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CAMERON AND TRIVEDI: CH. 17 - TRANSITION: SURVIVAL ANALYSIS

The present notes are meant to resume for the sake of our understanding the kind of analy-
sis known as survival analysis in the biostatistical literature and duration analysis in the applied
econometric one1. We just intend to briefly survey it, partially inspired by some contributions found
among the references contained at the end of each of the three chapters on survival analysis in
Cameron and Trivedi (2005)’, namely chapters 17, 18, and 19.

17.3.2. DISCRETE DATA  define the discrete time cumulative survivor function Sd(t) as
the probability of transition from 0 child to 1 child, referred as starting behaviour in Knodel ‘87, given
survival up to time ti  recover the discrete hazard rate labeled λi = Pr[T = ti|T ≥ ti] = fd(ti),
namely the discrete density function of duration of each spell, with the property that Sd(ti) =
limt aS

d(ti), where a is a given partition of the time interval - which in the case of the Burundian
survey data is at a yearly frequency for the time span t = 1993,...,2002.

The discrete time cumulative survivor function Sd(t) is defined as the probability of transition
from zero child to one child, referred as starting behaviour in Knodel ‘87, given survival up to time
ti  recover the discrete hazard rate labeled λi = Pr[T = ti|T ≥ ti] = fd(ti), namely the discrete
density function of duration of each spell, with the property that Sd(ti) = limt aS

d(ti), where a is
a given partition of the time interval - which in the case of the Burundian survey data is at a yearly
frequency for the time span t = 1993,...,2002.

Sd(t) = Pr[T > t] and not Pr[T ≥ t], i.e. probability of surviving to interval t without a failure

has verified2. Survival function for discrete data is alternatively defined as Sd(t) = Pr[T ≥ t] =
∏

i|ti
(1−λi) the discrete time survivor function is obtained recursively from the hazard function.

So, i.e. Pr[T > t2], namely the probability of no transition at time t2, for a given sequence of time
spells t0 < t1 < ... < t9, is (1− λ1

︸︷︷︸

hazard rate for ∆t1 = t1 − t0

)(1− λ2
︸︷︷︸

hazard rate for ∆t2 = t2 − t1

)3.

Function Sd(t) is a ց step function of time t, with steps at tj , j = 0, 1, 2, ..., 9. We have full
pregnancy histories at an annual frequency for nine years, but we do not know when exactly during
year the pregnancy occurred. Discrete time cumulative hazard function (chf) is Λd(t) =

∑

i|ti≤t
λi.

Product integral4 applied to the intervals [a0, a1)
︸ ︷︷ ︸

’93-’94

, [a1, a2)
︸ ︷︷ ︸

’94-’95

, ..., [a8, a9)
︸ ︷︷ ︸

’01-’02

. T = ti denotes a discrete

time duration  defining the transition in the interval [aj−1, aj) ⇔ transition at time aj−1 or
later. GROUPED DATA  underlying data generating process (DGP) is continuous, but the data
are collected discretely  transitions in the model are observed discretely  and the necessary
adjustments are made for grouping5.

CENSORING

Our data set is right censored  an individual is observed since time0 = 1993 until the end of the
survey period, coinciding with the censoring time timec = 2002, where the risk set is ′93 −′ 02 in
calendar year metric, whereas in woman-age metric, it ranges from 12 to 46 years of life6. This
defines a retrospective history of fertility along the years of civil war in Burundi. Some birth spells
between subsequent births are completed or closed, up to timec, some others are instead not and
will end in interval [timec, agei) for each woman i = 4783. The idea is to find a model for starting,

1Mainly developed at the end of the seventies for applications in labour economics such as in the analysis of the
length of unemployment spells, particularly in the UK and the US, see, for example, Lancaster ‘79.

2Where by failure we mean a child birth in the statistical demographic literature or the end of a working contract

in the labour economic literature.
3Like a factorization of characteristic equation of an ARMA in Hamilton ‘94, in the different context of time series

analysis
4For evaluation of the partial likelihood function.
5Which are these necessary adjustments?
6Allowing for both right and left censoring
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one for spacing and one for stopping of concievements. A synonym of right censoring is censoring

from above or top coding. Also interval censoring exists.
Random or exogenous censoring ∀i has either a T ∗

i and a C∗
i , that is, an optimal stopping time and

an optimal censoring time, independent between themselves (t1, δ1), (t2, δ2), ..., (t9, δ9) ≡ observed
data, realization of Ti = min{T ∗

i , C
∗
i }; δi = 1[T ∗

i < C∗
i ] = 1 if birth occurs and 0 otherwise, 1 being

an indicator variable for completed observed spells, i.e. transition from zero to one child or from
one to two or from two to three, and so on, until a maximum of eight, found in the survey. For the
analysis of both starting and spacing, we need to refer to a multinomial logit or probit, namely to
a discrete choice model.

For standard survival analysis to be valid, both in the context of analysis of the effects of un-
employment benefits on the duration of unemployment spells or war induced displcement on the
three main aspects of fertility behaviour (for both cases of micro econometric applications in labour
economics or in demography what matters is the occurrence of one of the two in an exogenous man-
ner w.r.t. the other one, to guarantee some causality to the estimates), censoring needs to be an
independent (non-informative) one: the parameters of the distribution of C∗ are not informative7

one may treat the censoring indicator δ as exogenous.

NON-PARAMETRIC ESTIMATION

 Let t1 < t2 < ... < tj < ... < tk  be the observed discrete failure times of the spells in a
sample of size N , N ≥ k. Define dj to be the # of spells that ends at time tj . Data ≡ discrete  
dj > 1 is possible. mj ≡ # of spells right censored in [tj , tj+1). Independent censoring is assumed
 failure time > tj . Spells are at risk of failure if they had not yet failed or being censored. rj ≡ #
of spells at risk at time tj , just before time tj . rj = (dj +mj) + ...+ (dk +mk) =

∑

l|l≥j(df +ml).

λj = Pr[T = tj |T ≥ tj ]  obvious estimator of the hazard function is the # of spells ending at

time tj divided by the # of spells at risk at time tj  λ̂j =
dj
rj
. Discrete survival time function

 Sd(t) = Pr[T ≥ t] =
∏

j|tj≤t
(1 − λj) defines the Kaplan-Meier estimator as the product limit

estimator of the survivor function ⇔ sample analogue of the theoretical survivor function estimated
according to the expression proposed by Kaplan-Meier8 is:

Ŝ(t) =
∏

j|tj≤t

(1− λ̂j) =
∏

j|tj≤t

rj − dj
rj

(1)

NOTATION

❼ tj ≡ jaar = 1993,...,2002, temporal span for each woman j = 1,...,4,783;

❼ rj ≡ # of mothers at risk, i.e. age > 14, with no sons/daughters yet;

❼ dj ≡ # of pregnancies experience by an individual woman;

❼ mj ≡ # of individuals whose record from the survey was censored, (i.e. mothers still in the
risk set, with age less than 469), namely with no birth registered at the date the survey was
carried on, but who could nonetheless have had a child somewhen after the sample period;

❼ λ̂j =
dj
rj

≡ estimated hazard;

❼ Λ̂(tj) ≡ estimated cumulative hazard;

❼ Ŝ(tj) ≡ estimated survivor function, Ŝ(tj) =
r
N , in case of censoring;

7In other words, censoring time is independent across individuals about the parameters of the duration T ∗

8Or product limit estimator.
9Assumed by assumption, due to the restrictions imposed on the questionnaire of the ESD, 2002.
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❼ rj
︸︷︷︸

# at risk at time j

− dj
︸︷︷︸

# of new mothers at time tj

= rj+1
︸︷︷︸

# at risk at time t+ 1

, a first order linear difference

equation, holding if mj
︸︷︷︸

this we have to test it!

= 0, that is, if no observation is censored.

Say that: j ≡ # at risk at time j, rj # of mothers at risk, dj # of pregnancies, mj # of individual

censored, i.e. mothers with no children in the temporal span, λ̂j =
dj
rj
, Λ̂(tj) ≡ estimated cumulative

hazard; Ŝ(tj) ≡ estimated survivor function  = r
N , in case of no censoring. rj − dj = rj+1.

Ŝ(tj) =
∏

j|tj≤t

λj

[rj+1

rj

]

≡
r1
r
, r1 ≡ N (2)

Discrete-time theoretical cumulative hazard function is

Λd(t) =
∑

j|tj≤t

 Λ̂(t) =
∑

j|tj≤t

 Λ̂(t) =
∑

j|tj≤t

λ̂j =
∑

j|tj≤t

dj
rj
 (3)

the latter expression is the Nelson-Aelen estimator of the chf10.

Again, λ(t) = f(t)
S(t) , −f(t) = dS(t)

dt = d[1−F (t)]
dt = −f(t), λ(t) = − d

dt lnS(t). µ = E[t] =
∫∞

0
tf(t)dt, is the usual statistical definition of the mean of continuous proper random variable.

Notice that it is linear in ln t, and w/slope α.

SOME PARAMETRIC MODELS

 popular choices  exponential, Gompertz, Weibull, log-Normal, log-logistic, Gamma. For exam-
ple Γ(α) =

∫∞

0
e−ttα−1dt ≡ Gamma function, I(a, x) =

∫ x

0
e−ttα−1/Γ(α), with 0 < I(a, x) < 1 ≡

incomplete Gamma function. Generalized Weibull proposed by Mudholkar, Srivastava and Kollia
in 1996  additional shape parameter µ  allows hazard to have a more flexible shape11. The
limµ→∞ yields, from the previous expression, the Weibull model of the following form:

lnλ(t) = ln(γα) + (α− 1) ln t− µ
︸︷︷︸

µ > 0

ln(−S(t))
︸ ︷︷ ︸

∂ lnS(t)
∂t

< 0

the right hand side is increasing in t. if α ≤ 1 and µ < 0 then ln hazard is a monotonically
decreasing function of t which implies that the two together can generate a U shaped unimodal
hazard function meaning that the generalized Weibull is a potentially very flexible functional form.
Gompertz is also a fairly flexible functional form whose hazard function can be made monotonically
decrease depending on α ≶ 0, with the exponential a a special case, constituting a good model for
mortality data, used in biostatistics more than in econometrics. Log-normal and log-logistic have a
boothub, first increasing with t and then decreasing. Other models are the Rayleigh and Makeham
distribution and the generalized Gamma model (Lawless, ’82), nesting Gamma andWeibull as special
cases.

Distributions are often two parameter distributions where regressors are introduced by making

the parameter γ = exp{x′β} with α being a constant, but for the log-normal µ = x′β and σ2 is left
as a constant not to be estimated.

Main issues are the dependence on correct model specification for consistent parameter estimates
and the wide range of parametric models available. Classification either as proportional hazards
(PH) models or as accelerated failure time models (AFT ). Weibull model belongs to both categories.
Also widely used in applied micro-econometrics is the piecewise constant hazard model.

10Cumulative hazard function
11Where by flexible is meant
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MAXIMUM LIKELIHOOD ESTIMATION

Fully parametric model with independent censoring is estimable via maximum likelihood or via least
squares. Regressors are assumed to be time invariant. Notation:

❼ T ∗ ≡ observations whose duration is censored;

❼ f(t|x; θ) ≡ conditional density;

❼ θ ≡ q × 1 vector of parameters;

❼ x ≡ q × 1 vector of regressors;

censoring complicates estimation.
Treatment similar to Tobit models12.
Likelihood contribution.

Pr[T > t] =

∫ ∞

t

f(u|x, θ)du = 1− F (t|x,u) = S(t|x, θ) (4)

Density of the ith observation:

f(ti|xi, θ)
δiS(ti|xi,u)

1−δi = S(t|x, θ) (5)

where δi = 1 if no censoring occurs and δi = 0 if right-censoring occurs.
Take logs and sum up:

lnL(θ) =

N∑

i=1

[δi ln f(ti|xi, θ)
︸ ︷︷ ︸

(a)

+(1− δi) lnS(ti|xi, θ)
︸ ︷︷ ︸

(b)

] (6)

we get the log-likelihood function θ̂MLE ≡ value of the parameters maximizing the log-likelihood!
(a) closed intervals, (b) open intervals.

lnS(t) = Λ(t) and ln f(t) = ln{λ(t)S(t)} = ln{λ(t)} + ln{S(t)}  rewrite the log-likelihood
function in terms of the conditional hazard and integrated hazard functions:

lnL =

N∑

i=1

{δi lnλ(ti|xi, θ) + Λ(ti|xi, θ)} (7)

useful if the parametric model is defined by specifying the hazard rate  usual estimation theory

applies, that is θ̂MLE  N(θ, (E
[
∂2 lnL
∂θ∂θ′

]
)−1)13. If density is correctly specified  the θ̂MLE is

consistent14. Exponential duration model in absence of censoring requires correct specification

12Allowing consistent estimation of censored data models, through OLS estimation, i.e. estimating equations of the
type y∗ = Xβ+u, where y∗ is the complete variable, not censored nor truncated, with the usual OLS assumptions of
E[u] = 0 (zero mean disturbance term) and E[X′u] = 0 (error term and regressors’ vector.)  with these assumptions,
we have that if y∗ could be observed, the OLS estimator of β would be consistent. Unfortunately, y∗ is not observed.
With a censored version of y∗, and considering the simplest version of a regression model, simply linear, we have
E[y∗|X] = Xβ ⇔ we assume the conditional mean of X on β is simply linear. Define y, the latent variable, as y = y∗

if y∗ < b and y = b if y∗ ≥ b, as happens in the case of top coding or censoring from above (ref. Pellizari’s notes
”Maximum Likelihood and Limited Dependent Variable Models”, May 24, 2010, largely inspired by the Woolridge for
the course in econometric analysis DES LM course at Bocconi University). Then the conditional mean of y given X can
be computed as E[y|X] = Pr(y = b|X) × E(y|X, y > b) + Pr(y > 0|X)E(y|X, y > 0) = Pr(y > 0|X)Pr(y|X, y > 0)
THE FORMULA IS FOR THE DERIVATION OF THE LIKELIHOOD CONTRIBUTION OF A DOWN CODED
DATASET.

13Asymptotically, namely as N , the sample size, grows large, normally this should hold for samples with more than
30 obsevations, as in the time series anlysis literature.

14Assuming that our objective is efficient and unbiased estimation of the model parameters.
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only of conditional mean function. However, in presence of censoring, inconsistency may occur even
for the exponential model and arises for other parametric models even without censoring, which
constitutes a major weakness of the parametric approach (lack of robustness).

with left-censoring  spell known to be of length at most t  Pr[T ∗ < t] =
∫ t

0
f(s|,x, θ)ds =

F [s|x, θ].
with interval-censoring  spell known to lie in [ta, tb), likelihood contribution: Pr[t≤T < tb] =

∫ tb
ta
f(s)dsfj . Go back to chapter 17.5.2. confidence bands for nonparametrics estimates  

as those used in STATA. λj =
dj
rj
, estimate of the hazard  very discontinuous survivor and

cumulative density functions are much more smoother...it is standard practice to plot them against
time along with confidence bands. Kaplan-Meier estimate of the survivor function  
 V̂ [S(t)] = Ŝ2(t)

∑

j|tj≤t
dj

rj(rj−dj)
is the Greenwood estimate of the variance.

 ln(− ln Ŝ(t)) base for confidence bands.

Sd(t) ∈
(
Ŝ(t) exp{−zα

2
σ̂(t), zα

2
σ̂(t)}

)
,

where the estimated standard deviation of the regressors, ln(− ln Ŝ(t)), is defined as:

σ̂2
g =

∑

j|tj≤t
dj/(rj(rj − dj))

{
∑

j|tj≤t
ln
[ rj−dj

dj

]
}2

Comparison between Exponential and Weibull:

FUNCTION EXPONENTIAL WEIBULL

f(t) γ exp{−γt} γαtα−1 exp{−γtα−1}
F (t) 1− exp{−γt} 1− exp{−γtα}
S(t) exp{−γt} exp{−γtα−1}
λ(t) γ γαtα−1

Λ(t) γt γtα

E[t] 1
γ γ−

1
2Γ[α−1 + 1]

V ar[t] 1
γ2 γ−

2
α [Γ(2α−1 + 1)]− [Γ(α−1 + 1)]

γ, α γ > 0 γ > 0, α > 0

15

Nelson-Aelen estimator of cumulative hazard rate16’s variance  V̂ [Λ(t)] =
∑

j|tj≤t
dj
r2j
 trans-

formation ln Λ̂(t) yields the percentage point (1−α) confidence interval for Λ ∈ {Λ̂(t) exp{−zα
2
σ̂Λ(t)}, Λ̂(t) exp{+zα

2
σ̂Λ(t)}},

where σ̂Λ(t) ≡ st. dev. of ln Λ̂(t), estimated via

σ̂2
Λ(t) = V̂ [Λ̂(t)]/Λ̂(t)2.

PARAMETRIC REGRESSION MODELS

EXPONENTIAL AND WEIBULL DISTRIBUTIONS

The natural parametric starting point is an exponential model, a pure Poisson process has durations
that are exponentially distributed (see Lancaster, 1990). The exponential duration distribution has
a constant hazard rate γ that does not vary with t, the memoryless property of the exponential,

15Γ(α) =
∫
α

0
e−xxα−1dx is the Gamma function.

16cumulative hazard rate.

5



whose survivor function is written as S(t) = exp{−
∫ 1

0
γdt} = exp{−γt}. The density is f(t) =

−dS(t)
dt = γ exp{−γt} and the cumulative hazard is Λ(t) = − lnS(t) = γt, linear in t.
Nevertheless, the exponential is a one parameter distribution which might be a bit too restrictive

in applications. Hence it may be appropiate to use the Weibull distribution, which, with α = 1,
collapses into an exponential.

Weibull’s hazard is γαtα−1 which is monotonically ց if α < 1 or monotonically ր if α > 1  
special case of PH family. Parameters (α, γ) should be estimated from the data.

Recall some useful definitions:

λ(t) = lim
dt→0

Pr{t ≤ T ≤ t+ dt|T ≥ t}/dt = f(t) hazard function

F (t) = Pr{T ≤ t} =

∫ t

0

f(s)ds cumulative hazard function

S(t) = 1− F (t) = Pr{T ≥ t} survivor function

f(t) =
dF (t)

dt
 reltionship between relative and cumulative hazards

Tu =
1

λ[1−H(x)]
 average duration of pregnancies

S(ta|x, θ)−S(tb|x, θ), all vectors are of dimension q× 1  duration data in economics are often
interval censored, where in the present example ta and tb are two subsequent point on the temporal
line, with ta < tb.

Can we use continuous distributions for analyzing discrete data?

COMPONENTS OF THE LIKELIHOOD FUNCTION

This section discusses the same concepts as from Lancaster (1990). There exist different likelihood
specifications depending on which type of data is used, whether complete, truncated, or censored,
especially for employment durations.

❼ Complete duration  f(t)

❼ Left-truncation at tL ≤ t  f(t)
S(t)

❼ Right-censoring at tcR  S(tcR)

❼ Right-truncation at tR  f(tR)/(1− S(tR))

❼ Interval censoring at tcL and tcR .
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WEIBULL EXAMPLE

λ(t) = γαtα−1, where α > 0 and γ > 0. Regressors are introducable as γ = exp{x′β} always strictly
positive, recalling that as an exponential function with base greater than one behaves asymptotically
towards zero on the left and exponentially exploding on the right side. α ≡ independent on the
regressors.

a. ln f(t|x, β, α) = ln[exp(x′, β)αtα−1 exp{− exp{x′β}tα−1}] =
= x′β + lnα+ (α− 1) ln t− exp{x′βtα}.
b. lnS(t|x′, α, β) = ln[exp{− exp{x′βtα}] = − exp{x′β}tα
∑N
i=1{δi, 1− δi} lnL =

∑

i

[
δi{x

′β + lnα+ (α− 1) ln ti − exp{x′
iβ}t

α
i }

]
−

−(1− δi){exp{x
′
iβ}}t

α
i .

lnL =
∑N
i=1

[
δi

︸︷︷︸

dummy for censoring

{x′β + lnα+ (α− 1) ln ti − exp{x′β}tα}
︸ ︷︷ ︸

conditional log density

+

+ (1− δi)
︸ ︷︷ ︸

dummy for censoring

{x′
iβ}t

α
i

]

︸ ︷︷ ︸

conditional log survivor

First order conditions are:
∂ lnL
∂β =

∑

i

[(
δi − exp{x′

iβ}t
α
)
x′
i

]
= 0

∂ lnL
∂α =

∑

i δi(
1
α + ln ti)− ln ti exp{x

′
iβ}t

α
i = 0

from the first f.o.c.,
∑N
i=1 δix

′
i

∑N
i=1 exp{x

′
iβ}t

α
i x

′
i

∑N
i=1

[
δi
tαi

]

=
∑N
i=1 exp{x

′
iβ}

∑N
i=1 ln δi −

∑N
i=1 α ln ti = x′

iβ
∑N
i=1

[
ln δi−α ln ti

x′

i

]

= β̂MLE

 maximum likelihood estimator for slopes of the regressors.
For consistency, with no censoring, E[∂ lnL

∂β ] = 0 requires E[Tα|x] = exp{−x′
iβ}.

USE OF MODEL ESTIMATES

Usual way ≡ effects of regressors on the conditional mean in linear models. If γ = exp{x′
iβ}  

E[T ∗|x] = exp{−x′
iβ/α}Γ(α

−1 + 1) = exp{−x′
iβ/α}Γ(α

−1)/α. Calculate expected length of com-
pleted spells at various values of x. The econometrics of duration models is certainly concerned with
the role of covariates but is especially involved with the slope of the hazard functions, bacause the
economic theories make explicit predictions about the shape of the hazard function.

Interpretation of estimates of parametric duration models focuses on the Weibull hazard rate
λ(t) = γαtα−1 and how it changes over time and with changes in the regressors. One sided test of
α = 1 are obviously of interest,

dλ(t)

dx
= exp{x′

iβ}αt
α−1β = λ(t)β

∆x influences multiplicatively the λ(t).
βj > 0 +∆λ(t) as a component of x ր. If βj ր the hazard rate ր
If ∆xր.

LEAST SQUARES ESTIMATION

Less efficient than MLE and relying on correct specification of the density. Similar to Tobit model.
Exponential duration E[T |x] = 1/γ = exp{x′

iβ}, NLS17 regression of ti on exp{−xiβ} consistent
though inefficient estimator for β. Alternatively  ln t = x′

iβ + u, u ∼ extreme value of type I

17Nonlinear least squares.
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(check type I and II distribution on michele pellizzari’s notes) E[lnT |x] = x′
iβ − c, c ≡

Euler’s constant ≈ .5722. β consistently estimable via linear regression of ln ti on xi. Analytical
censored moments for censored observations.

φ(x, β) = exp{x′β}
∫ t

0

λ(s|x)ds =

∫ t

0

λ0(s, α) exp{x
′β}ds

Λ(t|x) = Λ0(t, α) exp{x
′β}

ln Λ(t|x) = lnΛ0(t, α) + x′β

− ln Λ0(t, α) = x′β− ln Λ(t|x)
︸ ︷︷ ︸

= x′β + u
︸︷︷︸

type I extreme value distrib.

E[ln Λ0(T, α)|T > t∗] in censored samples, using a Heckman two steps procedure18.

SOME IMPORTANT DURATION MODELS

Proportional hazards versus accelerated failure time metric is central in that it changes the metric
in which the duration to failure time is measured.

PROPORTIONAL HAZARDS

λ{t|x} = λ0(t, α)
︸ ︷︷ ︸

basel. haz.,

φ(x, β)
︸ ︷︷ ︸

scaling factor

(∗)  the hazard function is factorizable into separate functions.

Polynomial baseline hazards are popular in the literature...usually φ(x, β) = exp{x′β}
All hazard functions of the form (∗) are proportional to the β baseline hazard with scale factor

φ(x, β) widely used (as parameters’ vector β can be estimated without specification of the func-
tional form of λ0(.)). Exponential, Weibull, Gompertz regression models are all PH models since
their hazards are exp{x′β}, exp{x′β}tα−1 and exp{x′β} exp{αt}.

Piecewise constant hazard model λ0(t, α) is a step function with k segments λ0(t, α) = eαj ,
cj−1 ≤ t < cj , ∀j = 1, ..., k, c0 = 0, c∞ = +∞  other breakpoints c1, ..., ck−1 are specified and
the parameters α1, ..., αk are to be estimated. These are exponentiated to ensure that λ0(t, α) > 0.
This model has more baseline parameters to estimate than models such as the Weibull which has
only one baseline hazard parameter.

ACCELERATED FAILURE TIME

Similar to PH model but, rather than t, it admits ln t = x′β+u 6= distributions of u 6= AFT
models. If t ∈ (−∞,∞)  distribution for u can take any continuous distribution on (−∞,+∞).
The denomination AFT arises because t = exp{x′β}v, where v = eu, has hazard rate λ(t|x) =
λ0(v| exp{x

′β}), where the baselinine hazard doesn’t depend on t. Substitute v = t exp{−xβ} and
get:

λ(t|x) = λ0(t exp{−x′β}) exp{x′β}

 an acceleration of the baseline hazard λ0(t) if exp{−xβ} > 1 and a deceleration if exp{−x′β} < 1.
Log-normal model for t results if u ∼ N(0, σ2); log-logistic model obtained if u ∼ logistic; Gamma
model reached if f(u) = exp{αu− eu}/Γ(α). g(t) = x′β + u.

18??
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FLEXIBLE HAZARDS MODELS

In flexible or flexibly parametric models or semi-parametric models, the researcher specifies first the
hazard rate rather than the probability density function, i.e. λ(t) = x′β + a1t + a2t

2 leading to
U -shaped hazard functions. Λ(t) = (x′β)t+ a1

2 t
2 + a2

3 t
319. Given λ(t) and Λ(t)  directly from the

log-likelihood.

COX PH MODEL

Here, choose parametric functional forms that are flexible and hence provid some protection against
mis-specification [...]. Fortunately there exists a semiparametric model that requires less complete
distributional assumptions.

PROPORTIONAL HAZARDS MODEL

Their starting point is to propose a particular functional form of the hazard rate, the proportional
hazard, conveniently factored as:

λ(t|x′β) = λ0(t)
︸ ︷︷ ︸

baseline hazard function of t alone

× φ(x, β),
︸ ︷︷ ︸

function of x alone, originally indep. on t

where φ(x, β) = exp{x′β}, most commonly. The independence on time of the second term in
the above expression is subsequently relaxed.

Semiparametric model is considered:
λ0(t)’s functional form unspecified; φ(x, β) = exp{x′β}.
If jth regressor xj is raised by one unit (i.e. an additional year of education) and the other

regressors are kept constant, then,

λ(t|xnew, β) = λ0(t) exp{x
′β + βj}

= exp{βj}λ0(t) exp{x
′βj}

= exp{βj}
︸ ︷︷ ︸

new hazard

λ{t|x′, β}
︸ ︷︷ ︸

original hazard

Change in hazard is 1− exp{βj} times the original hazard.
If one uses instead calculus methods,

∂λ(t|x,β)
∂xj

= λ0(t) exp{x
′β}βj = βjλ(t|x, β),

the resulting change in the hazard is βj times the original hazard.
Consistent with exp{βj} ≈ 1+βj , a non-calculus result. Statistical packages offer often estimates

of βj and exp{βj} along with confidence intervals.
For more general forms of φ(x, β), changes in the regressor can be interpreted as having a

multiplicative effect on the original hazard, since

∂λ(t|x,β)
∂x = λ0(t)

∂φ(x,β)
∂xj

=
[

λ(t|x, β)× ∂φ(x,β)
∂xj

]

/φ(x, β)

 requires knowledge of β but not of the baseline hazard function λ0(t).

19since Λ(t) =
∫
λ(t)dt

9



IDENTIFICATION OF THE COX REGRESSION MODEL

Identification in PH models is discussed in Cox (‘72, ‘79) refers to the problem of how to estimate β
in the PH model. In fact that does not require simultanueous estimation of λ0t, the baseline hazard
function. Setup  t1 < t2 < ... < tj < ... < tk  observed discrete failure times of the spells in a
sample of N (≥ k). The risk set R(tj) is defined to be the set of individuals who’re at risk of failing
just before the jth ordered failure D(tj) ≡ set of subjects having births occurring at time tj , dj ≡
# of mothers that give birth at time tj . To sum up:

R(tj) = {l : tl ≥ tj}  set of spells20 at risk at time t

D(tj) = {l : tl = tj}  set of spells completed at t

dj =
∑

l 1{tl = tj}  # of spells completed at tj

where 1 stands for a dummy variable taking values 1 if the spell was completed before the end
of the survey and 0 otherwise.

Tied data are possible at dj > 1. The former of the last three expressions includes spells that
are neither completed nor censored.

Pr[Tj = tj |R(tj)] =
Pr[Tj = tj |Tj ≥ tj ]

∑

l∈R(tj)
Pr[Tl = tl|Tl ≥ tj ]

=
λj(tj |xj, β)

∑

l∈R(tj)
λl(tj |xl, β)

=
φ(xj , β)

∑

l∈R(tj)
φ(xl, β)

In the first line, the numerator indicates the probability that a particular spell at risk ending at
time tj ≡ probability of failure for spell j. The denominator instead expresses the cond. prob. that
a spell of any individual in the risk set R(tj) fails, i.e. has an additional child.

In the third line, λ0 has dropped out due to the PH assumption21  intercept not identified
 basis for estimating β. We must control for tied durations, more likely when we have grouped
observations (durations).

Suppose there are two tied values at time tj , for individuals j1 and j2 with regressors xj1 and
xj2. If j1 fails22 and xj2 then the probability of occurrence of a failure of them is:

φ(xj1, β)
∑

l∈Rtj
φ(xl, β)

+
φ(xj2, β)

∑

lR(tj)φ(xl, β)

A similar term arises if j2 fails before j1 and the likelihood contribution’s the sum of the two
possibilities. Exact likelihood becomes complicated with many tied values.

Cox and Oakes ‘84  Pr[Tj = tj |j ∈ R(tj)] ≈

∏
m∈D(tj)

φxm,β

[
∑

l∈R(tj)
φ(xl,β)]dj

, approximation working well if

the # of failures is small relative to the number of individuals (mothers) at risk (not our case) in
the population.

Cox  partial likelihood function  joint product of Pr[Tj = tj |j ∈ R(tj)] over the k ordered
failures. Then,

20Spacing between subsequent births, i.e. this setup may be useful for spacing not for starting fertility behaviour.
21PH assumption refers to the hazard model being composed by proportional hazards rate rather than by accelerated

failure time rate, referred is Stata as AFT, and proportional hazard as PH in the options of the command streg.
22If a mother remains pregnant for starting or if the mother has an additional child for spacing behaviours, let’s

say. The present exposition is taken from the Cameron and Trivedi (2005)’s manual, specifically in chapter 17.8.2.
Identification of the PH model.
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Lp(β) =
∏k
j=1

∏
m∈D(tj)

φ(xm,β)
∑

l∈R(tj)
φ(xl,β)dj

Cox proposed estimation of β by minimizing the log partial likelihood function

Lp =
∑k
j=1

{∑

m∈D(tj)
lnφ(xm, β)− dj ln

( ∑

l∈R(tj)

φ(xl, β)
)}

︸ ︷︷ ︸

.

only in the underlined term there appear censored spells, because they do not contribute to the
observed births, but until they’re censored, they affect the size of the risk set.

Here we change indexation of mothers form j to i,

lnLp(β) =
∑k
i=1 δi[

∑

m∈D(tj)
lnφ(xm, β)− ln(

∑

l∈R(ti)
φ(xl, β))].

where the binary variable δi is defined as:

δi =

{
1 for censored obs.;
0 else;

and

φ(x, β) = exp{x′β} ⇔
⇔ lnφ(x, β) = x′β, with F.O.C.:

∂ lnLp(β)
∂β =

∑N
i=1 δi

[
xi − x∗

i (β)
]
= 0,

x∗
i =

∑
l∈R(ti)

xl exp{x
′

lβ}∑
l∈R(ti)

exp{x′

l
β}

which is the weighted average of the regressors xl for subjects at risk of failure at time ti.
The partial likelihood ≡ limited information likelihood, as λ0(t) has dropped out. But it is

neither a conditional likelihood nor a marginal likelihood. Then is Lp(β) a valid likelihood function?
Andersen et al. 1993 show that even lnLp(β) yields a consistent estimator for β. See Lancaster
(1990), ch. 9,

A(β) = −B(β), and β̂ML  a N
[
β, (E

[∂ lnL(β)

∂β∂β ]
)−1]

The indexation p under the likelihood term stands for partial.
Estimator is inefficient (WHY?).

SURVIVOR FUNCTION FOR THE COX PH MODEL

Many studies stop at the estimate of β. Other studies focus on the shape of the baseline hazard func-
tion. For the PH model, it is possible to estimate nonparametrically the baseline hazard functionor
survivor, once β is obtained after having maximized the partial likelihood. Estimates analogous to
those of Kaplan-Meier.

PH hazard function’s S(t|x, β) = S0(t)
φ(x,β), using S(t|x, β) = exp{−

∫ t

0
λ0(s)φ(x, β)ds} and

defining S0(t) = exp{−
∫ t

0
λ0(s)ds}.

Assume a discrete time formulation with baseline hazard 1 − αj , at discrete failure time tj ,
j = 1, ..., k. α̂j is the solution to

∑

l∈D(tj)
φ(xl,β̂)

1−α̂
φ(xl,β)

j

=
∑

m∈R(tj)
φ(xmβ̂), j = 1, ..., k.
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β̂PML ≡ partial likelihood estimator of β,  S0(t) =
∏

j|tj≤t
αj , the cumulative product of the

instantaneous conditional survivor probabilities. Estimated survival function (baseline) is,
with no regressors, Ŝ0(t) =

∏

j|tj≤t

Ŝ0(t) reduces to the Kaplan - Meier estimator,

normalize φ(xl, β) = 1 and the expression yields hazard rate 1− α̂j =
dj
rj
.

With regressors but without ties, the baseline hazard rate,

1− α̂j = φ(xj , β̂)/
∑

m∈R(tj)
φ(xj , β̂).

Survivor function for individuals with regressors x = x∗ can be estimated via Ŝ(t|x∗, β) =

Ŝ0(t)
φ(x∗,β̂).

Linear transformation of regressors don’t change the estimates of β, but they do change the
hazard function.

λ(t|x, β) = λ0(t) exp{xβ}
= λ0(t) exp{x

′β} exp{(x− x̄)′β}
︸ ︷︷ ︸

deviation from the mean of x’s

= λ∗0(t) exp{(x− x̄)′β}

new baseline hazard  demeaning each regressor’ll change the baseline hazard + care in inter-
pretation.

DERIVATION OF THE SURVIVOR FUNCTION

Following Kalbfleisch and Prentice (2002), we derive αj .

S(tj |x, β)− S(tj+t|x, β) = S0(tj)
φ(x,β) − S0(tj+1)

φ(x,β)

= [α−1
j S0(tj+1)]

φ(x,β) − S0(tj+1)
φ(x,β)

= [α
−φ(x,β)
j − 1]S0(tj+1)

φ(x,β)

since S0(tj+1) =
∏j
l=1 αl = αjS0(tj), and the first term means that subject with duration time

tj has likelihood contribution equal to the probability of survival time t > tj .
For these subjects who are censored at time tj , the likelihood contribution is the propbability of

survival t > tj or S0(tt+1)
φ(x,β). So subjects that either die or are censored at [tj , tj−1] contribute

probability S0(tj+1)
φ(x,β) =

∏j
l=1 α

φ(x,β) with an additional multiplier {α
−φ(xβ)
j − 1} for subjects

that deliver before the end of the survey time. The over all failure times the likelihood  L(α, β) =
∏k
j=1

[∏

l∈D(tj)

(
α
−φ(xl,β)
j − 1

)∏

m∈R(tj)
αφ(x,β)

]
.

lnL(α, β) =
∑k
j=1

{∑

l∈D(tj)
ln(α

φ(x,β)
j − 1) +

∑

m∈R(t−j) −φ(x, β) lnαj
}
.

∂ lnL(α,β)
∂αj

= 0 ⇔ as before.

TIME VARYING REGRESSORS

Beyond gender, confession, educational attainment, age, marital status, number of children even
concieved, tending towards age at marriage break, residence, location, and so on.
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DISCRETE-TIME PROPORTIONAL HAZARDS MODEL

Grouped duration models are appropiate when failure times are aggregated and observed/recorded
at aggregate time intervals like a week, a month, a year. A simple method is to form a panel and
estimate a stacked logit or probit model of the probability of an individual failure in each period,
with separate intercept for period (fixed effects). Discrete time variant of a continuous time PH
model considered by several authors such as Kalbfleisch and Prentice (1980), [...]23.

Grouped data with grouping point ta, where a stands for annum in our case, a = 1, ..., A, the
discrete hazard function is defined by:

λd(ta|x) = Pr[ta−1 ≤ T < ta|T ≥ ta−1,x(ta−1)], a = 1, ..., A

Time varying regressors are permitted. The associated discrete time survivor function is:

Sd(ta|x) = Pr[T ≥ ta−1|x] =
∏a−1
s=1 (1− λd(ts|x(ts))).

We obtain the first general relation between the discrete and continuous time hazards. Discrete
time hazards  probability of failure in [ta−1, ta) divided by the probability of surviving until at
least time ta−1:

λd(ta|x) =
S(ta|x)−S(ta|x)

S(ta−1|x)
.

S(t|x) ≡ survivor function.

S(t|x) = exp{−
∫ t

0
λ(s)ds}, and, after some algebra,

λd(ta|x) = 1− exp{−
∫ ta
ta−1

λ(s)ds}.

Now, specialize to the discrete - time hazard model associated with the continuous PH model  

λ(t) = λ0(t) exp{x(ta−1)
′β}, for t ∈ [ta−1, ta).

Regressors are constant within the interval, but can vary across intervals. λ0(t) instead can vary
w/in interval.

λd(ta|x) = 1− exp(− exp{x(ta−1)
′β})

∫ at
ta−1

λ0(s)ds

= 1− exp{−λ0(ta) exp{x(ta−1)
′β}}.

Associated discrete ti =
∫ ta
ta−1

λ(s)ds.

The survivor function:

Sd(ta|x) =
∏a−1
s=1 exp{− exp{lnλ0sx(ts−1)

′β}}.

The density for the ith subject is th eproduct of the survivor function in eachh period that the
subject survives (i.e. the mother does not deliver an additional child) times the hazard at the time
of failure.

L(β, λ01, ..., λ0A) =
∏N
i=1

[∏ai−1

s=1 exp{− exp{lnλ0s + xi(ta−1)
′β}}

]
×

×
[
1− exp{exp{lnλ0ai + xi(ta−1)

′β
]
,

when censoring is ignored for simplicity and failure is assumed to occur at time tai for the
ith observation. At least one failure is assumed to occur in each interval [ta−1, ta). The MLE
maximizes the latter likelihood function w.r.t. βa dn λ01, ..., λ0A, such as a polynomial in time.
λ0(s) =

∫ ta
ta−1

αsα−1ds, as in a fully parametric Weibull model.

23following Blake, Lunde and Timmerman (’99)
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HAN AND HAUSMAN APPROACH

Flexibly estimate the baseline hazard λd0(t), while maintaining a parametric form for the function
of covariates. λi(τ) ≡ hazard rate for obs. i, cond. prob. that a spell terminates in (τ, τ +∆), as a
PH form:

λi(τ) = λ0(τ) exp{−x′β}.

Taking log after integration and rearrangin yields:

Λ0(t)− x′
iβ = ǫi, where Λ0(t) = ln

∫ t

0
λ0(τ)dτ ≡ log of cumulative baseline hazard, and

ǫi ≡ ln
∫ t

0
λi(τ)dτ .

 Pr[failure in t] =
∫ Λ0(t)−x′β

Λ0(t−1)−x′β
f(ǫ)dǫ.

Let yit = 1 if the ith mother experiences a baby - birth in period t, and yit = 0 otherwise. Then
the joint-likelihood of N observations 24 is given by:

lnL( β
︸︷︷︸

slope of the reg.

, Λ0(1), ...,Λ0(T )
︸ ︷︷ ︸

basel. haz. param.
︸ ︷︷ ︸

estim. without imposing a functional form

) =
∑
i = 1N

∑T
t=1 yit ln

[ ∫ Λ0(t)

Λ0(t−1)
f(ǫ)dǫ

]
.

The integral in the log-likelihood is of course the difference in the cdf
[
Λ0(t− 1)−x′

iβ,Λ0(t)−x′β
]
.

The precise form of this expression depends on the functional form of the cdf. If ǫi ∼ N(µ, σ2)  
loglik ≡ probit form; if ǫi ∼ extreme value distribution  loglik ≡ logit model. Under normality  
Pr

[
Λ0(t+ 1) < x′

iβ + ǫi ≤ λ0(t+ 1)
]
= Φ

[
Λ0(t+ 1)− x′

iβ
]
− Φ

[
Λ0(t)− x′β

]
.

Contrarily to the partial likelihood method, treating the baseline hazard as a nuisance and then
eliminating it, the Han and Hausman, 1990 approach estimates all unknown parameters simultane-
ously at a modest computational cost. Monte Carlo study...

DISCRETE TIME BINARY CHOICE

An alternative approach is binary choice modeling for transitions leading to a discrete time transition
model of the type:

Pr
[
ta−1 ≤ T < ta|T ≥ ta−1|x

]
= F [λa + x′(ta−1)β], a = 1, ..., A.

Regressors’ coefficient allowed to be constant over time. Obvious choice of F are the standard
normal and the logistic cumulative density function. Then λa and β can be estimated by a stacked
logit or a stacked probit model where a separate intercept is permitted at each duration interval.
Resulting likelihood:

L(β, λ1, ..., λN ) =
∏N
i=1

[∏ai−1
s=1 1− F (λs + xi(ts−1)β)

]
× F (λai + x′(tai−1)β),

similar to the loglik. of the discrete PH model.

24The whole sample. In our case N ≈ 11, 620 women interviewed on their retrospective fertility path of T = 9
years, for t = 1993, ..., 2002.
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MIXTURE MODELS AND UNOBSERVED HETEROGENEITY

FINITE MIXTURE MODEL

The sample is a described as a probabilistic mixture from two subpopultions with f1(t|µ1(x)) and
f2(µ2(t|x)), where the vector of independent variable is the same for both subpopulations πf1(.)+
(1− π)f2(.), π ∈ [0, 1]  two components mixture  parameters to be estimated  µ1, µ2, π. π ≡

const. or π = eλ

1+eλ
(logistic), and λ (funct. of other covariates). Some i came from f1(.) and some

other from f2(.) due to the latent partitioning of the sample (unobserved heterogeneity), or simply
linear approximation of densities f1(.) and f2(.) make better fit. Each subpopulation ≡ a ”type”,
say there exist m homogeneous subpopulations called components. jth component ≡ fraction πj of
the total population,

∑m
j=1 πj = 1.

πj(ti|xi, πj , β) =
∑m
j=1 f(ti|xj , νj

︸︷︷︸

estimated support point

, β) π
︸︷︷︸

associated probability

(νj), ∀i = 1, ..., N .

Semiparametric approach  á la Heckman and Singer (’84)  as if unobserved heterogeneity ob-
served. Happening if πj not subject to any parametric assumption semiparametric mixture model
for t. Estimable under known or unknown # of components. Usually πj , j = 1, ...,m are known
 maximum likelihood estimates  Non Parametric Maximum Likelihood Estimator. # of com-
ponents unknown  inference issues. Good to think at a small # of latent classes, rather than a
continuum of types.

LATENT CLASS INTERPRETATION

di1, ..., dim is a dummy for identifying who’s taken from which class of individuals drawn, say from
jth class for i = 1, ..., N ⇔ each observation ⇔ sample from each of the m class (here m = 1, 2, 3, i.e.
women exposed to conflict and women not expose to conflict, on the base of the residence variable,
called commune2 in the dataset ind 92 02.dta). Assume the model is identified:

(ti|di, µ, π) ∼ i.i.d., with densities:
∑m
j=1 dijf( ti

︸︷︷︸

duration of ind. i

| µj
︸︷︷︸

means duration of ind. in class j

) =
∏m
j=1 f(ti|µj)dij

µj = µ(xj , βj), where the dimensions of x are m × 1, the same of β and µ = (µ1, ..., µm), and
(di|µm×1, πm×1) ∼ i.i.d. with a multinomial distribution (??).

∏m
j=1

∏dij
j=1, 0 < πj < 1,

∑m
j=1 πj = 1.

(ti|µ, π) ∼iid

m∑

j=1

dij∏

j=1
︸︷︷︸

probability weight

fj(t|µj)
dij

︸ ︷︷ ︸

density function

︸ ︷︷ ︸

likelihood contribution

.

 L(βm×1, πN×1|tN×1) =
N∏

i=1

m∑

j=1

dij∏

j

fj(tj , µj)
dij

︸ ︷︷ ︸

likelihood function

.

the dimension of β is that of the individuals, not that of the classes.
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MAXIMIZATION OF THE LIKELIHOOD

via EM algorithm where d = (d1, ..., dn) are treated as missing data, if d were observable:

lnL(µ, π|t,d) =
∑N
i=1

∑m
j=1 dij ln fij(tij , µ) +

∑N
i=1

∑m
j=1 dij lnπj

if πj , j = 1, ...,m are given, the posterior distribution of obs. ti belonging to j, say, zij is given by:

zi,j ≡ Pr[yi ∈ pop.j] =
πj ·fj(yi|xi,βj)∑

m
j=1 πj ·fj(yi|xi,βj)

where the numerator is the relative density and the denominator the cumulative one.
xN×1,yN×1
︸ ︷︷ ︸

categorical

βm×1
︸ ︷︷ ︸

categorical

average of zij is, over i, the prob. that a randomly drawn individual belongs to the jth subpop-
ulation.

E[zij ] = πj
ẑij  estimates of E[dij ].

E[L(β1, ..., βm, πm×1|t, ẑ,x1, ...,xm)] =
∑N
i=1

∑m
j=1 ẑij ln fj(tj , µ(x, βj)) +

∑N
i=1

∑m
j=1 ẑij lnπj

the E step pf the algorithm.
the M-step of the algortithm  maximisez E[L(.)] by solving for the first order conditions w.r.t.

β and π:

∂E[L]
∂β = 0  π̂j −

1
N

∑m
i=1 ẑij = 0, ∀i = 1, ...,m;

∂E[L]
∂π = 0  

∑N
i=1

∑m
j=1 ẑij

∂ ln fj(ti|βj)
∂βj

= 0.

To get new values of ẑij , iterate through E and M steps.

How to choose m? No guiding prior theory.
m · dim[β] +m − 1 ≡ dimension of parameters to be estimated, start with m = 2 and then use

diagnostick checks. Penalized likelihood criterion  AIC,BIC. LR test not good here  check
across candidate latent class models. Overparametrization  misspecification.

Selecting from competing models  goodness of fit, model diagnostics.

Stock or flow sampling?  A/D (average interrupted duration) versus expected elapsed duration,
completed duration. Renewal theory...stationary Poisson process w/stationary parameters. [...]
backwards recurrence time and forwards recurrence time
︸ ︷︷ ︸

duration from current state to transition

.

E[N |t] ≡ expected # of events in the time interval [0, t). limdt 0 E[N(t)] ≡ renewal intensity.
Salant, ’77 flow versus stock sampling AID ≡ average interrupted duration ACD ≡ average

completed duration  6= between them  hazard function being heterogeneous.

STOCK SAMPLING

Sampling in the survey period from the stock of individuals who are in a given state.
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FLOW SAMPLING

Sample those who enter the state during a particular interval. Survey is more likely to capture
longer spells rather than shorter spells  upwards bias  length bias sampling.

AID > AIC  interruption bias.
Density of interrupted spells:

f(u) = Ḡ(u)∫
Ḡ(u)du

= Ḡ(u)
E[t] .

g(t) ≡ density of completed spells.
Ḡ(u) =

∫
g(x)dx  survivor function corresponding to density g(u). E[t] ≡ mean of the distri-

bution of durations.
g(t) is exponential  stochastic process for the event is a Poisson process. f(u) exponential as

well.

E[u] = 1
2

{
E[t] + V [t]

E[t]

}
.

E[t(s)]
︸ ︷︷ ︸

mean of duration for the constant stock

= E[t] + E[t]
V [t] > E[t]

holding both is V [t] ≥ E[t] or ≤ E[t].
E[u] < E[t] if haz. rate is ր in t,
E[u] > E[t] if haz. rate is ց in t.

SPECIFICATION TESTING

−→ 4 types:
1. inclusion and exclusion of covariates;
2. tests of functional forms of the survival function j;
3. tests of unobserved heterogeneity;
4. join tests of state dependence and unobserved heterogeneity.
For 1., just use Wald type tests; for 2., they’re the same as tests of unobserved heterogeneity if the

restriction is on the absence of unobserved heterogeneity  test whether heterogeneoty (variance)
parameter is zero.

HYPOTHESES TESTING

 score test based on the exponential null model. Heterogeneity ⇔ duration dependence  do a
joint test rather than a separate one  locally heterogeneous Weibull models, see Lancaster, ’85.

A local heterogeneous density is generated by considering a Taylor expansion of arbitrary density

around ν, yielding: S(t|ν) = e−µt
αν = e−µǫ = e−ǫ[1+(−ǫ)(ν−1)+(ǫ2/2)(ν−1)2]+o(ǫ3), ǫ = µtα. From

second line:

E[e−ǫν ] = e−ǫ[1 + (ǫ2 σ2
︸︷︷︸

variance of the heterogeneity distribution, first order taylor expansion

/2)] ≡ Sm(t)

where Sm(t) is the sample variance grouped for sub-populations, say m = 1, 2, 3 ≡ r, u, c,

 fm(t) = −∂Sm(t)
∂t = − ǫ

ν−1 + ǫ2

2 · (ν − 1)2 + o(ǫ3) =

= −
µtα

ν − 1
+
µ2t2α

2
(ν − 1)2 + o(µ3t3α)

︸ ︷︷ ︸

A

E[A] = ǫ2σ2

2 , this means that
E[− ǫ

(ν−1) ] = 0!!

17



Hence,

fm(t) = −∂Sm(t)
∂t = αµtα−1 · e−ǫ

[
1 +

(
ǫ2σ2

2

)]
− e−ǫ

[
2ǫ(αµtα−1)σ

2

2

]

= αµtα−1e−ǫ
[
1 + σ2(ǫ2 − 2ǫ)/2

]
.

Write the log-likelihood as follows:

lnL(α, β, σ2) =
∑N
i=1 ln

{[
fm(t)

]δi
·
[
Sm(t)

]1−δi}

=
∑N
i=1 δi

[
lnα+ (α− 1) ln ti + lnµi + ln(1 + σ2(ǫ2i − 2ǫi)/2)−

−ǫi + (1− δi) ln(1 + σ2ǫ2i /2)
]
,

δi ≡ censoring indicator.

lnµi = β0 + x′
iβ1 and ǫi = µit

α
i  generalized error.

Tests for heterogeneity:

H0 : σ2 = 0 and α = 1  no heterogeneity in the population about the covariates + exponential
distribution specification, recall that w/α = 1, Weibull collapses into an exponential.

θ
︸︷︷︸

4 × 1

=

[
θ1
θ2

]

and θ
︸︷︷︸

2 × 1

=

[
σ2

α

]

; θ2
︸︷︷︸

2 × 1

=

[
β0
β1

]

and θ0
︸︷︷︸

4 × 1

=







0
1
β0
β1






 restricted vectors

connected with the null hypothesis of the test for heterogeneity.

Consider unrestricted data: joint score test statistic (or Lagrangian multiplier test) is:

LM H
︸︷︷︸

heterogeneity

D
︸︷︷︸

duration

= 1
d ·

[ ψ′(1) 1
1 1

]

︸ ︷︷ ︸

not diagonal

·s,25

s′ = [1/2
∑

i(ǫ
2
i − 2ǫi),

∑

i(1 + (1− ǫi) ln ti)] and ψ
′(r) first derivation of the digamma function

d ln Γ(r)
dr and d = 1

N(ψ′(1)−1)  to implement the test, LMHD is evaluated at the null  test stat

∼ χ2
2, a Chi-Squared with two degrees of freedom.

LMHD = 1
4N ·

(∑

i(ǫ
2
i − 2ǫi)

)2
∼ χ2

1, asymptotically under H0;

LMD = 1
d ·

(∑

i(1 + (1− ǫi) ln ti)
)2

∼ χ2
1, asymptotically under H0,

inferring the direction of the misspecification on the basis of a separate test can be misleading.
Jaggia and Trivedi, ’94; difficult to discern between unobserved heterogeneity and state dependence.

Weibull, Weibull Gamma or proportional hazards model  carry out test using integrated haz-
ards functions because in absence of heterogeneity, Bera and Yoon, ’93  more general issue of
hypotheses’ testing when a model is misspecified.

GENERALIZED RESIDUALS

 non parametric graphical test of fit of duration model.

S(t|u) = exp{−Λ(t|µ)},
f(t|µ) = λ(tµ) exp{−Λ(t|µ)}.

Generalized residual  ǫ = Λ(t|µ) = − ln(S(t|µ)). Jacobian of this transformation is:

25The two components of the two tests are correlated.
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J = dt/dǫ = 1
dΛ(t|µ)/dt =

1
dΛ(t|µ)

given f(t|µ), density of ǫ is given

λ(t|µ) exp{−ǫ} 1
λ(t|µ) = exp{−ǫ},

which doesn’t depend on µ  density is the unit exponential distribution.

DIAGNOSTIC TESTS BASED ON INTEGRATED HAZARD

These tests exploit the unit exponential property of the generalized residual ǫ under the null of
correct specification. S(ǫ) = exp{−ǫ}, − lnS(ǫ) = Λ(ǫ) = ǫ.

Estimated integrated hazard for the Weibull model is ǫ̂ = µ̂t̂. Ŝ(ǫ̂) = N−1  # of sample
observations ǫ̂. Regress − lnS(ǫ̂) on ǫ̂ and intercept and test whether intercept is zero and the
slope is equal to 1. Generalized error model for the Weibull - gamma mixture, exponential- gamma
mixture, by setting α = 1. ǫ = k ln(k + µtα)/k  compute ǫ̂ given estimates (µ, α, k) and then plot
ǫ̂ against − lnS(ǫ̂).

CENSORED DATA

Observed duration is t = min[T, L] where L denotes the right censoring at L  ǫ(t) is not unit
exponentially distributed.

E[ǫ(T )|T ≥ L] =
∫∞

ǫ(L)
ǫf(ǫ)
S(ǫ(L))dǫ

= 1
e−ǫ(L) ·

[ ∫∞

ǫ(L)
ǫeǫdǫ

]

1
e−ǫ(L) ·

[

1 + ǫ(L) · e−ǫ(L) + e−ǫ(t) − 1
]

= 1 + ǫ(L), upon integration by parts.

ǫ̃(t) = ǫ̂(t) if data are not censored (not our case).
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