ are possible → one can set up two plants that don’t interfere
with each other and carry out production plans y and y′ independently. the
result is the production vector y + y′;
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additivity → entry: if a firm produces y ∈ Y → net result → y + y′ →
the aggregate production set → must satisfy additivity when ever unrestricted
entry or free entry is possible;

xi. convexity → one of the fundamental assumptions of micro-economics
→ production set Y is convex → if y, y′ ∈ Y and α ∈ [0, 1], αy+(1−α)y′ ∈ Y
→ non ր returns, if inaction is possible, i.e. if 0 ∈ Y → convexity → Y has
non increasing returns to scale; hence if any α ∈ [0, 1] → αy = αy + 0(1− α),
if y ∈ Y and 0 ∈ Y → αy ∈ Y , by convexity;

“unbalanced” inputs combinations aren’t more productive than balanced
ones;

if production plans y and y′ produce exactly the same amount of output
but use 6= input combinations → a production vector that uses a level of each
input that’s the average of the levels used in these two plans can do at least
as well as either y or y′.

ex. 5.B.3: Y is convex if f(z) is concave. suppose Y is convex; z, z′ ∈ RL−1
+

and α ∈ [0, 1] → (−z, f(z)) ∈ Y and (−z′, f(z′)) ∈ Y . by convexity
{−[αz + (1− α)z], αf(z) + (1− α)f(z)} ∈ Y
by convexity αf(z) + (1− α)f(z) ≤ f [αz + (1− α)z] → f(z) is concave
suppose f(z) is concave.
(q,−z) ∈ Y , (q′,−z′) ∈ Y , α ∈ [0, 1] q ≤ f(z) and q′ ≤ f(z) → αq + (1 −

α)q′ ≤ αf(z) + (1− α)f(z′)
︸ ︷︷ ︸

by concavity
→ αf(z) + (1− α)f(z′)

︸ ︷︷ ︸
≤ f [αz+(1−α)z′] αq+(1−α)q′ ≤ f [αz+(1−αz′)]

→ {−[αz + (1− α)z′], αq + (1− α)q} = α(−z, q) + (1− α)(−z′, q′) ∈ Y
→ Y is convex. �
xii. Y is a convex cone → convexity ∩ CRS. if for any production vector

y, y′ ∈ Y and constants α ≥ 0 and β ≥ 0 → αy + βy′ ∈ Y .
proposition 5.B.1 the production set Y is additive and satisfies the non ր

returns condition iff it’s a convex cone.
proof αy + βy′ ∈ Y ; k > max{α, β},

ky ∈ Y , ky′ ∈ Y ; α
k < 1 and αy = α

k ky → αy ∈ Y , similarly for β.
feasible input - output combination can be scaled down, and simultaneous

operation of several technologies w/out mutual interference is possibile →
convexity! production set → technology. ց returns reflect the scarcity of an
underlying, unlisted input of production.

proposition 5:B.2: for any convex production set Y ⊂ R
L with 0 ∈ Y , there

is a constant return convex production set Y ′ ⊂ R
L+1 such that Y = {y ∈

R
L : (y,−1) ∈ Y }
additional input → entrepreneurial factor - whose return’s precisely the

firm’s profit. Y ′ = {y′ ∈ R
L+1 : y′ = α(y,−1) for some y′ ∈ Y and α ≥ 0}.
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4 test of the exponents of a cobb-douglas
production function

we set up an empirical estimation of a cobb douglas production function of
the form

Y = AKαLβ (6)

where the variables Y , K and L represent, respectively, revenues, capital
and labour cost; the first one, a flow variable, is as of the ones resulting from
the income statements; the second, is here defined as the balance sheet value of
net fixed assets; while the third one is intended as the sum of both productive
and administrative labour cost, inclusive of the social security contributions;
the data are composed of observations spanning the period t = 2011,. . . ,2021,
as in the previous exercise;

A is the so called technological augmenting factor, namely a measure of
the technological intensity of the productive process of the firm at hand;

our main point is connected with exercise 3.B.1 of the [4] handbook: we

attempt to see whether the sum of the estimated exponents α and β is T 1,
in order to conclude whether the returns to scale are respectively increasing,
constant or decreasing.

in the appendix, we display some additional three dimensional graphs made
with MATLAB 2022a, which may give an indication of the geometric properties
of the production set of the firm which we are analyzing;

we report the results of a regression which estimates equation (6):

Table 5 cobb douglas in levels

Â α̂ β̂

estimates 0.000176 0.0161 1.703***
(0.00104) (0.227) (0.323)

observations 11 11 11
R-squared 0.988 0.988 0.988

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

here, I obtain two estimated exponents, α̂ and β̂, whose sum is higher than
1, finding support for increasing returns to scale, as of point ix. of the proper-
ties of production sets in mas colell et al. 1995; however, the only significant
coefficient estimate of the three Â, α̂ and β̂ is β̂, and equal to about 1.7, signifi-
cantly higher than one, seemingly indicating that with the basic cobb - douglas
production function estimated in levels, there could be increasing returns to
scale almost entirely driven by the labour share of the input of production;

we log - transform the same function of above, in order to make it linear,
considering the three variables Y , K and L expressed in natural logarithms of
their levels,
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lnY = lnA+ α lnK + β lnL (7)

Table 6 cobb douglas in logarithms

ln(Â) α̂ β̂

estimates -2.332 -0.0471 1.303***
(6.433) (0.219) (0.344)

observations 11 11 11
R-quadrato 0.682 0.682 0.682

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

here, again the only significant coefficient is the one associated with labour,
which is also slightly higher than 1, about 1.3, while the coefficient associ-
ated with capital is slightly negative but statistically not significantly different
that zero; similarly for the technological augmenting factor, which is in mag-
nitude considerably negative; these results would point again in favour of the
increasing returns to scale hypothesis;

however, the firm in question is relying heavily on the supply of raw materi-
als, given that it transforms them into bolts and small mechanical components
for automobiles engines; this leads us to consider a version of the cobb dou-
glas production function which also includes a term for the purchase of raw
materials, variable extrapolated as well from the analytical income statements
of the firm11, such that:

Y = AKαLβMγ (8)

finding the following parameter estimates, with the values of the variables
in levels:

Table 7 cobb douglas in levels with raw materials

Â α̂ β̂ γ̂

estimates 27.19 -0.0405 0.298 0.583***
(120.5) (0.141) (0.373) (0.143)

observations 11 11 11 11
R-squared 0.997 0.997 0.997 0.997

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

here, surprisingly, the entity of the technological augmenting factor is much
higher than in the baseline version of the function, though not statistically
different than zero, perhaps for a lack of more data; in addition to that, α̂ =

11borowski, borwein 1989.
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Table 8 cobb douglas in logarithms with raw materials

ln(A)̂ α̂ β̂ γ̂

estimates 4.841 -0.0962 0.261 0.564***
(4.260) (0.132) (0.336) (0.144)

observations 11 11 11 11
R-squared 0.901 0.901 0.901 0.901

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

−.0405, β̂ = .2982, and γ̂ = .5825, but only this last is significant, reversing
the previously accepted hypothesis; the only significant factor of production is
purchases of raw materials, rather than cost of labour and capital; if we also
take into account the non significant estimate, we get α̂+ β̂ + γ̂ = .8402 < 1,
which would indicate the existence of decreasing returns to scale; which appear
to be even lower if we just consider the statistically significant estimate of
γ̂ = .5825.

as a last experiment, we log transform equation (8), to get:

lnY = lnA+ α lnK + β lnL+ γ lnM (9)

with the following results from estimation
here, lnA = 4.841, α̂ = −.0962, β̂ = .2613, e γ̂ = .5637, meaning that

the returns to scale should be negative again, very similarly than in the case
of the equation estimated in level, in its non linear form; the main differ-
ence between equation (8) and (9) relies in the estimate for lnA, difference
attributable to the logarithmic transformation.

5 conclusions

we attempted an double empirical exercise with some data of a firm operating
in the supply chain of the automobile industry, manily german, producting
small metal parts out of metal pipes. we first reviewed the theory of estimation
through the ordinary least squares method, building on a previous work by [2];
then specified and estimated a set of bivariate linear regressions of revenues
on fixed and variable costs, both contemporaneous and lagged; we found evi-
dence for positive impact of variable costs on revenues on impact; afterwards,
we reviewed a part of the theory of production following [4], ch.5, stressing
the relevance of the properties of production sets, with specific reference to
the returns to scale with the cobb douglas production function; in particular,
assuming the cobb douglas is a good fit in approximating the firm’s production
process, we tried to find out whether the returns to scale have been for the
past ten years of operations, increasing, decreasing or constant, depending on
the magnitude of the summed exponents of the production function, namely
whether greater or smaller than one; we found a mixed evidence.

while basing the inference on the cobb douglas with only capital and
labour as inputs leads us to accept the hypothesis of increasing returns to
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scale12, adding as an additional input the purchase of raw materials, conducts
us towards accepting the hypothesis of decreasing returns to scale, with this
last variable driving most of the effect of production, both for the regression
estimated in level and for the one in logarithms.

due to the relevance of the raw materials in the business operations of such
a firm, we are more prone to pend towards the second set of results: that it
has decreasing returns to scale.

more research is needed on this topic, perhaps on estimating the returns
to scale of entire sectors of activity as well as trying to estimate some other
production functions such as the constant elasticity of substitution one.

Supplementary information. The paper has an appendix with the STATA
code and data set used to produce the estimation reported in the main text
as well as the MATLAB code written to produce the figures contained in the
paper.
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An appendix contains supplementary information that is not an essential part
of the text itself but which may be helpful in providing a more comprehen-
sive understanding of the research problem or it is information that is too
cumbersome to be included in the body of the paper.

12for both the function in levels and in natural logarithms.
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Fig. A1 revenues, variable and fixed costs for t = 2011, . . . , 2021
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Fig. A2 variable and fixed costs for t = 2011, . . . , 2021
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Fig. A3 revenues, variable and fixed costs for t = 2011, . . . , 2021
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Fig. A4 revenues, capital, disaggregated labour cost
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Fig. A5 revenues, capital, labour
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Fig. A6 revenues, capital, labour costs and purchases of raw materials
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Fig. A7 sample autocorrelation functions
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