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Abstract 

This study provides a thorough analysis of the dynamics of volatility and dependence between seven 

international equity and 20 commodity markets across different sectors, highlighting the hedging role played 

by the latter. We explain volatility using a specification that distinguishes between the short and long term, 

while the dynamics of the dependence structure, or copula, are modeled by means of a latent factor structure, 

which can be split into commodity sectors such that there is homogeneous dependence within each sector. 

The dynamic of both models is captured through a score-driven specification. Moreover, we solve the risk 

aversion portfolio optimization problem to determine the existence of diversification benefits when 

constructing portfolios made up of a mix of commodities and stock markets. The main results of the study 

show that the dependence between the commodity and equity markets is variable over time and that the 

diversification potential of commodity markets is limited. Further, the factor copula approach is the best 

specification in terms of Sharpe ratio independent of portfolio settings for the different rebalancing periods.  
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1. Introduction  

The increasing globalization of the financial system, together with the constant fluctuations in the 

international economy, has generated an increase in the levels of volatility and interdependence in 

the different stock markets. Modern portfolio theory suggests that individuals can benefit from 

portfolio diversification by choosing financial instruments with low dependence or correlation 

(Boubaker and Sghaier, 2013; Berger and Uddin, 2016; Wen at al. 2021). From this perspective, 

commodity markets represent a promising asset class through which to achieve such diversification 

effects, depending on the degree of integration of these markets (Aloui et al., 2013; Hammoudeh 

et al., 2014; Creti, et al., 2013; Daskalaki and Skiadopoulos, 2011; Shahzad et al. 2019; Cotter et 

al. 2017; Gagnon et al. 2020). In particular, recent research shows that the co-movement between 

stocks and commodities from different sectors began to increase after the subprime crisis, a result 

that suggests growing integration between these markets (Wen et al., 2012; Delatte and Lopez, 

2013; Han et al., 2022). However, many of these co-movements are attributed to technological 

changes, production, and transportation costs, in conjunction with the growing demand for 

renewable energy (Choi and Hammoudeh, 2010; Sadorsky, 2012; Kang et al., 2017; Ji et al., 2018; 

Han and Li, 2022). 

The most recent literature on this topic uses copula theory to show the increasing co-movement 

between the commodity and equity markets (Ojeda, 2020; Tiwari et al. 2020, Aepli et al. 2017). 

For instance, Delatte et al. (2013) state that, already by 2003, this joint co-movement had extended 

to all classes of commodities and became unequivocally stronger after the subprime crisis. A 

similar result was presented by Creti et al. (2013), who found strong time-varying correlations 

between commodity and stock markets, mainly after the subprime crisis. However, they also found 

evidence for the existence of commodities that offer an alternative means of achieving the benefits 



 

of diversification, even in times of financial turbulence. Hammoudeh et al. (2014) also describe 

opportunities involving the use of commodities to achieve the benefits of portfolio diversification. 

They show that the incorporation of petrochemical and grain commodities into a portfolio provides 

risk management strategies since their correlations with the stock market increase during periods 

of rise and decline in stock prices in bearish financial markets. However, none of these studies 

simultaneously consider the joint analysis of all these markets. 

Recent literature shows the significant changes which have taken place in financial risk modeling 

in commodity markets as a result of the search for econometric specifications capable of jointly 

modeling this type of asset to understand the interdependence between the different sectors and 

markets, for the delivery of information useful for risk management in commodity-based portfolios 

(Ohashi and Okimoto, 2016; Albulescu et al. 2020; Vedenov and Power, 2022). However, it was 

found that elucidating the dependence structure between a large number of financial assets is a 

complex task, mainly due to the problem of dimensionality (Oh and Patton, 2017). Recently, Oh 

and Patton (2018) introduced a factor copula model with score-driven dynamics whose main 

advantage is its flexibility in modeling the joint dynamics of financial time series by means of a 

common dynamic factor. 

This research aims to study the volatility and dependence structure existing among a set of 

commodity and stock market indices to determine the existence of benefits in the diversification 

and management of financial risk derived from a mixed investment. In the case of the commodities, 

we utilize the individual components of the S&P Goldman Sachs Commodity Index (GSCI), which 

is broadly diversified across the spectrum of commodity markets. The studied commodities are 

grouped into the energy, precious and industrial metals, and soft (agriculture and livestock) sectors. 

Moreover, we utilize seven equity indices belonging to the Morgan Stanley Capital International 



 

(MSCI) World Index. These indices represent the performance of the broad equity universes of 

individual countries with a strong emphasis on index liquidity and investability (Hung and Shiu, 

2016).  

The contribution of this research is threefold: i) We analyze each of the commodities and stock 

markets' volatilities, investigating whether there are similarities between each of the groups; ii) We 

jointly model the dependence structure between these markets through a dynamic factor copula 

model, analyzing whether the latent factors that capture the dependence between the different 

markets can be associated with commodity or stock market sectors; iii) Using the results of 

previous estimations, we solve a mean-variance portfolio optimization problem with risk aversion 

to determine the existence of diversification benefits when building portfolios composed of a 

combination of commodities and equities. 

The methodologies utilized to capture the volatility and dependence among the return series are 

the Beta-Skew-t-EGARCH introduced by Harvey and Sucarrat (2014) and a dynamic factor copula 

model proposed by Oh and Patton (2018). The main characteristic of both models is that their 

dynamics are obtained through the score of the conditional log-likelihood. Thus, the predictive and 

updated mechanisms are computed iteratively through a simple forward recursion function. 

The results show short- and long-term patterns for the different markets analyzed in terms of 

estimated volatility. The most volatile sectors are the energy commodity and stock markets, 

although these are also the most homogeneous. Related to the degree of dependence between each 

of the sectors, we observe that a factor copula model with a heterogeneous structure seems to be 

the most appropriate. We observethat the diversification potential of commodity markets is limited 

compared to a portfolio composed solely of equity markets. However, we observe that soft 

commodities offer an attractive alternative means of achieving portfolio diversification effects, for 



 

long rebalancing periods of time and low risk aversion,  given their weaker relationship with the 

latent common factor. Similarly, in the minimum variance portfolio the best strategy is obtained by 

incorporating a mix of precious metal commodities into the stock market portfolio. By contrast, the energy 

commodity and stock markets exhibit a more significant dependence. 

The remainder of this paper is organized as follows. Section 2 introduces the methodology 

considered to estimate volatility and the factor copula model. Section 3 describes the data and 

provides the empirical results and analyses. Finally, Section 4 concludes the paper. 

  



 

2. Methodology 

We divide the methodology into three stages. First, we capture the volatility of equities and 

commodities through the Beta-Skew-t-EGARCH model (Harvey and Sucarrat, 2014), whose main 

advantage is that it allows us to decompose volatility into short- and long-term components. In the 

second stage, we capture the dependence between the marginal distributions using the dynamic 

factor copula model proposed by Oh and Patton (2018). This approach makes it possible to reduce 

the complexity of modeling the dependence among marginals in high dimensions through a single 

common latent factor. Finally, we solve the mean-variance portfolio optimization problem based 

on the marginals' specifications and the factor copula model introduced in the two previous stages. 

2.1 Marginal distribution model 

Let 𝑦𝑡 denote the daily return on an asset at time t. The Beta-Skew-t-EGARCH specification is 

defined as follows: 

𝑦𝑡 = exp(𝜆𝑡) 𝜀𝑡 = 𝜎𝑡𝜀𝑡,         𝜀𝑡~𝑠𝑡(0, 𝜎𝜀2, 𝜈, 𝛾),      𝜈 > 2,     𝛾 ∈  (0, ∞), (1) 

𝜆𝑡 = 𝜔 + 𝜆1,𝑡† + 𝜆2,𝑡† ,  

𝜆1,𝑡† = 𝜙1𝜆1,𝑡−1† + 𝑘1𝑢𝑡−1,      |𝜙1| < 1,  

𝜆2,𝑡† = 𝜙2𝜆2,𝑡−1† + 𝑘2𝑢𝑡−1 + 𝑘∗sgn(−𝑦𝑡−1)(𝑢𝑡−1 + 1),       |𝜙2| < 1,      𝜙1 ≠ 𝜙2  

where 𝜎𝑡 is the conditional volatility and 𝜀𝑡 = 𝜀𝑡∗ − 𝜇𝜀∗ is the conditional error. Both 𝜀𝑡 and 𝜀𝑡∗ have 

a marginal skew-t distribution, with scale parameters 𝜎𝜀2, degrees of freedom 𝜈, and asymmetry 

parameter 𝛾. However, 𝜀𝑡 and 𝜀𝑡∗ have a mean value equal to zero and 𝜇𝜀∗, respectively. In particular, 

the probability density function of a non-centered skew-t random variable is as follows: 



 

𝑓(𝜀𝑡∗|𝛾 ) = 2𝛾 + 𝛾−1 𝑓 ( 𝜀𝑡∗𝛾sgn(𝜀𝑡∗)) (2) 

The parameters 𝜙1 and 𝑘1 capture the dynamics of the short-term log-volatility, while 𝜙2 and 𝑘2 

capture the dynamics of the long-term log-volatility. Finally, 𝑘∗ is the leverage parameter and the 

conditional score 𝑢𝑡 is given by: 

𝑢𝑡 = (𝜀𝑡∗2 − 𝜇𝜀∗𝜀𝑡∗)(𝜈 + 1)𝜀𝑡∗2 + 𝜈𝛾2sgn(𝜀𝑡∗) − 1. (3) 

Once the volatility has been modeled and the standardized residuals of each series of returns have 

been determined, we apply the factor copula model with score-driven dynamics. 

2.2 Factor copula model with score-driven dynamics 

Let 𝒀𝒕 = (𝑌1𝑡, … , 𝑌𝑁𝑡) be a set of random variables of dimension 𝑁 with joint distribution function 𝑭𝒕(𝑦1, … , 𝑦𝑁|𝓗𝒕) and conditional copula 𝑪𝒕(𝐹1𝑡(𝑦1|𝓗𝒕), … , 𝐹𝑁𝑡(𝑦𝑁|𝓗𝒕)|𝓗𝒕), where 𝓗𝒕 ={𝑌1𝑗, … , 𝑌𝑁𝑗  ∶  ∀ 𝑗 < 𝑡} represents the information set relating to the history of the stochastic 

process. On the other hand, we assume that there exists a set of latent random variables 𝑿𝒕 =(𝑋1𝑡, … , 𝑋𝑁𝑡), where each marginal follows the following common factor model: 

                  𝑋𝑖𝑡 = 𝛿𝑖𝑡(𝜃𝛿)𝑍𝑡 + 𝜀𝑖𝑡,               𝑖 = 1, 2, … . , 𝑁                      (4)       

where 𝛿𝑖𝑡(𝜃𝜹) is a factor loading associated with the common factor in time 𝑡, 𝑍𝑡 ~ 𝐹𝑍𝑡(𝜃𝑍) and 𝜀𝑖𝑡 ~ 𝐹𝜀𝑖(𝜃𝜀) are univariate cumulative probability distributions of the common factor and 

idiosyncratic variables, respectively, and 𝑍𝑡 ⊥  𝜀𝑖  . In the empirical analysis, we consider that 𝑍𝑡 

follows a skew-t-Student distribution with degrees of freedom 𝜈𝑍  ∈ (2, ∞] and a skew parameter 



 

𝜓𝑍  ∈ (−1,1), whereas 𝜀𝑖𝑡 uses a t-Student distribution with degrees of freedom 𝜈𝜀  ∈ (2, ∞]. 
Finally, 𝜃𝜹, 𝜃𝜀, and 𝜃𝑍 are parameter vectors involved in the dynamics of the common factor and 

the probability distribution functions, respectively. 

The most important assumption in the factor copula specification is that both the observed (𝒀𝒕) and 

the latent (𝑿𝒕) sets of random variables share the same copula function, while the marginal 

distributions need not be the same. This assumption allows high flexibility in high dimensions, 

while it does not involve the estimation of a high number of parameters. 

We define 𝑈𝑖𝑡 = 𝐺𝑖𝑡(𝑥𝑖) and 𝑋𝑖𝑡 = 𝐺𝑖𝑡←(𝑢𝑖) as the conditional probability integral transformation 

and its inverse. Then, the density function of the copula of the latent variable 𝑿𝒕 is given by: 

𝒄(𝑢1, … , 𝑢𝑁) = 𝒈𝒕(𝐹1𝑡←(𝑢1), … , 𝐹𝑁𝑡← (𝑢𝑁))𝑔1𝑡(𝐹1𝑡←(𝑢1)) × ⋯ ×  𝑔𝑁𝑡(𝐹𝑁𝑡← (𝑢𝑁)) (5) 

where 𝒈𝒕(𝑥1, … , 𝑥𝑁) and 𝑔𝑖𝑡(𝑥𝑖) are the joint and marginal density functions of 𝑿𝒕, respectively. 

Using the property of independence between the random variables 𝑍𝑡 and 𝜀𝑖𝑡, Oh and Patton (2018) 

show that the complexity of estimating a factor copula in 𝑁 dimensions is reduced to numerically 

solving a pitatory and integral in one dimension as follows:  

             𝑔𝑖𝑡(𝑥𝑖) = ∫ 𝑓𝜀𝑖(𝑥𝑖 − 𝛿𝑖𝑡𝐹𝑍𝑡−1(𝑚))𝑑𝑚1
0  (6) 

             𝐺𝑖𝑡(𝑥𝑖) = ∫ 𝐹𝜀𝑖(𝑥𝑖 − 𝛿𝑖𝑡𝐹𝑍𝑡−1(𝑚))𝑑𝑚1
0  (7) 

𝒈𝒕(𝑥1, … , 𝑥𝑁) = ∫ ∏ 𝑓𝜀𝑖(𝑥𝑖 − 𝛿𝑖𝑡𝐹𝑍𝑡−1(𝑚))𝑑𝑚𝑁
𝑖=1

1
0  (8) 



 

where 𝑚 ≡  𝐹𝑍𝑡(𝑧) is a change in variable used to obtain bounded integrals (for further details, see 

the Appendix in Oh and Patton, 2018). Finally, the only parameter that has not yet been defined is 

the dynamic component associated with the common factor. Oh and Patton (2018) incorporate a 

dynamic structure into the factor loading  𝛿𝑖𝑡 using a score-driven specification: 

ln 𝛿𝑖,𝑡 = 𝜔𝑖 + 𝛽ln 𝛿𝑖,𝑡−1 + 𝛼𝑠𝑖,𝑡−1                  𝑖 = 1,2, … , 𝑁 (9) 

where 𝑠𝑖𝑡 = 𝜕 ln 𝒄(𝑢1, … , 𝑢𝑁;  𝛿𝑖𝑡, 𝜈𝑧 , 𝜓𝑧 , 𝜈𝜀)/𝜕 𝛿𝑖𝑡 is the score of the log-observation copula 

density, which is obtained through numerical differentiation; 𝜔𝑖 is a vector of coefficients of length 𝑁, and 𝛼 and 𝛽 are unrestricted parameters. Note that the total number of parameters for this 

specification is 𝑁 + 2. Alternatively, if we assume that the stochastic process 𝛿𝑖𝑡 is strictly 

stationary, Eq.(9) can be reduced to: 

ln 𝛿𝑖,𝑡 = 𝔼[ln 𝛿𝑖,𝑡](1 − 𝛽) + 𝛽ln 𝛿𝑖,𝑡−1 + 𝛼𝑠𝑖,𝑡−1,           𝑖 = 1,2, … , 𝑁 (10) 

where 𝔼[ln 𝛿𝑖,𝑡] can be previously estimated in nonparametric form as follows: 

𝔼̂[𝐥𝐧 𝜹𝒕] = 𝐚𝐫𝐠 𝐦𝐢𝐧𝒂 𝒎𝑻(𝒂)′𝒎𝑻(𝒂) (11) 

with 𝑚𝑇(𝒂) = vech{𝜙(𝐺(exp 𝑎))} − 𝝆̂𝒖𝒔 ; 𝝆̂𝒖𝒔  is the Spearman correlation matrix estimated from 𝒖 = (𝑢1, … , 𝑢𝑁); and 𝜙(𝐺(𝛿)) = 𝝆𝒙 is the half-vectorization of the Spearman correlation matrix 

for the set of variables 𝑿𝒕 = (𝑋1𝑡, … , 𝑋𝑁𝑡) given by Eq. (4) with factor loadings 𝛿𝑖𝑡. Replacing 

these estimates in Eq. (9), the dynamics of the factor copula model with score-driven dynamics are 

fully described through a set of only two parameters 𝜃𝜹 = [𝛽, 𝛼]′, independent of the number of 

dimensions.  



 

2.3 Portfolio optimization 

In the empirical analysis, we consider the portfolio selection problem by applying a dynamic 

version of the portfolio theory of Markowitz (1952), with the results of the estimates of the Beta-

Skew-t-EGARCH model for the marginals and the factor copula model with score-driven 

dynamics. To this end, we consider a mean-variance portfolio optimization problem with risk 

aversion: 

arg max𝒘 𝒘′𝒓 − 𝜉𝒘′𝑸𝒘         𝑠. 𝑡.   ∑ 𝑤𝑖𝑖 = 1,   𝑤𝑖 ≥ 0 (12) 

where 𝒓 is the return vector, 𝒘 is the vector of portfolio holdings or weights, 𝑸 is the covariance 

matrix, and 𝜉 is a risk aversion parameter that specifies a trade-off between risk and expected 

return, according to the degree of aversion of the investor. As 𝜉 increases from 0 to ∞, the optimal 

mean-variance portfolio moves along the return-variance efficient frontier from the maximum 

return portfolio, through the maximum Sharpe ratio portfolio, to the minimum risk portfolio, which 

is specified as follows: 

arg min𝒘 𝒘′𝑸𝒘                        𝑠. 𝑡.    𝒓𝒘 = 𝒓𝒑 ,        ∑ 𝑤𝑖𝑖 = 1,   𝑤𝑖 ≥ 0 (13) 

where 𝑟𝑝 is the profitability of the target portfolio. Therefore, the smaller (larger) the value of 𝜉, 

the less (more) important the risk term will be. Thus, the return and risk of the optimal mean-

variance portfolio both decrease as the risk aversion increases. 

In order to solve the mean-variance portfolio optimization problem, we construct the covariance 

matrix according to the following stages. First, the volatilities 𝜎𝑖𝑡 are extracted for each marginal 

of the Beta-Skew-t-EGARCH model defined in Eq. (1). Second, the pair-wise linear correlation 



 

coefficients 𝜌𝑖𝑗𝑡 are obtained from the estimation of the factor copula model. These include the 

dynamic factor loadings 𝛿𝑖𝑡 and  𝛿𝑗𝑡 and the variances 𝜎𝑧2 and 𝜎𝜀2 of the probability distribution 

functions of the common factor and the idiosyncratic variables, respectively. 

𝜌𝑖𝑗𝑡 = 𝛿𝑖𝑡𝛿𝑗𝑡𝜎𝑧2√(𝛿𝑖𝑡2 𝜎𝑧2 + 𝜎𝜀2)(𝛿𝑗𝑡2 𝜎𝑧2 + 𝜎𝜀2). 
(14) 

Finally, by combining the estimators of 𝜎𝑖𝑡 and 𝜌𝑖𝑗𝑡 we obtain a time-varying covariance matrix as 

follows: 

𝑸𝒕 = [ 𝜎1𝑡2 … 𝜌1𝑁𝑡𝜎1𝑡𝜎𝑁𝑡⋮ ⋱ ⋮𝜌𝑁1𝑡𝜎𝑁𝑡𝜎1𝑡 … 𝜎𝑁𝑡2 ].  (15) 

In order to obtain the optimal investment weights, through the resolution of the optimal portfolio 

problem, an in-sample period of one month of observations (approximately 21 days) is used. In 

addition, we consider rebalancing periods of the constituents of the portfolio of 5, 10, and 21 days. 

3. Empirical application  

This section analyzes the dynamic structure of volatility and dependence on the proposed markets 

to determine later opportunities for diversification in the composition of a portfolio due to the 

incorporation of different types of commodities. 

3.1 Data and summary statistics 

The data consist of the daily returns of 20 individual components of the S&P GSCI (Goldman 

Sachs Commodity Index) and seven equity indices that belong to the MSCI World Index (Morgan 

Stanley Capital International). In particular, the analyzed commodities correspond to the most 

liquid commodity futures and provide a high level of diversification with low correlations to other 



 

asset classes, minimizing the effects of highly idiosyncratic events (Hung and Shiu, 2016). These 

are grouped into the following sectors: energy (crude oil, diesel, heating oil, and natural gas), 

precious metals (gold and silver), industrial metals (aluminum, copper, zinc, and nickel), and soft 

(cocoa, coffee, corn, cotton, Kansas wheat, wheat, soybeans, sugar, live cattle, and dead cattle). 

Meanwhile, the MSCI indices cover approximately 85% of the free float-adjusted market 

capitalization in each country and they are classified into developed markets (Germany, France, 

the United Kingdom, and the USA) and emerging markets (Taiwan, China, and South Korea). 

These indices are designed to measure the performance of the large and mid-cap segments of most 

of the equity universe in each country. The intuition behind our analyses is that, for example, soft 

and energy commodities generally respond the most when emerging markets dominate world 

growth. On the other hand, when industrialized economies dominate world growth, the industrial 

metals sector responds typically more than the soft commodities. 

In the empirical analysis in the portfolio selection problem, we use the daily US 3-month treasury 

bill rate as a proxy for the risk-free rate. The data were retrieved from Bloomberg. The sample 

period was December 31, 2004 to December 31, 2019. Data generated prior to December 31, 2014 

were used for the estimation, leaving the last five years for backtesting. The sample period included 

various phases of the boom and bust cycle for both stock and commodity markets. Table 1 presents 

some descriptive statistics regarding the return series, calculated as 𝑅𝑡 = 100ln(𝑃𝑡 𝑃𝑡−1⁄ ), where 𝑃𝑡 is the price at time 𝑡. We see that the average returns for most assets are close to zero. In addition, 

both commodity and stock markets exhibit the typical non-normality of financial time series 

confirmed by the Jarque–Bera test statistics. Furthermore, most of the returns are positively skewed 

and display excess kurtosis. In relation to unconditional volatility, natural gas price returns are 

identified as extremely volatile.  



 

Concerning the Ljung–Box test for autocorrelation, the results are mixed, so the conditional mean 

modeling does not seem to play a fundamental role in these data. On the other hand, we found 

strong evidence of conditional heteroscedasticity for all of the returns analyzed through the ARCH-

Lagrange multiplier (LM) test. Finally, the augmented Dickey–Fuller test, related to the presence 

of unit roots, showed that all the time series are stationary at a significance level of 1%. 

3.2 Volatility Modeling 

Table 2 shows the results of the estimation of the Beta-Skew-t-EGARCH model with two 

components for each of the time series. One of the advantages of this model is that it can mimic 

the long memory patterns commonly shown by the autocorrelation function of the absolute values 

of the returns (Harvey and Sucarrat, 2014). In particular, we observe high persistence of long-term 

volatility through the parameter ϕ1, with values close to 1. Meanwhile, although high, the 

coefficients ϕ2 , which capture short-term persistence, are, in most cases, smaller in magnitude 

than those observed in the long term (i.e., ϕ2 < ϕ1 < 1). As a consequence of this last result, the 

model is well-identified and is stationary. The long- and short-term ARCH effects, captured by the 

coefficients k1 and 𝑘2, are low, implying a weak response to external volatility shocks. 

Concerning the leverage coefficient k∗, this is positive and significant in stock markets, so negative 

shocks seem to accentuate short-term volatility more than positive shocks of the same magnitude. 

However, these results are mixed in the case of commodity markets. In particular, we found a 

positive return-volatility relationship for natural gas, cocoa and coffee.  These results are in line 

with previous studies (see for instance Baur and Dimpfl, 2018; Chen and Mu, 2021). There is also 

evidence of significant negative skew for most markets, although this is much more pronounced 

for stock markets, leading to the common interpretation that large negative returns are followed by 

higher volatility. 



 

Another impressive result is that both the unconditional and conditional skewness were the same 

for all markets. Finally, the estimated degrees of freedom of the skew-t conditional density function 

suggest that most of the returns exhibit heavy tails. In particular, the commodity markets 

denominated as precious metals (gold and silver) show the lowest degrees of freedom on average, 

followed by the commodity markets for industrial metals and stock markets.  

Figure 1 shows the behavior of the volatility grouped by sector during the analysis period. The 

metals sector (industrial and precious) follows a similar trajectory, with gold being the commodity 

that exhibits the lowest volatility. Similarly, except for natural gas, all other markets show a very 

similar trend in the energy sector. In soft commodities, the results are much more heterogeneous, 

with feeder and live cattle displaying the most similar and least volatile behavior. On the other 

hand, stock markets show the most homogeneous volatility at the sector level, demonstrating the 

significant integration that exists between international stock markets and the fewer opportunities 

for diversification between these same markets. Finally, all sectors show an increase in volatility 

during the subprime crisis that is reduced from 2010 onwards. 

3.3 Factor Copula Modeling 

The joint dependence dynamic is captured through three dynamic factor copula models adjusted to 

the pseudo-uniform marginals [0,1], obtained by employing the integral probability transformed of 

the standardized residuals. 

The first specification corresponds to a heterogeneous structure, which measures each series' 

dependence with the common factor (𝑍𝑡). The second specification is the block structure, grouping 

the return series according to ex-ante information so that four sectors are considered: metals 

(industrial and precious), energy, soft, and stock markets. The last specification is the equi-



 

dependence structure, which imposes absolute homogeneity on the series analyzed so that the 

dependence between each variable with the factor is identical. 

Table 3 summarizes the results of the estimates for the specifications of the dynamic factor copula 

model. According to AIC, the heterogeneous structure specification fits better than the other copula 

structures, even when a higher number of parameters are involved. The above indicates that a 

heterogeneous structure of financial time series provides greater flexibility than conditioning the 

time series on a single parameter or a group of predefined commodities. Therefore, subsequent 

applications should take into consideration the results relating to the heterogeneous structure for 

the factor copula model. 

The inverse values of the estimated degrees of freedom are small, ranging from νz−1 = 0.124 for 

the common factor and νε−1 = 0.121 for the random innovations, which implies that the degrees of 

freedom involved in the specification are less than 10. The common factor asymmetry is negative, 

indicating a high degree of tail dependence among the negative returns on equity analyzed. This 

finding is similar to the results obtained by Bertels and Ziegelmann (2016). Furthermore, we 

observe a high temporal persistence of the factor loading processes through the parameter 𝛽 in Eq. 

(9), which is very close to 1. 

The factor loadings under the heterogeneous structure are shown in Figure 2 for the in- and out-of-

sample data. The model has not been re-estimated. For the estimation of the out-of-sample dynamic 

factor loadings, we used the estimates of the in-sample parameters. We observe that in terms of 

magnitude, the energy and metals commodity markets are the groups with the highest levels of 

dependence on the latent factor, followed by the stock markets. By contrast, soft commodities 

present dynamic factor loadings in a lower magnitude range. In most markets, it is possible to 



 

distinguish between the subprime crisis and the European debt crisis during the period of 2007–

2013. 

On the one hand, the equity markets that showed a higher degree of homogeneity of dependence 

on the latent factor were the energy commodities as well as the stock markets of Europe and the 

USA. The commodity markets that showed a weak relationship with the latent factor were gold 

and silver in the metals markets, live and feeder cattle in soft commodities, and heating oil in the 

energy commodities sector. In the case of stock markets, a weak relationship with the latent factor 

was observed in the Asian markets of Taiwan, China, and South Korea. This last result is in line 

with the results of Berger and Uddin (2016). They find that the dependence between the S&P 500 

and natural gas was characterized by higher degrees of freedom during the period after the 

subprime financial crisis.  

3.4 Portfolio Optimization based on Factor Copula Model 

In this section, we present the results of the portfolio optimization problem described in Section 

2.3. We define different types of portfolios to reach high diversification. The portfolio AA 

considers all assets—both commodities and stock markets. The portfolio IM&SM includes 

industrial metals and stock markets, while the portfolio PM&SM considers precious metals and 

stock markets. The E&SM portfolio comprises the energy commodities and stock markets. The 

portfolio S&SM considers the so-called soft commodities and stock markets. Finally, the portfolio 

SM is only composed of stock markets.  

For the specification of the covariance matrix in Eq. (15), we use three alternatives. The smoothed 

approach simply relies on the average of the estimated covariance matrix during the in-sample 𝑸 =𝑸̅. The instantaneous approach uses the last observation at time t from the time-varying covariance 

matrix estimated during the in-sample period 𝑸 = 𝑸𝒕. Finally, the standard approach involves a 



 

simple rolling window to estimate the covariance matrix of raw returns with a calibration period 

of one month 𝑸 = 𝑸𝒓. The key idea of these three covariance matrix specifications is that the most 

recent performance would repeat in the subsequent period. 

The sample period to optimize each portfolio was from January 1, 2015, to December 31, 2019. 

The determination of the optimal investment weights was achieved by resolving the optimal 

portfolio problem with minimal variance and risk aversion, using Eqs. (12) and (13), respectively. 

A window of one month of observations (approximately 21 days) was used to solve the optimal 

portfolio problem, considering rebalancing periods of the portfolio constituents of 5, 10, 15, and 

21 days.  With these estimations, we calculate the average of the expected returns for each portfolio, 

the standard deviation, and the Sharpe ratio, for the following month.  We use the Sharpe ratio to 

compare the different specifications. Further, we use different degrees of risk aversion captured by 

the parameter 𝜉, which varies between 0.1 and ∞ in our empirical exercise. The above implies that 

the optimal portfolio moves along the efficient frontier that yields the highest return for each risk 

level, i.e., from the maximum return portfolio to the minimum variance portfolio. Note that we do 

not consider short sales and transaction costs. 

Table 4 summarizes these results. Four important results emerge at first glance. First, there are 

diversification benefits when commodities are included in portfolio strategies when the risk 

aversion parameter increases (𝜉 ≥ 5) and the rebalancing period is of 10 days. In particular, for the 

portfolio with minimal variance (𝜉 → ∞), the best strategy is obtained by the PM&SM portfolio.  

Second, the instantaneous approach offers, on average across all the portfolio settings, the best 

specification in terms of Sharpe ratio for the rebalancing period of 5 days, while the smoothed 

approach exhibits slightly higher Sharpe ratios for rebalancing periods of 10 and 15 days. Third, 

as the rebalancing periods increase, lower Sharpe ratios are obtained when the risk aversion 



 

parameter increases, tending towards the portfolio with minimal variance. Fourth, the SM 

portfolios give the highest Sharpe ratio for most cases. More specically, for 5 days rebalancing, 

SM portfolios appear to have the highest Sharpe ratio regardless of the value of the risk aversion 

parameter. Moreover, when the rebalancing period is of 15 days, SM portfolios seem to have the 

highest Sharpe ratio for  the risk aversion parameter 𝜉 ≥ 1. Further, for the SM portfolios, the 

standard approach gives the best results with the highest Sharpe ratio. 

Concerning the rebalancing periods, we observe that the best diversification strategy in terms of 

the Sharpe ratio at 5 days is for the SM portfolio, followed by the PM&SM and E&SM portfolios. 

Similar results are displayed for the rebalancing period of 10 days, with the exception that for the 

portfolio with minimal variance (𝜉 → ∞), the best strategy is obtained by the PM&SM portfolio.  

For the rebalancing period of 21 days with low-risk aversion parameters (𝜉 ≤ 0.5), the best 

diversification strategy is obtained with the S&SM portfolio for both copula approaches utilized. 

Finally, for risk aversion parameter 𝜉 ≥ 1, the SM and PM&SM portfolios exhibit the highest 

Sharpe ratios. 

Regarding the different covariance matrix specifications, both copula approaches (smoothed and 

instantaneous) show, on average across all the portfolio settings, better performance in the diverse 

portfolio strategies and rebalancing periods, either in terms of expected values, standard deviations, 

and therefore, their Sharpe ratios. 

An interesting result is the poor performance of the AA portfolio. One would expect portfolios 

consisting of all assets to perform better on average than other portfolios restricted to a subset of 

stocks. However, this is not the case in the empirical exercise carried out. We believe that the 

explanation lies mainly in the classical mean-variance portfolio selection for large-dimension 

optimization problems. The standard formulation leads to the recurring estimation of a covariance 



 

matrix (and its inverse) using only the most recent data, which can be very unstable when the 

number of asset returns increases, or when they are highly correlated (see for instance Dai and 

Wang, 2019; Kremer et al., 2020). Consequently, a slight change in the covariance matrix of the 

portfolio returns can have a big impact in the optimal portfolio weights. Despite the above 

difficulty, the dynamic factor copula specification shows a better performance in terms of Sharpe 

ratio than the standard approach. 

Figures 3 and 4 show the optimal weights for every asset or sector using the heterogeneous 

specification with an instantaneous covariance matrix for a rebalancing or holding period of 21 

days and risk aversion parameter ξ = 1. For most portfolio strategies, we observe that stocks exhibit 

more weight in the backtesting period.  For the AA portfolio, which considers all assets, we observe 

that large weights are given for stock markets, followed by soft, precious, and industrial metals 

commodities. In the case of the IM&SM portfolio, the USA and aluminum are the two assets with 

the highest weight. Similar results were obtained for the PM&SM portfolio, where gold is a 

commodity that plays an important role. In the case of the E&SM portfolio, the highest weights 

correspond to stocks, although low natural gas participation in the optimal portfolio composition 

is also observed. The highest proportion of commodities included in the portfolio composition is 

displayed by the S&SM portfolio, with around 50% of the optimal weights, being the participation 

of each of the soft commodities heterogeneous. Finally, the SM portfolio is mainly driven by higher 

participation of USA, UK, Taiwan, and South Korea stock markets. 

4. Conclusions 

This article analyzes the dynamic behavior of volatility and the joint dependence between the 

financial returns of seven stock markets of the MSCI Inc. index and twenty sub-indices of 

commodities of the S&P GSCI. The model proposed to capture the volatility dynamics is the Beta-



 

Skew-t-EGARCH model, while to determine the dependence between markets, we use a factor 

copula specification with score-driven dynamics. Both specifications seem to capture the stylized 

factors present in the analyzed returns in terms of goodness of fit. In particular, we found short- 

and long-term patterns for the different sectors examined. The most volatile sectors, though they 

are also the most homogeneous, are energy commodities and stock markets. In terms of the degree 

of dependence between each of the sectors, we once again observed that energy commodities and 

stock markets are the ones that exhibit a stronger relationship with the latent factor copula. By 

contrast, the equity markets that are less related to the latent factor seem to be soft commodities.  

Finally, we studied the potential to obtain portfolio diversification benefits presented by 

commodities by solving a portfolio optimization problem. Overall, the results show that the 

diversification potential is limited compared to a portfolio composed solely of equity markets, at 

least for the sample analysed. In the case of necessarily including commodities during the portfolio 

construction, there is some potential to reduce the volatility, mainly regarding the soft market sector 

and the natural gas market in terms of energy commodities with low-risk aversion. For the portfolio 

with minimal variance, the best strategy is obtained by adding precious metal commodities to a 

traditional portfolio. These results are in line with those obtained by Arouri et al. (2010); Cheng 

and Tu (2013), and Hammoudeh et al. (2014). 
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Appendix 

A. Tables 

 

 

 

  

 
 

  Aluminum Copper  Nickel  Zinc Gold Silver Crude Oil Gasoil 
Natural 

Gas 

Min. -8.26 -10.38 -13.70 -11.13 -9.81 -19.49 -13.07 -11.13 -13.80 
Mean -0.002 0.027 0.001 0.023 0.038 0.031 0.007 0.009 -0.032 
Max. 5.927 11.902 13.158 9.328 8.590 12.471 13.341 12.887 17.129 
Std dev. 1.505 1.914 2.405 2.145 1.254 2.248 2.107 1.997 2.902 
Skewness -0.253 -0.070 0.006 -0.171 -0.406 -0.899 -0.217 -0.199 0.261 
Kurtosis 1.858 3.725 2.765 2.113 5.236 6.537 4.338 4.244 2.021 
Ljung–Box 10.32 24.04* 9.99 15.84 22.70* 10.67 25.39* 25.45* 27.11* 
Jarque–
Bera 

405.13* 1517.40* 834.90* 500.88* 3063.60* 5015.00* 2075.00* 1983.10* 476.11* 

ARCH (12) 424* 510* 512* 569* 1198* 1358* 499* 505* 559* 
ADF test -18.80* -18.06* -19.49* -19.25* -19.08* -18.96* -19.64* -19.57* -19.72* 
          

  Heating Oil Cocoa Coffe Corn Cotton 
Kansas 
Wheat Wheat Soybeans Sugar 

Min. -9.68 -9.78 -11.25 -8.12 -7.13 -8.99 -9.79 -7.34 -12.37 
Mean 0.012 0.024 0.018 0.025 0.013 0.023 0.024 0.024 0.019 
Max. 9.907 8.344 10.853 8.663 6.940 8.097 15.599 6.432 8.184 
Std dev. 1.905 1.750 1.956 1.931 1.753 1.891 2.058 1.599 2.055 
Skewness -0.064 -0.329 0.071 -0.015 -0.179 0.007 0.141 -0.251 -0.325 
Kurtosis 2.780 3.124 2.083 1.658 1.257 1.711 2.918 2.033 2.698 
Ljung–Box 11.26 7.03 15.66 16.01 27.65* 8.87 12.19 9.46 13.98 
Jarque–
Bera 

846.09* 1112.80* 476.37* 300.54* 187.00* 319.98* 938.48* 479.27* 840.91* 

ARCH (12) 535* 950* 676* 574* 376* 577* 752* 593* 719* 
ADF test -19.07* -19.24* -19.59* -19.64* -18.89* -19.18* -19.23* -18.36* -19.35* 

 
Feeder 
Cattle 

Live 
Cattle Taiwan China 

South 
Korea UK France Germany USA 

Min. -3.20 -3.24 -7.17 -12.84 -20.67 -10.43 -11.57 -9.64 -9.51 
Mean 0.029 0.022 0.011 0.037 0.026 0.003 0.002 0.015 0.021 
Max. 3.351 3.700 8.232 14.044 24.987 12.161 11.844 11.589 11.043 
Std dev. 0.847 0.857 1.407 1.812 1.918 1.476 1.689 1.652 1.265 
Skewness -0.216 -0.092 -0.242 -0.017 -0.180 -0.108 -0.016 -0.041 -0.356 
Kurtosis 1.060 1.127 3.262 7.442 2.045 9.761 6.796 6.093 11.502 
Ljung–Box 35.40* 19.60** 27.59* 20.33** 18.08 60.72* 45.00* 16.99 56.24* 
Jarque–
Bera 

143.38* 146.69* 1184.90* 6028.40* 45533.00* 10367.00* 5027.70* 4042.50* 14454.0* 

ARCH (12) 451* 401* 627* 469* 623* 620* 707* 594* 455* 
ADF test -19.45* -20.30* -19.86* -18.78* -19.47* -20.59* -20.55* -20.21* -20.61* 

Table 1: Descriptive statistics for daily returns of commodities and equity markets. The Ljung–Box test is significant with a lag of 10 
days. ARCH is Engle's Lagrange multiplier test for conditional heteroskedasticity of order 12, and the augmented Dickey–Fuller test 
(ADF test) examines the null hypothesis that a unit root is present in the time series sample. * and ** indicate the level of statistical 
significance at 1% and 5%. 



 

 

 

  Aluminum Copper  Nickel  Zinc Gold Silver Crude Oil Gasoil Natural Gas 𝜔 0.1354 0.2651 0.5861 0.2787 -0.1825 0.4154 0.6790 0.6746 0.9133 

 (0.141) (0.124) (0.102) (0.165) (0.101)  (0.095)  (0.189)  (0.219)  (0.063)  𝜙1 0.9977 0.9915 0.9936 0.9991 0.9914 0.9863 0.9984 0.9994 0.9783 

 (0.003) (0.004) (0.041) (0.001) (0.003)  (0.014)  (0.002)  (0.001)  (0.007)  𝜙2 0.9656 0.8028 0.9936 0.7562 0.3991 0.9857 0.9833 0.9774 0.6627 

 (0.032) (0.065) (0.022) (0.089) (0.120)  (0.024)  (0.008)  (0.011)  (0.125)  𝑘1 0.0112 0.0449 -1.8377 0.0158 0.0357 0.4465 0.0177 0.0164 0.0442 

 (0.008) (0.007) (0.012) (0.003) (0.005)  (0.285)  (0.007)  (0.005)  (0.007)  𝑘2 0.0179 -0.0365 1.8652 0.0047 -0.0590 -0.4148 0.0058 0.0082 -0.0416 

 (0.009) (0.014) (0.007) (0.009) (0.016)  (0.287)  (0.010)  (0.008)  (0.012)  𝑘∗ -0.0006 0.0409 0.0004 0.0303 0.0517 0.0006 0.0213 0.0237 -0.0253 

 (0.004) (0.008) (0.003) (0.008) (0.011)  (0.003)  (0.004)  (0.005)  (0.007)  

df 8.3507 7.4138 7.6894 8.9504 4.4967 4.2441 10.1786 8.7727 10.3258 

 (1.189) (0.999) (1.087) (1.493) (0.419)  (0.398)  (1.791)  (1.339)  (1.881)  

skew 0.9828 0.9751 1.0348 0.9714 0.9133 0.8807 0.9132 0.9130 1.0419 

 (0.025) (0.023) (0.025) (0.024)  (0.020)  (0.020)  (0.024)  (0.024)  (0.026)  

LL -4594.96 -4926.05 -5704.93 -5335.31 -3937.12 -5428.86 -5223.70 -5054.55 -6277.97 

BIC 3.541 3.795 4.391 4.108 3.038 4.179 4.022 3.893 4.840 

  Heating Oil Cocoa Coffee Corn Cotton Kansas Wheat Wheat Soybeans Sugar 𝜔 0.8157 0.2327 0.4247 0.4130 0.3513 0.3925 0.4115 0.2307 0.3889 

 (0.193)  (0.100)  (0.049)  (0.074)  (0.092)  (0.098)  (0.134)  (0.069)  (0.129)  𝜙1 0.9998 0.9947 0.9002 0.9853 0.9907 0.9930 0.9954 0.9847 0.9952 

 (0.001)  (0.004)  (0.091)  (0.005)  (0.004)  (0.005)  (0.910)  (0.006)  (0.002)  𝜙2 0.9698 0.9724 0.9769 0.6400 -0.1821 0.8883 0.9140 0.5036 -0.9909 

 (0.018)  (0.047)  (0.013)  (0.263)  (0.412)  (0.067)  (0.058)  (0.174)  (0.007)  𝑘1 0.0143 0.0244 -0.0296 0.0360 0.0310 0.0246 0.0224 0.0356 0.0258 

 (0.004)  (0.014)  (0.025)  (0.006)  (0.004)  (0.008)  (0.010)  (0.006)  (0.004)  𝑘2 0.0048 -0.0084 0.0369 0.0087 0.0194 0.0009 0.0047 -0.0216 0.0036 

 (0.007)  (0.014)  (0.026)  (0.013)  (0.012)  (0.013)  (0.014)  (0.014)  (0.002)  𝑘∗ 0.0176 -0.0052 -0.0137 0.0240 0.0153 -0.0230 -0.0208 0.0332 -0.0009 

 (0.005)  (0.004)  (0.004)  (0.010)  (0.010)  (0.008)  (0.007)  (0.010)  (0.001)  

df 10.3372 5.0431 5.5988 7.1331 9.1416 8.6640 7.6147 6.8260 6.740 

 (1.774)  (0.544)  (0.670)  (0.913)  (1.657)  (1.276)  (1.038)  (0.914)  (0.925)  

skew 0.9691 0.9699 1.0146 1.0136 0.9526 1.0449 1.0442 0.9465 1.022 

 (0.026)  (0.022)  (0.023)  (0.025)  (0.023)  (0.028)  (0.027)  (0.023)  (0.023)  

LL -5033.87 -4943.36 -5320.69 -5222.16 -4906.24 -5175.66 -5337.67 -4711.00 -5293.76 

BIC 3.877 3.808 4.097 4.021 3.788 3.986 4.119 3.630 4.085 

 Feeder Cattle Live Cattle Taiwan China South Korea UK France Germany USA 𝜔 -0.2689 -0.2764 0.0057 0.1875 0.2682 -0.2053 0.0499 0.0556 -0.3012 

 (0.053)  (0.068)  (0.103)  (0.116)  (0.106)  (0.186)  (0.124)  (0.113)  (0.137)  𝜙1 0.9801 0.9883 0.9928 0.9916 0.9908 0.9970 0.9911 0.9887 0.9950 

 (0.012)  (0.005)  (0.003)  (0.003)  (0.004)  (0.003)  (0.004)  (0.005)  (0.003)  𝜙2 0.9678 0.9866 0.8189 0.7345 0.9018 0.9188 0.8603 0.8428 0.9355 

 (0.017)  (0.005)  (0.043)  (0.099)  (0.018)  (0.021)  (0.023)  (0.030)  (0.009)  𝑘1 0.0429 0.1078 0.0305 0.0396 0.0419 0.0241 0.0411 0.0481 0.0286 

 (0.073)  (0.109) (0.006)  (0.006)  (0.009)  (0.007)  (0.008)  (0.008)  (0.006)  𝑘2 -0.0265 -0.0936 -0.0240 -0.0214 -0.0200 0.0087 -0.0271 -0.0391 0.0039 

 (0.075)  (0.109) (0.011)  (0.013)  (0.012)  (0.011)  (0.011)  (0.012)  (0.009)  𝑘∗ 0.0159 0.0085 0.0465 0.0566 0.0511 0.0564 0.0701 0.0668 0.0818 

 (0.004)  (0.002)  (0.008)  (0.010)  (0.005)  (0.006)  (0.008)  (0.008)  (0.006)  

df 9.0770 7.9151 6.8576 7.7563 8.3318 8.9950 8.4933 7.8821 6.1257 

 (1.663)  (1.295)  (0.945)  (1.183)  (1.321)  (1.363)  (1.183)  (1.088)  (0.694)  

skew 0.9249 0.9578 0.9232 0.9519 0.8847 0.8985 0.9183 0.9164 0.8386 

 (0.023)  (0.023)  (0.022)  (0.023)  (0.022)  (0.024)  (0.024)  (0.024)  (0.021)  
          

LL -3162.18 -3189.67 -4200.18 -4621.49 -4687.23 -3963.00 -4424.38 -4398.09 -3368.43 

BIC 2.444 2.471 3.246 3.570 3.620 3.064 3.418 3.398 2.608 
Table 2: Beta-Skew-t-EGARCH model estimation results with two components (short and long term). The in-sample estimation 
period is from December 31, 2004 to December 31, 2014. Standard errors in parenthesis are presented below the estimated 



 

parameters. LL corresponds to the log-likelihood at the estimated parameters, while BIC corresponds to the Bayesian Information 
Criteria. 



 

Factor Copula Specifications 

 Equidependence Block Equidependence Heterogeneous Dependence 

 par × 100 (s.e.× 100) par × 100 (s.e.× 100) par × 100 (s.e.× 100) 𝜔1 -4.104 (0.080) -0.167 (0.058) -0.016 (0.003) 𝜔2   -1.022 (0.054) -0.003 (0.003) 𝜔3   -3.163 (0.004) -0.041 (0.004) 𝜔4   -1.174 (0.007) -0.018 (0.003) 𝜔5     -0.060 (0.005) 𝜔6     -0.038 (0.004) 𝜔7     -0.016 (0.004) 𝜔8     -0.014 (0.004) 𝜔9     -0.163 (0.012) 𝜔10     -0.027 (0.004) 𝜔11     -0.109 (0.007) 𝜔12     -0.095 (0.006) 𝜔13     -0.076 (0.006) 𝜔14     -0.093 (0.006) 𝜔15     -0.086 (0.007) 𝜔16     -0.084 (0.007) 𝜔17     -0.060 (0.005) 𝜔18     -0.108 (0.007) 𝜔19     -0.229 (0.026) 𝜔20     -0.149 (0.011) 𝜔21     -0.116 (0.008) 𝜔22     -0.093 (0.007) 𝜔23     -0.099 (0.007) 𝜔24     -0.012 (0.004) 𝜔25     -0.014 (0.004) 𝜔26     -0.016 (0.004) 𝜔27     -0.704 (0.051) 𝛼 2.422 (0.181) 7.071 (0.058) 12.365 (0.125) 𝛽 93.404 (0.085) 98.623 (0.036) 99.903 (0.005) 𝜈𝑧−1 28.111 (0.317) 19.331 (0.144) 12.410 (0.272) 𝜈𝜀−1 11.711 (0.318) 16.778 (0.058) 12.146 (0.160) 𝜓𝑧 -11.509 (0.340) -2.501 (0.098) -5.502 (0.373) 

LL 6315.72  7117.11  8044.03  

AIC -12619.44  -14224.21  -16078.06  

Table 3: This table presents the log-likelihood (LL) at the estimated parameters, as well as the Akaike Information Criteria (AIC), for a 

variety of factor copula models. Parameters and standard errors are multiplied by 100 for ease of exposition. Standard errors are 

presented in parenthesis. 



 

Strategies Risk 
5 days  10 days  21 days 

Standard (𝑄𝑟) Smoothed (𝑄̅) Instantaneous(𝑄𝑡)  Standard (𝑄𝑟) Smoothed (𝑄̅) Instantaneous(𝑄𝑡)  Standard (𝑄𝑟) Smoothed (𝑄̅) Instantaneous(𝑄𝑡) 

 𝜉 PR SD SR PR SD SR PR SD SR 
 

PR SD SR PR SD SR PR SD SR 
 

PR SD SR PR SD SR PR SD SR 

AA 

0.1 

-6.97 1.55 -4.50 -7.52 1.63 -4.63 -5.88 1.57 -3.73  -4.16 1.58 -2.64 -4.12 1.69 -2.45 -4.12 1.61 -2.56  0.00 1.59 0.00 -0.01 1.60 -0.01 0.41 1.61 0.25 

IM&SM 1.68 1.19 1.41 0.74 1.18 0.62 0.82 1.17 0.70  1.43 1.16 1.23 2.02 1.16 1.74 2.20 1.16 1.90  2.22 1.12 1.99 1.61 1.11 1.45 1.84 1.10 1.67 

PM&SM 1.12 0.99 1.13 1.11 0.94 1.18 0.85 0.94 0.91  0.20 0.93 0.21 1.16 0.92 1.25 1.36 0.92 1.48  0.57 1.02 0.55 0.36 1.00 0.36 0.56 0.99 0.57 

E&SM -1.37 1.45 -0.94 -3.14 1.51 -2.08 -2.08 1.45 -1.43 
 1.53 1.59 0.97 0.40 1.65 0.24 1.01 1.60 0.63  0.60 1.73 0.35 1.50 1.76 0.85 1.57 1.77 0.89 

S&SM -2.84 1.36 -2.09 -2.10 1.38 -1.52 -1.99 1.34 -1.49  -2.52 1.40 -1.81 -1.72 1.41 -1.22 -2.18 1.37 -1.59 
 2.59 1.22 2.13 2.49 1.22 2.03 2.43 1.20 2.02 

SM 3.11 0.89 3.49 2.55 0.88 2.91 2.72 0.88 3.10  1.89 0.88 2.14 2.28 0.87 2.62 2.54 0.87 2.91  1.55 0.95 1.64 0.89 0.93 0.95 0.79 0.93 0.85 

AA 

0.5 

-3.98 0.95 -4.19 -4.81 0.97 -4.94 -3.81 0.94 -4.07  -1.41 0.93 -1.52 -2.23 0.97 -2.30 -2.67 0.94 -2.85  1.95 0.99 1.97 1.54 1.00 1.54 2.08 0.95 2.18 

IM&SM 1.86 0.86 2.15 0.43 0.88 0.50 1.41 0.85 1.66 
 

1.19 0.84 1.42 1.64 0.85 1.92 1.88 0.84 2.24 
 

1.43 0.82 1.73 0.71 0.85 0.84 0.30 0.84 0.35 

PM&SM 1.75 0.73 2.39 1.25 0.75 1.68 1.04 0.76 1.38 
 

0.89 0.75 1.19 1.02 0.75 1.36 1.26 0.75 1.68 
 

0.52 0.78 0.66 1.05 0.80 1.31 0.78 0.78 1.00 

E&SM 1.04 0.87 1.19 0.64 0.86 0.75 0.85 0.87 0.99 
 

1.31 0.90 1.45 0.52 0.90 0.58 0.65 0.92 0.70 
 

2.35 1.00 2.35 1.09 0.99 1.10 1.69 0.98 1.72 

S&SM -1.23 0.85 -1.45 -1.86 0.89 -2.07 -1.17 0.87 -1.35 
 

-1.74 0.87 -1.99 -1.03 0.90 -1.15 -1.56 0.86 -1.81 
 

2.40 0.81 2.94 2.25 0.85 2.63 2.16 0.84 2.57 

SM 3.35 0.79 4.25 2.55 0.77 3.30 2.66 0.78 3.43 
 

2.20 0.79 2.80 2.18 0.77 2.84 2.42 0.76 3.17 
 

1.92 0.79 2.42 1.18 0.79 1.50 1.01 0.79 1.28 

AA 

1 

-2.52 0.75 -3.34 -3.20 0.77 -4.14 -2.31 0.75 -3.09  -1.29 0.76 -1.69 -1.57 0.76 -2.06 -1.88 0.74 -2.54  1.25 0.79 1.59 1.26 0.79 1.59 1.65 0.77 2.15 

IM&SM 1.40 0.76 1.85 1.09 0.76 1.43 1.80 0.74 2.42  0.89 0.76 1.17 1.16 0.74 1.56 1.36 0.74 1.85  1.57 0.74 2.11 1.33 0.75 1.77 0.93 0.76 1.23 

PM&SM 1.66 0.64 2.61 1.34 0.67 2.02 1.40 0.67 2.09  1.35 0.67 2.02 1.26 0.67 1.87 1.36 0.68 2.00  0.42 0.67 0.63 1.53 0.71 2.15 1.22 0.70 1.72 

E&SM 1.54 0.77 2.00 1.76 0.74 2.38 1.88 0.75 2.52  1.28 0.80 1.61 0.97 0.75 1.30 0.97 0.77 1.26 
 1.71 0.80 2.13 1.20 0.83 1.44 1.50 0.82 1.82 

S&SM -0.66 0.71 -0.94 -1.13 0.74 -1.52 -0.55 0.72 -0.76  -1.39 0.73 -1.91 -0.59 0.74 -0.80 -0.83 0.72 -1.16  1.24 0.70 1.77 1.32 0.73 1.81 1.48 0.72 2.05 

SM 2.75 0.73 3.74 2.70 0.72 3.74 2.86 0.73 3.93  1.98 0.74 2.67 2.01 0.72 2.80 2.09 0.72 2.89  2.02 0.74 2.74 1.55 0.73 2.10 1.46 0.74 1.97 

AA 

5 

-0.47 0.57 -0.82 -0.97 0.52 -1.86 -0.49 0.51 -0.96  -0.27 0.61 -0.44 -0.28 0.53 -0.54 -0.39 0.53 -0.74  0.17 0.59 0.29 0.75 0.55 1.37 0.71 0.55 1.30 

IM&SM 1.54 0.67 2.30 1.47 0.65 2.24 1.93 0.65 2.95  1.40 0.69 2.02 1.49 0.65 2.27 1.48 0.67 2.23  1.23 0.68 1.82 1.48 0.67 2.21 1.26 0.68 1.85 

PM&SM 1.72 0.55 3.13 1.64 0.56 2.93 1.80 0.57 3.18  1.93 0.57 3.38 1.63 0.57 2.85 1.74 0.58 2.97  1.05 0.56 1.88 1.67 0.58 2.86 1.45 0.60 2.42 

E&SM 1.83 0.69 2.65 1.98 0.66 3.00 2.17 0.67 3.26  1.22 0.72 1.70 1.76 0.66 2.65 1.78 0.67 2.64  1.63 0.70 2.33 1.61 0.68 2.37 1.61 0.69 2.32 

S&SM -0.50 0.60 -0.82 -0.15 0.56 -0.27 0.12 0.56 0.22  -0.81 0.62 -1.30 0.28 0.57 0.49 0.14 0.57 0.24  0.23 0.61 0.38 0.62 0.58 1.06 0.63 0.58 1.09 

SM 2.56 0.68 3.74 2.21 0.67 3.28 2.47 0.68 3.64  1.96 0.70 2.80 2.07 0.68 3.07 2.03 0.68 2.96 
 2.06 0.69 3.00 1.76 0.69 2.57 1.73 0.70 2.49 

AA 

10 

-0.07 0.55 -0.13 -0.35 0.49 -0.71 0.05 0.49 0.11  -0.12 0.58 -0.21 0.10 0.50 0.19 0.12 0.50 0.24  -0.24 0.57 -0.42 0.58 0.52 1.12 0.50 0.52 0.96 

IM&SM 1.68 0.66 2.54 1.51 0.65 2.33 1.93 0.65 2.98 
 

1.44 0.69 2.09 1.52 0.65 2.35 1.51 0.66 2.28 
 

1.22 0.67 1.80 1.38 0.66 2.08 1.18 0.67 1.75 

PM&SM 1.80 0.54 3.33 1.68 0.56 3.03 1.86 0.56 3.33 
 

1.96 0.56 3.49 1.72 0.56 3.06 1.81 0.57 3.16 
 

1.07 0.55 1.95 1.65 0.57 2.88 1.45 0.59 2.47 

E&SM 1.90 0.69 2.76 1.98 0.66 3.01 2.19 0.66 3.31 
 

1.29 0.71 1.80 1.86 0.66 2.82 1.88 0.67 2.82 
 

1.39 0.70 2.00 1.62 0.67 2.42 1.58 0.68 2.32 

S&SM -0.35 0.60 -0.59 0.10 0.55 0.19 0.35 0.54 0.65 
 

-0.34 0.61 -0.55 0.38 0.55 0.69 0.40 0.56 0.71 
 

0.08 0.61 0.13 0.45 0.56 0.79 0.47 0.57 0.83 

SM 2.56 0.68 3.77 2.14 0.67 3.18 2.39 0.68 3.53 
 

2.08 0.70 2.99 2.07 0.67 3.07 2.02 0.68 2.96 
 

2.05 0.68 3.01 1.75 0.68 2.56 1.72 0.69 2.49 

AA 

∞ 

0.91 0.54 1.69 0.34 0.48 0.71 0.74 0.48 1.54  0.41 0.57 0.72 0.47 0.49 0.96 0.57 0.49 1.15  -1.16 0.56 -2.06 0.34 0.50 0.69 0.21 0.50 0.41 

IM&SM 1.97 0.66 2.99 1.59 0.65 2.45 1.96 0.64 3.05  1.49 0.69 2.17 1.56 0.65 2.42 1.52 0.66 2.32  1.12 0.68 1.66 1.31 0.66 1.98 1.02 0.67 1.53 

PM&SM 1.86 0.54 3.46 1.79 0.55 3.24 1.99 0.55 3.59  1.96 0.56 3.52 1.83 0.56 3.30 1.91 0.57 3.38  1.25 0.54 2.31 1.60 0.56 2.84 1.39 0.57 2.43 

E&SM 2.06 0.69 2.97 2.01 0.66 3.06 2.28 0.66 3.46  1.43 0.71 2.02 1.95 0.66 2.97 1.95 0.66 2.93  1.04 0.70 1.49 1.62 0.66 2.44 1.53 0.68 2.26 

S&SM 0.02 0.60 0.03 0.39 0.54 0.73 0.67 0.54 1.26  0.32 0.61 0.53 0.49 0.54 0.89 0.60 0.55 1.10  -0.13 0.62 -0.20 0.25 0.56 0.44 0.24 0.56 0.43 

SM 2.58 0.68 3.80 2.11 0.67 3.14 2.35 0.67 3.48 
 2.19 0.69 3.16 2.08 0.67 3.10 2.00 0.68 2.95 

 2.01 0.68 2.97 1.72 0.68 2.54 1.68 0.69 2.44 

Mean  1.03 0.78 1.27 0.40 0.77 0.92 1.33 0.77 1.38  0.92 0.80 1.03 1.12 0.78 1.30 1.11 0.78 1.29  1.50 0.80 1.50 1.62 0.79 1.68 1.41 0.79 1.61 

                               

Table 4: Portfolio optimization results with risk aversion for the three specifications of the covariance matrix: standard, instantaneous, and smoothed. Only the last two specifications are 

based on the copula factor model. The analysis period runs from January 1, 2015 to December 31, 2019. The mean of the returns, the standard deviation, and the Sharpe ratio of the 

portfolio are represented by PR, SD and SR, respectively. The risk aversion coefficient is denoted by 𝜉. When 𝜉 = ∞, we are dealing with the minimum risk portfolio problem. The best 

portfolio in terms of Sharpe ratio for the different specifications is highlighted in bold. 
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Figure 1: Volatility captured by the Beta-Skew-t-EGARCH model, with one and two components.   



 

Figure 2: Factor loading across the time resulting from  the skew t-t copula, with heterogeneous specification. Factor  loadings are grouped according to type of 
commodity and stock markets.   



 

Figure 3: Optimal weights (%) for each proposed portfolio using the factor copula model, with heterogeneous specification. The 
rebalancing period is 21 days with risk of aversion ξ = 1. 

 

 

 

 

 



 

Figure 4: Optimal weights (%) for each portfolio strategy using the factor copula model, with heterogeneous specification, grouped 
across commodities and stock markets. The rebalancing period is 21 days with risk of aversion ξ = 1. 

 

 


