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Chapter 1

Static Optimization

Preliminary definitions ⇒ min/max.

Let x∗ ∈ Rn, n > 1, r > 0, E ⊆ Rn, d(x, y) be a distance on Rn.
Two types of distance: (1) Euclidean distance⇒ d(x, y) = ‖x − y‖; (2)
Manhattan distance⇒ d(x, y) =

∑n
i=1(xi − yi).

x∗ is called an interior point of E if and only if there is r > Q such that
B(x∗, r ⊂ E).

Take an open ball B(x∗, r) centered at x∗, with radius r ≡ the set
{y|d(x∗, y) < r}, x∗ is the interior part of E, if ∃r s.t. (x∗, r) ⊆ E ⇔
x∗ ∈ into(E).

Local/relative maximum ⇒ f∗ attains a maximum or a minimum at
x∗ if ∃ a neighbourhood V s.t. ∀x ∈ V dominium of f , f(x) ≤ f(x∗).

Global/absolute maximum ⇒ with strict inequalities.

1.1 Free Optimization

Let f : D ⊆ ℜn → ℜ : x → f(x).

1.1.1 Real functions of one real variable (n=1)

THEOREM A.1.1: First order necessary condition: if f is differen-
tiable at x∗, and x∗ is a local maximizer or minimizer of x, them f ′(x∗) = 0.

PROOF: for a maximizer ⇒ f attains a local maximum at x∗ ⇒ ∃V s.t.
∀x ∈ V, f(V x) ≤ f(V x∗). x = x∗+h, h ≤ r ⇒ f(x∗+h)−f(x∗) ≤ 0, ∀h ≤ r.

R.H.S. lim>h→0
f(x∗+h)−f(x∗)

h = f(x∗) ≤ 0 (Def. of a derivative).
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4 CHAPTER 1. STATIC OPTIMIZATION

L.H.S. lim<h→0
f(x∗+h)−f(x∗)

h ≤ 0 = f ′(x∗) ≥ 0. �

Remark. this is a necessary, not a sufficient condition!

THEOREM A.1.2: second order sufficient condition.

If f is C2 in a neighborhood of x∗, an interior point of D, and if x∗ is a
stationary point of f (⇔ ∂f(x∗)

∂x = 0), then:

PROOF. f(x) = x∗. Taylor expansion ⇒ f if C2 in a neighbourhood
of x∗ ⇒ ∃θ ∈ [0, 1], f(x∗ + h) = f(x∗) + hf ′(x∗) + 1

2h
2f ′′(x∗ + θh). Re-

call that a second order Taylor expansion if f(y) = f(x) + (y − x)f ′(x) −
1
2(y − x)2f ′′(C) ⇒ with an error term ⇒ C ∈ [x, y] → f(x∗ + h)− f(x∗) =
1
2h

2f ′′(x∗ + θh) if h is small enough, because f ′′ is continuous.
f ′′(x) ≥ 0 by assumption ⇒ x∗ is a minimizer, ∀h.�

THEOREM A.1.3. if f is continuously differentiable up to an order
n, (n ≥ 2) and if for x∗

∫
D, we have f ′(x∗) = 0, f ′′(x∗) = 0, ..., fn−1(x∗) =

0, fn(x∗) = 0 ⇒ if n is even, a maximum occurs at x∗ if f ′′(x∗) ≤ 0. If n is
odd, f has neither a maximum nor a minimum at x∗.

Idea: f(x∗ + h)− f(x∗) = 1, fn(x∗)hn > 0, if n even.
Take some Taylor expansions:
- n even : 1

n!h
nfn(x∗ + θ ∗ h);

- n odd: 1
n!h

nfn(x∗ + θ).

1.1.2 Real functions of n(>1) real variables

THEOREM A.2.1: First order necessary conditions. Let x∗
∫
D.

If f is differentiable at x∗, if f attains a relative maximum at x∗, then
∂f
∂xi

(x∗) = 0, ∀i = 1, ..., n (or ▽f(x∗) = 0).1

PROOF - for a maximum. If a maximum of f occurs at x∗, an
interior point of D, then ∃r > 0 such that ∀x ∈ B(x∗, r), f(x) ≤ f(x∗).
From there, ∀i = 1, ..., n: f(x∗1, x

∗
2, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
n) ≤ f(x∗), ∀xi ∈

]x∗i − r;x∗i + r[.
The f.o.c. (theorem A.1.1) relative to functions of one variables can be
applied yielding

∂f

∂xi
(x∗) = 0∀i = 1, ..., n.� (1.1)

1Differentiability of f is ”too strong” as a condition, just ∃ of the partial derivative is
needed.



1.1. FREE OPTIMIZATION 5

THEOREM A.2.2: Second order sufficient conditions. If f∗ is
C2 in a neighborhood of x∗, if x∗ is a stationary point of f and if:

(i) Hf(x∗) is positive definite ⇒ a relative maximum occurs (f is con-
vex);

(ii) Hf(x∗) is negative definite ⇒ a relative minimum occurs (f is con-
cave).

Hf(x∗) ≡ the Hessian matrix of f at x∗ ⇒ cross 2nd partial derivatives.

Recall: a matrix is p.d. if all leading principal minors are > 0, or alls
eigenvalues are strictly> 0. Positive semi-definiteness⇒ suppress ”strictly”.
Negative definiteness ⇒ if all minors alternate in sign (-) (+), thus are all
< 0.

Idea of the proof : Taylor expansion: (1) exact error term (justifies
that Hf(x∗+ θh) stays positive forever); (2) (notes) generic error term goes
to zero faster that h does.

Global maxima (minima) ⇒ three ways:

1. A function that is continuous on a compact set (in Rn, this is equiv-
alent to a bounded and closed set), attains a global maximum and a global
minimum on that set. You can thus find maxima on a case by case basis,
ex. f(x) = x2.

2. If f ∈ C2 in his domain D, that is an open and convex subset of Rn

⇒ if f is strictly concave (convex) on D, and ▽f(x∗) = 0 ⇒ f has a global
maximum (minimum) at x∗.

Reminders. For n = 1 ⇒ f ∈ C2(D), D open and convex (concave)
subset of Rn, then f is concave (convex) if ∀x ∈ D, f

′′

(x) ≤ 0 (resp ≥ 0).
For n > 1 ⇒ f ∈ C2(D), D open and convex subset of Rn, then f is concave
if ∀x ∈ D, Hf(x) is negative semidefinite.

Counterexample. f(x) = 1
x is not continuous, closed and bounded.

On the contrary f(x) = ex is continuous, closed and unbounded: hence no
max nor min.



6 CHAPTER 1. STATIC OPTIMIZATION

1.2 Constrained Optimization

1.2.1 Real function of one variable, ”positivity constraints”

Let f : R → R : x → f(x), where f is differentiable. Problem:

maxxf(x)s.t.x ≥ 0

minxf(x)s.t.x ≥ 0.

Two types of maxima are possible:

1. at a point x∗ > 0. Then, as before, we have f ′(x) = 0;

2. at a point where x∗ = 0. Only the right side neighborhood of x∗ can
be taken into account and f must decrease (or increase) ⇒ f ′

rhs(x
∗) ≤ 0

(≥ 0).

Theorem A.2.1 - FONC. If f is differentiable at x∗, an interior point
of D, and if local max (min) of f subject to x ≥ 0 occurs at x∗, then
x∗f ′(x∗) = 0, x∗ > 0 and f ′(x∗) ≤ 0 or (> 0).

Proof. As in the unconstrained case. �

Theorem A.2.2 - SOSC. If f is C2 in the neighborhood of x∗, interior
point of D, if x∗ > 0 is a stationary point of f , then:

1. if f ′′(x∗) > 0, a local min of f subject to x ≥ 0 at x∗.

2. if f ′′(x∗) < 0, a local max of f subject to x ≥ 0 at x∗.

If x∗ = 0, then:

1. if f ′(x∗) > 0, a local min of f subject to x ≥ 0 at x∗;

2. if f ′(x∗) < 0, a local max of f subject to x ≥ 0 at x∗.

Example. Optimize f(x) = x2 − 5x+ 6 subject to x ≥ 0.

x∗f ′(x) = 0 ⇔ x∗(2x− 5) = 0

⇔ x∗ = 0 ⇔ x∗ =
5

2
. (1.2)
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f ′′ = 2 > 0 ⇒ 5
2 is a local minimum.

f ′(0) = −5 < 0 ⇒ 0 is a local maximum.

1.2.2 Real functions of n(> 1) real variables - ”positivity con-
straints”

.

Problem. maxx∈Df(x) subject to x ≥ 0, (∀i, xi ≥ 0). Let f : D ⊂
Rn → R : x → f(x).

Theorem A.3.1 - FONC. If f is differentiable at x∗, an interior point
of D, and if a max (min) of f subject to x≥0 occurs at x∗, then ∀i = 1, ..., n,

x∗i
∂f

∂x
(x∗) = 0, x∗i ≥ 0,

∂f

∂x
(x∗) ≤ 0(≥ 0).

Remark. In some situations not all variables need to be restricted as
≥ 0. The positivity constraint holds for all xi ≥ 0, ∀i ∈ {1, ...,m} where
m < n. Then the necessary condition becomes:

xi∗i
∂f

∂xi
(x∗) = 0, ∀i = 1, ..., n

∂f

∂xi
(x∗) = 0, ∀m 6= 1, ..., n

x∗i ≥ 0, ∀i =, ...,m

∂f

∂xi
(x∗) ≤ 0 (1.3)

Theorem A.3.2 - SOSC If f is C2 in the neighborhood of x∗, an interior
point of D, then:

1. if x∗ > 0 is a stationary point, then Hf(x∗) is a positive (negative)
definite matrix, f attains a local maximum (minimum) at x∗.

2. If x∗ = 0 is a stationary point, the if ∀i = 1, ..., n, ∂f
∂xi

(x∗) > 0, f
attains a local minimum at x∗ (resp. max).

Examples. a. f(x1, x2) = 3x1 + 2x2 s.t. x1, x2 ≥ 0.
b. f(x1, x2) = (x1 − 1)2 + (x2 − 2)2 s.t. x1, x2 ≥ 0.
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Solutions. a.

x∗1(2(x
∗
1 − 1)) = 0

x∗2(2(x
∗
2 − 2)) = 0

. (0,0)

∂f

∂x1
(0, 0) = −1 < 0

∂f

∂x2
(0, 0) = −2 < 0

⇒ local max.
. (0,2)

∂f

∂x1
(0, 2) = −1 < 0

Hf =
∂2f

∂x22
(0, 2) = 2 > 0

⇒ saddle point.
. (1,0)

∂f

∂x1
(1, 0) = −4 < 0

Hf =
∂2f

∂x22
= 2 > 0

⇒ saddle point.

1.2.3 Real functions of n(> 1) real variables subject to m < n

equality constraints

. Let f : D ⊂ Rn → R : x → f(x), gj : D ⊂ Rm → R : x → gj(x),
j = 1, ...,m, c ∈ Rm.

Problem. maxx∈Df(x) subject to gj(x) = cj , ∀j = 1, ...,m.
Theorem FONC - n=2, m=1 If f and g are C1 in the neighborhood

of x∗, an interior point of D, such that ▽g(x∗) 6= 0. If a max (min) of f
subject to g(x) = c occurs at x∗, then there exists a λ∗ ∈ R such that

▽f(x∗) = λ∗ ▽ g(x∗). (1.4)
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In other words, we may set up a Lagrangian equation, containing the ob-
jective function and the constraint with attached a Lagrangian multiplier
λ, L(x, λ) = f(x) − λ(g(x) − c) then we have λ∗ ∈ R ... and we have one
solution for λ:

λ∗ =

(
∂f
∂x2

(x∗)
∂g
∂x2

(x∗)

)

.

It remains to show that this value of λ∗ satisfies as well equation ∂f
∂xi

(x∗)−
λ ∂g
∂xi

(x∗) = 0. From the implicit function theorem, we know that we have
equation g(x)− c = 0 verified by x∗, this is equivalent to an equation x2 =
h(xi) in the neighborhood of x∗.
Furthermore, we know that h(x1)− c = 0 and we have g(x1), h(x1)− c = 0.
Differentiating both sides w.r.t. x1:

∂g

∂x1
(x1, h(x1)) +

∂g

∂x2
(x1, h(x1))h

′(x1) = 0 (1.5)

.

In particular this holds for x1 = x∗1. So, function of one variables F (x1) =
f(x1, h(x1)) attains an optimum at x∗1, which is an interior point of D ⇒
F ′(x∗1) = 0 ⇔ ∂g

∂x2
(x∗1, h(x

∗
1)) +

∂f
∂x2

(x∗1, h(x
∗
1))h

′(x∗1) = 0. From [1] ∂f
∂x!

(x∗) +

λ∗ ∂g
∂x2

(x∗)h′(x∗1) = 0. Multiplying eq. [2] by λ∗ and substituting eq. [4]
yields

λ∗ ∂g

∂x1
(x∗)− ∂f

∂x1
(x∗) = 0. (1.6)

Note. We may wish to give some economic interpretation to this La-
grangian multiplier λ. Notice that ▽f(x∗) is tangent to ▽g(x∗) and λ is
just a coefficient multiplying it. If

Λ = f − λ(g − c) = f + λ(c− g)
n∑

i=1

∂f

∂xi

∂λ∗
i

∂c
=

n∑

i=1

λ
∂g

∂x

∂λ∗
i

∂c
.

The optimal solution is a function that depends on c. We know that we
have g(x∗) = c, hence ∂g(x∗)

∂c = 1. And so ∂f(x∗(c))
∂c = λ ∗ 1 = λ, so λ is the

impact of f when changing c. In economic terms, this means that λ is the
shadow price that you are willing to pay to relax the constraint.
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Theorem 2 - SOSC. If f and g are C2 in the neighborhood of x∗, an
interior point of D such that ▽g 6= 0 and such that the Λ(x, λ) = f(x) −
λg(x − x), then there exists λ∗ ∈ R such that ∂Λ

∂x1
(x∗1, λ

∗) = ∂Λ
∂x2

(x∗, λ∗) =

0 = ∂Λ
∂λ .
Then, the bordered Hessian matrix,

det







0 ∂g
∂x1

∂g
∂x2

∂g1
∂x1

∂2Λ
∂x2

1

∂2Λ
∂x1∂x2

∂g2
∂x2

∂2Λ
∂x2

2

∂2Λ
∂x2∂x1







. (1.7)

If detH̃ > 0, f attains a local maximum at x∗; if detH̃ < 0, then f reaches
a minimum at x∗. Proof. Intuition: same as in Theorem 1, just applied to
F ′′(x1), where F (x1) = f(x1, h(x1)). First point exactly the same as thm 1.
Assume ∂g

∂x2
(x∗) 6= 0. Then set:

∂g

∂x1
(x∗1, h(x

∗
1)) +

∂g

∂x2
(x∗2, h(x

∗
2))h

′(x∗1) = 0. (1.8)

F ′(x1) = 0 ⇔ ∂f

∂x1
(x∗1, h(x

∗
1)) +

∂f

∂x2
(x∗1, h(x

∗
1))h

′(x∗1) = 0. (1.9)

Thus, (1.8) + (1.9)−λ∗, we get:

F ′(x1) =
∂Λ

∂x1
(x∗1, h(x

∗
1)) +

∂Λ

∂x2
(x∗1, h(x

∗
1))h

′(x∗1); (1.10)

differentiating both terms w.r.t. x, we get:

F ′′(x1) =
∂Λ

∂x21
(x∗, λ∗) + Λ

∂2Λ

∂x1∂x2
(x∗, λ∗)h′(x∗1) +

∂2Λ

∂x22
(x∗, λ∗)[h′(x∗1)]

2 +
∂Λ

∂x2
(x∗, λ∗)h′(x∗1).

(1.11)

From (1.9) we have that h′(x∗1) = −∂g/∂x1(x∗)
∂g/∂x2(x∗) 6= 0. Substituting this in

equation (1.11):

F ′′(x)1 =
1

[ ∂g
∂x2

(x∗)
]2

[
[ ∂g

∂x2
(x∗)

]∂2Λ

∂x21
(x∗, λ∗)− 2

∂2Λ

∂x1∂x2
(x∗, λ∗)

∂g

∂x2
(x∗)

]

(1.12)

The expression between brackets is the exact negative of the determinant
of the ”bordered Hessian” given in the Theorem 2.
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1.2.4 n>2 and m<n

FONC. Let f, gj : D ⊂ Rn → R : x → f(x), gj(x), ∀j = 1, ...,m and c ∈ Rn.
If fa and g are C1 in a neighborhood of x∗, and an interior point of D such
that the rank of the Jacobian matrix Ig (the Jacobian matrix of the Gj ’s)
at x∗ is m. If a max or a min of f subject to constraints gj(x) = cj occurs
at x∗ and if

Λ(x, λ) = f(x)−
m∑

j=1

λj(gj(x)− c), (1.13)

then

∃λ∗ ∈ Rm : ∀i = 1, ..., n,
∂Λ

∂xi
(x∗, λ∗) = 0. (1.14)

Note. The Jacobian:

Ij =

[
∂g1
∂x1

... ∂g1
∂xn

∂gn
∂x1

... ∂gn
∂xn

]

. (1.15)

Proof. Exactly as in 1.2.3.a (Theorem 1, just until we have more con-
straints and more variables).

Theorem 2 - SOSC. If f and g are C2 in a neighborhood of x∗, be-
ing an interior point of D, at which the Jacobian is of rank n and s.t. if
Λ(x, λ) = f(x)−∑m

j=1 λj(gj(x)−cj), there exists a λ
∗ ∈ Rm s.t. ∀i = 1, ..., n,

∂Λ
∂xi

(x∗, λ∗) = 0 and if ∀j = 1, ...,m ∂Λ
∂λj

(x∗, λ∗) = 0. Then the bordered Hes-

sian, look like:

H̃(x∗, λ∗) =









0 0 ∂g1
∂x1

... ∂g1
∂xn

0 0 ∂gm
∂x1

... ∂gm
∂xn

∂g1
∂x1

... ∂gm
∂xn

∂2Λ
∂xi∂xj

∂2Λ
∂xi∂xj

∂g1
∂x1

... ∂gm
∂xn

∂2Λ
∂xi∂xj

∂2Λ
∂xi∂xj









(1.16)

If the n − m last principal minors alternate in sign and if |H̃m+1(x
∗, λ∗)|

has some sign as (−1)m+1, then f attains a local maximum subject to the
constraint gj(x) = cj at x∗.

If those principal minors all have the same sign as (−1)m+1, there is a
local minimum at x∗ subject to the constraint gj(x) = cj .

Without proof.
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1.2.5 Real functions of n > 1 variables and m < n equality
constraints and positivity constraints.

Teorem 1. Let f, g : D ⊂ Rn → :x → f(x), gj(x) with gj(x) = cj and
x ≥ 0. If f and gj are C2 is the neighborhood of x∗, is a n interior of D,
at which the Jacobian is of maximal rank (where the indexes i correspond
to those of strictly positive x’s). If f subject to gj(x) = cj with j = 1, ...,m
and x ≥ 0 attains a local maximum (minimum) at x∗, then:

Λ(x, λ) = f(x)−
m∑

j=1

λj(gj(x)− cj) (1.17)

, there exists λ∗ ∈ Rm such that:

xi∗i
∂Λ

∂xi
(x∗, λ∗) = 0

x∗i ≥ 0

∂Λ

∂xi
(x∗, λ∗) ≤ 0

∀i = 1, .., n.
No proof.

Example. Maximize U(x1, x2) = (1 + x1)(1 + x2) subject to 4x1 + x2 = 1
and x1 ≥ 0, x2 ≥ 0. Solution: Λ(x, λ) = (1 + x1)(1 + x2)− λ(4x1 + x2 − 1),
which yields the following f.o.c.s x∗1(1+x∗2−4λ) = 0, x∗2(1+x∗1−λ) = 0, and
4x∗1 + x∗2 = 1. Rewrite this system of equations as: x∗1(2 − 4x∗1 − 4λ∗) = 0,
(1−4x∗1)(1+x∗1−λ) = 0, and x∗2 = 1−4x∗1.  1. x∗1 = 0 from first equation;
which implies that λ∗ = 1; which means that x∗2 = 1 ⇒ ∂Λ

∂x1
(0, 1, 1) = −2 < 0

and ∂Λ
∂x2

(0, 1, 1) = 0 ≤ 0. Ok, local max. 2. x∗1 = 1/4 from second equation

⇒ λ∗ = 1/4 ⇒ x∗2 = 0 ⇒ positivity constraint ok. ∂Λ
∂x1

(1/4, 0, 1/4) ≥ 0,
∂Λ
∂x2

(1/4, 0, 1/4) = 0 ≥ 0  local min. 3. x=1 1/2 ⇒ (−1+4λ)(3/2− 2λ) = 0
⇒ λ = 1/4, x1 = 1/4, x2 = 0 or λ = 3/4, x1 = −1/4 not good! 4.
x1 = λ = 1, x1 = 0, x2 = 1 or λ = 3/4, x1 = −1/4 < 0, not good!

1.2.6 Real functions of n > 1 variables with inequality con-
straints (Kuhn and Tucker I).

Let f, gj : D ⊂ Rn → R : x → f(x), gj(x), where b ⊂ Rn, ∀i = 1, ...,m. We
will look at the problem wherem = 1. Problem: maxx∈Df(x) s.t. g(x) ≤ b.
The essential breakthrough considering this problem came from Kuhn and
Tucker, who proposed to look at it as an equality constraint. This was
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because at that point, the equality constraint case was already known how
to be solved. They added a so called ”slack” variable z to the problem, which
reflects the difference between the left hand side and the right hand side of
the inequality constraint. Since, when g << 0, it will need to be brought
up to zero, and for this we need to add a positive quantity to the left hand
side. The result of the transformed problem is maxx∈Df(x)s.t.g(x)+z2 = b.
(This subsection of the program is different than that of last year). Then
you can just set up a Lagrangian, Λ(x, λ) = f(x) + λ(b− g(x)− z2). Set of
variables is {x, z, λ}. The F.O.C. are:

∂Λ

∂xi
= fi − λi = 0

;
∂Λ

∂z
= −2λ2 = 0;

∂Λ

∂λ
= −(g(x) + z2) = 0.

If λ < 0, we have a problem  λ ≥ 0. Since the second F.O.C. is
equivalent to −λz2 = 0 (by multiplication of 2/2) we can incorporate the
third F.O.C. into this λg(x) = 0. Knowing that z2 = b− g(x), b assumed
to be zero  b ≥ g(x)  

fi − λgi = 0

λg(x) = 0

λ ≥ 0

b ≥ g(x).

Example. maxx∈Dbx1x2 such that 2x1+x2 ≤ 10. Write the Lagrangian
as Λ = 6x1x2 + λ(10− 2x1 − x2 − z2) → λ ≥ 0. Kuhn and Tucker condition
implies that ∂Λ

∂x1
= 0 ⇒ 6x2 − 2λ = 0 and ∂Λ

∂x2
= 0 ⇒ 6x1 − λ = 0,

also ∂Λ
∂z = 0 ⇒ λ(10 − 2x1 − x2) = 0. So 2x1 + x2 ≤ 10. Case 1:

λ > 0 ⇒ 6x2
6x1

= 2 ⇒ x2 = 2x1. λ 6= 0 ⇒ 2x1 + x2 = 0 ⇒ x1 = 2 − 5,
⇒ x2 = 5. Check the inequality 2 × 2.5 + 5 ≤ 10, ok, then f(2.5, 5) > 0.
Case 2: λ = 0 ⇒ x1 = x2 = 0 and the inequality 2 × 0 + 0 ≤ 10, ok,
f(0, 0) = 0.
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1.2.7 Real function of n > 1 variables with inequality con-
straints and positivity constraints (Kuhn and Tucker
II).

Let f, g : D ⊂ Rn → R : x → f(x), gj(x), j = 1, ...,m and c ∈ Rm. If
f and g are C1 in the neighborhood of x∗, an interior point of D, such
that the Jacobian calculated in x∗ has maximum rank. If f subject to
the constraints gj(x) − cj ≤ 0 and x ≥ 0 attains a max (min) at x∗ if
Λ(x, λ) = f(x)−∑m

j=1 λj(gj(x)− cj). Then there exists λ∗ ∈ Rm such that
∂Λ
∂x1

(x∗, λ∗) ≤ 0, x∗i ≥ 0 and x∗i
∂Λ
∂x1

(x∗, λ∗) = 0. And ∂Λ
∂λj

(x∗, λ∗) = 0, λj ≥ 0

and λ∗
j
∂Λ
∂λj

(x∗, λ∗) = 0.

Example. Maxx,yf(x, y) = 2x+ 2y − x2 − y2 s.t. x+ y ≤ 1, and x, y ≥ 0.
Λ(x, y, λ) = 2x+2y−x2−y2−λ(x+y−1), take the first partial derivatives
w.r.t. to the different variables of the model and get x(2 − 2x − λ) = 0;
y(2 − 2y − λ) = 0; and λ(x + y − 1) = 0. Case 1: (0, 0, 0); case 2.
(0, 0, x+y = 1) contradiction; case 3. (0, 1, 0); case 4. (0, 1, x+y = 1) 
(0,1,0); case 5. 2 − 2x − λ = 0, λ = 0, y = 0, x = 0  (1,0,0). case 6.
2−2x−λ = 0, y = 0, x+y = 1 (1,0,0); case 7. 2−2−λ = 0, 2−2y−λ = 0,
λ = 0 contradiction; case 8. 2− 2x− λ = 0, 2− 2y − λ = 0, x+ y = 1,
x = y = 1

2 , (
1
2 ,

1
2 , 1).

1.3 Errata corrige

Inequality constraints (Kuhn -Tucker). Equality maxxf(x) s.t. g(x)− z2 =
b. Lagrangian Λ(x, λ) = f(x) + λ(b − g(x) − z2). FOC ⇒ ∂Λ

∂λ = 0 ⇒
(b− g(x)− z2) = 0 ⇒ −[g(x) + z2 − b] = 0.



Chapter 2

Envelope Theorems and
Integrals

2.1 Integrals

In economics, we mainly use integrals for two purposes:
i. to compute the primitive of a given function, e.g. we have the marginal
profit and we want to reconstruct profit function to retrieve the state vari-
ables y(t). The fundamental theorem of calculus says that

∫ x
a f(t)dt = F (x)

and F ′(x) = f(x). We can go back and forth, using derivatives and inte-
grals. The only information that probably we lose is the additive constant,
allied constant of integration.
Note: i. to deal with the constant of integration you need boundary con-
dition; ii. it is needed that f is continuous to obtain differentiability of F .
Example: f : x →= 1if0 ≤ x < 1; 2if1 ≤ x ≤ 2.
We can compute the integral, given the property

∫ b
a f =

∫ c
a f +

∫ b
c f . For

example, if
∫ 2
0 f(t)dt =

∫ 1
0 f(t)dt+

∫ 2
1 f(t)dt = [t]10 + [2t]21. So, at each sep-

arate integral, we obtain a differentiable function. However, gluing the two
together gives us a non-differentiable function. And this is only at the point
1. F : t → t if 0 ≤ t < 1 and 2t if 1 ≤ t ≤ 2. If f is not continuous, cut it in
parts and remember that you can only obtain non differentiability in points
where you cut.
ii. The second application is to compute ”continuous sums”. In dynamic
optimization we often have to sum the y(t) for any t ∈ 0, T [. This can
be seen as an infinite, continuous sum and to compute it we use inte-
grals

∫ T
0 y(t)dt. So, for example consider,

∫ b
a f(t)dt = surface between a

and b and f and the x-axis. Rienmann integral tells you that you have

15
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to partition the integral into infinitesimal parts and then sum their areas
up in order to approach more and more the function and have less and
less empty spaces between the rectangles and the graph of the function.
Lower sums s(f, P ) =

∑n
i=1(xi − xi−1) inf[xi−1, xi] or too big  upper

sum S(f, P ) =
∑n

i=1(xi − xi−1) sup[xi−1, xi]. A function is then said to
be Rienmann-integrable if and only if limP s(f, P ) = limPS(f, P ), meaning
that approximations should tend to the same number.
Remarks: i. this method only works if and only if f is bounded. Other-
wise, the sum could be equal to ∞; ii. a strange way to reformulate the
surface is saying that you ”add up the lines”.
Some properties:

∫ b
a =

∫ c
a f +

∫ b
c f ;

∫ b
a kf = k

∫ b
a f ;

∫ b
a fg 6=

∫ b
a f
∫ b
a g1.

2.1.1 Main tricks for integral calculation.

i. Substitution. This is simply reformulating the integral such that you
recognize the primitive. E.g. we all know that

∫
etdt = et + te. But

first sight,
∫
(3t2 + 2t)et

3+t2dt can seem complicated. We may simply in-
troduce a new variable y = t3 + t2, then dy = (3t2 + 2t)dt and so we get
∫
(3t2 + 2t)et

3+t2 =
∫
eydy = ey + cte = et

3+t2 + cte.
Remarks: i. it is not allowed to use y and t at the same time; ii. normally,
you end the computation by going back to your original variable; iii. inspi-
ration for a good substitution comes from known integrals.
Exercises: 1.

∫ 1
0

t
t2+1

dt; 2.
∫ 1
0

t3

t2+1
dt.

1. Let ẏ = t2 + 1  dy = 2tdt. t = 0  y = 1 , t = 1  y = 2.
∫ 1
0

t
t2+1

= 1
2

∫ 2
1

1
ydy = 1

2 [lny]
2
1 =

ln2
2 .

ii. Partial Integration.2 This trick stems from of insight of taking
differentials: d

dx(f(x)g(x)) = df(x)
dx g(x) + f(x)dg(x)dx  

∫
d
dx(f(x)g(x)) =

∫ df(x)
dx g(x) +

∫
f(x)dg(x)dx , then by the fundamental theorem of calculus we

have that f(x)g(x) =
∫ df(x)

dx g(x) +
∫
f(x)dg(x)dx and thus

∫ df(x)
dx g(x)dx =

f(x)g(x) −
∫
f(x)dg(x)dx dx. So if your integral can be written as something

like the l.h.s., we can replace it by the r.h.s.
Example:

∫
tetdt =

∫
det

dt tdt = ett−
∫
et1dt = et − et + c.

Note: this trick is often used is one has some exponential functions. Inspi-
ration come from the fact that you want to eliminate g by taking derivatives.
Example:

∫ 1
0 sin(2πt)etdt  df = sin(2πt)  f = −1

2π cos2πt, thus g = et

 dg = et, the original expression is equal to
[

1
2π cos(πt)e

t
]1

0
+
∫

1
2π cos2πte

tdt,

1By chain rule, for composite functions you have  (fg)′ = f ′g + fg′.
2Also known as integration by parts.
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recall that df = cos2πt  f = 1
2πsin2πt, then we get:

[
− 1

2π cos2πte
t
]1

0
+

1
2π

[[
1
2πsin2πte

t
]
−
∫ 1
0

1
2π2πte

tdt
]

=
[(
− 1

2π cos2πt+
1

4π2 sin2πt
)
et
]1

0
− 1

4π2

∫ 1
0

1
2πsin2πte

tdt

⇒
∫ 1
0 sin(2πt)etdt = − 1

1+ 1
4π2

(
1
2πe

1 − 1
2π

)
.

2.1.2 Extensions

Improper Integrals

As a standard definition we use bounded functions on bounded intervals. As
such it is obvious that we will obtain a finite surface. But what if our time
horizon goes to infinity or our function is unbounded. E.g.

∫ 1
0

1
t dt,

∫∞
1

1
t2
dt,

∫∞
0

1
t dt. We can still compute integrals, we may simply may the functions

and integrals bounded by cutting off the interval and in a second step taking
limits. Example:

∫ 1
0

1
t dt = lima→0

∫ 1
a

1
t dt = lima→0[ln t]

1
a = lima→0− ln a.

∫∞
1

1
t2
dt = lima→+∞

∫ a
1

1
t2
dt = lima→+∞

[
1
t

]a

1
= lima→+∞

(
− 1

a + 1
)
= 1.

Remark: so it can be an infinite or a finite number.
Exercise:

∫∞
0

1
xndx with n 6= 1.

Solution:
∫∞
0

1
xndx =

∫ 1
0

1
xndx +

∫∞
1

1
xndx  

∫ 1
0

1
xndx = lima→0

1
1−n +

a1−n

n−1 = 1
1−n if n < 1 and = ∞ if n > 1. On the other side,

∫∞
1

1
xndx =

lima→+∞
[
x−n+1

−n+1

]

= lima→+∞ a−n+1

−n+1 + 1
n−1 = 1

n−1 if n > 1 and = +∞ if

n < 1.

Integrals with multiple variables

In a similar way as far as for simple variable functions you define lower and
upper sums, but you now have to partition a rectangle instead of an interval.
E.g. n = 2 [a1, b1]×[a2, b2]. Otherwise

∫ b1
a1

∫ b2
a2

∫ b3
a3

...
∫ bn
an

f(x1, ..., xn)dxn, ..., dx1.

Example:
∫ 1
a

∫ 4
3 (x

2ty2)dydx =
∫ 1
a [x

2y+ y3

3 ]
4
3dx =

∫ 1
0 (4x

2+ 64
3 −3x2−9)dx =

∫ 1
0 (x

2 + 37
3 x)dx =

[
x3

3 + 37
3 x
]1

0
= 38

3 .
There is however a complication. Before it was natural to start from a given
interval, but now we start from several integration areas

∫ ∫

D f(x, y)dydx.
As long as D is a bounded set, then it can be enclosed in a rectangle and
we can switch the integrals if we know that the function is continuous (⇒
Fubini’s Thm.). D can be sometimes called regular, which means that its
boundaries are functions. For example, having two functions y = 2x and
y = x2, you want to integrate over the domain lying between the two func-
tions. You get x = y

2 and x =
√
y. D = {(x, y)|0 ≤ x ≤ 1, x2 ≤ y ≤ 2x} =

{(x, y)|0 ≤ y ≤ 1, y2 ≤ x ≤ √
y} v {(x, y)|1 ≤ y ≤ 2, y2 ≤ x ≤ 1}.
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Note: i. The order is important! A volume is a number so the function in
the boundaries should be included in the inner integrals. ii. You have to
compute several times a simple integral. So intuitively the properties for the
simple integral hold here. iii. One exception, which is substitution. This
method becomes more complicated because you have to use the Jacobian
matrix.
Example: 1.

∫ 1
−1

∫ √
1+x2

0 e(x
2+y2)dydx = x = r cos θ and y = r sin θ  y =

[

cos θ −r sin θ
sin θ r cos θ

]

and dydx = |J |drdθ = r(cos2 θ + sin2 θ)drdθ = rdrdθ.

Then (∗)(∗) =
∫ 1
0

∫ π
0 rer

2
dθdr =

∫ 1
0 πrer

2
dr = π

2

[
er

2]1

0
= π

2 (e
1 − 1).

Compute
∫ ∫

D
x
y e

ydxdx  
∫ 1
0

∫ √
y

y
x
y e

ydxdx =
∫ 1
0

[
x2ey

2y

]√y

y
dy =

∫ 1
0

[
ey

2 +

yey

2

]
dy =

[
ey 1+y

2

]1

0
−
∫ 1
0

ey

2 dy = e − 1
2 −

[
ey

2

]1

0
= e

2 − 1. Second part is
∫ 1
0

∫ x
x2

xey

y dydx =
∫ 1
0 x(

∫ x
x2

ey

y dy)dx.
Exercises:
1. d

da

∫ b
a 3et

2
dt;

2. d
dx

∫ e2

x2 sin txdt;

3. d
da

∫ lnx
5 (t+ x)2dt;

4.
∫ 7
3

2t2+1
4t3+6t+5

dt;

5.
∫ 4
1 (2t+ 5)et

2+3dt;

6.
∫ 4
1 t ln tdt;

7.
∫ 1
0 t2e3tdt;

8.
∫∞
0 e−axdx;

9.
∫ 1
0

∫ 1
0 e2x+3ydydx;

10.
∫ ∫

D(xty)dxdy with y = 3x and y = x.

Resolutions:
1. d

da

∫ b
a 3et

2
dt = 3d

da

∫ b
a etdt = d

da3
[
et
]b

a
= 3d

da(e
b − ea) = −3ea

2
, because

d
da

∫ b
a 3etdt = d

da3
∫ b
a et

2
dt = −3ea

2
.

2. d
dx

∫ e2

x2 sin txdt solve it by substitution assuming that u = tx, then
d
dx

∫ e2x

x2 sin udu = d
dx

[
− cosu

]e2x

x2 = −
[
u
t

]2
, or otherwise:

∫ e2x

x2 sin(tx)dt =
∫
sinudu = 1

x

[
− cos(tx)

]e2x

x2 = 1
x

[
− cos(e2xx) + cos(x3)

]
.

Formula for F : R+ → R : x →
∫∞
0

e−xt−e−t

t dt (Hint: compute first a for-

mula for dF
dt , i.e. derive under the sign of integral!).

∂f(x,t)
∂x =

[
e−xt−e−t

t

]′
=
[
e−xt

t − e−t

t

]′
= 1

t

[
e−xt − e−t

]′
= 1

t

[
1
ext − 1

et

]′
=

1
t

[
1

text− 1
et

]
= 1

t2ext
− 1

tet = 1
tet

[
1
tex−1

]
= 1

tet [
1−tex

tex ] = ... = t 1
text =

∫∞
0

1
extdt =
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[
+ ext

x

]∞
0

= 0
x .

dF
dxF (x) = − 1

x ⇒ F (x) = lnx+ c. F (1) = c ⇒ c = 0. Thus,
∫∞
0

e−1t−e−t

t dt.

2.1.3 Leibniz’s rules

Namely, differentiation under the sign of integral.
Fundamental Theorem of Calculus. Let f : [a, b] → R : x → f(x)
be a continuous function on [a, b]. Then, F (x) =

∫ x
a f(t)dt is a primitive

of f(x), i.e. F ′(x) = f(x), ∀x ∈ [a, b]. To prove the theorem, we need the
following lemma (mean-value theorem). Lemma. Let f be continuous on

[a, b], then ∃ a ξ ∈ [a, b] such that
∫ b
a f(t)dt = f(ξ)(a− b). Proof. Assume

m = inf [a,b] f , M = sup[a,b] f , and m ≤ f ≤ M , ∀x ∈ [a, b] ⇒ it holds

m(b − a) ≤
∫ b
a f(t)dt ≤ M(b − a) ⇔ m ≤ 1

b−a

∫ b
a f(t)dt ≤ M . As f is

continuous, it takes all the values between m and M ⇒ ∃ a ξ ∈ [a, b] s.t.

f(ξ) = 1
b−a

∫ b
a f(t)dt ⇔ (b− a)f(ξ) =

∫ b
a f(t)dt�.

Proof of the theorem. Assume x ∈]a, b[, let ∆x such that x+∆x ∈]a, b[,
then F (x + ∆x) =

∫ x+∆x
a f(t)dt ⇒ F (x + ∆x) − F (x) =

∫ x+∆x
a f(t)dt −

∫ x
a f(t)dt =

∫ x
a f(t)dt +

∫ ∆x
a f(t)dt −

∫ x
a f(t)dt =

∫ ∆x
a f(t)dt. From the

lemma, x = f(ξ)(x+∆x− x) for some ξ ∈ [x, x+∆x]. Then, F (x+∆x)−
F (x) = ∆xf(ξ) ⇒ f(ξ) = F (x+∆x)

∆x , taking limits, lim∆x→0
F (x+∆x)

∆x = f(x),
for ξ → x, since f is continuous. Same argument holds for ∆x < 0.
F ′(x) = f(x) → ∀x ∈]a, b[→ F ′(x + ∆x). For x = a → F ′

r(x) and for
x = b → F ′

l (x).

Theorem 2. Let f : [a, b] ⇒ R : t ⇒ f(t) be continuous on its domain.
Let u(x) and v(x) be differentiable functions on [c, d] ⇔ u, v : [c, d] −→
[a, b] : x −→ u(x), v(x) and d

dx

∫ v(x)
u(x) f(t)dt = f ′(v(x))v′(x) − f ′(u(x))u′(x),

∀x ∈ [c, d]. Remark. This comes generalizing the former theorem: take

u(x) = a and v(x) = x, ∀x ⇒ d
dx

∫ v(x)
u(x) f(t)dt = f(x)x′ − f(a)a′ = f(x).

Proof. Let F (x) be a primitive for f . Then, h(x) = F (v(x)) − F (u(x)).
Also h′(x) = F ′(v(x))v′(x)− F ′(u(x))u′(x)�.

Example. d
dt

∫ x2

2x+3 3t
2dt. Two ways to solve this. (1) d

dx

[
[x2]3 − (2x +

3)3
]
= 6x5 − 6(2x + 3)2. (2) Using theorem 2, we may proceed as follows

(3x2)22x− 3(2x+ 3)22 = 6x5 − 6(2x+ 3)2.

Remark. Sometimes way (1) doesn’t work. For example d
dx

∫ x2

0 e−t2dt
doesn’t have a closed form solution.

Leibniz rule #1. Let f : [c, d] × [a, b] −→ R : (x, t) −→ f(x, t) be C1 on
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[c, d]×[a, b]. Then,
∫ b
a f(x, t)dt is differentiable on [c, d] and ∂

∂x

∫ b
a f(x, t)dt =

∫ b
a

∂
∂xf(x, t)dt =

∫ b
a fx(x, t)dt.

Notes. (1) Actually, we only need f being C1 w.r.t. x and continuous w.r.t.
t. (2) The proof uses the mean-value theorem of Lagrange.
Lemma. Let g : [a, b] be continuous on [a, b], differentiable on ]a, b[ such

that g(b)− g(a) = g′(ξ)(b− a) ⇔ g(b)−g(a)
b−a = g′(ξ).

Proof. Let I(x) =
∫ b(x)
a(x) f(x, t)dt ⇒ I ′(x) = lim∆x→0

I(x+∆x)−I(x)
∆x . Then,

I(x + ∆x) − I(x) =
∫ b(x+∆x)
a(x+∆x) f(x + ∆x, t)dt −

∫ b(x)
a(x) f(x, t)dt =

∫ b(x)
a(x) [f(x +

∆x, t)− f(x, t)]dt+
∫ a(x+∆x)
a(x) f(x+∆x, t)dt−

∫ b(x+∆x)
b(x) f(x+∆x, t)dt. Now

let’s analyse the single components of the latter equality. The first block

=
∫ b(x)
a(x) f(ξ, t)(x +∆x − x)dt for some ξ s.t. |ξ − x| ≤ ∆x (M. value). The

second block = f(x+∆xξ)[b(x1+∆x)−b(x)] for some ξ ∈ [b(x)+b(x+∆x)].
Finally, the third block is transformed analogously than the second one.
lim∆x→0

I(x+∆x)
∆x = lim∆x→0

(1)
∆x

(2)
∆x

(3)
∆x = lim∆x→0

(1)
∆x + ...

lim∆x→0
(1)
∆x = lim∆x

∫ b(x)
a(x) f(ξ, t)dt =

∫ b(x)
a(x) fx(x, t)dt, ξ ∈ [x, x+∆x].

lim∆x→0
(2)
∆x = lim∆x→0 f(x+∆xξ) b(x+∆x)−b(x)

∆x = f(x, b(x))b′(x).

lim∆x→0
(3)
∆x = similar.

Leibniz rule #2. If f(x, t) is C1 on [c, d] × [a, b], if a(x) and b(x)are C1

on [c, d] with values in [a, b], the
∫ b(x)
a(x) f(x, t)dt is differentiable on [c, d] and

∀x ∈ [c, d] : a(x) ⇒ d
dx

∫ b(x)
a(x) f(x, t)dt =

∫ b(x)
a(x) fx(x, t)dt + f(x, b(x))b′(x) −

f(x, a(x))a′(x). This theorem is a fusion between the previous two.

Leibniz rule #3. Let f(x, t) ∈ C0 on [c, d] × [a, b], α, β ∈ [a, b]. The

∈β
α f(x, t)dt is differentiable with respect to α and β on [a, b] ⇒ α and
∂
∂β

∫ β
α f(x, t)dt = f(α, β). ∂

∂α

∫ β
α f(x, t)dt− f(x, α).

Proof. example → intuition.

Example. d
dp

∫ p2

0
∂
∂p [t

2(p2 − t)]dt = (p3)2(p2 − p3)3p2 =
∫ p3

0 pt2dt + 3p(1 −
p) → no!

2.2 Envelope Theorems

In any optimization problem (constrained or not), if f involves some param-
eters, one could wonder how the optimal value of the function changes as
a function of the changes in the parameters. Let f(x, α) be C1 for x ∈ D,
an open subset of ℜn, α ∈ ℜs, x = (x1, ..., xn), α = α1, ..., αs. For each α,
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consider the problem {max f ′(x, α)}. Assume that x∗(α) is a solution to
the problem of maximization, x∗(α) is C1(α).

We have d
dαs

= [f(x∗(α), α)] = ∂f
∂α(x

∗(α), α), for ∀s = 1, ..., S. Recall

that the notation ∂.
∂. differs from

d.
d. because it is suitable for partial deriva-

tives, i.e. derivatives of functions of more than one variable.

Remark: only the direct effect of αs on f is important! Not the influ-
ence it has on x∗(α).

Proof : V (α) = f(x∗(α), α) → V is C1 in α.

f(x∗(α), x∗n(α), α) ⇒
∂V

∂αs
=

n∑

i=1

∂f(x∗(α), α)
∂x1

∂x∗i (α)
∂αs

+
∂f(x∗(α), α)

∂αs
=

∂f

∂xs
(x∗(α), α).

(2.1)

Let f, gj ∈ C1 on D, open subset of ℜn, c ∈ ℜn. Assume x∗(α) is
a solution of the problem max f(x, α) subject to g(x, α) = cj . Assume
x∗(α), λ∗

j (α) (Lagrangian multipliers) are C1 on α ⇒ Jacobian matrix of

the constraints ∂gi
∂xi

(x∗(α), α) is of full column rank ∀α. Then

∂

∂αs
[f∗(α), α] =

∂L

∂αs
[x∗(α), α] , s = 1, ..., S. (2.2)

The Lagrangian equation is then:

L(x, s, α) = f(x, α) = f(x, α)−
n∑

i=1

λj [(gi)(x, α)− cj ] . (2.3)

Remark: Hotelling’s Lemma is a version of the general Envelope The-
orem.

Application: An efficient firm minimizes costs for a given output level.
The problem is Minx1,x2(p1x1 + p2x2) = C(x1, x2) such that f(x1, x2) = y

⇒ ∂C(x1,x2)
∂y = ∂L

∂y = ∂(p1x1+p2x2−λ(f(x1,x2))−y)
∂y = λ.

⇒ λ is the marginal cost of producing an additional unit of output or
the willingness to pay - shadow price - for an extra output.
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1 variable, 1 parameter ⇒ x∗(α) → x∗ = ∅(α).

x∗ ≡ stationary point→ ∂f
∂x (x

∗(α), α) = 0 → ∂2f
∂2x

(x∗(α), α) dxdα+
∂2f(x∗,α)

∂x∂α f(x∗, α)

→ dφ
dα = dx∗

dα = −
∂2f
∂x∂α

(x∗,α)

∂2f

∂x2(x∗,α)

.



Chapter 3

Differential Equations

3.1 Introduction

Definition. A differential equation as being an equation of the type

F (t, y(t)y′(t), y′′(t), ..., y′n(t))

The order of a differential equation is the highest order of differentiation
which appears in the equation. For example in

y′′ + 3y′ + 2 = 0

is of the second order. A solution to a differential equation is a function y(t)
verifying the equation. The differential equation is linear if

F (y, y, y′, ...) = y′n, fn(t) + y′n−1fn−1(t) + ...+ y′f1(t) + f0(t) = 0

The degree of a differential equation is of the highest power of the highest
derivative, e.g.

y′′ + 4y′ + y = 4 degree1 (3.1)

y′′2 + 4y′2 + y = 4 degree2

If F is linear, then it is of degree 1.
Issues. (i) We want to find all the solutions that satisfy the equation.
(ii) Solve a Cauchy Problem: find a solution y(t) meeting a set of initial
conditions y(t0) = y0, y

′(t0) = y′0, ..., y
′n−1(t0) = y′n−1, where y0, y

′
0, ...y

′n−1
0

are given numbers. (iii) Solve a limit problem: find a solution y(t) such that
y(t0) = y0, y(tF ) = yF , where y0, yF are given numbers.

23
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3.2 First order differential equations

3.2.1 Separable variables’ differential equations

Type  y′(t) = f(t)g(y), with g(y) 6= 0, f, g ∈ C0 given. Method  y′(t)
g(t) =

f(t). If y(t) is the solution in C1, then y′(t)
g(t) = f(t) ⇔

∫ t
t0

y′(t)
g(t) =

∫ t
t0
f(t).

Define y as y(t)  dy = y′(t)dt  y′(t) = dy
dt and y(t0) = t0 ⇔

∫ y
y0

dy
dt =

∫ t
t0
f(t)dt. If we assumed that

∫ dy
dt = G(y) + c and

∫
f(t)dt = F (t) + c ⇔

G(y)−G(y0) = F (t)− F (t0). Example:

y′ =
t

3y2
, y 6= 0 (3.2)

3y2y′ = t ⇔ 3(y(t))2y′(t) = t

3

∫ t

t0

y2y′dt =
∫ t

t0

tdt

∫ y

y0

y2dy =

∫ t

t0

tdt

[y3]yy0 = [
1

2
]tt0

y3 − y30 =
t2

2
− t20

2

y = [
t2

2
− t20

1
+ y20]

1/3.

From there the solution of the differential equation which corresponds to
the Cauchy problem where we have the condition y(0) = 3  t = 0  

y(t) = [ t
2

2 + 27]1/3. Example: y′ = − y
2t  

dy
dt = − y

2t  
dy
y = −2t

dt  
∫ dy

y =

−1
2

∫
1
t dt + c. If t0 > 0, y0 > 0  ln y − ln y0 = −1

2(ln t − ln t0)  ln y
y0

=

−1
2 ln

t
t0
. If t0 > 0, and y0 < 0,  ln(−y) − ln(−y0) = −1

2(ln t − ln t0)  

ln y
y0

= −1
2 ln

t
t0
 y = y0

√
t
t0
.If t0 < 0, y0 < 0 or t0 < 0 and y0 > 0

−→ always obtain y = y0

√
t
t0

but in each quadrant separately! Other

example: y′ = t3y, for y 6= 0 ⇔ y′

y = t3 ⇔
∫ t
t0

y′

y =
∫ t
t0
t3dt ⇔

∫ y
y0

dy
y =

∫ t
t0
t3dt ⇔ ln y − ln y0 = t4

4 − t40
4 ⇔ y = y0e

t4

4
− t40

4 , if y, y0 > 0. If y, y0 < 0,
you get exactly the same solution. And so the general solution is given by

y = y0e
t4

4
− t40

4 = y0e
− t40

4 e
t4

4 = Le
t4

4 .
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3.2.2 Homogeneous differential equations

Type y′ = F
[y
t

]
with F ∈ C0, t 6= 0 −→ F (t, y, y′) = y′ − g(yt ) = 0.

Method: substitution u = y
t  ut = y  y′ = u′t+ u u′t+ u = F (u) 

u′ = 1
t [F (u) − u]. And we are back to the case of separable variables.

Example y′ = − t2+y2

2ty , t, y 6= 0  y′ = −1+ y
t

2 y
t
 homogeneous differential

equation. Let u = y
t  ut = y  y′ = u′t + t  u′t + u = −1+u2

2u  u′ =
1
t [

−1+u2

2u − u]  u′ = −1
t [

1+3u2

2u ]  2u
1+3u2u

′ = −1
t  separable differential

equation  
∫ t
t0

2u
1+3u2u

′dt =
∫ t
t0
−1

t  
∫ u
u0

2u
1+3u2du = −

∫ t
t0

1
t  

1
3 ln

1+3u2

1+3u2
0
=

− ln t + ln t0  
(
1+3u2

1+3u2
0

) 1
3 = t0

t  u2 = 1
3 [(

t0
t )

3(1 + 3u20) − 1]  y2 =

t2

3 [(
t0
t )

3(1 + 3(y0y )
2) − 1]. Example y′ = t

y + y
t , with t, y 6= 0 and t, y >

 y′ = 1
y
t
+ y

t  homogeneous differential equation. Let u = y
t  ut = y  

y′ = u′t+u u′t+u = 1
u +u u′u = 1

t  
∫ t
t0
u′udt =

∫ t
t0

1
t dt 

∫ u
uo

udu =
∫ t
t0

1
t dt  

1
2(u

2 − u20) = ln t
t0
 u2 = ln t2 − ln t20 + u20 = ln t2 + c  y2 =

t2(ln t2 + c), where c = ln t20 + u20.

3.2.3 Linear differential equation

The unknown function and its first derivative are of degree one (lagged to
the power of one). Type: y′+u(t)y(t) = w(t), where u(t), w(t) ∈ C0 and we
denote this equation by [1]. Method: to find the general solution: general
solution of y′+u(t)y(t) = 0[2], the associated homogeneous equation + plus
a particular solution of the whole initial problem [1]. Let y1(t) and y2(t) be
two potential solutions of [1]. We have that y′1(t) + u(t)y1 = w(t). Taking
the difference between those two equations yields [y′1(t)−y′2(t)+u(t][y1(t)+
y2(t)] = 0. From there, if we let y3(t) = y1(t) − y2(t) be a solution of our
homogeneous equation [2]. We have a general solution. Method: (i) solving

[2] y′(t) + u(t)y(t) = 0 ⇔ y′ = −u(t)y ⇔ y′

y = −u(t). If u(t) 6= 0, we get
∫ dy

y = −
∫
u(t)dt+c. Then y > 0 or y < 0 ⇒ ln(+/−y) = −

∫
u(t)dt+c ⇒

+/ − y = e−
∫
u(t)dt+c ⇒ y = ke−

∫
u(t)dt+c, which is the general solution

of [2] with k > 0, k < 0. (ii) Finding a particular solution of [1], we have
to methods: (1) particular solution method; (2) variations of constants’
method.
Particular solution method. We assume that u(t) = a(∈ R) ⇒ this
makes the linear differential equation with constant coefficient. Thus we
have y′ + ay = w(t), a 6= 0. If w(t) = Pn(t) (polynomial of degree n)
then y(t) = Qn(t). If w(t) = Pn(t)e

ct then y(t) = Qn(t)e
ct if a 6= −c or



26 CHAPTER 3. DIFFERENTIAL EQUATIONS

y(t) = Qn(t)e
ct if a = −c. If w(t) = Pn(t)e

ct[A cosαt+B sinαt] then y(t) =
Qn(t)e

ct[k1 cosαt+ k2 sinαt].
Variation of constants. The general solution of [2] is of the following form
y(t) = kφ(t) where φ(t) is a solution to y′(t) + tu(t)y(t) = 0. One assumes
that a particular solution of [1] is y = k(t)φ(t). And so by differentiating and
substituting it in [1], a function k(t) is determined and hence a particular
solution sod [1] is found. We have y = k(t)φ(t) y′ = k′(t)φ(t) + k(t)φ′(t).
Substituting in y′+u(t)y = w(t) yields k′(t)φ(t)+k(t)φ′(t)+u(t)k(t)φ(t) =
w(t), the last two terms on the l.h.s. are equal to zero because φ(t) is a

solution of [2] ⇒ k′(t) = w(t)
φ(t) ⇒ k(t) =

∫ w(t)
φ(t) ⇒ y(t) =

[ ∫ w(t)
φ(t) dt

]
φ(t)

which is a particular solution of [1]. The general solution is therefore given
by y = ke−

∫
u(t)dt + [

∫
w(t)e

∫
u(t)dt]e−

∫
u(t)dt.

Examples. (1) y′+3y = 1 we denote it by [1]. 3 is the constant coefficient.
First step: set up a homogeneous D.E. y′+3y = 0 which is our [2], for y 6= 0

⇔ y′ = −3y ⇔ y′

y = −3 ⇔ ln y
y0

= −3t + 43t0 ⇔ y = y0e
−3t+3t0 ⇔ y =

Le−3t. Second step: finding a particular solution  particular solution
method: w(t) = 1  y(t) = α(∈ R). If y = α  y′ = 0. Substituting in
[1] y′ + 3y = 1 0 + 3α = 1 α = 1

3 . From this, we have the following
general solution y(t) = Le−3t + 1

3 . Variation of constants: From solving
[2], we have that y(t) = Le−3t. So we assume for the particular solution of
[1] that y = L(t)e−3t

 y′ = L′(t)e−3t − 3L(t)e−3t. Substitution in [1]  
L′(t)e−3t− 3L(t)e−3t+3L(t)e−3t = 0, the second two terms of the l.h.s. are
equal to zero by definition, thus L′(t)e−3t = 1 L′(t) = e3t  L(t) = 1

3e
3t.

And so the general solution for [1] is y(t) = Le−3t + 1
3e

3te−3t = Le−3t + 1
3 .

(2) y′ + 2ty = t which is our equation [1]. We solve first for y′ + 2ty =

0  y′

y = −2t  ln y
y0

= −t2 + t20  y = yoe
−t2+t20  y = ke−t2 . Here,

differently that in the previous example, we may use only the variation
of constants method. Let us assume that a particular solution of [1] is
given by y(t) = k(t)e−t2 . From there we have that k′(t)e−t2 = t, which
implies that k′(t) = tet

2
 k(t) = et

2 1
2 , by integrating without putting any

constants neither boundaries, just because we are interested in only one
solution. A particular solution to [1] is y = 1

2e
t2e−t2 ⇔ y = 1

2 . And so the

general solution is given by y(t) = ke−t2 + 1
2 .

(3) y′ − 1
t y = t is our [1] with y(1) = 2. Homogeneous D.E. is y′ − 1

t y = 0

which is our [2]. We solve [2]  y′

y = 1
t  ln y

y0
= ln t

t0
 y = y

y0
t = kt.

Variation of constants: y = k(t)t is a particular solution of [1]. y′(t) =
k′(t)t + k(t)  substitute this in [1]: k′(t)t + k(t) − 1

t k(t)t  k′(t)t = t  
k′(t) = 1  k(t) = t and so yp(t) = tt = t2. Finally, the general solution is
y(t) = kt+t2. Solving the Cauchy problem yields y(1) = 2 = k+1 k = 1,
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the unique solution of all the problem verifying the initial condition.

3.2.4 Differential equations reducible to linear equations (Bernoulli)

Type tu(t)y = w(t)ym where m ∈ R except {0, 1}, u(t), w(t) ∈ C0. Note
that if m = 0, then we are in the setting of separable D.E.; if m = 1, then
we are in the case of linear D.E. Method: obviously y(t) = 0∀t is a solution.

y(t) 6= 0, we divide our equation be ym  ẏ
ym + u(t)

yn−1 = w(t) ⇔ ẏy−m +

u(t)y1−m = w(t). Substitute y1−m = z ⇒ ż(t) = (1 − m)y−m(t)ẏ(t) ⇒
ż(t)

(1−m) + u(t)z(t) = w(t) ⇔ ż(t) + (1 −m)u(t)z(t) = (1 −m)u(t) if m 6= 1.

And this is a linear differential equation (see previous subsection).
Example. ẏ + ty = 3ty2

• y(t) = 0∀t is a solution

• y(t) 6= 0, divide by y2 and so we have ẏ
y2

+ t
y = 3t.

Let z = y−1 ⇒ ż = −y−2ẏ ⇒ −ż + tz = 3t ⇔ ż − tz = −3t ⇔ ż =
t(z − 3) ⇔ ż

z−3 = t, for z 6= 3. If so, then is z > 3 ⇒ ln(z − 3) = t2

2 + c,

with c ∈ R, Rightarrowz − 3 = e
t2

2
+c ⇒ z = ke

t2

2 + 3, for k > 0. If

z < 3 ⇒ ln(3 − z) = t2

2 + c ⇔ z = ke
t2

2 + 3, with k < 0. General solution

ż = t(z − 3) is z = ke
t2

2 + 3. Therefore y(t) = 1

ke
t2
2 +3

, with the conditions

that k 6= −3e
t2

2 .
Example. ẏ + 1

t y = y3.

• y(t) = 0∀t is a solution

• y(t) 6= 0 ⇒ ẏ
y3

+ 1
t

1
y2

= 1.

Take z = 1
y2

⇒ ż = −2
y3

ẏ ⇒ −1
2 ż + 1

t z = 1 ⇒ ż − 2
t z = −2, where

we set −2
t = u(t) and −2 = w(t). Homogeneous differential equation:

ż − 2
t z = 0 ⇒ ż

z = 2
t ⇒ ln z

z0
= ln( t

t0
)2. Variation of constants for the

particular solution: zp = k(t)t2 ⇒ żp = k̇t2+2tk ⇒ k̇(t)t2+k(t)2t−2k(t)t =
−2 ⇒ k̇(t) = − 2

t2
⇒ k̇(t) = −−2

t2
⇒ k(t) = 2

t → zp = 2t. So y2 = 1
z = 1

2t+kt2

where (2t+ kt2) 6= 0.

3.2.5 Exact differential equations

In general, any first-order differential equation may be written as

M(t, y)dt+N(t, y)dy = 0
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where M,N ∈ C1. The differential equation M(t, y)dt + N(t, y)dy = 0 is
called exact, meaning that there exists a function u(t, y) with differential
du(t, y),

du(t, y) =
∂u

∂t
dt+

∂u

∂y
dy.

And so ∂u
∂t = M and ∂u

∂y = N . This implies that u(t, y) ≡ constant so
that du(t, y) = 0. The quantity du(t, y) is called ”exact”, ”perfect” or
”total”differential. Test for exactness: a necessary and sufficient condition
for differential eq. M(t, y)dt+N(t, y)dy = 0 to be exact is that

∂M

∂y
=

∂N

∂t
.

Method: how can you find a solution for u(t, y)?
(1) Let u(t, y) =

∫
M(t, y)dt+ φ(y) → (∂u∂t = M(t, y)).

(2) ∂u
∂y = N(t, y) = ∂

∂y [
∫
M(t, y)dt]φ̇(y).

(3) Simplify and solve for φ(y).
(4) Substitute φ(y) in the expression of the first step (1) and set it equal to
0.
⇒ this is the solution!
Remarks. You can as well do it using in (1) ∂u

∂y = N(t, y) → u =
∫
N(t, y)dt+φ(t) and then in step (2) ∂u

∂t = M(t, y) and then you solve. Sep-
arable differential equation is exact, i.e. ẏ−f(t)g(y) = 0 ⇔ 1

g(y)dy−f(t)dt =

0. So ∂M
∂y = ∂−f(t)

∂y = 0 =
∂

∂g(y)

∂t = ∂N
∂t ⇒ test ok! So we checked that a sep-

arable variable equation is nothing but a specific type of exact first order
differential equation.
Example. (2t2+3y)dt+(3t+y−1)dy, where the first polynomial is M(t, y)

and the second trinomial is our N(t, y). Test: ∂M
∂y = 3 = ∂N(t,y)

∂t ⇒ exact.

We can rewrite the eq. in the following way: du(t, y) = (2t3 + 3y)dt+ (3t+
y − 1)dy. Then we have u(t, y) =

∫
(2t3 + 3y)dt + φ(t)  M(t, y) = ∂u

∂t .

Then, du(t, y) = t4

2 + 3yt + φ(y). Instead, N(t, y) = ∂u(t,y)
∂y = 3t + φ̇(y) ⇔

φ̇(y) = y − 1 ⇒ φ(y) = 1
2y

2 − y + c, with c ∈ R. From there, u(t, y) =
t4

2 + 3yt+ 1
2y

2 − y + c ⇒ t4 + 6yt+ y2 − 2y = K, with k ∈ R.

If the differential equation M(t, y)dt+N(t, y)dy = 0 is not exact it still
might be possible to find a solution by finding a corresponding integrating
factor  there exists some function ζ(y) such that

ζ(t, y)[Mdt+Ndy] = du(t, y)
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andζ(t, y) is called the integrating factor. And then the test for exactness is

∂

∂y
= ζ(t, y)M(t, y) =

∂

∂t
ζ(t, y)N(t, y).

A few examples.

A. If
∂M
∂y

− ∂N
∂t

N = f(t) then e
∫
f(t)dt is an integrating factor, and if

∂M
∂y

− ∂N
∂t

M =

−g(y), then e
∫
g(y)dy is an integrating factor. ∂e

∫
f(t)dtM
∂y = ∂e

∫
f(t)dtN
∂t ⇔

e
∫
f(t)dt ∂M

∂y = e
∫
f(t)dtf(t)N + e

∫
f(t)dt ∂N

∂t ⇔ ∂M
∂t − ∂N

∂t = f(t)N . B. If
M(t, y)dt+N(t, y)dy = 0 is a homogeneous differential equation and Mt+
Ny 6= 0, then 1

Mt+Ny is an integrating factor. C. IfM(t, y)dt+N(t, y)dy = 0
can be written as yf(t, y)dt + tg(t, y)dy = 0, with f(t, y) 6= g(t, y), then

1
ty[f(t,y)−g(t,y)] =

1
Mt+Ny i an integrating factor.

Numerical examples.
1. (t2 + y2 + t)dt + tidy = 0, first therm is M(t, y), second term equal to

N(t, y). Exact? ∂M
∂y = 2y 6= ∂N

∂t = y  not exact! However,
∂M
∂y

− ∂N
∂t

N = y
ty =

1
t = f(t) e

∫
f(t)dt as being the integrating factor. But e

∫
1
t
dt = eln t = t if

t > 0 or eln−t = −t is t < 0. Therefore −/ + t[(t2 + y2 + t)dt + tydy] = 0.
For t > 0: (t3 + y2t + t2)dt + t2ydy = 0, first term being M̃ and second

term being Ñ . Exact ? ∂M̃
∂y = 2yt = ∂N

∂t  exact! We have ∂u
∂t = M̃(t, y) =

t3 + y2t + t2  u(t, y) =
∫
(t3 + ty2 + t2)dt + φ(y) = t4

4 + y2

2 t
2 + t3

3 + φ(y).

Ñ(t, y) = ∂u
∂y = yt2+ φ̇(y), last term being equal to zero since φ̇(y) = c, with

c ∈ R. General solution is 3t4 + 6y2t2 + 4t3 = k, with k ∈ R. For t < 0,
is the same just multiplying by −1  same result as k ∈ R. Switch roles,

Ñ(t, y) = ∂u
∂y = t2y ⇒ u(t, y) = t2y2

2 + φ(t). M̃(t, y) = ∂u
∂t = ty2 + φ̇(t) ⇒

φ̇(t) = t3 + t2 ⇒ φ(t) = t4

4 + t3

3 + c ⇒ u(t, y) = t2y2

2 + t4

4 + t3

3 + c, and so the
solution is 6t2y2 + 3t4 + 4t3 = k, k ∈ R.
2. (2t4 + 3y)ẏ + 4t3y = 0 ⇔ (2t4 + 3y)dy + 4t3ydt = 0, where the first
term is equal to N(t, y) and the second one to M(t, y). Exact? ∂M

∂y =

4t3 6= ∂N
∂t = 8t3, not exact! However

∂M
∂y

− ∂N
∂t

M = − 4t3

4t3y
= − 1

y = −g(y). So

e
∫
g(y)dy = e

∫
1
y
dy

= y if y > 0 and −y if y < 0, this is the integrating factor.
For y > 0: (2t4y + 3y2)dy + 4t3y2dt = 0, where the first term is Ñ and

the second one is M̃ . Exact? ∂M̃
∂y = 8t3y = ∂Ñ

∂t  
∂u
∂t = 4t3y2 = (̃t, y) ⇒

u(t, y) =
∫
4t3y2dt+ φ(y) = t4y2 + φ(y); and ∂u

∂y = Ñ(t, y) = 2t4y + φ̇(y) ⇒
φ(y) = y3 + c, with c ∈ R ⇒ u(t, y) = t4y2 + y3 + c ⇒ general solution is
t4y2 + y3 = k, with k ∈ R.
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3.2.6 Nearly exact differential equations

F (t, y, ẏ) = 0, assume the equation is of degree one, it can be rewritten as
M(t, y)ẏ+N(t, y) = 0. M(t, y)∂y∂t +N(t, y) = 0 ⇔ M(t, y)dy+N(t, y)dt = 0,
i.e. dµ(t, y) = M(t, y)dy+N(t, y)dt ⇔ an implicit solution for it is µ(t, y) =
k, for k ∈ R. dµ(t, y) = ∂µ

∂t (t, y)dt+
∂µ
∂y (t, y)dy. Consider t

2 + y2 = cos(t) ⇒
y = +/−

√
cos t− t2 is an implicit solution. When µ(y, t)∃ the differential

equation is said to be ”exact”. A necessary and sufficient condition for the

equation to be exact is that ∂M
∂t = ∂N

∂y . M(t, y) = ∂µ
∂y (t, y) ⇒ ∂M

∂t = ∂2µ
∂y∂t(t, y)

and N(t, y) = ∂µ
∂t (y, t) ⇒ ∂N

∂y = ∂2N
∂t∂y (t, y), with µ ∈ C1 and N,M ∈ C1.

∂µ
∂y = M(t, y) ⇒ µ(t, y) = ˜∫M(t, y)dy + φ(t), where φ(t) is a constant,

and ∂µ
∂t = N(t, y) ⇒ µ(t, y) = ∂

∂t

(
˜∫M(t, y)dy

)

+ φ
′

(t), the goal is to

find φ(t). Example 2(t2 + 3y)dt + (3t − y − 1)dy = 0, rewrite the equa-
tion as 2t2 + 3y

︸ ︷︷ ︸

M(t,y)dt

+3t− y − 1
︸ ︷︷ ︸

N(t,y)dy

; ∂M
∂y = 3 = ∂N

∂t . Then proceed as follows  

∂µ
∂y (t, y) = 3t− y− 1 ⇒ µ(t, y) = (3ty− y2

2 − y) + φ(t). Then consider a two

equations’ system ∂µ
∂y (t, y) = 3y+ φ′(t) and ∂µ

∂y (t, y) = M(t, y) = 2t2 +3y  

φ′(t) = 2t3 ⇔ φ(t) = t4

2 + c with c ∈ R  µ(t, y) = 3ty − y2

2 − y + t4

4 + c,
with C ∈ R, an implicit solution for this differential equation.
Remark. (i) If easier, switch the role of M and N ⇒ ∂µ

∂t = N(t, y) ⇒
µ(t, y) = ˜∫N(t, y)dt+φ(y) then determine φ(y) and ∂µ

∂y = M(t, y). (ii) In the
example, any Cauchy problem will have exactly one solution, i.e. y(t0) = y0.
(iii) Separable equations are exact! ẏ = f(t)g(y) ⇔ d

dt − f(t)g(t) = 0 ⇔
dy−f(t)g(y)dt = 0 ⇒ M(t, y) = 1

g(y) ; N(t, y) = −f(t) dy
g(y)−f(t)g(t) = 0;

∂M
∂t = 0 = ∂N

∂y .
If the equation is exact, it is always possible to find an ”integrating factor”
ξ(t, y) such that ξ(t, y)M(t, y)dy + ξ(t, y)N(t, y)dt = 0 is exact.
µ′(t, y) = f(t)dt + g(y)dy = 0  exact equation. µ(t, y) =

∫
f(t)dt +

∫
g(y)dy, just integrating here, f1(t)g1(y)dt+ f2(t)g2(y)dy = 0, where 1

g1(y)

and 1
f2(t)

= 1
g1(y)f2(t)

thus we have f1(t)
g1(t)

dt + g1(y)
g2(y)

= 0. µ(t, y) =
∫ f1(t)

f2(t)
dt +

∫ g1(y)
g2(y)

dy. If
∂M
∂t

− ∂N
∂y

N = f(y) ⇒ e
∫
f(y)dy is an integrating factor. Proof.

e
∫
f(y)dyM(t, y)dy + e

∫
f(y)dyN(t, y)dt = 0 is exact if ∂

∂t

[
e
∫
f(y)dyM(t, y)

]
=

∂
∂y

[
e
∫
f(y)dyN(t, y)

]
⇒ e

∫
f(y)dyf(y)M(t, y) + e

∫
f(y)dy ∂M

∂y (t, y) = e
∫
f(y)dy

 
[
∂M
∂y − ∂N

∂t

]
/M = −f(y).� If the equation is homogeneous, andMy+Ny 6= 0,

then (Nt + My)−1 is an integrating factor. If the equation is of the form:
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yf(t, y)dt + tg(t, y)dy = 0, with f(t, y)¬(t, y) ⇒ ty(f(t, y) − g(t, y))−1 =
(My + Nt)−1 is an integrating factor. Example. tydy + (t2 +2 +t)dt

where ∂M
∂t = y 6= ∂N

∂y = 2y. But
∂M
∂t

− ∂N
∂y

M = −y
ty = −1

t  e
∫

1
t
dt is an

integrating factor!! |t| = t is f > 0 and |t| = −t is f < 0  equa-
tion becomes t2ydy

︸ ︷︷ ︸

M(t,y)

+(t3 + y2ty + t2)dt
︸ ︷︷ ︸

N(t,y)

= 0 and therefore ∂µ
∂yM(t, y) →

µ(t, y) = ˜∫M(t, y)dy + φ(t) = t2y2

2 + φ(t); ∂µ
∂tN(t, y) = ty2 + φ′(t)  

N(t, y) = t3 + y2t + t2  φ′(t) = t3 + t2  φ(t) = t4

4 + t3

3 + c, with

c ∈ R  µ(t, y) = t2y2

2 + t4

4 + t3

3 + c, with c ∈ R  implicit solution is

y(t) = t2y2

1 + t4

4 + t3

3 + k, with k ∈ R.

3.3 Equations of order higher than the first

Type: y(n)(t)+a1y
(n−1(t)+ ...+an−1y

′(t)+any(t) = π(t1), with an ∈ R, n >
1, φ ∈ C1. Recall that (n) stands for the highest order of differentiation of

a variable y(t) within the equation w.r.t. t. Therefore, y(1)(t) = ẏ = dy(t)
dt ;

y(2)(t) = y′′ = d2y(t)
dt2

; ...with a linear differential equation ⇒ Y = YH +
YP , where YH ≡ general solution of the associated homogeneous equation
(characteristic equation) ⇒ replace φ(t) by 0 and y = 1, y′ = x, y′′ = x2,
and so on ⇒ solve for x.

3.3.1 Second order differential equations

Type: y′′(t)+a1y
′(t)+a2y(t) = φ(t) where a1, a2 ∈ R and φ ∈ C1. Solution

⇒ a particular solution of the whole equation + a general solution of the
associated homogeneous equation. E.g. y′′ − 5y′ + 6y = t2 + 2

︸ ︷︷ ︸

φ(t)

. 1. YH ⇒

x2−5x+6 = 0 ⇒ ∆ = b2−4c = 25−24 = 1 ⇒ x1,2 =
5+/−

√
1

2 = 3∧2 (where
the general form for finding the two solutions of the characteristic equation
is just ax2+bx+c = 0, a second degree polynomial). YH = A1e

3t

︸ ︷︷ ︸

YH1

+A2e
2t

︸ ︷︷ ︸

YH2

. If

∆ = 0 or ∆ < 0⇒ we anyway have two solutions. 2.YP = (at2 + bt+ c)tk.
a. Variation of constants;
b. Guess the solution.
b. Look at φ(t) = Pn(t)ect(λ cosβt+µ sinβt) ⇒ yp = Pn(t)

︸ ︷︷ ︸

polynomial of order n

ect(A cosβ+
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B sinβt)tk, k =?, if φ(t) = t2 + 2 ⇒ P2(t)
︸ ︷︷ ︸

polynomial of order 2

. yp = P2(t)t
k =

(at2+ bt+ c)tk, here b = 0. If you have a polynomial of order 2 ⇒ in φ(t) ⇒
then, also the particular solution will be a polynomial of the same order.
Goal → find a, b, c, k.
Now, we replace YP in the original equation:
y′′p
︸︷︷︸

2a

− 5y′p
︸︷︷︸

5(2at+bt+c)

+ 6yp
︸︷︷︸

6(at2+bt+c)

= t2 + 2. k = 2 is the algebraic multiplicity

of 0 in the characteristic equation ⇒ # of times you observe zero in the
solutions ⇒ zero times in our case. 2a−10at−5b+6at2+6bt+c = t2+2 ⇒
find a, b, c ⇒ a = 1

6 ⇔ 1
3 − 5

3 t− 5b+ t2+ bt+ c = αt2+βt+ γ = at2+ bt+ c;
b = 5

18 and c = 55
108 .

3. Y = YH+YP = Ae3t+Be2t+1
6 t

2+ 5
18 t+

55
118 . 6at

2+6bt−10at+2a−5b+6c =

t2+2 resolve it in such a way:





6at2 = t2 ⇔ a = 1
6

6bt− 10at = 0 ⇔ 6bt− 10
6 t = 0 ⇔ (6b− 5

3)t = 0
2a− 5b+ 6c = 2 ⇔ 1−5−6

3 = 6c ⇔ −10
3

1
6 = c



.

Ex. y′′′ − y′′ + y′ − y = 2et ⇒ φ(t) = 2et.
1. Yh = A1e

t +B sin(t) +A3 cos(t) ⇒ general solution.
x3 − x2 + x − 1 = 0 ⇔ x2(x − 1) + x − 1 = 0 ⇔ x2(x − 1) = −x + 1 ⇔
(x−1)(x2+1) = 0 ⇔ x4 = 1∧x3 = −1∧x1,2 = +/−i ⇒ YH1 = A1e

t;YH2 =
A2e

0t sin(t);YH3 = A3e
0t + cos(t).

2. Yp ⇒ φ(t) = 2ettk. k is the multiplicity of c in k characteristic equation.
k = 1. Goal: find a ⇒ c is the coefficient of et ⇒ you see how many times
it occurs (c = 1) in the solution of the characteristic equation.
yp = aett
y′p = aet + aett ⇒ derivative of a composite function
y′′p = aet + aet + aett = 2aet + aett
y′′′p = aet + aet + aet + aett = 3aet + aet

Replace them in the original equation to find a.
3aet + aett− 2aet − aett+ aet + aett = 2et

3a− 2a− a+ at− at+ a+ a = 2
2a = 2
a = 1.

Remark. y′′′ − y′′ + y +−y = 2ett

(Y ′′′
H + YP )− (Y ′′

H + YP ) + (Y ′
H + YP )− (YH + YP ) = 2et

Y ′′′
H
︸︷︷︸

0

+Y ′′′
P − Y ′′

H
︸︷︷︸

0

−Y ′′
P + Y ′

H
︸︷︷︸

0

+Y ′
P − YH

︸︷︷︸

0

−YP = 2et.

Solution ⇒ Y = YP + YH .
1. YH ⇒ ch. equation φ(t) → 0; y → 1; y′ → x; y′′ = x2;... Solve for x and



3.3. EQUATIONS OF ORDER HIGHER THAN THE FIRST 33

reach one of the three cases:
∆ > 0, ∀i :∑i YHi = Aie

xit ⇒ YH =
∑

i YHi.
Delta = 0, x1, x1 ⇒ YH1 = A1e

x1t;YH2 = A2e
x1tt;YH3 = A3e

x1tt2

∆ < 0; different complex solutions α+βi, α−βi ⇒ YH1 = A1e
αt sin(βt);YH2 =

A2e
αt cos(βt).

Some complex solution.
E.g.: x1,2,3 = 1, 1, 2 −→ YH1 = A1e

t;YH2 = A2e
tt;YH3 = A3e

tt2.
x1,2,3 = 2−i; 2+i; 2−i; 2+i −→ YH1 = A1e

2t cos(t);YH2 = A2e
2t sin(t);YH3 =

A3e
2t cos(t)t;YH4 = A4e

2t sin(t)t, you multiply by t if you have multiple so-
lutions.
2. YP ⇒ φ(t) = Pn(t)eCt(C1 sinβt + C2 cosβt). Yp = Qn(t)e

Ct(k1 sinβt +
k2 cosβt)tk. k = multiplicity of 0 in the solution of the characteristic equa-
tion (if ∆ > 0). k = multiplicity of c with Delta = 0 in the roots of the
characteristic equation. k = multiplicity of c + βi; c − βi is ∆ < 0 in the
roots of the characteristic equation. In the first two cases, you have to find
a, b, and c, whereas in the latter one you have to find k1 and k2.
y′′− 4y′+13y = 10 cos 2t+25 sin t characteristic equation x2− 4x+13 =

0 ⇒ x1,2 = 4+/−
√
16−25

2 = x1 = 4−6i
2 = 2 − 3i ∧ x2 = 4+6i

2 = 2 + 3i.
Then YH = A1e

2t sin 3t+A2e
2t cos 3t; φ(t) = P0(t)e

0t(10 cos 2t+25 sin 2t)tk;
Yp = e0t(αk1 cos 2t + αk2 sin 2t)t

k, k = mult. of c + / − βi and 0 + / −
2i ⇒ k = 0. Yp = (β1 cos 2t + β2 sin 2t)t

0 = (β1 cos 2t + β2 sin 2t); Y ′
p =

−2β1 sin 2t+2β2 sin 2t; Y
′′
p = −4β1 cos 2t−4β2 sin 2t plug the partial deriva-

tives in the main general equation to find the values of the constants:
−4β1 cos 2t− 4β2 sin 2t+ 8β1 sin 2t− 8β2 cos 2t+ 13β1 cos 2t+ 13β2 sin 2t =
10 cos 2t + 25 sin 2t resolving this algebraic expression should yield the fol-
lowing result: β1(9 cos 2t + 8 sin 2t) = 10 cos 2t ∧ β2(−8 cos 2t + 9 sin 2t) =
25 sin 2t.
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Chapter 4

Dynamic Optimization

4.1 Introduction

STATIC OPTIMIZATION ≡ at some point in time find the value of one or
several variables, subject or not to constraints which maximizes or minimizes
a given function.

E.g. maxC,L U( C
︸︷︷︸

consumpt

, L
︸︷︷︸

labour

) s.t. C + w
︸︷︷︸

wage rate

L = w + B
︸︷︷︸

bonds

DYNAMIC OPTIMIZATION ≡ find a path of one or several variables,
eventually subject to some constraints, in such a way to maximize a given
functional (variable ≡ function of time).

E.g. max{Ct,Lt}∞t=0

∑T
t=1 Ut(Ct, Lt)
︸ ︷︷ ︸

utility funct.

s.t. At
︸︷︷︸

assets

= (1 + rt)At−1 +Bt +Wt

E.g which is the optimal path between two points A and B? We may
either consider a continuous problem with confidence bands or a discrete
problem with intermediate states.

Whether a variable is continuous or discrete, four things:

• an initial and terminal state, i.e. [0, T ];

• a set of admissible paths;

• a set of values associated with each admissible path;

• an objective functional to be optimized.

The initial point/state will be denoted by y(0) ≡ y(0, A) and the terminal
point/state will be denoted by y(T ) ≡ y(T, Z) as far as the problem is
considered on a interval [0, T ]. Letting (0, A) being given, three scenarios
may occur:

35
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1. T is fixed, but y(T ) is free ⇒ FREE TERMINAL STATE;

2. T is free, but y(T ) = B is fixed ⇒ FINITE HORIZON TERMINAL
PROBLEM;

3. T is free, and y(T ) = φ(T ) ⇒ FREE TERMINAL CURVE.

4.2 Calculus of Variations

V [y(t)] =
∫ T
0 F [t, y(t), ẏ(t)]dt ⇒ functional equation.

Calculus of Variations ⇒ max /minV [y(t)] =
∫ T
0 F [t, y(t), ẏ(t)]dt s.t.

y(0) = A and y(T ) = Z, with A, T, Z given; y(t) ∈ C1
[0,T ], F ∈ C2.

V [ǫ] =
∫ T
0 F [t, y∗(t) + ǫη(t), ẏ∗(t) + ǫη(t)]dt, apply Leibniz’s rule and

chain rule, to get the F.O.C.: dV
dǫ [ǫ] =

d
dǫ

∫ T
0 F [t, y∗+ ǫη(t), ẏ∗(t)+ ǫη(t)]dt =

∫ T
0

[
∂F
∂y [t, y

∗(t)+ǫη(t), ẏ∗(t)+ǫη(t)]η(t)+∂F
∂ẏ [t, y

∗(t)+ǫη(t), ẏ∗(t)+ǫη(t)]η̇(t)
]
dt

dV
dǫ [0] = 0 ⇔

∫ T
0

[
∂F
∂y [t, y

∗(t), ẏ∗(t)]η(t) + ∂F
∂ẏ [t, y

∗(t), ẏ∗(t)
︸ ︷︷ ︸

u̇ = d
dt

∂F
∂ẏ

] η̇(t)
︸︷︷︸

v = η(t)

]
dt

apply partial integration on the second element of the integral ⇔ do
integration by parts on

∫
uv̇dt = uv +

∫
u̇vdt ⇔

∫ T
0

[
∂F
∂y − d

dt
∂F
∂ẏ

]
η(t)dt +

[
η(t)∂F∂ẏ

]T

0
= 0 where the second term is equal to zero, due to terminal and

initial conditions. ⇔
∫ T
0

[
∂F
∂y − d

dt
∂F
∂ẏ

]
η(t)dt = 0.

Exercises:

1. V [y(t)] =
∫ 2
0 (12ty + ẏ2)dt with y(0) = 0 and y(2) = 8.

Euler - Lagrange equation →

12t− d

dt
[2ẏ] = 0

12t = 2ÿ

6t = ÿ

A+ 3t2 = ẏ

B +At+ t3 = y,A,B ∈ R

y(0) = 0 and y(2) = 8 ⇔ B + 0 + 0 = 0 ⇔ B = 0 and 2A + 8 = 8 ⇔
A = 0 ⇒ y(t) = t3 is the unique extremal.

2. V [y(t)] =
∫ 5
1 [3t+ ẏ1/2]dt with y(1) = 3 and y(5) = 7.
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E.L.:

0− d

dt

[1

2
ẏ−1/2

]
= 0

−1

4
ẏ−1/2ÿ = 0, ÿ 6= 0

4ẏ1/2
(
− 1

4ẏ1/2
ÿ
)
= 0× 4ẏ1/2

ÿ = 0

ẏ = A,A ∈ R

y = At+B,B ∈ R

⇔=

{
A = 3−B

7 = 15− 5B +B

A = 1, 4B = 8, B = 2 ⇒ y∗(t) = t+ 2.

3. V [y(t)] =
∫ T
0 [t+ y2 + 3ẏ]dt s.t. y(0) = 0 and y(5) = 3.

E.L. eq.: 2y − d
dt [3] = 0 ⇔ 2y(t) = 0 ⇔ y(t) = 0,

⇔=

{
y(0) = 0
y(5) = 3

true, ∀t. No extremal because no solution to the Euler-Lagrange equa-
tion ⇔ impossible to verify the equality.

4. V [y(t)] =
∫ T
0 ẏ(t)dt with y(0) = α and y(T ) = β.

EL: 0 − d
dt [1] ⇔ 0 = 0 latter equation satisfied by any admissible path,

in fact
∫ T
0 ẏ(t)dt = [y(T ) − y(0)] = β − α depends solely on the initial

and terminal conditions and not on the path in between ⇒ infinite # of
extremals.

SPECIAL CASES:
1. F = F [t, ẏ] −→ Fy = 0
⇒ E.L. d

dtFẏ = 0 ⇒ Fẏ = c
2. F = F [y, ẏ], E.L. ⇒ F − ẏFẏ = c ⇒ F does not explicitly depend on

t (autonomous problem)1

3. F = F [t, y], E.L. ⇒ Fy = 0
4. F = F [ẏ] ⇒ E.L. ⇒ Fy − d

dt [Fẏ] = 0
−Fy + Ftẏ + Fyẏẏ + Fẏẏÿ = 0
⇔ Fẏẏÿ = 0 ⇒ ÿ = 0 and Fẏẏ = 0

1 d
dt

[

F − ẏFẏ

]

= Ft + Fy ẏ + Fẏ ÿ − ÿFẏ − ẏFẏt − (ẏ)2Fẏy − ÿẏFẏ = ẏ
[

Fy −
d
dt
[Fẏ]

]

=

0 ⇔ ẏ
[

Fy −
d
dt
[Fẏ]

]

= 0 ⇔ F − ẏFẏ = c
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4.2.1 Generalizations: several variables

V [t, y1(t), y2(t), ..., yn(t)]dt =
∫ T
0 F [t, y1(t), y2(t), ..., yn(t), ẏ1(t), ẏ2(t), ..., ẏn(t)]dt.

With initital and terminal conditions for each yi(t), i = 1, ..., n. It can be
easily shown that the E-L equation, the FONC, becomes for this problem,
a system of n-equations to be solved: Fyi − d

dtFẏi = 0, ∀i = 1, ..., n ⇔






Fy1 − d
dtFẏ1 = 0
...

Fyn − d
dtFẏn = 0

⇔ Fy
︸︷︷︸

n× 1

− d
dt Fẏ
︸︷︷︸

n× 1

= 0
︸︷︷︸

n× 1

Proof: similar to that for the Euler - Lagrange equation. You have to
show that for yj , keeping the other yi’s constant, and saying you do this for
all j = 1, ..., n.

4.2.2 Presence of derivatives of higher order

cases such as: V [y(t)] =
∫ T
0 F [t, y(t), ẏ(t), ÿ(t), ..., ẏ(t)(n)]dt, with initial and

terminal conditions for y, ẏ, ÿ, ..., ẏ(n). This can be done as previously by
applying a substitution of the type z = ẏ, ż = ÿ, u = ÿ, u̇ =

...
y ,.... ”. Euler

- Poisson equation:

Fy −
d

dt

[
Fẏ

]
+

d

dt

[
Fÿ

]
− ...+ (−1)n

dn

dtn
[
Fẏ(n)

]
= 0, ∀t ∈ [0, T ],

a differential equation of the nth order.

4.2.3 Transversality conditions

Solving the E.L. equation involves solving a second order differential equa-
tion. Solving it leads to a solution with two degrees of freedom. Conditions
y(0) = A and y(T ) = Z allow to find extremals, by solving a Cauchy prob-
lem. If part of the initial conditions are ”missing”, i.e. the initial or terminal
point aren’t fixed ⇒ use the ”tranversality conditions” allowing to replace
the ”missing” conditions.

V [y(t)] =
∫ T
0 F [t, y, ẏ]dt by letting y(t) = y∗(t)+ǫη(t), T free. But, now,

η(0) = 0, where η(t) ∈ C1
[0,T ], once continuously differentiable on the domain

of interest with no conditions on η(0) = 0 and pick an ǫ > 0 sufficiently small.
Let T = T ∗ +∆Tǫ. ∆T is fixed and therefore y(T ) = y∗(t) + εη(t).
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{
y(T ) = y∗(T ) + εη(T )
y(T ) = y∗(T ∗) + ε∆yT

⇒ rewrite the optimal stopping time in such a fashion⇒ y∗(T )+εη(T ) =
y∗(T ∗) + ε∆yT following from before.

⇒ η(T ) = −[y∗(T )−y∗(T ∗)]+ε∆yT
ε

⇒ η(T ∗ + ε∆T ) = −[y∗(T ∗+ε∆T )−y∗(T ∗)]
ε∆T ∆T +∆yT

⇒ limε→0 η(T
∗) = ẏ∗(T ∗)∆T +∆T .

We have V [ε] =
∫ T ∗+ε∆T
0 F [t, y(t), ẏ(t)]dt.

Let T (ε) = T ∗ + ε∆T , change the extremals of integration.

⇒ V [ε] =
∫ T (ε)
0 F [t, y∗(t) + εη(t), ẏ∗(t) + εη̇(t)]dt

d
dt [ε] =

︸︷︷︸

Leibniz

∫ T (ε)
0

[
Fy[...]η(t) + Fẏ[...]η̇(t)

]
dt+ [F ]T (ǫ)

dT (ε)
dε

Integration by parts (as in the E.L. equation).

⇒
∫ T (ε)
0

[
Fyη(t)− d

dtFẏη(t)
]
dt+

[
Fẏη(t)

]T (ε)

0
+
[
F
]

T (ε)
∆T =

=
∫ T (ε)
0

[
Fy − d

dtFẏ

]
η(t)dt+

[
Fẏ

]

T (ε)
η(T (ε)) + [F ]T (ε)∆T =

⇒ dV [0]
dε = 0 ⇔∈T ∗

0

[
Fy − d

dtFẏ

]
η(t)dt+

[
Fẏ

]

T ∗
η(T ∗) +

[
F
]

T
∆T .

F.O.C.
∫ T ∗

0

[
Fy − d

dtFẏ

]
η(t)dt +

[
Fẏ

]

T ∗
∆y(t) +

[
F − ẏFẏ

]

T ∗
∆T = 0,

depending on which situation of TVC you are.

(A) Vertical terminal line ⇒ T ∗ is fixed ⇒ ∆T = 0 ⇒ necessarily
[Fẏ]T ∗ = 0.

(B) Horizontal terminal line ⇒ y(T ∗) is given ⇒ ∆yT = 0 ⇒ necessarily
[F − ẏFẏ] = 0.

(C) It can be that y(t∗) = φ(T ∗) −→ terminal curve ⇒ [Fy+(φ̇−ẏ)Fẏ] =
0 because the idea is that ∆yt ≈ φ̇(T ∗)∆T .

Ex. Find the extremals.

1. V [y(t)] =
∫ 1
0 (y + yẏ + ẏ + ẏ2

2 )dt with y(0) = 2 and y(1) = 5.

Euler Lagrange equation: Fy − d
dtFẏ = 0.

F [t, y(t), ẏ(t)] = y(t) + y(t)ẏ(t) + ẏ(t) + ẏ(t)2

2
∂F
∂y = 1 + ẏ(t); ∂F

∂ẏ = y(t) + 1 + ẏ(t);
∂Fẏ

∂t = ẏ(t) + ÿ(t).

⇒ 1 + ẏ(t)− ẏ(t)− ÿ(t) = 0

ÿ(t) = 1

ẏ(t) = t+A,A ∈ R

y(t) = t2

2 +At+B,B ∈ R
y(0) = 2 and y(1) = 5 ⇔ B = 2 and 1

2 + A + 2 = 5 ⇔ A = 3 − 1
2 =

6−1
2 = 5

2 ⇒ y∗(t) = t2

2 + 5
2 t+ 2.

2. V [y(t)] =
∫ π/2
0 [y2 − ẏ2]dt with y(0) = 0 and y(π/2) = 1.
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F [t, y(t), ẏ(t)] = y2(t)− ẏ2(t), the functional of interest
∂F
∂y = 2y(t); ∂F

∂ẏ = −2ẏ(t);
∂Fẏ

∂t = −2ÿ(t).
2y(t) + 2ÿ(t) = 0
ÿ(t) + y(t) = 0
λ2 + 1 = 0
λ1,2 = ±

√
1

λ1,2 = ±i
linear homogenous differential equation, whose characteristic equation

has two complex solutions, of the type α ± iβ, α = 0 and β = 1. Two
independent solutions of the form:

y1(t) = eαt cosβt = cos t

y2(t) = eαt sinβt = sin t

linear combination ⇒

y(t) = λy1(t) + µy2(t)

= λ cosβt+ µ sinβt, λ, µ ∈ R

{
y(0) = 0 ⇔ λ cos(0) + µ sin(0) = 0 ⇔ λ = 0

y(π/2) = 1 ⇔ λ cos(π/2) + µ sin(π/2) = 1 ⇔ µ = 1

⇒ y∗(t) = sin(t)

3. V [t, y(t), z(t)] =
∫ π/2
0 (2yz + ẏ2 + ż2)dt with y(0) = z(0) = 0 and

y(π/2) = 0 = z(π/2). F [t, y(t), z(t), ẏ(t), ż(t)] = 2y(t)z(t) + ẏ(t)2 + ż(t)2.
∂F
∂y = 2z(t); ∂F

∂ẏ = 2ẏ(t);
∂Fẏ

∂t = 2ÿ(t).
E.L.: 2z(t) = 2ÿ(t)
z(t) = ÿ(t)
∂F
∂z = 2y(t); ∂F

∂ż = 2ż(t); ∂Fż
∂t = 2z̈(t).

E.L.: 2y(t) = 2z̈(t)
y(t) = z̈(t)

{
z(t) = ÿ(t) (1)
y(t) = z̈(t) (2)

plug (1) into (2) and get:
y(t) =

....
y (t) ⇒ ....

y (t) − y(t) = 0 ⇒ λ4 − 1 = 0 ⇒ (1 − λ2)(1 +
λ2)row λ1,2 = ±1

︸ ︷︷ ︸

(A) ∆ > 0

and λ3,4 = ±i
︸ ︷︷ ︸

(B) ∆ < 0

.
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(A) Former two solutions are:

y1(t) = eλ1t = et

y2(t) = eλ2t = e−t

yA(t) = λet+µe−t, λ, µ ∈ R

(B) Latter two solutions:

y3(t) = e0t cosβt = cos t

y4(t) = e0t sinβt = sin t

yb(t) = ν cos t+ η sin t, ν, η ∈ R

(A) + (B)
⇒ y(t) = λet + µe−t + ν cos t+ η sin t

now, plug back in (2) and z(t) = ÿ(t).
ẏ(t) = λet − µe−t − ν sin t+ η cos t
ÿ(t) = λet + µe−t − ν cos t+−η sin t = z(t)

{
y(t) = λet + µe−t + ν cos t+ η sin t (∗)
z(t) = λet + µe−t − ν cos t− η sin t (∗∗)

λ, ν, ν, η ∈ R, find them!
{

y(0) = 0 z(0) = 0
y(π/2) = 1 z(π/2) = 1







λe0 + µe0 + ν cos(0) + η sin(0) = 0 (1′)
λe0 + µe0 − ν cos(0)− η sin(0) = 0 (2′)

λeπ/2 + µe−π/2 + ν cos(π/2) + η sin(π/2) = 1 (3′)
λeπ/2 + µe−π/2 − ν cos(π/2)− η sin(π/2) = 1 (4′)







λ+ µ+ ν = 0
λ+ µ− ν = 0

λeπ/2 + µe−π2/ + η = 1

λeπ/2 + µe−π/2 − η = 1

(1′)− (2′) = ν + ν = 0 ⇔ 2ν = 0 ⇔ ν = 0.
(3′)− (4′) = 0 + 0 + 2η = 1 ⇒ η = 1

2

⇒ λ = −µ ⇒ epi/2 − λe−π/2 = 1
2 ⇔ λ[e−π/2 + eπ/] = 1

2
λ = 1

2[eπ/2+e−π/2]
and µ = 1

2[eπ/2+e−π/2]
.

The solution to the variational problem is:






y∗(t) = eπ/2

2(eπ/2+e−π/2)
− e−π/2

2(eπ/2+e−π/2)
+ 1

2 sin t

z∗(t) = eπ/2

2(eπ/2+e−π/2)
− e−π/2

2(eπ/2+e−π/2)
− 1

2 sin t
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4.3 Constrained problems

• EQUALITY CONSTRAINTS⇒ Lagrangian + associated E.L. eqution
+ satisfy equality constraints.

• CONSTRAINTS TAKING THE FORM OF DIFFERENTIAL EQ. ⇒
this problem is similar to the first one but the equality constraints are
such that:







g1(t, y1, ..., yn, ẏ1, ..., ẏn) = c1
...

gm(t, y1, ..., yn, ẏ1, ..., ẏn) = cm

• INEQUALITY CONSTRAINTS:

max /min

∫ T

0
F [t, y1, ..., yn, ẏ1, ..., ẏn]dt







g1(t, y1, ..., yn, ẏ1, ..., ẏn) ≤ c1
...

gm(t, y1, ..., yn, ẏ1, ..., ẏn) ≤ cm

the size of the system is m×n, subject to # of state variables n > m is
possible ⇒ if you have less variables than constraints. Agin you write
the Lagrangian equation:

L = F −
m∑

j=1

λj(t)[gj(.)− cj ]

you have the following necessary conditions:

Lyi −
d

dt
[Lẏi ] = 0, ∀i = 1, ..., n

system of m− equations to solve:

λj(t)[gj(.)− cj ] = 0, ∀j = 1, ..., n, ∀t ∈ [0, T ]+

+ boundary conditions; + sign of λj (≥ 0: max; ≤ 0: min).
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• ISOPERIMETRIC PROBLEMS ⇒ ∃ constraints involving integrals
⇒
∫ T
0 G[t, y, ẏ]dt = k, k ∈ R with some boundary conditions ⇒ in

general the problem is written as follows:

max /min

∫ T

0
F [t, y1, ..., yn, ẏ1, ..., ẏn]dt

such that:







∫ T
0 G1(t, y1, ..., yn, ẏ1, ..., ẏn) = k1

...
∫ T
0 GM (t, y1, ..., yn, ẏ1, ..., ẏn) = km

with k1, ..., km ∈ R + boundary conditions.
Let us consider the following:

max

∫ T

0
F [t, y, ẏ]dts.t.

∫ T

0
G[t, y, ẏ]dt = k

We redefine (t) =
∫ T
0 G[t, y, ẏ]dt. We have the condition that Γ(0) = 0 and

Γ(T ) = k; so Γ(.) measures in fact the accumulation of G(.) from 0 to T ,
Γ̇(t) = G[T, y, ẏ] from the Fundamental Theorem of Calculus.

G[t, y, ẏ]−Γ̇(t) = 0, which can be seen as the constraint g(.)−c = 0 where
G − Γ̇ = g and c = 0 so that the integrand constraint can be transformed
into a new constraint taking the form of differential equation (2)

−→ L̄ = F − λ(t)[G− Γ̇]. From Euler - Lagrange equation:
L̄y − d

dt [L̄ẏ] = 0 and L̄λ − d
dt [L̄λ̇] = 0 −→ − d

dt [Lλ̇] = 0 ⇒ d
dt [λ(t)] = 0 ⇒

λ(t) = const. ⇒ it is simply λ depending on t not any more.
L = F −∑m

j=1 λjGj + solving the corresponding Euler - Lagrange equa-
tion + satisfying boundary conditions. Ex:

1. Extremals of
∫ T
0 ẏ2dt s.t.

∫ T
0 ydt = k and y(0) = 0, y(T ) = T .

2. y(t) and z(t) opt.
∫ T
0 ẏ2 + ż2dt s.t. y − ż = 0.

1. L = ẏ2 − λ[y] ⇒ Ly − d
dt [Lẏ] = 0 = −λ− d

dt [2ẏ]
λ+ 2ÿ = 0 ⇒

∫
(λ+ 2ÿ)dt = 0 ⇒ λt+ 2ẏ + C = 0

λt2

2 + 2y + Ct+D = 0 ⇔ y(0) = 0 and y(T ) = T

0 + 0 + 0 +D = 0; λT 2

2 + 2T + CT = 0 ⇔
λT 2

2 + (2 + C)T = 0
T [λT + 4 + 2C] = 0
T = 0 and T = −2C−4

λ

y(t) = −λ
4 t

2 + (−2− λT
2 )t
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2. F = ẏ2 + ż2, G = y − ż
L = ẏ2 + ż2 − λ(t)(y − ż)

{
Ly − d

dt [Lẏ] = 0 ⇔ −λ(t)− d
dt [2ẏ] = 0

Lz − d
dt [Lż] = 0 ⇔ 0 = d

dt [2ż + λ]

{
λ = −2ÿ eliminate the multiplier

−2z̈ = λ̇ 2ÿ = 2z̈

⇒
∫
z̈dt =

∫
ÿdt ⇔ ż + C = ẏ +D ⇔ z + Ct+ E = y +Dt+H.

We also have to solve the differential equation 2ÿ − 2ẏ = 0, throughout
the method of the variation of constants or with the guess one.

ÿ − ẏ = 0
∫

ÿdt =

∫

ẏdt

ẏ − y + C = 0

y − yt+ Ct+D = 0

In other problems, λ will depend on t.
ÿ − ẏ = 0 ⇔ x2 − x = 0 ⇔ x(x− 1) = 0 ⇔ x1 = 0 and x2 = 1.
y1(t) = e0t = 1 and y2(t) = 1et = et.
y(t) =

∑n
i=1Ai(t)yi(t), where yi(t) are the particular solutions of the

homogenous associated equation. Isomorphism between R2 and the set of
solutions...determine two linearly independent solutions of (**).

λ(t) = −2ÿ = −2z̈ ⇒ 2z̈ − 2ÿ = 0
2x2− 2x4 ⇔ x2(1−x2) = 0 from linear differential equation, x1 = 0 and

x2,3 = ±1 ⇒ z(t) = A + Bt + Cet + De−t and so y(t) = B + Cet − De−t

and we can also find backwardly λ(t) = −2(Cet −De−t) = 2ÿ(t)N.

4.4 Optimal Control Theory

The calculus of variations is the classical method to solve dynamic opti-
mization problems.But it allows only for interior solutions. Optimal control
theory can have corner solutions and can take into account functions that
are not everywhere differentiable. In calculus of variations the goal is to
find the optimal path of the state variable y(t), denoted by y∗(t). In opti-
mal control the aim is to find the optimal control variable u(t), denoted by
u∗(t), which will help to determine y∗(t) because the control variable u(t)
drives the state variable y(t).
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4.4.1 The simplest problem of optimal control

One control variable u(t) and one state variable y(t). u(t) can be seen as a
policy instrument which influences or drives y(t). To each u(t) corresponds
one and only one y(t).

Special features

(a) u(t) does not necessarily have to be continuous in order to be admissible.
It just has to be piece-wise continuous. (b) In optimal control, the control
variable u(t) can have some constraints on it, such as u(t) ∈ U , a set,
∀t ∈ [0, T ] ⇒ set closed and bounded (compact) → ”bang-bang” solution.
(c) The simplest problem in optimal control is to consider that yT is free. The

problem is stated as follows: maxV [u(t), y(t)] =
∫ T
0 F [t, y, u]dt subject to

the law of motion of the state variable ẏ = f(t, y, u), y(0) = A, y(T ) = free,
T,A are given and u(t) ∈ U, (t ∈ [0, T ]).

Note: (i) we focus on max. Clearly, min = −max. (ii) Motion equation
⇒ given a time t and state y, it tells us in which direction doe y move if we
choose the policy u⇒ this equation describes the pattern as a function of the
policy u. (iii) If ẏ = u, then the problem boils down to max

∫ T
0 F [y, y, ẏ]dt

with y(0) = A, y(T ) = free (A, T given) which is a problem of C.o.V. with
a vertical terminal line ⇔ use some transversality condition.

4.4.2 Maximum Principle (Pontryagin)

Let us define the Hamiltonian equation:

H[t, y, u, λ] = F [t, y, u] + λ(t)f [t, y, u]

λ is called the co-state variable. The Hamiltonian is similar to a La-
grangian equation.

Theorem: the necessary conditions for u∗(t) and y∗(t) to be optimal
are that ∃ a λ(t) such that ∀t ∈ [0, T ] :

H[t, y∗, u∗, λ∗] = maxuH[t, y∗, u, λ∗];

ẏ∗ = ∂H
∂λ () ⇒ equation of motion of y;

λ̇∗ = −∂H
∂y () ⇒ equation of motion of λ;

λ∗(t) = 0 ⇒ TVC for a free terminal point.
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(1) maxu
∫ 2
0 (y − u2)dt s.t. ẏ = u with y(0) = 0, y(2) = free and u is

free. H[t, y, u, λ] = F [t, y, u] + λ(t)f(t, y, u) = (y − u2) + λ(t)u.

(a) ∂H
∂u = 0 ⇔ 2u = λ(t)

2

(c) λ̇ = −∂H
∂y ⇔ λ̇ = 1 ⇔ λ = −t+A

(d) λ(T ) = λ(2) = 0 → in C

⇒ −2 +A = 0

{
λ∗ = −t+ 2

u∗ = −t+2
2 = − t

2 + 2

(b) ẏ∗ = ∂H
∂λ ⇒ ẏ = u ⇒ y = − t2

4 + t+B, B = 0 and y(0) = 0 ⇒ y∗ =

− t2

4 + t.

Note: we could have used the E.L. eq. to get the same result ⇒
Fy − d

dt [Fẏ] = 0 ⇔ 2ÿ = −1 ⇔ ÿ = −1
2 t + A ⇒ y = −1

2 t
2 + At + B,

y(0) = 0 ⇒ B = 0, vertical terminal line (TV C), [Fẏ]t=T = 0 ⇔ 2 =

2A ⇔ A = 1 ⇒ y = − t2

4 + t+B = − t2

4 + t.

4.4.3 Justification of the Maximum Principle

Just an intuition of the proof...skip it!!

4.4.4 Alternative transversality conditions

1. Fixed terminal point (T, yT fixed)⇒maximum principle remains
unchanged, except condition (d) → (d’) y(T ) = yT .

2. Horizontal terminal line (yT given, T free) → transversality con-
dition [H]t=T = 0. No restrictions on λ(t).

3. Terminal curve, some function φ(T ), (yT = φ(T ), φ given) ⇒
TVC [H − λφ̇]t=T = 0 → calculus of variations [F + (φ̇ −
ẏFẏ)]t=T = 0.

4. Truncated vertical terminal line ⇒ T is given (yT > ymin, given)
⇒ either y∗T > ymin or y∗T = ymin reduced the problem in con-
sideration to be a problem of fixed terminal point, back to (a).

5. Truncated horizontal line⇒ yT given, T < Tmax (given), [H]t=T ≥
0, T ≤ Tmax, [T − Tmax]× [H]t=T = 0 ⇔ TVC.
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Ex. maxV [u(t), y(t)] =
∫ 1
0 (−u2)dt such that ẏ = y + u with y(0) = 1

and y(1) = 0. Hamiltonian: H[t, u, y, λ] = −u2 + λ(t)[y + u],

(a) ∂H
∂u = 0 ⇔ −2u(t) + λ(t) = 0 ⇔ λ(t) = 2u(t) ⇔ u = λ

2

(c) λ̇ = −∂H
∂y ⇔ λ̇ = −λ ⇔ λ̇ + λ = 0 ⇔ x + 1 = 0 ⇔ x = −1 ⇒

λ(t) = Ce−t, C ∈ R

(d) λ(T ) = λ(1) = 0, 0 = e1, C = 1/e

(b) ẏ = ∂H
∂λ ⇔ ẏ = y + u ⇔ ẏ − y − u = 0

4.4.5 The ”Current Hamiltonian”

The integrand F [t, y, u] is of the form2 G[t, y, u]e−ρt and so maxV [y, u] =
∫ T
0 G[t, u, y]e−ρtdt such that ẏ = f(t, y, u) with initial and terminal
conditions. The Hamiltonian function is

H[t, y, u, λ] = G[t, y, u]e−ρt + λ(t)f(t, y, u) (4.1)

and this is called the current Hamiltonian:

Hc = Heρt = G[t, y, u] +m(t)f(t, y, u) (4.2)

with m(t) = λ(t)eρt.

What does the maximum principle become?

(a) maxHc w.r.t. u(t)

(b) ẏ = ∂Hc
∂m = f(t, y, u), the eq. of motion

(c) ṁ = −∂Hc
∂y + ρm and λ = me−ρt ⇔ λ̇ = ṁe−ρt − ρme−ρt

∂H
∂y = −∂Hc

∂y e−ρt

ṁ− ρm = −∂Hc
∂y

ṁ = −∂Hc
∂y + ρm

(d) m(T )e−ρt = 0, TVC, since λ(T ) = 0.

2It has a discount factor attached to it.
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4.4.6 Sufficient conditions

1. Mangasarian ⇒ Theorem: for the standard problem V [y, u] =
∫ T
0 F [t, y, u]dt subject to ẏ = f(t, y, u) with y(0) = 0 = y(T ). T
given, y(T ) is free, the necessary conditions of the MP are suffi-
cient for a global maximum of V if (a) F and f are differentiable
and concave in (y, u); (b) λ∗(t) ≥ 0, ∀t ∈ [0, T ] if f is non-linear
in y or u.
Proof : follows more or less the same lines as the proofs in CoV.

2. Arrow ⇒ this condition, weaker than the previous one, needs
a new Hamiltonian H0[t, y, u, λ] = F [t, y, u∗] + λ(t)f(t, y, u∗),
where u∗(t, y, λ) is such that H[t, y, u∗, λ] = maxuH[t, y, u, λ].
Remark: H0 6= H[t, y∗, u∗, λ∗].
Theorem ⇒ the conditions obtained in the maximum principle
are sufficient for the maximization of V if H= is concave in y,
∀t ∈ [0, T ], λ fixed. Here, you just check the convexity or concav-
ity of the Hamiltonian itself, not the multiplier that is assumed
to be fixed. Equivalent to the Legendre’s condition.

4.4.7 Several state or control variables

maxV [y(t)] =
∫ T
0 F [t, y, u]dt subject to ẏ = f(t, u, y) with y(0) = y0

and y(T ) = yT and u(t) ∈ U , where

y =






y1
...
yn




 ,u =






u1
...
un




 , ẏ =






ẏ1
...
ẏn






and

f(t, u, y) =






f1(t, y, u)
...

fn(t, y, u)




 .

y(0), y0, y(T ), yT ∈ Rn×1, U = (u1, · · · , um)′, m and n can take any
values. The Maximum Principle: define

H[t, y, u, λ] = F [t, y, u] +
m∑

j=1

λjfj(t, y, u)



4.4. OPTIMAL CONTROL THEORY 49

or, in matrix notation

H[t, y, u, λ] = F [t, y, u, λ] + λ′f(t, y, u)

where λ = (λ1 · · ·λn)
′.

(a) maxH, u ∈ Rm×1;

(b) ẏj =
∂H
∂λj

, ∀j = 1, ...,m;

(c) λ̇j = − ∂H
∂yj

, ∀j = 1, ...,m;

(d) y(T ) = yT .

The TVC as well remains, just be careful, now you are dealing with
vectors.

4.4.8 Infinite horizon problems

From
∫ T
0 to

∫∞
0 ⇒ discussion on the convergence, see calculus of vari-

ations. Transversality conditions ⇒ simply put a limT→∞ before the
conditions. The sufficient conditions stay true. And if extra conditions
are needed, then put a limT→∞ before the condition.

4.4.9 The problem of constrained optimal control: con-
straints involving the control variable

Equality constraints

For example, max
∫ T
0 F [t, y, u1, u2]dt such that ẏ = f(t, y, u1, u2) and

g(t, y, u1, u2) = c + some boundary conditions −→ H[t, y, u1, u2, λ] =
F [t, y, u1, u2] + λ(t)f(t, y, u1, u2) ⇒ take the Lagrangian:

L(t, y, u1, u2, λ, θ) = H − θ(t)[g(t, y, u1, u2)− c]

(MP) ⇒ a. ∂L
∂u1

= 0 and ∂L
∂u2

= 0, ∀t ∈ [0, T ];

b. ẏ = ∂L
∂λ = ∂H

∂λ ;

c. λ̇ = −[∂H∂y + θ(t)∂g∂y ]

+ TVC.
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Inequality constraints

max
∫ T
0 F [t, y, u1, u2]dt subject to ẏ = f(t, y, u1, u2), g1(t, y, u1, u2) ≤

c1, g2(t, y, u1, u2) ≤ c2 and some limit conditions.

We have L(t, y, u1, u2, λ, θ1, θ2) = H−θ1[g1(t, y, u1, u2)−c1]−θ2[g2(t, y, u1, u2)−
c2].

(MP) ⇒ ∂L
∂u1

= 0; ∂L
∂u2

= 0

∂L
∂θ1

θ1 = 0; ∂L
∂θ1

= 0;

∂L
∂θ2

θ2 = 0; ∂L
∂θ2

= 03.

b. ẏ = ∂L
∂λ ; c. λ̇ = −∂L

∂y + d. TVC.

Isoperimetric problems

maxy,u
∫ T
0 F [t, y, u]dt such that ẏ = f(t, y, u),

∫ T
0 G[t, y, u]dt = k, (k

given), y(0) = 0, y(T ) ≡ free for T given. New state variable z(t)
is introduced in order to replace the integral constraint. Let z(t) =

−
∫ T
0 G[t, y, u]dt ⇒ ż = −G[t, y, u] with z(0) = 0 and z(T ) = −k

(given). The problem boils down to:

max
∫ T
0 F [t, y, u]dt s.t. ẏ = f(t, y, u), ż = −G[t, y, u] with y(0) = 0, yT

free, T given. z(0) = 0, z(T ) = −kT , k ∈ R. This problem can be seen
as an unconstrained optimal control problem with two state variables.

H[t, y, z, u, λ, µ] = F [t, y, u] + λ(t)f(t, y, u) + µ(t)G[t, y, u]

still to be maximized with respect to u(t):

(M.P.) a. maxuH, ∀t ∈ [0, T ];

b. ẏ = ∂H
∂λ , ż = ∂H

∂µ ;

c. λ̇ = −∂H
∂y , µ̇ = −∂H

∂z ;

d. λ(T ) = 0.

You transformed an integral constrained into another state variable...

3From Khun - Tucker conditions.
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Inequality integral constraints

max
∫ T
0 F [t, y, u]dt such that ẏ = f(t, y, u) with y(0) = 0, yT free with

T given.
∫ T
0 G[t, y, u]dt. As before, we let z(t) = −

∫ T
0 G[t, y, u]dt ⇒

ż(t) = −G[t, y, u] with z(0) = 0 and z(T ) ≥ −k. Thus, the problem
can be written as:

max
∫ T
0 F [t, y, u]dt s.t. ẏ = f(t, y, u) and

dotz = −G[t, y, u] with y(0) = 0, yT free, T given, z(0) = 0, z(T ) ≥ −k
⇒ H = F ++µ(−G).

(MP) a. maxuH, ∀t ∈ [0, T ];

b. ẏ = ∂H
∂λ , ż = ∂H

∂µ ;

c. λ̇ = −∂H
∂y , µ̇ = −∂H

∂z ;
4

d. λ(T ) = λT , z(T ) ≥ −k.

Exercises

1. maxV [y(t), u(t)] =
∫ T
0 −(1− u2)1/2dt such that ẏ = u with y(0) =

A, y(T ) ≡ free, (A, T given).

2. max
∫ 4
0 3ydt s.t. ẏ = y + u, y(0) = 5, y(4) free and u(t) ∈ [0, 2].

3. max
∫ 1
0 (−u2)dt such that ẏ = 2u with y(0) = 1 and dy(1) ≥ 3.

4. max
∫ T
0 (−1)dt s.t. ẏ = y + u with y(0) = 5, y(T ) = 11, T free and

u(t) ∈ [−1, 1].

Solutions

1. H = F [t, y, u] + λ(t)f(t, y, u) = −(1 + u2)1/2 + λ(t)[u]

(i) ∂H
∂u = 0 ⇔ −1

2(1 + u2)−1/22u+ λ(t)

λ(t) = 1
2

2u
(2+u2)1/2

λ2(t) = 1
4

4u2

1+u2

(1 + u2)λ2(t) = u2

λ2(t) = u2(1− λ(t)2)

λ2(t)
1−λ2(t)

= u2(t)

4µ̇ = 0 ⇒ µ = const. as in the isoperimetric problem in the CoV.
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λ(t)

(1+λ2(t))1/2
= u(t)

(ii) λ̇ = −∂H
∂y ⇔ ẏ = 0 ⇔ λ = C, C ∈ R.

(iii) ẏ = ∂H
∂λ ⇔ ẏ = u = λ(t)

(1−λ2(t))1/2
= C

1−C2

1/2
= 0 check for the value

of C using the boundary conditions, y(0) = A, y(T ) free.

2. H = F [t, y, u] + λ(t)f(t, y, u) = 3y + λ(t)(y + u)

(i) ∂H
∂u = 0 ⇔ λ(t) = 0 slope of u is λ ⇒ u∗(t) =

{
0 ifλ < 0
1 ifλ > 0;

(ii) λ̇ = −∂H
∂y ⇔ λ̇ = −3− λ(t) ⇔ λ = 3t because λ(t) = 0;

(iii) ẏ = ∂H
∂λ ⇔ ẏ = y + u ⇒ u(t) = 0or u(t) = 2...get corner

solutions...ẏ = y or ẏ = y + 2

ẏ − y = 0

x− 1 = 0

x = 1

y = Ce1t, C ∈ R

λ̇ = −3− 2λ

λ̇+ λ+ 3 =

x+ 1 = 0

x = −1

λ = Ke−1t, K ∈ R

ẏ − y − 2 = 0

x− 1 = 0

x = 1

y = Ce1t + 2, C ∈ R.
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4.5 Dynamic Programming

[...] This is a backwards reasoning procedure to find the optimal values
of x0, x1,..., xT and u0, u1,...,uT . This sequence will lead us in the end
to a sequence of optimal value functions.

Example: maxu
∑3

t=0(1+xt−u2t ) s.t. xt+1 = xt+ut, ∀t = 0, 1, 2. Note
T = 3, F [t, x, u] = 1 + x − u2 and x0 = 0, ut ∈ R, f(t, x, u) = x + u,
s = T = 3, max 1 + x− u2,

FOC d·
du = 0 ⇒ −2u = 0 ⇒ u = 0

This is a maximum as u is concave. Then, u3 = 0, whatever the value
of x3 is.

The value function is I3 = 1 + x+ 0.

s = 2, maxu 1 + x− u2
︸ ︷︷ ︸

F

+ 1 + u+ x
︸ ︷︷ ︸

I3(f(t, xt, ut))

FOC: 2u+1 = 0 ⇒ u = 1
2 ⇒ u2 =

1
2 and I2 = 1+ x− 1

4 +1+ 1
2 + x =

2x+ 9
4 .

s = 1, maxu 1 + x− u2 + 2(x+ u) + 9
4

FOC −2u+ 3u = 0 ⇒ u = 3
2 .

Thus, u0 =
3
2 and I0 = 1 + x− 9

4 + 3x+ 9
2 + 17

4 = 4x+ 15
2 .

Given the initial value x0 = 0, we can compute values for the state
variable, x1 = x0 + u0 =

3
2 , x2 = x1 + u1 =

5
2 , x3 = x2 + u2 = 3.

4.5.1 Euler Equation

It’s the cornerstone to add stochastic uncertainty to the problem.
Clearly, this is something that you encounter in macroeconomics to
derive Euler Equations, we will state the problem in the following
terms:

maxx0,x1,...,xT

∑T
t=0 F [t, xt, xt+1] with x0 given, x1, ..., xT ∈ R.

There is no control variable, but, contrarily to before, when we focused
on maxF [t, xt, ut] s.t. xt+1 = f(t, xt, ut), we now suppose that we can
”invert” the function to obtain ut = φ(t, xt, xt+1). This is because of
the theorem of invertibility ⇔ there exists a unique ut making xt+1 =
f(t, xt, ut).
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Then, we can of course eliminate ut,

max
∑

F [t, xt, φ(t, xt, xt+1)] = max
∑

F̃ (t, xt, xt+1)

To derive the Euler equation, we focus on the first order conditions:

max
T∑

t=0

F [t, xt, xt+1] = max[F (0, x0, x1) + F (1, x1, x2) + ...]

⇒ x0 is given, ∄ any F.O.C. to calculate ⇒ ∀t = 1, ..., T , ∂
∑

F (·)
∂xt

=
F3(t− 1, xt−1, xt) + F2(t, x2, x1) ⇒ T + 1 : F3(T, xT , xT+1) = 0.

Remark: in the continuous world we find that: E.-L. eq.: Fy − d
dtFẏ =

0 ⇔ F2 − d
dtF3.

Example: max
∑T−1

t=0 lnut+lnxT s.t. xt+1 =
1
a(xt−ut), ∀t = 0, ..., T ⇒

xt+1 = 1
a(xt − ut) ⇒ ut = xt − axt+1 ⇒ max

∑T−1
t=0 ln(xt − axt+1) +

lnxT , disappears ut.

t = 1: ln(x0 − ax1) + 2 lnxT + ln(x1 − ax2)

FOC: ∂
∂x1

= 1
x0−ax1

(−a) + 1
x1−ax2

= 0

∀t = 1, ..., T − 1: 1
xt−1−axt

(−a) + 1
xt−axt+1

= 0

t = T : −a
xT−1−axT

− 1
xT

= 0 ⇔ xT−1 = 2axT

Let’s do the backwards substitution (t = T − 1):
{

xT−1 = 2axT
−a

xT−2−axT−1
+ 1

xT−1+axT
= 0 ⇔

{

xT−1 = 2axT
−a

xT−2−2a2xT
+ 1

axT
= 0 ⇔

{
xT−1 = 2axT

a2xT = xT−2 − 2a2xT ⇔
{

xT−1 = 2axT
xT−2 = 3a2xT ⇔

By repeating the procedure, we obtain for:

xt−k = (k + 1)akxT ⇒ xT = 1
T+1

1
aT

, x0, x1, ...
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4.5.2 Bellman Equation

This is the setting where the time horizon in +∞. This is relevant if
the horizon is reached or, in order to avoid that one needs an extra
exogenous variable, because, e.g., T could be endogenous. We will
thus focus on the following problem: maxu0,u1

∑∞
t=0 β

tF (xt, ut) s.t.
xt+1 = f(xt, ut), ∀t = 0, ...,∞, x0 given, ut ∈ U .

Note: (i) F and f do not directly depend on t. (ii) F̃ (t, xt, ut) =
βtF (xt, ut). (iii) β ∈]0, 1[ since it’s a discount factor, otherwise, explo-
sive behaviour.

The optimal value function can be written as:

I(x) = max
u∈U

F (x, u) + βI(f(x, u)).

As a comparison, to IS = F (·) + IS+1(x), the impact of the times s
and s + 1 disappears due to the infinite horizon and we discount the
future that is why β1 disappears.

The Bellman equation is called a ”functional equation” because we are
interested in I and not in the variables.

Example: max
∑∞

t=0 β
t(ut, xt)

1−γ s.t. xt+1 = a(1 − ut), ∀t, x0 given,
a > 0 given, ut ∈ (0, 1), γ ∈ (0, 1), β ∈ (0, 1).

In economics, xt ≡ wealth, (1−ut) ≡ path to be solved, (ut+xt)
1−γ is

utility. Guess a solution and verify it ⇒ and guess for I(x) is Cx1−γ .

The Bellman equation is I(x) = maxu∈(0,1)(ux)
1−γ + βI(a(1− u)x)

Cx1−γ = max(ux)1−γ + βC(a(1− u)x)1−γ

C = maxu1−γ + βCa1−γ(1− u)1−γ

FOC 1−−γ +(1 + γ)D(1− u)−γ = 0

⇔ u = 1
1+D1/γ

This implies that C = (1 + d1/γ)γ .

In summary: u = 1− (βa1−γ)1/γ

I(x) = x1−γ

(1−(βa1−γ)1/γ)γ

x1 = a(βa1−γ)1/γx0 = Ex0

x2 = a(βa1−γ)1/γx1 = E2x0

...
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xk = Ekx0

REMARKS: Dynamic programming is mostly used in discrete setting,
whereas optimal control theory is mostly used in continuous time. In
continuous time one has to solve the partial differential equation of
Hamilton-Jacobi-Bellman.


