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Travel Circle: A Model of Supply Chains

By C. Oscar Lau∗
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Travel circle is a metaphor for supply chains: in travel circle, trav-

elers are transported by carriers in multiple legs from the center to

diverse destinations on the circumference; in supply chains, goods

are transformed in multiple stages by firms from natural resources

into differentiated products. The model is generated using only

three cost parameters. At the start of supply chains, a few firms

mass-produce standardized commodities at low unit costs; at the

end, many firms produce distinctive products in small scales at

high unit costs. As an extension, the circle’s size is endogenized

to account for consumers’ preferences for varieties.

JEL: L11, L13, L23, L25

Keywords: Product differentiation, Scale economies, Entry game

Consider a distribution network. As goods move from a central warehouse to

regional distribution centers, then to local centers, then to retailers’ storerooms, and

finally to the shelves, three related trends occur in parallel. First, the locations of

the storage facilities get increasingly localized because the goods have to ultimately

make their way to consumers, who are diversely located. Second, as the locations

decentralize, the number of storage facilities increases, and their capacities and

delivery sizes shrink. Third, as the scale of operations shrinks, the unit cost of

inventory and transportation soars.

The central warehouse operates with massive volumes to exploit economies of
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scale. In contrast, the retail outlets have to shelf the goods in small batches and sell

them individually to consumers, leading to much higher unit costs of distribution.

If the consumers choose home deliveries instead of in-store shopping, the individual

orders have to be delivered to their exact addresses, which is also an expensive

operation commonly known as “last mile” delivery.

The distribution network exhibits a central-to-local pattern. The premise of this

paper is that production of goods and services also follows a similar generic-to-

specific pattern, in which generic natural resources are transformed into increasingly

distinctive intermediate goods step by step, and are eventually differentiated into

unique final goods. As the intermediate goods become more distinctive, the scale of

production decreases, and so does the economies of scale.

This paper develops a model of supply chains that follows this generic-to-specific

pattern. The supply chains are constructed using only three fundamental cost pa-

rameters. Given the final goods, the intermediate goods are endogenously generated.

The degree of differentiation, the number of firms, and their levels of investments are

determined for all the final and intermediate goods. As an extension, even the final

goods themselves are endogenized by incorporating consumers’ tastes for varieties.

This paper contributes to the industrial organization literature in two ways. First,

as just described, the model generates multiple layers of firms and goods in supply

chains endogenously, demonstrating the generic-to-specific pattern of increasing dif-

ferentiation. In doing so, the model also offers new perspectives on differentiation,

scale economies, and welfare analysis of markets with differentiated goods. Sec-

ond, the model makes two contributions in methodologies: (i) it introduces a cost

function that links a firm’s investment to its marginal cost, thus endogenizing the

investment; (ii) in the extension, it offers a new approach to modeling consumers’

preference for varieties, as an alternative to Dixit-Stiglitz utility functions.

Productions as differentiation

All final goods begin their journey of creation as natural resources. Natural re-

sources are typically mass processed in vast scales into commodities such as oils and
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metals. Commodities are usually highly standardized and versatile; they can take

shape in a wide variety of intermediate goods. Aluminum alloys, for instance, can

be cast into anything from car engines to cellphone bodies, or rolled into anything

from soda cans to aluminum foils.

Once the intermediate goods have taken shape—as engines cast from aluminum,

as semiconductors sliced from silicon, as textiles woven from cotton threads, etc.—

they are inevitably far less versatile than the commodities from which they are made.

However, they are usually still generic enough to be used in multiple products, and

thus are still produced in sizable scales. Producers specializing in intermediate

goods take advantage of the economies of scale by producing large quantities, and

the economies of scope by producing closely related goods. They then sell their

outputs to multiple buyers for use in multiple products, so each intermediate good

finds its way into many products. For example, the same engine can be used to

power many different models of vehicles, the same memory microchip can be put

inside a variety of electronic gadgets; the same textile can be cut into any shape of

cloths. Some intermediate goods exist exactly for their versatility: bolts and nuts

for constructions, buttons and zippers for garments, etc.

The further down the supply chain, the more distinctive the intermediate goods

become. Finally, the goods are differentiated into finished goods. These final steps

require certain components to be designed, developed, and manufactured specifically

for the product, e.g., body panels for a car model’s unique exterior design; chassis for

a computer’s particular form factor; clothing parts for a garment’s distinctive styling

in specific sizes. These components are unique to the product and are therefore

produced in relatively low volumes. The more customized a product is, the smaller

the production scale, and the higher the cost. Thus tailored suits cost more than

off-the-rack suits, custom-made cakes cost more than pre-made cakes, and unique

houses cost more than cookie-cutter houses, even if the customized items use the

same quality of materials or ingredients as their standardized counterparts.

The generic-to-specific pattern applies not only to goods, but to services as well.

Consider the training that economics students receive, from undergraduate to PhD
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level. ECON101, covering standard economic principles, is taught to hundreds of

students in a lecture hall. Then, an undergraduate elective course focuses on a

particular subject for a medium-sized class. Next, a graduate field course is even

more specialized for an even smaller class. Lastly, in the research stage, a PhD

advisor works closely with the individual student on their unique research agenda.

Along the process, the subject gets increasingly specialized, the class size shrinks,

and the per-student cost soars. Early education exhibits a general-to-specific pattern

too: a child would learn general subjects like math and reading at school, then go

to after-school classes for particular music instruments or sports classes, and then

get lectured about family history and personal values by parents at dinner.

A similar pattern is replicated in many other services. In health care, general

practitioners provide general and preventive care to many patients, and if necessary,

refer them to specialists for specialized and personalized treatments. In news service,

local news outlets receive international and national news from major news agencies

such as the Associated Press and Reuters, and then add their own reporting for local

news. The pattern is not restricted only to professional services. General services

such as table waiting, banking, and hair dressing all have standardized elements,

but they can also be made more personalized at extra cost. Actually, services are in

general more individualized than physical goods because many of them necessarily

involve personal interactions. (The stark contrast in costs between personalized

service and mass-produced goods is a vivid demonstration of the Baumol effect

(Baumol and Bowen 1965), which predicts that costs of personal services would rise

relative to costs of mass manufacturing because productivity of the former benefits

little from mass production technologies.)

To sum up, production can be seen as an elaborate process in which generic inputs

differentiate into increasingly specific outputs with decreasing scale of production.

Before proceeding, I should briefly mention new trade theory (Krugman 1980,

Lancaster 1980, Helpman 1981), which, like the travel circle model, is premised

on the notions of differentiation and scale economies. New trade theory offers an

explanation of how scale economies drive trade flows between countries with similar
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productivities and factor endowments. In essence, consumers prefer diversity of

goods, and bilateral trading allows both countries’ firms to sell their varieties to

markets beyond their own home, thus taking advantage of economies of scale. In

contrast, the travel circle model focuses on the intricacies of the supply chains, e.g.,

how differentiation takes place in multiple stages of production and culminate in the

final goods.

Productions as journeys

Much like the distribution network, a transportation network also exhibits a

central-to-local pattern; so transportation can be viewed as an analogy for the

generic-to-specific pattern in supply chains. In fact, the essence of the generic-

to-specific pattern can be illustrated by a multi-leg trip from a major hub to a local

destination, for instance from Dallas airport in Texas to the Economics Department

of Michigan State University. The traveler would first take a large plane to fly

from Dallas (a major hub) to Detroit, Michigan (a regional hub), then take a small

plane to Lansing, Michigan (a local hub), then catch a bus to the bus station in

East Lansing, and finally hire a taxi to the Economics Department of MSU. Along

the journey, the transit point gets increasingly distinctive and localized, the size of

the carrier shrinks, the distance of the leg drops, and the cost per passenger-mile

soars. A single-passenger taxi ride would cost at least a few dozen times more than

a long-haul flight in per passenger-mile term.1

Figure 1 shows the stylized travel pattern. There are several large planes, each

flying from the major hub (the center) to a regional hub. Each traveler will board

the plane that is heading to the regional hub closest to their destination. So the

travelers split into several pools. When a large plane reaches its regional hub, the

travelers split again into several smaller pools, each of which will take a small plane

to the local hub closest to their destinations. Then each pool splits yet again into

even smaller pools to take buses to different local towns. Finally each individual

1The taxi ride is expensive not only because the route is customized, but also because the service timing
is personalized—the taxi stands by for taking passengers whenever they please. Passengers wait for the
plane, but taxis wait for passengers most of the time.
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takes taxis to their exact destinations.

Figure 1. : Travel in legs

The total transportation cost is minimized by optimizing the level of pooling,

i.e., the economies of scale, in various legs of the journey. Clearly zero pooling

throughout the journeys would not be optimal. In Figure 2a, each traveler takes a

taxi from the center all the way to their destination, which is prohibitively costly.

It corresponds to zero economies of scale.2 Figure 2b shows a travel pattern that

gravitate towards the other direction. The first leg, which has the highest degree

of pooling, is elongated, so that the overall pooling is higher than that in Figure

1. Which one of the two configurations is more efficient depends on the particular

circumstances.

The traveler’s journey is a metaphor for a product’s journey of creation. The

traveler moves from one point to another towards the destination; the good trans-

forms from one intermediate good to another towards the final good. The travelers

are moved by carriers; the goods are transformed by machines. A large crowd is

2Renting and self-driving a car would be much cheaper than taking a taxi, but it would still cost a lot
of time and effort. More importantly, the rental car and the road network are themselves results of mass
productions. In a world truly devoid of any mass production, the travelers will be left with nothing more
than the most rudimentary equipment and their own feet.
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(a) Zero pooling (b) Long first leg

Figure 2. : Alternative routes

carried by a large plane at low per passenger-mile cost; a commodity is produced en

masse at low marginal cost. The large crowd splits into smaller and smaller groups,

and ultimately individuals; the commodity differentiates into more and more dis-

tinctive goods, and ultimately final goods. An individual traveler is chauffeured to

their specific destination at high cost; an intermediate good is refined into a unique

product at high cost.

I. Setup

The travel circle is a spatial differentiation model built on Salop’s (1979) circle.

Salop’s circle focuses on product differentiation of final goods, skipping over the

supply chains behind. In his model, all firms are located on the circle, leaving the

circle’s interior empty. The travel circle model fills in the void by adding multiple

layers of circles inside the original one, with each layer representing one stage of

transformation of goods. It opens up the supply chains by covering the full pro-

duction process from start (center) to finish (circumference).3 While Salop’s circle

models product differentiation directly, the travel circle uses traveling as an analogy

3I am not aware of any other similar multiple-level model. However, there are several models in which
firms may be located at the center of the circle in addition to on the circumference, with the centrally
located firms interpreted as mail-order or online sellers (Balasubramanian 1998, Bouckaert 2000, Loginova
2009, and Madden and Pezzino 2011). In another direction, Chen and Riordan (2007), followed by Firgo,
Pennerstorfer and Weiss (2015), study a “spokes model.” In the spokes model, there are a number of spokes
with equal lengths, each extending from the center to a unique point. The end of each spoke represents one
variety of good; and the consumers are uniformly distributed on the spokes.
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for production.

Basics: To begin building the travel circle model, consider a circle with a radius

of one mile (think of it as a very long “mile”). A unit mass of travelers concentrate

at the center. They all must go home. Their homes are uniformly distributed on

the circle.

Each traveler’s journey is broken down into L legs. Imagine that L− 1 concentric

circles of increasing sizes are nested inside the original circle (see Figure 3). Call

them, from small to big, circle 1, circle 2, . . . , circle (L − 1); and call the original

circle circle L. Define circle 0 as the center.

Figure 3. : Travel circle

For l = 1, 2, ..., L, leg l covers a radial distance (i.e. distance along a radius) of

rl miles from circle (l − 1) to circle l, so
∑L

l=1 rl = 1. Each leg can be served by
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multiple routes, represented by the “spokes” in Figure 3. Each route is operated by

a different firm, which runs one carrier. A leg-l firm runs its carrier radially from

its starting point on circle (l − 1) to its ending point on circle l. All carriers in the

same leg depart from their starting points at the same time, and reach their ending

points at the same time. All carriers run only once. The entire transportation

system enclosed in circle L is known as the travel circle (although it is really a disc).

Travelers: As mentioned above, a unit mass of travelers have to travel from the

center to their homes, which are uniformly distributed on circle L. Every traveler’s

objective is to go home at the lowest cost. Each traveler’s journey proceed as follows

(see the arrowed path in Figure 3 as an example). From the center, they board one

of the leg-1 carriers, which takes them to its ending point on circle 1. They then

get off and walk along the circle to their designated waiting spot for their leg-2

carrier. Every traveler’s waiting spot is unique. When their leg-2 carrier arrives at

its starting point on circle 1, they slide along the circle to the carrier and board.

Then the carrier takes them to circle 2, and they walk circularly again to their

designated waiting spot for their leg-3 carrier. Then their leg-3 carrier arrives, and

they again slide and board. (In the example in Figure 3, the traveler walks clockwise

and then slides counter-clockwise on circle 2.) The process continues until their leg-

L carrier takes them to circle L. From there they walk home circularly (unless the

carrier happens to stop at exactly their home).

Sliding is effortless, walking is not. As just described, the travelers can slide

from the waiting spots to the carriers, but before that they have to walk to their

waiting spots. They cannot slide to their waiting spots (or homes in case of the

final leg) because of a “crashing condition” assumed in the model: Travelers sliding

in opposite directions will crash into each other and die; but if they walk, they can

walk around each other to avoid crashing. As we will see in the next subsection, the

waiting spots for passengers of a ride are randomly assigned within a waiting zone

allocated to the ride. So when the travelers go to their waiting spots, some of them

go clockwise and others counter-clockwise, depending on where they got off their
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previous ride and where they will wait for their next. Therefore, they will crash

into each other if they slide. But then why can they slide from their waiting spot

to their carrier without crashing? This is because, again as we will see in the next

subsection, the waiting spots are assigned such that passengers of each carrier will

wait on either side of its starting point, separate from passengers of other carriers.

When a carrier arrives, its passengers waiting on either side will slide into it in

tandem and in the same direction, so they do not risk crashing into each other.

(The motivation for introducing the crashing condition will become apparent in the

next section. It will be addressed in a remark at the end of the proof for Proposition

1.)

The total cost to a traveler is the sum of the ticket prices for all the rides they

take plus their walking costs. The ticket prices will be set by the firms that run

them. The walking cost is w per mile for a unit measure of travelers, where w > 0.

Sliding is costless.

Firms: A large number of identical firms consider whether to enter the trans-

portation market. Each firm is allowed to run at most one route in the whole travel

circle. To enter, a firm has to make an investment to buy a carrier. The firm de-

cides the amount of investment, which can be any positive number. All firms face

constant marginal costs; but their magnitudes can be different. A firm’s marginal

cost depends on how much it invests. If it invests f , then its marginal cost with

respect to passenger-miles is α
fβ , where α and β are both positive parameters. So

if it invests f to carry x passengers through a radial distance of m miles, its total

cost is

(1) c (f, x,m) = f +
α

fβ
· xm,

where f is the firm’s (fixed) investment cost, and α
fβ · xm is its (variable) operating

cost.

A firm can invest in any carrier, from a rickshaw to a taxi to a bus to an airplane.

The bigger the investment, the lower the marginal cost. A rickshaw is cheap, but
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it is backbreaking to pull. An airplane is expensive, but it costs little to carry an

additional passenger-mile.

The investment’s impact on the marginal cost is shaped by α and β. First, α

scales the magnitude of the marginal cost relative to the investment cost; α is the

marginal cost when f = 1. Second, β is the elasticity of marginal cost with respect

to investment: ∂ ln(α/fβ)
∂ ln f = −β.

In this setup, investment is not some exogenous entry cost, as in Salop (1979).

Instead, each firm chooses the optimal investment to minimize its total cost (as

Lemma 2 will show). So the model features endogenous investments.

Travelers cannot invest—only firms can. As mentioned earlier, travelers can walk

circularly. They can also, in principle, walk radially. But if they do, they face the

same cost equation (1) as firms for their radial walks. With zero investment, their

marginal cost of walking radially would be infinite. Thus in practice they have to

take carriers for radial movements.

The game

Many identical firms play a complete information entry game. The game has L

stages, running in descending order from leg L to 1. Each stage has two steps. The

two steps for leg l proceed as follows.

Step 1: Entry, investment, and assignment of carrier locations

In Step 1, potential entrants simultaneously decide whether to enter leg l and, if

so, how much to invest in a carrier. Each firm can at most enter one leg and run

one ride in the entire travel circle.

Following Salop (1979), all adjacent routes in the leg are assumed to be equidistant

from each other. Also following Salop, the entrants do not choose their routes’

locations. Subject to equidistance, the exact starting points of the routes on circle

(l− 1), or correspondingly their ending points on circle l, are drawn randomly with

uniform distribution along the circle. The locations are then revealed to the entrants

and travelers. The drawings for all legs are mutually independent events.
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Step 2: Price competition, sales, and assignment of waiting spots

In Step 2, firms compete in prices simultaneously; and travelers choose their leg-l

ride and buy tickets. All tickets are non-refundable and non-transferable.

After all travelers have bought their leg-l tickets, each ride is allocated an arc of

the circle as its waiting zone, with the mid-point of the waiting zone set at the ride’s

starting point. Each waiting zone’s share of the circle equals the ride’s market share

in the leg. So if all rides have the same number of passengers, the waiting zones

will divide up the circle’s circumference equally.4 Each traveler is then randomly

assigned a waiting spot on their ride’s waiting zone, with uniform distribution along

the zone.

Upon completion of all stages of the game, the actual traveling takes place, from

leg 1 to leg L. Leg l begins with the travelers sitting inside the carriers of their leg-l

rides, waiting for the carriers to start, and ends with the travelers boarding their

leg-(l + 1) ride (except for leg L, which ends with the travelers arriving home).

A subgame perfect Nash equilibrium will be identified by Proposition 1 in the

next section.

Interpretations

The travel circle is an abstraction of supply chains. The center symbolizes natural

resources. The legs are stages of production. The carriers are facilities, machines

and equipment. So as the travelers are transported from the center to increasingly

local destinations by carriers; the goods are transformed from natural resources to

increasingly distinctive products by machines. The travelers’ walking represents

adaptation and customization made for the particular intermediate good to prepare

it for mass production (to be elaborated in Subsection VI.A).

4The circumference of each circle is just “wide” enough to accommodate all travelers. If the rides have
different market share, there will be overlaps and gaps between the waiting zones, which means that the
waiting zones of some rides will not be long enough to accommodate all their passengers. This is not a
concern for the purpose of this paper, because I focus only on equilibria in which all firms in the same leg
have identical sales. But for completeness the following rule of waiting zone allocation will be followed if the
rides have different sales: Start with the longest zone. (If more than one zones are tied for the longest, then
randomly pick one of them.) If it has overlaps or gaps with any of its two neighboring zones, then move the
neighboring zone(s) clockwise or counter-clockwise so that the overlaps or gaps just disappear. Repeat the
process further in both directions circularly until all overlaps and gaps disappear.
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Each journey represents a final product. Each journey is unique, so is each prod-

uct. It is tempting to equate a destination with a final product. But a final product

is the aggregation of all the steps taken to bring it to fruition, so the product encom-

passes the whole journey, not just the destination. Different routes have different

costs, even if they lead to the same destination. Just like life, a product is a journey,

not a destination.

The travel circle can be thought as the supply chains for a particular good category,

e.g., computers. But it can also be viewed as the aggregate production system of

the whole economy in a nutshell (again, see Subsection VI.A for details).

In the model, a traveler buys tickets directly from multiple carriers. Meanwhile,

in reality, a consumer pays one final price for the good to the retailer, who passes

part of the proceeds to its suppliers, who do the same to their suppliers, and so on.

The operational procedures are different, but the end results are the same. But if

one wants to reconcile even the operational difference, one could imagine that in

the model there is a zero-cost travel agent automaton who handles all the ticket

purchases for the travelers and charges each of them one full price, and then passes

the proceeds down the supply chain.

Circular and radial differentiation

A final good is the cumulation of differentiation carried out at various intermediate

goods, just as a journey is the aggregate of many legs. As labeled on Figure 3, there

are two ways to view differentiation in the travel circle: circular and radial.

Circular differentiation corresponds to the familiar notion of spatial differentiation

as per Salop (1979). (I consider only horizontal differentiation, not vertical differ-

entiation.) The concept is applied to intermediate goods as well as final products.

In the travel circle, the degree of circular differentiation for each leg is measured

by the extent of entry, i.e., the number of firms that enter the leg. The more firms

that enter, the more localized the routes become, and hence the higher the degree

of differentiation. Circular differentiation can literally denote spatial diversity, or

more generally represent varieties in attributes such as colors, features, and designs.
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Meanwhile, radial differentiation traces the increase in cumulative differentiation

across stages: generic commodities differentiate into intermediate goods, which in

turn differentiate into finished products. Through the process, works-in-progress are

shaped, sliced, divided and combined repeatedly, thus becoming more distinctive in

each stage, and culminating in final goods eventually.

In the travel circle, the pattern of radial differentiation is captured by the partition

of the radius into multiple legs of various lengths. The number of legs equals the

number of steps of radial differentiation. The length of each leg indicates the degree

of radial differentiation. A long first leg, for instance, takes the travelers a long way

from the center to highly local areas. (see the discussion following Proposition 3 for

a more general interpretation of the lengths of legs).

Circular and radial differentiation progress in parallel, much as water ripples

spread circularly and radially in tandem. As a carrier travels radially, it achieves a

higher degree of radial differentiation. But as it pulls forward, it is also approaching

a circle with a higher degree of circular differentiation. For instance, turning alu-

minum into engines represents radial differentiation, but the variety of the resulting

engines exhibits circular differentiation.

The remainder of the paper is organized as follows. Section II solves for circular

differentiation, with radial differentiation taken as given. Using that result, Sec-

tion III in turn endogenizes radial differentiation. Section IV then combines the

two dimensions of differentiation to complete the travel circle and characterizes its

properties. Section V presents an extension in which travelers can choose how far

to travel. Finally, Section VI interprets the model in more detail and explores the

insights it offers.

II. Circular Differentiation

In this section, I solve for circular differentiation, i.e., the extent of entry, for all

legs. The number of legs L and the lengths of all legs rl, for all l = 1, 2, ..., L, are

taken as given.
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Suppose nl firms will enter the market for leg l. Since all firms are identical, and

the routes will be located symmetrically, it makes sense to look for an equilibrium

in which all entrants for leg l invest the same amount fl and set the same price pl

for their tickets (with pl being the price charged to a population of one).

Let Rl be the circumference of circle l, so Rl = 2π
∑l

k=1 rk.

LEMMA 1 (Salop 1979): In equilibrium, the number of entrants in leg l is

nl =
√

wRl

fl
(zero-profit condition).

Proofs of all results, except for Theorem 1, are relegated to the Appendix. As

in Salop (1979), free entry leads to zero profit (up to the integer constraint). A

higher investment cost means that in order to break-even, each entrant needs more

sales or a higher markup, both of which would happen only if fewer firms enter.

Therefore, nl is inversely related to fl. (I assume that the investment is low enough

such that there are at least three entrants, so that each entrant is competing with

two surrounding firms.)

The investment cost in Salop (1979) is exogenous. In contrast, firms in the travel

circle choose the optimal investment to minimize their total cost, given by the cost

equation (1).

LEMMA 2: The total cost borne by a firm to transport x travelers through m miles

is minimized by investing fmin(x,m) = (αβxm)
1

β+1 (cost-minimization condition).

The cost function is cmin(x,m) := c (fmin(x,m), x,m) =
(
1 + 1

β

)
(αβxm)

1

β+1 .

Also, fmin is increasing in β iff xm <
exp

(
1

β
+1

)

αβ .

The average cost per passenger-mile is cmin(x,m)
xm =

(
1 + 1

β

)(
αβ

xβmβ

) 1

β+1

, which is

decreasing in passenger-mile, thus exhibiting economies of scale. The endogenized

marginal cost is dcmin(x,m)
d(xm) =

[
α

(βxm)β

] 1

β+1

, which is also decreasing in passenger-

mile.

Note that fmin is not monotonically increasing in β. An increase in β has two

effects on fmin, as shown by the cost-minimization condition: the β inside the
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parentheses encourages more investment, but the β in the exponent reins it in when

αβxm > 1.

The cost-minimization condition shows that the lower the sales, the lower the

optimal investment. In equilibrium, all entrants have a sales volume of 1/nl; so the

more entrants there are, the less each of them will sell, and the less each of them will

invest. Therefore, like the zero-profit condition in Lemma 1, the cost-minimization

condition in Lemma 2 also relates nl to fl negatively. When put together, the two

conditions jointly determine the leg’s market equilibrium allocation, defined below

alongside with the leg’s efficient allocation.

DEFINITION 1: A circular differentiation program (CDP) for leg l, denoted by

(nl, fl), specifies the number of firms nl and the firm-level investment fl in the leg.

The market CDP for leg l, denoted by (n∗
l , f

∗
l ), specifies the equilibrium allocation

with free entry, with n∗
l and f∗

l determined by the parameters {α, β, w, rl, Rl}. The

efficient CDP for leg l, denoted by (n∗∗
l , f∗∗

l ), specifies the efficient allocation, with

n∗∗
l and f∗∗

l determined by the same set of parameters.

PROPOSITION 1 (Market CDP): The equilibrium number of entrants in leg l is

(2) n∗
l =

(
wβ+1Rβ+1

l

αβrl

) 1

2β+1

,

with each entrant investing

(3) f∗
l =

(
α2β2r2l
wRl

) 1

2β+1

.

The total investment in leg l is thus

(4) n∗
l f

∗
l =

(
αβrlw

βRβ
l

) 1

2β+1

.
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The equilibrium price in leg l is

(5) p∗l =
(

1︸︷︷︸
inv.

+
1

β︸︷︷︸
op.

)
n∗
l f

∗
l

with markup ratio β. Finally, the market total cost of leg l (firms’ costs plus walking

costs) is

(6) C∗
l =

(
1︸︷︷︸

inv.

+
1

β︸︷︷︸
op.

+
1

4︸︷︷︸
walk

)
n∗
l f

∗
l .

In the parentheses above, inv., op., and walk are due to investment costs, operating

costs, and walking costs respectively.

With the equilibrium outcomes solved, an equilibrium for the entry game is also

identified. A subgame perfect Nash equilibrium is: n∗
l firms enter leg l, each investing

f∗
l and setting the price at p∗l , for l = 1, 2, ..., L.

Consider the effects of α and rl. A higher marginal cost scaler α or a longer

ride distance rl amplifies the return of investment, therefore inducing a higher f∗
l

(equation (3)). A higher f∗
l in turn means that the market can only sustain fewer

entrants, i.e., a smaller n∗
l (equation (2)). The higher α or rl leads to a higher total

investment n∗
l f

∗
l as the negative effect on n∗

l is overwhelmed by the positive effect

on f∗
l (equation (4)).

Next, consider the effects of w and Rl. For a given number of entrants, a higher

walking cost w or a longer circumference Rl (which is proportional to the total

walking distance for the given number of entrants) allows the firms to command a

higher markup. So a higher w or Rl means more entrants can be accommodated

in the market, i.e., a higher n∗ (equation (2)). Intuitively, if the walking costs are

high, either due to a high w or a long Rl, the market will populate the leg with

many firms to reduce the walking distances. However, a higher n∗ implies that each

entrant will face a lower demand and therefore invest less, i.e., a lower f∗ (equation
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(3)). Like α and rl, a higher w or Rl also leads to a higher n∗
l f

∗
l , but this time

around it is because their negative effect on f∗
l is overwhelmed by their positive

effect on n∗
l (equation (4)).

As shown by equation (5), every firm’s operating cost is 1/β times its investment

cost. The firm breaks even by recouping its investment cost through the markup,

so the markup ratio is simply β, regardless of the leg.

The market total cost in equation (6) is also the travelers’ total cost for the

leg because the ticket prices they pay cover exactly the costs of investment and

operation.

When w approaches infinity, or when α or rl approaches zero, the number of

entrants tends to infinity and the firm-level investment tends to zero. However, just

because n∗ approaches infinity does not mean that the market is competitive—the

markup ratio is still β. The market will become competitive only if β approaches

zero. But in such an environment, investment is virtually useless; and with nearly

zero investment, the cost of traveling radially is astronomical. In effect, the economy

has almost zero economies of scale and every traveler essentially walks all the way

from the center to home at punishing cost.

Although the price is set above the marginal cost, the markup introduces no

distortions on the consumption side because the travelers have inelastic demands.

Distortions come only from the production side. The next proposition compares the

efficient allocation with the market equilibrium allocation.

PROPOSITION 2 (Efficient CDP): The efficient number of entrants in leg l is

(7) n∗∗
l =

1

2

(
wβ+1Rβ+1

l

2αβrl

) 1

2β+1

=
1

2
1+ 1

2β+1

· n∗
l ∈

( n∗
l

4︸︷︷︸
β→0

,
n∗
l

2︸︷︷︸
β→∞

)
,

with each entrant investing

(8) f∗∗
l =

(
4α2β2r2l
wRl

) 1

2β+1

= 4
1

2β+1 f∗
l ∈ ( f∗

l︸︷︷︸
β→∞

, 4f∗
l︸︷︷︸

β→0

).
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The efficient total investment in leg l is thus

(9) n∗∗
l f∗∗

l =
1

2

(
2αβrlw

βRβ
l

) 1

2β+1

=
1

2
1− 1

2β+1

· n∗
l f

∗
l ∈

( n∗
l f

∗
l

2︸ ︷︷ ︸
β→∞

, n∗
l f

∗
l︸︷︷︸

β→0

)
.

The efficient total cost of leg l (firms’ costs plus walking costs) is

(10) C∗∗
l =

(
1︸︷︷︸

inv.

+
1

β︸︷︷︸
op.

+ 1︸︷︷︸
walk

)
n∗∗
l f∗∗

l = β̃C∗
l ∈

( 4

5
C∗
l

︸︷︷︸
β→∞

, C∗
l︸︷︷︸

β→0

)

where β̃ = 1

2
1− 1

2β+1

1/β+2
1/β+5/4 ∈

(
4
5 , 1
)
is strictly decreasing in β.

Compared to the efficient allocation, the market under free entry “over-

differentiates” by generating too many firms in the leg. Although each firm in-

vests less than the efficient amount, in aggregate the firms invest too much. Firms

under market allocation also incur higher aggregate operating cost, which equals

1/β times the aggregate investment cost under both allocations. However, due to

over-differentiation, travelers walk less under market allocation, resulting in lower

walking costs. In the market allocation, the total walking costs amount to only a

quarter of the total investment cost (recall equation (6)), whereas in the efficient

allocation the total walking cost is as much as the total investment cost. Although

the market has a higher total investment cost, it is at most twice as much as that

under efficient allocation. So overall, the total walking cost is lower under market

allocation.

Notice that all distortions, when measured as ratios of the equilibrium quantities

to their efficient counterparts, are determined solely by β. When β gets close to

zero, the market is approximately competitive, as mentioned earlier. In this case,

the equilibrium number of firms approaches four times the efficient number of firms,

but each firm invests only about a quarter of the efficient level, resulting in about

the same total investment as the efficient level. Despite that the market is over-

differentiated, the total cost approximately matches the efficient level. (But again,
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the total cost is enormous when β approaches zero.)

Conversely, when β tends to infinity, the equilibrium number of firms is about

double the efficient number of firms, and each firm invests close to the efficient level,

so the total investment is nearly double the efficient level. The total cost is about a

quarter higher than the efficient level, which represents the highest deadweight loss

in proportional term.

In the standard Salop circle with fixed entry cost, the equilibrium number of

firms is double the efficient number of firms, the total investment is double the

efficient level, and the total cost is a quarter higher than the efficient cost.5 In

the present model with endogenous investment, more firms will enter because the

investment will be driven down. Now the equilibrium number of firms is between

double and quadruple the efficient number, the firm level investment is between a

quarter and one time the efficient level, the total investment is less than double the

efficient level, and the total cost is less than a quarter higher than the efficient cost.

So under endogenous investment, in proportional terms over-differentiation is even

more pronounced; but thanks to under-investments at firm level, the over-investment

at aggregate level is alleviated, and so is the deadweight loss.

III. Radial Differentiation

A radial differentiation program (RDP) for the travel circle specifies the number

of legs and their radial lengths. (The RDP will be defined formally shortly.) In the

previous section, I study the entry of firms in each leg, taking the RDP as given.

But how does the RDP arise in the first place? This section answers the question.

For the socially efficient outcome, obviously the social planner chooses an RDP

that minimizes the total cost of the travel circle. For the market outcome, however,

it is less apparent how the RDP comes about spontaneously. In reality, of course

an industry’s supply chain does not emerge suddenly. Rather, the supply chain

develops and evolves over time, with firms entering and exiting continuously. I

5Refer to p. 284 of Tirole (1988). It is straightforward to work out that, using the textbook’s notations,
the efficient total cost is

√
tf , where t is the consumers’ unit transport cost and f is the fixed entry cost,

and the market total cost is 5

4

√
tf .



Travel Circle 21

make no attempt to model such development processes; rather my goal is to predict

the resulting market RDP in a plausible and simple way.

With that goal in mind, I contend that it is reasonable to postulate that the

market RDP minimizes the sum of the market total costs across all legs. In other

words, the market RDP minimizes the total cost of the travel circle, subject to

market allocations at the leg levels as detailed in the last section. The rationale

is straightforward: if the prevailing RDP does not minimize the sum of market

total costs, then there are opportunities for firms in adjacent legs to adjust the

radial distances between them to achieve a lower total cost, and split the saving.

Therefore, as the supply chain evolves, firms would always gravitate towards a more

efficient RDP. For example, when an aluminum producer supplies aluminum to an

automaker for car bodies, does it supply aluminum ingots (short distance for the

leg), aluminum sheets made from ingots (medium distance), or aluminum sheets

readily cut into shapes for the car models (long distance)? Obviously the firms

would choose the option that minimizes their total cost, otherwise there is room for

re-negotiation that would result in savings for both.

(The market total cost of each leg includes the walking costs as well as the firms’

costs. But the walking costs are proportional to the firms’ costs (equation 6). So

by minimizing the firms’ costs, the market RDP also minimizes the market total

costs.)

One may wonder why this efficiency argument applies to radial differentiation,

but not to circular differentiation in the last section. In other words, why does inef-

ficiency arise from circular differentiation, but not from radial differentiation? The

answer is that firms in different legs do not compete with each other, while firms

in the same leg do. At the leg level, firms impose negative business-stealing exter-

nalities on each other, resulting in excessive entries and aggregate over-investment.

There is no such competition in the radial direction, so the firms are not subject to

the negative externalities in this direction.

There is also a secondary rationale for arguing that the market RDP tends to be

efficient. In the real world, even a market oriented economy inevitably involves some
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central planning, most notably infrastructure planning. Firms would anchor their

locations around the infrastructures. For instance, logistics firms would build ware-

houses based on the transportation network. Since the infrastructures are suppos-

edly designed to maximize social efficiency, the firms that follow the infrastructures

would also position themselves efficiently.

With the background for the market and efficient RDPs explained, we are ready

for the following definitions and results.

DEFINITION 2: A radial differentiation program (RDP) of the travel circle speci-

fies the number of legs and their radial lengths. An RDP is denoted by (r1, r2, ..., rL)

with rl > 0 for every l = 1, ..., L and
∑L

l=1 rl = r, where r is the radius of the travel

circle in miles, and L can be ∞. The RDP is finite if L is finite; it is infinite if L

is ∞.

A market RDP is an RDP that minimizes
∑L

l=1C
∗
l . An efficient RDP is an RDP

that minimizes
∑L

l=1C
∗∗
l .

PROPOSITION 3 (Market and efficient RDPs): The market RDP and the effic-

ient RDP are both unique and infinite. For the radius of one mile, denote the two

RDPs by (r∗1, r
∗
2, ...) and (r∗∗1 , r∗∗2 , ...) respectively. The lengths of their legs follow

the algorithm

(11)
rl
rl+1

= −
r̂l
2
+

√(
r̂l
2

)2

+
(
1 + βr̂l

)2+ 1

β

where

r̂l :=
rl∑l

k=1 rk
for l = 1, 2, ....

Given the radius of the circle, the algorithm (11) produces the lengths of all legs,

and hence the RDP. For the transportation and distribution industries, the lengths

of legs can be interpreted literally as distances, so the RDP pinpoints the locations

of the transportation and distribution centers along the networks. For goods and

services in general, the lengths can be understood as the degree of transformation—
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the longer the leg, the “bigger” the transformation, so the RDP identifies the “posi-

tions” of intermediate goods along the supply chains. Although there is no universal

measure of the degree of transformation, the lengths of legs still have intuitive ap-

peals. As item (i) of Theorem 2 will assert, the lengths of legs always decrease

along the journeys. Turning silicon into silicon wafers is a bigger transformation

than turning wafers into microchips in the sense that more “taking shape” occurs

in the first process—wafers are unrecognizable from raw silicon, but microchips are

more recognizable from wafers. Likewise, turning wafers into microchips is a bigger

transformation than merely assembling the microchips into computers.

The RDPs (r∗1, r
∗
2, ...) and (r∗∗1 , r∗∗2 , ...) are identical because their lengths of legs

follow the same algorithm and they both add up to one (the radius).6 (But the

radius of the circle is not restricted to one in Section V). Note that (r∗1, r
∗
2, ...) and

(r∗∗1 , r∗∗2 , ...) are both dictated by β, so they can also be written as (r∗l (β))
∞
l=1 and

(r∗∗l (β))∞l=1. The two RDPs are infinite, but we can construct a finite RDP as an

approximation. First iterate the algorithm (11) many times to obtain a sequence

of ratios of lengths, then solve for the lengths by combining those ratios with the

constraint that the lengths add up to one.

In typical infinite games such as repeated prisoners’ dilemma, there is no definite

final stage, so the game never ends. In contrast, the travel circle entry game starts

with the final leg, but there is no such a final leg under an infinite RDP, so the

game never begins. While a game does not necessarily have a definite end point,

a game that does not begin is a non-starter. To address this issue, I contend that

for all purposes, theoretical or practical, it is sufficient to use the approximate RDP

described in the previous paragraph in place of the market and efficient RDPs. The

approximate RDP is finite, so the game now has a final leg to begin with. It can

be made arbitrarily close to the two RDPs, so the approximation is innocuous for

any practical purpose. Actually the approximation is more realistic than the infinite

RDPs because all journeys in reality have finite legs.

6Although they are identical, I stick with the r∗
l
and r∗∗

l
notations in order to continue the practice of

using * to denote market and ** efficiency.
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Another issue related to infinite RDPs is that the travelers will only get arbitrarily

close to home no matter how many legs they go through, so technically they never

reach home. Again, the issue can be resolved by using the approximate RDP instead.

Under the approximate RDP, the carriers in the final leg take each traveler to a point

on the circumference of the travel circle, and from there the traveler walks home

through a tiny distance.

IV. Travel Circle

This section completes the circle.

DEFINITION 3: A travel circle program (TCP), denoted by (nl, fl, rl)
L
l=1, consists

of an RDP of L legs, denoted by (r1, r2, ..., rL), and L number of CDPs, one for

each leg, denoted by (nl, fl) for l = 1, ..., L, where L can be ∞.

The market TCP, denoted by (n∗
l , f

∗
l , r

∗
l )

∞
l=1, is defined jointly by the market

RDP (r∗1, r
∗
2, ...) and the market CDPs (n∗

l , f
∗
l )

∞
l=1. The efficient TCP, denoted by

(n∗∗
l , f∗∗

l , r∗∗l )∞l=1, is defined jointly by the efficient RDP (r∗∗1 , r∗∗2 , ...) and the efficient

CDPs (n∗∗
l , f∗∗

l )∞l=1.

So a TCP renders a full picture of the travel circle by specifying how many legs

there are, how long each leg is, how many firms there are in each leg, and how much

each firm invests. The market TCP depicts the market allocation; the efficient TCP

depicts the efficient allocation.

THEOREM 1 (Travel circle): Three cost parameters, α, β, and w, are sufficient

to generate the market TCP and the efficient TCP.

Proof : The theorem is a culmination of Propositions 1 (Market CDP), 2 (Efficient

CDP), and 3 (Market and efficient RDPs). The RDPs of both TCPs are determined

by β in accordance with algorithm (11). The market CDPs follow equations (2) and

(3) in Proposition 1; the efficient CDPs follow equations (7) and (8) in Proposition

2. The CDPs are functions of α, β, w, rl and Rl. But rl and hence Rl are defined
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by the RDPs, which in turn are dictated by β. So the CDPs depend on α, β, and

w only.

Recall that when the radius is fixed at one mile, the RDPs depend solely on β. So

the market TCP can be written as (n∗
l (α, β, w), f

∗
l (α, β, w), r

∗
l (β))

∞
l=1 and similarly

the efficient TCP as (n∗∗
l (α, β, w), f∗∗

l (α, β, w), r∗∗l (β))∞l=1.

THEOREM 2 (Properties of travel circle): The market TCP and the efficient TCP

follow these properties when l increases from 1 to ∞:

(i) r∗l and r∗∗l decrease and approach 0;

(ii)
r∗
l

r∗
l+1

and
r∗∗
l

r∗∗
l+1

decrease and approach 1;

(iii) n∗
l and n∗∗

l increase and approach ∞;

(iv) f∗
l and f∗∗

l decrease and approach 0;

(v) n∗
l f

∗
l , C

∗
l , n

∗∗
l f∗∗

l and C∗∗
l decrease and approach 0;

(vi) p∗l decreases and approaches 0;

(vii)
p∗
l

r∗
l
,

C∗

l

r∗
l

and
C∗∗

l

r∗∗
l

increase and approach ∞.

In early legs of the journeys, there are only a few firms, each investing in a big

carrier to carry many passengers through long distances at low per-mile cost and

price. Towards later legs, more and more firms invest in smaller and smaller carriers

to carry fewer and fewer passengers through shorter and shorter distances to more

and more specific locations at higher and higher per-mile costs and prices. This

pattern is true for both the market allocation and the efficient allocation (except

that there are no prices under the efficient allocation).

Theorems 1 and 2 are illustrated in Figure 4, which shows four pairs of travel

circle, each corresponding to a set of values for the parameters α, β, and w. The

upper circle in each pair represents market allocation and the lower one efficient

allocation. The first pair is the baseline, while each of the other three pairs have

one of the parameters altered from the baseline. For clarity, only the first five legs



Travel Circle 26

are shown for the first, second, and fourth pairs, all for which β = 1. For the third

pair, where β = 1.2, only the first three legs are shown because they are already

longer than the first five legs in the other pairs (recall that the RDP is dictated by

β).7

The widths of the routes are proportional to the numbers of passengers; and the

sizes of the dots at the end of the routes are proportional to the investments for the

carriers. All travel circles are generated with only α, β, and w, in accordance with

Theorem 1. They all display properties (i) to (iv) listed in Theorem 2. For each

pair, the market circle has more firms in every leg than the corresponding efficient

circle, with each firm investing less, as claimed by Proposition 2.

α = 1
β = 1
w = 10

market

efficient

α = 0.2
β = 1
w = 10

market

efficient

α = 1
β = 1.2
w = 10

market

efficient

α = 1
β = 1
w = 20

market

efficient

Figure 4. : Differentiation patterns

7The circles are created by iterating the RDP algorithm (11) until r̂ is smaller than 0.0001. The number
of firms calculated is rounded down to the nearest integer for market allocations, and rounded off to the
nearest integer for efficient allocations.



Travel Circle 27

V. Extension: Endogenous Radius

So far, the model focuses only on the supply side. The travelers’ demand is

inelastic—all travelers simply must go home. This section extends the model by

considering another scenario: instead of going home, the travelers at the center

are going on vacations, and they can choose how far to travel. From now on,

call the original model “homecoming” and this extended model “vacation.” In the

vacation model, each traveler can choose a vacation destination anywhere along the

ray starting from the center and passing through what used to be the location of

their home. The further they go, the happier they are. They can also consume a

generic good along with their travel. All traveler’s have the same Cobb-Douglas

utility function

(12) u(r, s) = rθs1−θ,

where r is the radial distance in miles of their vacation destination from the center,

s is the amount of the generic good they consume, and θ ∈ (0, 1) is a parameter.

I will focus on outcomes where all travelers choose the same distance. Suppose

all travelers choose distance r in equilibrium, so that the vacation travel circle has a

radius of r miles. Let C∗
r (α, β, w) be the total cost of the travel circle (firms’ costs plus

walking costs) with radius r miles under market allocation. As in the homecoming

model, the market total cost results from picking the RDP that minimizes the total

cost of the travel circle. The rationale remains the same as that offered in Section

III—through negotiations, firms in different legs would gravitate towards the cost-

minimizing RDP to minimize their total cost. Also as before, the travelers fully

bear this market total cost because the ticket prices they pay cover exactly the

firms’ costs, and they are the ones who do the walking. The next lemma implies

that C∗
r is increasing and concave in r.

LEMMA 3: C∗
r (α, β, w) = rβ̂ · C∗

1(α, β, w) where β̂ := 1
2 + 1

4β+2 ∈
(
1
2 , 1
)
.

So far we think of the travelers as many individuals, but they can also be inter-
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preted collectively as one representative consumer who chooses a combination of

differentiated goods (traveling) and the generic good. So θ measures the consumer’s

preference for the diversity of goods. The radius of the travel circle represents the

degree of differentiation of the differentiated goods. The bigger the circle, the more

diverse (i.e., circularly differentiated) and the more refined (i.e., radially differenti-

ated) are the myriad of differentiated goods they consume.

Suppose the representative traveler/consumer has a total income of I to spend on

traveling and the generic good. Let the price of the generic goods be ps. As men-

tioned, the cost of traveling is the sum of ticket prices and walking costs. (Income

is “spent” on walking in the sense that the time and efforts spent on walking could

have been used to earn more income.) Since the market total cost is a function of

r, when the travelers choose r, in effect they are also choosing their traveling costs.

The next proposition solves for the equilibrium radius.

PROPOSITION 4 (Endogenous market radius): The market equilibrium radius of

the vacation model is

r∗ =


 I

C∗
1

(
1 + 1−θ

θ β̂
)




1

β̂

.

Note that C∗
1 is just the market total cost of the homecoming travel circle. Since

C∗
1 is a function of (α, β, w), r∗ is a function of (α, β, w, θ, I).

COROLLARY 1: The market equilibrium radius r∗ is increasing in θ and I. When

θ → 0, r∗ → 0; when θ → 1, r∗ →
(

I
C∗

1

) 1

β̂ .

Travel circles with different radii can be used to illustrate differences across good

categories or changes over time. For example, one might expect that a travel circle

modeled for women’s clothing would have a higher θ and thus longer radius than

that for men’s, showing more varieties and higher sophistication. Meanwhile, both

circles would grow in size over time as I rises with economic growth and C∗
1 declines

with technological improvements.

Next, I find the market RDP, CDP, and TCP of the vacation model.
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LEMMA 4: The market RDP of the vacation model is (r∗r∗1, r
∗r∗2, ...).

While the RDPs of the homecoming model depend only on β, the market RDP of

the vacation model depend on all of α, β, w, and θ, due to its dependence on r∗.

With the market RDP figured out, the market CDP of the vacation model simply

follow from Proposition 1. Therefore, the market TCP of the vacation model is also

solved. Moreover, none of the properties for travel circles under market allocation

listed in Theorem 2 rely on the radius being one, so they apply to the vacation model

too. Following Theorems 1 and 2 for the homecoming model, the corresponding

version for the vacation model is presented as follows.

PROPOSITION 5 (Vacation travel circle): Five parameters, α, β, w, θ, and I,

are sufficient to generate the market TCP for the vacation model. Moreover, the

properties of TCPs listed in Theorem 2 for the homecoming model under market

allocation apply to the TCPs for the vacation model too.

Propositions 4 and 5 and Corollary 1 are illustrated in Figure 5.

θ = 0.5
I = 3, 500

θ = 0.6
I = 3, 500

All three circles are market allocations with α = 1, β = 1, and w = 10.

θ = 0.6
I = 4, 000

Figure 5. : Endogenous radius

Figure 5 displays three vacation travel circles under market allocations in a similar

way as Figure 4 does for the homecoming model. They all use the same baseline
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values for α, β, and w, but different values for θ and I. The second circle has a

higher θ than the first; and the third one keeps the same θ as the second but has a

higher I. The circles show that the radius of the circle is increasing in both θ and

I.

VI. Discussion

A. Further interpretations

This subsection interprets several aspects of the model in detail.

Walking: The travelers travel en masse in carriers to benefit from economies

of scale, but in between rides each of them has to walk individually to a unique

waiting spot for their next ride. Similarly, goods are mass-produced, but in between

mass productions an intermediate good needs to be prepared specifically to be ready

for the next mass processing. Walking can therefore be interpreted as adaptation,

customization, product design, and other efforts made specifically for an intermedi-

ate good to prepare it for the next stage of mass production. So radial movements

are transformations; circular movements are preparations for transformations. For

preparations, the costs are split between the buyer and the supplier of the interme-

diate good in the most efficient way. So the “walking” is done by the buyer, the

supplier, or both. A short walk means the supplier’s outputs fit the buyer’s need

closely and require little efforts to adopt. Conversely, a long walk means a lot of

efforts are necessary.

A carrier has limited waiting spots, so it assigns specific spots to each passenger,

who has to adapt by walking there. Similarly, a seafood monger supplying to local

restaurants has a limited delivery window, so they assign a specific delivery time

for each restaurant, which has to work around it. This is an example of adaptation

by the buyer. An example of adaptation by the seller is that a laundry contractor

for hotels collects and return the linens at times that fit the hotels’ housekeeping

schedules. As for customization, examples include: an aluminum can producer,

which supplies to multiple soda companies, print different graphics on the cans
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for each beverage; a retailer switching to a new point-of-sales system coverts their

files and data into a compatible format; an automaker buying microchips from

a microchip manufacturer write customized programs on the microchips for their

vehicles.8 The customization is done by the supplier in the first example, and by

the buyer in the other two. Lastly, product-specific design is infused into various

stages of production, just as walking takes place in various legs. The design jobs

can be done by contractors in the supply chain. However, the owners of the brands,

such as electronics giants and high fashion labels, often keep the key designs in-

house because they create high values, and contract out only the low value-adding

manufacturing.

Walking also has another significance in the model—it enables travelers to choose

between different carriers. Such freedom of choice is ruled out in a hub-and-spoke

setup without walking, such as the one in Figure 1, in which each destination can be

reached via only one pathway. Williamson’s (1975) notion of site specificity high-

lights the benefits of trading with a nearby supplier or buyer. For some industries,

especially natural resources, it is crucial for the buyer to be located close to the

supplier. Likewise, the travelers would save walking costs by choosing the carrier

that will stop closest to their waiting spot for their next ride. However, if the nearest

carrier’s ticket is too expensive, they would choose a farther but cheaper carrier if

the combined cost of ticket and walking is lower. (In equilibrium, all carriers in the

same leg charge the same price, so all travelers would just choose the nearest ride;

but the point remains that they are free to choose.) By the same token, a builder

may buy from a cheaper materials supplier even if it is further away; a car mechanic

may use cheaper third-party parts even if they require modifications; a factory may

opt for a cheaper automation system even if it requires more customization.9

8In fact, most automakers rely on contractors to write their software. When the supply of microchips
for vehicles fell short during the pandemic, they could not switch to other microchips easily because that
would require rewriting of software. But Tesla Motors write their own software, i.e., they do their own
“walking,” and therefore was able rewrite them on the microchips that were available. As a result, Tesla
weathered the global microchip supply shortage better than other automakers in 2021. See Ewing, Jack.
2022. “Why Tesla Soared as Other Automakers Struggled to Make Cars.” The New York Times, January
8. https://www.nytimes.com/2022/01/08/business/teslas-computer-chips-supply-chain.html.

9As a real-world example, the food company General Mills has revamped the recipes of their products
in response to shortages of ingredients following the pandemic. See Creswell, Julie. 2022. “Why Totino’s
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Multiple materials: Real-world productions involve thousands of different

materials being transformed in countless ways. The travel circle reduces any form

of transformation of any material into spatial movements in the circle. Such an

abstraction is necessary to boil down the complexity of supply chains into anything

tractable. But despite the abstraction, we can incorporate multiple materials into

the model, at least informally, to give it a more tangible interpretation.

One way is to think of the natural resources at the center as a composite of all

raw materials. The composite materials are then split and transformed along the

routes into different composite intermediate goods, which continue to transform and

ultimately differentiate into the myriad of final goods.

Alternatively, we can incorporate multiple materials more explicitly. Suppose

for simplicity that computers are made of only two materials: plastic and silicon.

Think of two travel circles, each representing one of the materials, stacked together.

The materials first differentiate along their respective routes into plastic and silicon

components for different computer models. Then their routes overlap, where the

plastic and silicon components are combined into new intermediate goods. The

combining and differentiating of intermediate goods continue until they culminate

in the finished products.

Investments and labors: Travelers going in the same general direction are

pooled together in the same carrier. So a carrier can be seen as a common ve-

hicle that unites its individual passengers for the ride. Likewise, goods that are

similar to each other went through the same machines and equipment that process

their common components. Therefore the machines and equipment contribute to

the generic part of the products. The shipping container is a prime example of

a generic and versatile equipment; it can carry any goods that fit in through the

global containerized freight system. In manufacturing, generic materials are often

matched with versatile equipment. For example, an injection molding machine can

shape generic plastic pellets into any form defined by the mold (but the mold itself

Needs 25 Ways to Make Pizza Rolls.” The New York Times, August 31. https://www.nytimes.com/2022/
08/31/business/totinos-pizza-rolls-ingredients.html.
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is custom-made for the output). Some machines are more specialized. For instance,

auto-plant robots are custom-built for a particular automaker; but even they can

be programmed for different car models of the automaker.

The carriers in the model need to be driven by drivers. Likewise, the equipment

in real-world production needs to be operated by workers. Human resources, like

natural resources, are generic and versatile. The same factory worker can process any

category of goods in the assembly line; the same office clerk can handle documents

for any type of business. Skilled workers tend to be more specialized; but even

they can apply their skills to numerous products. An industrial designer can create

a variety of consumer products; an accountant can manage the finances of many

different trades.10

B. Insights from the model

This subsection discusses some key insights drawn from the model. (The insights

on welfare have already been covered below Proposition 2.)

Radial differentiation: This paper broadens the concept of product differenti-

ation. The conventional notion of (horizontal) product differentiation corresponds to

circular differentiation in the model. The model shows that circular differentiation

always goes hand in hand with radial differentiation. On one hand, differentiation

as a status refers to variations in attributes of intermediate or final goods (circular

differentiation). On the other hand, differentiation as a process refers to generic-to-

specific transformations whereby commodities differentiate into intermediate goods,

and intermediate goods differentiate into final goods (radial differentiation). In this

sense, production is differentiation, and products are cumulations of differentiation

in multiple steps. For instance, oil is refined into different grades, some of which

are processed into various types of plastic pellets, some of which are moulded into

certain toys, some of which are adorned with particular features.

10The versatility of labor partly explains why labor economics is in general less theory-oriented than
industrial organization. Labor is more versatile and hence generic than goods. So the labor market tends
to be more competitive than the goods market, which means it requires less complicated market structures.
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By interpreting production as differentiation, the notion of radial differentiation

also sheds light on the mechanism of scale economies. In the model, a large air-

plane feeds its passengers to multiple small planes, each of which in turn feeds their

passengers to multiple buses, and so on. Likewise, a commodity is used in many

intermediate goods, each of which is used in multiple intermediate goods further

down the supply chain, and so on. So while differentiation accumulates downstream

(outward from the center of the circle), scale economies accumulates upstream (in-

ward). The large airplane attract many passengers because its route is common

to the journeys of many travelers. Similarly, commodities and upstream intermedi-

ate goods are typically produced in huge scales because they are versatile and are

used in numerous downstream intermediate goods. For instance, the economy pro-

duces many products with aluminum contents, so aluminum is produced in massive

scales. Aluminum product producers thus create external economies of scale for

each other by increasing the economies of scale of aluminum production. In this

sense, economies of scale upstream (mass production of aluminum) are derived from

economies of scope downstream (many products with aluminum contents).

Endogenous investments: The cost equation (1) is crucial to the construction

of the model. By linking a firm’s marginal cost to its investment cost, it lets each

firm choose the optimal investment for their route. It is the universality of this link

that enables the whole travel circle in the homecoming model to be generated with

just three cost parameters (Theorem 1). As the next paragraph argues, this link is

universal not just in the model, but in essentially all productions in the real world.

Yet scarcely any existing production models in the literature exploits the link. It

could be worthwhile to explore incorporating the link in many existing and future

models.

For sure, there are countless production functions and cost functions in the real

world. But every production process allows some degree of trade-off between the

upfront investment and the average variable cost per unit, as depicted by the cost

equation. As noted before, passengers in the travel circle can be carried by anything
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from a rickshaw to a taxi to a large airplane; the higher the investment, the lower

the marginal cost per passenger mile (which equals the average variable cost because

the marginal cost is constant). Similarly, most consumption goods like foods and

clothes can be produced using a wide range of tools and equipment, from primitive

to basic to advanced. Just consider that many goods we consume today, espe-

cially the necessities, have been produced in some forms throughout history. The

goods produced with simple equipment may be different from their mass-produced

counterparts—not necessarily inferior, as handcrafted products are often consid-

ered superior nowadays—but the point remains that simple equipment is an op-

tion. Even operations that are typically regarded as investment intensive—such as

mining—can be carried out with rudimentary tools, albeit torturously. Admittedly,

many high-tech processes are impossible without heavy investments in advanced

equipment. Yet even these processes afford some trade-off between investment and

average variable cost. In microchip productions, for instance, more investments in

process optimization would improve production yield.

Preference for varieties: In the vacation model (Section V), the travelers

are interpreted collectively as a representative consumer buying many differentiated

goods, so they can choose the degree of differentiation of their consumptions by

deciding how far to go. Thus the utility function (12) in the vacation model can

serve as an alternative to Dixit-Stiglitz utility functions, introduced by the eponyms’

1977 paper, in modeling preference for varieties.

Using the vacation model to account for preference for varieties could bring about

certain advantages, especially if the research subject involves supply chains. The

travel circle not only models the demand and supply in the market for final goods,

it generates the markets for all intermediate goods in the supply chains. For each

intermediate and final good, it endogenizes not only the number of firms, their out-

puts and prices, but also their investments and marginal costs. Moreover, like Salop

(1979), the circle provides visualization of the results. Essentially it summarizes the

entire economy in a circle. However, unlike Dixit-Stiglitz utility functions, the va-
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cation model does not have a parameter that specifies the elasticity of substitution

between the differentiated goods. In addition, since the model generates the econ-

omy from the ground up, it involves interdependence between variables that makes

the effects of parameters less tractable. In particular, the effect of β on the outcomes

is hard to pin down because it plays a key role in all of circular differentiation, radial

differentiation, and endogenous radius.

It is commonly accepted that consumers like diversity of goods because higher di-

versity means more choices, whether of a particular good (e.g. car) or a combination

of goods (e.g. weekly dine-outs). But the vacation model offers another perspective

on the preference for product diversity. Higher circular differentiation always comes

with higher radial differentiation, just as a longer circumference necessarily means

a longer radius. Therefore a large variety also implies a high level of refinements.

Undifferentiated goods are unrefined goods, with the most extreme case being raw

materials. Differentiated goods (e.g. fashions, cuisines) are desirable not only be-

cause they offer choices, but also because they are more polished or sophisticated

than the generic good (e.g. uniforms, canteen foods).

Integer profits: In the real world, when upstream firms facing few competi-

tors earn positive profits, the profits are often taken as evidence of market power.

However, the profits may be at least partly due to the integer constraint. As in

Salop (1979), the zero-profit condition results in non-integers being calculated for

the equilibrium numbers of firms (Lemma 1). The actual number of firms, which

must be an integer, is the calculated number rounded down to the nearest integer

because firms will enter only if they expect non-negative profits. To the extent that

the number is rounded down, the firms can charge a higher price than that calcu-

lated and thus earn an “integer profit,” the size of which depends on how significant

the rounding down is. On average the amount of rounding down is 0.5 regardless

of the leg. So the smaller the calculated number of firms, the more significant the

rounding down is on average. Since the number of firms is smaller upstream (The-

orem 2), the upstream firms are expected to earn more significant integer profits.
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In contrast, the number of downstream firms is large, so they do not earn sizable

integer profits.

C. Further observations

This subsection explores several broader subjects that the model sheds light on.

Integration of firms: The model does not allow integration of firms, and it

does not produce any concrete predictions on mergers even if integration is allowed.

However, the firms’ locations provide some clues about which firms are more likely

to merge. Integration tends to occur between firms that are close to each other.

For both horizontal and vertical integration (i.e., circular and radial integration in

the travel circle), the proximity of routes allows the merged firm to share resources

(e.g. maintenance supplies) between routes efficiently. In particular, the numerous

downstream firms crowded near the circumference of the circle are prone to merge.

For horizontal integration, mergers between neighboring firm make even more sense

because they are the closest competitors.

The tendency towards vertical integration between firms in the downstream is

further exacerbated by Williamson’s (1975, 1985) notion of asset specificity. As

argued in the previous subsection, it is often the case that the more generic the input,

the more generic the equipment that process it. Conversely, the more distinctive

the output, the more specific the equipment that produces it. This implies that the

suppliers in the downstream, where the outputs are distinctive, are more likely to

merge with its buyer when compared to those in the upstream.

The configurations of the travel circle also has another way of hinting at potential

vertical integration. Since the locations of the routes in each leg are randomly drawn

(subject to equidistance), some routes in consecutive legs may happen to “connect”

well, i.e., nearly line up. For instance, in Figure 3, the three consecutive routes

running in the southwest direction for legs 1 to 3 nearly line up. The firms running

these route are more likely to integrate vertically than others. After merger the same

driver could drive multiple routes in a row without walking much from the end of
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one route to the start of another. Translated into production, this means that

if a supplier’s outputs are well-suited for the particular requirements of a buyer,

then they are relatively prone to merge. Note that the integrated firm can still

supply their intermediate goods to other buyers, just as merged carriers in the

travel circle would still welcome passengers who take only one of their rides. For

example, Samsung and Sony make image sensors for their own smartphones, but

they also supply their sensors to competing phone makers; the Chinese appliance

manufacturer Midea makes microwave ovens under its own brand, but it also supplies

the core components of microwave to many other brands.11

Extent of markets: Differentiation also influences the boundary between mar-

ket and non-market activities. Consider the classic example of household produc-

tion: a consumer who wants a cake can buy it from a bakery, or they can buy flour,

eggs, and sugar from the market and make the cake themselves (Becker 1981). For

maximum self-reliance, they could even grow the ingredients themselves. This last

approach is equivalent to the traveler walking to their destination without taking

any carriers. The choice of how much to rely on markets depends on the peculiarity

of their taste and their self-production cost relative to the market cost. If they have

very peculiar taste (very isolated destination) and their cost of self-production is

relatively low (low walking cost), then they tend to resort to self-production (walk).

While self-production provides an alternative to market purchases, there is a third

alternative. The person may ask family members, friends, and neighbors etc. for

favors, especially for tasks where personal preferences are important (e.g. baby

sitting) and specific knowledge are necessary (e.g. food allergy). (Jeitschko and

Lau (2017) call such reciprocal activities “soft transactions,” as opposed to explicit

“hard transactions” in the market.)

Varieties in the real world: Varieties and customization are costly because

the higher the differentiation, the lower the economies of scale (Theorem 2). Distinc-

11See 2021. “Sony Dominates Smartphone Image Sensor Market in 2020.” EE Times Asia, April 1.
https://www.eetasia.com/sony-dominates-smartphone-image-sensor-market-in-2020/; and McCabe, Liam
and Sullivan, Michael. 2022. “The Best Microwave.” Wirecutter, January 8. https://www.nytimes.com/
wirecutter/reviews/best-microwave.



Travel Circle 39

tive goods are not only expensive to develop and manufacture, they also carry high

inventory cost because their turnover is lower than the more standardized items.

Jennifer Dulski, a student of economics principles class, tackled the question: “Why

do brides spend thousands of dollars on wedding dresses they will never wear again,

while grooms, who will have many future opportunities to wear a tuxedo, usually

end up renting a cheap one?” Her explanation was essentially that wedding gowns

are distinctive, while tuxedos are rather standardized. A gown rental company

would have to carry a huge collection of distinctive gowns in each size. But then

each gown would get rent out so infrequently such that, after taking the inventory

cost into account, it would cost more to rent than buy. Tuxedos, on the other hand,

are pretty standardized and therefore can be rented out cheaply (Frank (2006)).

Another prediction of the “varieties are expensive” rule is that the more generic

garments such as jeans are sold at a lower margin than the more distinctive items

such as dresses, which have slower turnovers.

Waist belts and watch straps are adjustable for lengths; socks and hats are one-

size-fits-all (at least for adult size). The adaptability of these accessories means

that the manufacturers only need to produce a single size for each item. In contrast,

clothes and shoes have to come in various sizes, which significantly increase their

costs. Consumers who do not fit well in any standard sizes would even need to pay

extra for costly individual alterations.

A restaurant can offer a set menu (or daily special) at a lower price than à la carte

because the set menu is a more standardized product (at least to the restaurant) sold

at a higher volume. Buffet restaurants take it one step further by offering a blanket

product—a pool of predetermined foods from which the diners self-customize their

own meals. Although buffets suffer from inefficiency caused by overeating (once paid

up, diners eat until the marginal value of consumption drops to zero), the significant

cost savings of pooling make them an economical way of catering, especially to a

big crowd like one at the reception of a large conference for economists.
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FOR ONLINE PUBLICATION

Mathematical Appendix

A1. Proof of Lemma 1

To a traveler, ideally their leg-l ride stops on circle l at exactly their waiting spot

for their next ride, or in case of the final leg, at exactly their home. I will first

show that in any leg l, the travelers’ ideal ending points for their rides are uniformly

distributed on circle l. Then I will follow the standard proof for Salop’s circle to

find the equilibrium number of firms for every leg.

Recall that the game begins with leg L. To a traveler, ideally their final ride

stops on circle L at exactly their home. Since the travelers’ homes are uniformly

distributed on the circle, so are their ideal points.

The leg-L firms, randomly located subject to equidistance between firms, set the

same price and make equal sales; so they are allocated equal waiting zones on circle

(L−1). Each passenger of a firm’s ride is then randomly assigned a waiting spot on

the firm’s waiting zone such that the zone is filled up with waiting spots uniformly.

Therefore the travelers’ waiting spots are uniformly distributed on circle (L − 1),

regardless of the exact locations of the firms. Repeat the same argument for leg

(L − 1), leg(L − 2),..., and finally leg 1, it becomes clear that in any leg l, the

travelers’ ideal ending points for their rides are uniformly distributed on circle l.

I now follow the standard proof for Salop’s model. Suppose nl firms have entered

leg l. One of them is firm i; it has invested fli and is now setting its ticket price pli.

Consider a traveler whose ideal point on circle l is x ∈
(
0, Rl

nl

)
miles away from firm

i’s ending point (see Figure A1).

If they take firm i’s ride, after getting off they will have to walk for x miles to

reach their ideal point. If they instead take the ride run by firm i’s neighbor that is

closest to their ideal point (see firm (i− 1) in the figure), they will walk for Rl

nl
− x

miles. Suppose the neighboring firm charges a price of pl. The traveler is indifferent

between the two rides if the combined cost of ticket and walking is the same in both
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Figure A1. : Leg l

options, i.e., pli + wx = pl + w
(
Rl

nl
− x
)
. So any traveler whose ideal point is less

than x = Rl

2nl
+ pl−pli

2w miles away from firm i’s ending point will take firm i’s ride.

Firm i competes with its closest neighbors on both sides. So its demand will be

2x
Rl

= 1
nl

+ pl−pli
wRl

. With an investment of fli, its constant marginal cost is α

fβ
li

. Firm

i chooses the optimal price to maximize its profit:

max
pli

[(
pli −

α

fβ
li

· rl

)(
1

nl
+

pl − pli
wRl

)
− fli

]

Solving the first-order condition with respect to pli, and then setting pli = pl and

fli = fl for symmetry, we obtain pl =
α

fβ
l

· rl +
wRl

nl
. Each entrant in leg l therefore

will earn a profit of πl =
wRl

n2
l

− fl. But with free entry, the many potential entrants,

all possessing the same technology, should drive the equilibrium profit to zero (up

to the integer constraint). Setting the profit to zero, we obtain nl =
√

wRl

fl
.
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A2. Proof of Lemma 2

The first order condition of the cost equation (1) with respect to f is 1 = αβxm
fβ+1 .

Solving for f leads to fmin(x,m). The cost function follows readily. Also,

∂fmin (x,m)

∂β
= (αβxm)

1

β+1
∂

∂β

[
1

β + 1
ln (αβxm)

]

=
(αβxm)

1

β+1

β + 1

[
1

β
−

ln (αβxm)

β + 1

]

> 0 iff ln (αβxm) <
1

β
+ 1.

So fmin is increasing in β iff xm <
exp

(
1

β
+1

)

αβ .

A3. Proof of Proposition 1

In equilibrium, each entrant in leg l has a sale of 1/nl. So the cost-minimization

condition in Lemma 2 becomes fl =
(
αβrl
n
l

) 1

β+1

. Substituting this into the zero-profit

condition in Lemma 1, we get n2
l = wRl

(
nl

αβrl

) 1

β+1

⇒ n2β+1
l =

wβ+1Rβ+1

l

αβrl
. Equation

(2) follows. Then substitute equation (2) into the cost-minimization condition above

to obtain (3). Equation (4) follows immediately from (2) and (3).

The firms earn zero profits, meaning that the ticket price (for one unit of passenger,

which is the whole population) should cover the total investment and operating costs

exactly. Recall the two components in the cost equation (1). The total investment

costs for leg l are n∗
l f

∗
l , and the total operating costs are αrl

(f∗

l )
β = αrl

(
wRl

α2β2r2
l

) β

2β+1

=

1
β

(
αβrlw

βRβ
l

) 1

2β+1

=
n∗

l
f∗

l

β . Add the two components up to obtain equation (5).

The markup ratio is
(
1 + 1

β

)
/
(

1

β

)
− 1 = β.

Equation (6) is obtained by adding up the investment costs, operating costs, and

walking costs. The investment costs and operating costs are given by equation (5).

For the walking costs, recall that each traveler chooses the leg-l ride whose ending

point on circle l is closest to their waiting spot for their leg-(l + 1) ride. Since the

leg-l rides’ ending points are Rl/n∗

l apart from each other circularly, upon arrival a
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traveler will walk at most Rl/2n∗

l miles and at least zero mile away to their waiting

spot. So given that the travelers’ waiting spots are uniformly distributed on circle

l, the average walking distance is Rl/4n∗

l miles, and hence the total walking costs for

leg l are wRl

4n∗

l
= 1

4

(
αβrlw

βRβ
l

) 1

2β+1

= n∗f∗

4 .

Remark: I now explain the reason for introducing the crashing condition in the

model setup. The crashing condition forces the travelers to walk to their waiting

spots, but allows them to slide from their waiting spots to their carrier for free. Since

the number of leg-(l + 1) carriers is n∗
l+1, on average a traveler’s waiting spot on

circle l is Rl/4n∗

l+1
miles away from their leg-(l+1) carrier. So had the travelers have

to walk instead of slide to their carrier, they will on aggregate incur an extra walking

cost of wRl

4n∗

l+1

= 1
4

(
αβrl+1w

β R2β+1

l

Rβ+1

l+1

) 1

2β+1

for leg l. This extra term is complex due

to the mismatch of leg subscripts between Rl and n∗
l+1. Adding this term to the

market total cost would bring complexity to the model without adding much value.

The walking costs are meant to capture the adaptation and customization costs in

between mass productions. But this is already achieved by requiring the travelers

to walk to their waiting spots, considering that the size of the costs can be adjusted

through w.

A4. Proof of Proposition 2

As explained at the end of the proof of Proposition 1, the total walking costs of

all travelers in leg l is wRl

4nl
if there are nl firms. Moreover, each carrier will carry 1

nl

passengers, so the operating cost of each firm is α

fβ
l

rl
nl
. Therefore, to minimize the

sum of firms’ costs and walking costs, the social planner solves the problem:

min
nl,fl

[
nl

(
fl +

α

fβ
l

rl
nl

)
+

wRl

4nl

]
.

The first-order condition with respect to nl is nl =
1
2

√
wRl

fl
, which differs from the

zero-profit condition in the Salop circle (Lemma 1) by the constant 1/2. The first-

order condition with respect to fl is fl =
(
αβrl
n
l

) 1

β+1

, which is the same as firms’ cost
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minimization condition implied by Lemma 2. Combine the two first-order conditions

to solve for n∗∗
l , f∗∗

l and n∗∗
l f∗∗

l in equations (7), (8) and (9). Then substitute n∗∗
l and

f∗∗
l into the social planner’s cost equation to obtain C∗∗

l in equation (10). Setting

these results against those in Proposition 1 yield the comparisons of the efficient

outcomes with their market counterparts.

To see that β̃ is strictly decreasing in β, consider that β̃ = 2
1

2β+1
−1

· 8β+4
5β+4 , so

d ln β̃
dβ =

− 2 ln 2
(2β+1)2

+ 2
2β+1 −

5
5β+4 = − (10 ln 2−6)β+8 ln 2−3

(2β+1)2(5β+4)
≈ − 0.931β+2.545

(2β+1)2(5β+4)
< 0. Therefore, ln β̃

is decreasing in β. But log is an increasing function, so β̃ is also decreasing in β.

A5. Proof of Proposition 3

Equations (4) and (6) imply that that C∗
l =

(
5
4 + 1

β

) (
αβwβ

) 1

2β+1

(
rlR

β
l

) 1

2β+1

.

So C∗
l depends on the RDP only through the expression

(
rlR

β
l

) 1

2β+1

. Similarly,

by equations (9) and (10), C∗∗
l has the same property. Therefore,

∑L
l=1C

∗
l and

∑L
l=1C

∗∗
l depend on the RDP only through the sum

∑L
l=1

[(
rlR

β
l

) 1

2β+1

]
. An RDP

that minimizes this sum also minimizes
∑L

l=1C
∗
l and

∑L
l=1C

∗∗
l .

Therefore, the RDP under either allocation is obtained by solving the problem:

(A1) min
(r1,r2,...,rL)

L∑

l=1






rl
(

l∑

k=1

rk

)β



1

2β+1





subject to
L∑

l=1

rl = 1

where L can be finite or ∞. (The constraints that rl is positive for all l are not

included in the minimization problem; instead any solution with negative rl will be

rejected.) Solve the problem by the Lagrangian method. The Lagrangian function

is

L (r1, r2, ..., rL, λ) =
L∑

l=1






rl
(

l∑

k=1

rk

)β



1

2β+1





+ λ

(
1−

L∑

l=1

rl

)
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where λ is the Lagrange multiplier. The first-order condition with respect to rl is

(2β + 1)λ

=
[
rl (r1 + ...+ rl)

β
]− 2β

2β+1
[
(r1 + ...+ rl)

β + βrl (r1 + ...+ rl)
β−1
]

+
[
rl+1 (r1 + ...+ rl+1)

β
]− 2β

2β+1

βrl+1 (r1 + ...+ rl+1)
β−1

+ ...

+
[
rL (r1 + ...+ rL)

β
]− 2β

2β+1

βrL (r1 + ...+ rL)
β−1

and the first-order condition with respect to rl+1 is

(2β + 1)λ

=
[
rl+1 (r1 + ...+ rl+1)

β
]− 2β

2β+1
[
(r1 + ...+ rl+1)

β + βrl+1 (r1 + ...+ rl+1)
β−1
]

+
[
rl+2 (r1 + ...+ rl+2)

β
]− 2β

2β+1

βrl+2 (r1 + ...+ rl+2)
β−1

+ ...

+
[
rL (r1 + ...+ rL)

β
]− 2β

2β+1

βrL (r1 + ...+ rL)
β−1 .

Taking the difference between the two conditions leads to

[
rl (r1 + ...+ rl)

β
]− 2β

2β+1

(r1 + ...+ rl)
β

(
1 + β

rl
r1 + ...+ rl

)
(A2)

=
[
rl+1 (r1 + ...+ rl+1)

β
]− 2β

2β+1

(r1 + ...+ rl+1)
β .

Raising both sides to the power of (2β+1
β ), it follows that

(A3) r2l+1 (r1 + . . .+ rl)

(
1 + β

rl
r1 + . . .+ rl

)2+ 1

β

= r2l (r1 + . . .+ rl+1) .
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Dividing both sides by r2l+1 (r1 + . . .+ rl) and applying the definition of r̂l yields

(1 + βr̂l)
2+ 1

β =

(
rl
rl+1

)2 [
1 + r̂l

(
rl+1

rl

)]
,

which can be rearranged into a quadratic equation in rl
rl+1

:

(
rl
rl+1

)2

+ r̂l

(
rl
rl+1

)
− (1 + βr̂l)

2+ 1

β = 0.

Solving for the positive root of the quadratic equation, we obtain the algorithm (11).

Next, I argue that the cost-minimizing RDP must be infinite. Consider two

RDPs: RDP 1 and RDP 2, which have L legs and L + 1 legs respectively. They

are both constructed by following the algorithm (11). Let RDP 1 = (rL1 , r
L
2 , .., r

L
L)

and RDP 2 = (rL+1
1 , rL+1

2 , ..., rL+1
L , rL+1

L+1). Consider another RDP with L + 1 legs:

RDP 3 = (rL1 , r
L
2 , ..., r

L
L − ǫ, ǫ) where 0 < ǫ < rLL. When ǫ tends to zero, the total

cost of the travel circle under RDP 3 and RDP 1 tend to be the same, either under

market or efficient allocation. But RDP 2 costs less than RDP 3 because while they

both have L + 1 legs, only the former follows equation (11). So RDP 2 costs less

than RDP 1. Therefore given any two RDPs that both follow (11), the one with

more legs always costs less. It follows that the market and efficient RDPs must be

infinite.

Lastly, the RDPs are unique because (11) gives unique solutions for rl/rl+1
.

A6. Proof of Theorem 2

Recall that Proposition 3 implies the sequences (r∗1, r
∗
2, ...) and (r∗∗1 , r∗∗2 , ...) are

identical, so any results proved for r∗l also apply to r∗∗l .

(i) Let r̂l
∗ :=

r∗
l∑l

k=1
r∗
k

. Define a function g(r̂l;β) := (1 + βr̂l)
1+ 1

β − (1 + β) r̂l − 1.

Note that g(0;β) = 0 and ∂g
∂r̂l

= (1 + β)
[
(1 + βr̂l)

1

β − 1
]
> 0 for all β and

r̂l as both are always positive. So g(r̂l
∗;β) > 0 and hence (1 + βr̂l

∗)1+
1

β >

1 + (1 + β) r̂l
∗ for all β (note that r̂l

∗ is a function of β). Multiplying both
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sides of the inequality by (1 + βr̂l
∗) yields

(1 + βr̂l
∗)2+

1

β > 1 + (1 + 2β) r̂l
∗ + β (1 + β) (r̂l

∗)2.

Adding
(
r̂l

∗

2

)2
to both sides and then factoring the right-hand-side gives

(
r̂l

∗

2

)2

+ (1 + βr̂l
∗)2+

1

β >

[
1 +

(
β +

1

2

)
r̂l

∗
]2

.

Taking square root of both sides and then subtracting r̂l
∗

2 from both sides

yields

−
r̂l

∗

2
+

√(
r̂l

∗

2

)2

+ (1 + βr̂l
∗)2+

1

β > 1 + βr̂l
∗.

Recognizing from iteration (11) that the left-hand-side equals
r∗
l

r∗
l+1

, we have

(A4)
r∗l
r∗l+1

> 1 + βr̂l
∗.

As βr̂l
∗ is positive, it follows that r∗l is strictly decreasing in l, and so is r∗∗l .

Furthermore, given that the market and efficient RDPs have infinite number

of legs in a finite-sized circle, and that the length of leg is decreasing towards

the circumference of the travel circle, it must be true that the lengths of legs

in both RDPs approach zero towards the circumference.

(ii) Consider a function h(x;β) := −x
2 +

√(
x
2

)2
+ (1 + βx)

2+ 1

β , so defined to

mimic iteration (11). Taking partial derivative with respect to x,

∂h

∂x
= −

1

2
+

1

2
·
x
2 + (1 + 2β) (1 + βx)

1+ 1

β

√(
x
2

)2
+ (1 + βx)

2+ 1

β

> −
1

2
+

1

2

√√√√
(
x
2

)2
+ (1 + 2β)2 (1 + βx)

2+ 2

β

(
x
2

)2
+ (1 + βx)

2+ 1

β

> −
1

2
+

1

2
· 1 = 0.
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So h is strictly increasing in x. Apply this result to iteration (11), it follows

that if r̂l
∗ is strictly decreasing in l, then

r∗
l

r∗
l+1

must be strictly decreasing in

l as well. Meanwhile, r̂l
∗ is indeed strictly decreasing in l because r̂l+1

∗ =
r∗
l+1∑l+1

k=1
r∗
k

<
r∗
l∑l+1

k=1
r∗
k

<
r∗
l∑l

k=1
r∗
k

= r̂l
∗, with the first inequality resulting from

part (i) above. Therefore
r∗
l

r∗
l+1

and hence
r∗∗
l

r∗∗
l+1

are strictly decreasing in l.

Moreover, according to part (i), r̂l
∗ approaches 0 as l approaches ∞; but ac-

cording to algorithm (11), when r̂l
∗ approaches 0,

r∗
l

r∗
l+1

approaches 1. There-

fore,
r∗
l

r∗
l+1

and hence
r∗∗
l

r∗∗
l+1

approach 1 when l approaches ∞.

(iii) The results follow immediately from part (i), equations (2) and (7), noting

that Rl is increasing in l and upper-bounded by 2π.

(iv) Similarly, the results follow immediately from part (i), equations (3) and (8).

(v) Rearranging equation (A2) and applying the definition of r̂l
∗ yields

[
r∗l (r

∗
1 + ...+ r∗l )

β

r∗l+1

(
r∗1 + ...+ r∗l+1

)β

] 2β

2β+1

=
1 + βr̂l

∗
(
1 +

r∗
l+1

r∗
1
+...+r∗

l

)β .

Rearranging equation (A3) and again applying the definition of r̂l
∗ yields

1 +
r∗l+1

r∗1 + ...+ r∗l
=

(
r∗l+1

r∗l

)2

(1 + βr̂l
∗)2+

1

β .

Substituting the second equation into the first, and raising both side of the

resulting equation to the power of 1/2β, it follows that

(A5)

[
r∗l (r

∗
1 + ...+ r∗l )

β

r∗l+1

(
r∗1 + ...+ r∗l+1

)β

] 1

2β+1

=
r∗l
r∗l+1

·
1

1 + βr̂l
∗ ,

which is greater than one according to inequality (A4). But by equation (4),
n∗

l
f∗

l

n∗

l+1
f∗

l+1

equals the left-hand-side of equation (A5), so
n∗

l
f∗

l

n∗

l+1
f∗

l+1

> 1, i.e., n∗
l f

∗
l is

strictly decreasing in l. Similarly, by equations (6), (9) and (10), C∗
l , n

∗∗
l f∗∗

l ,

and C∗∗
l are also all strictly decreasing in l.
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As l increases, r∗l tends to zero, and so does n∗
l f

∗
l according to equation (4).

Similarly, C∗
l , n

∗∗
l f∗∗

l , and C∗∗
l also approach zero by (6), (9) and (10).

Note that although the total costs of the travel circle with the market or

efficient RDP are infinite sums, there is no concern of divergence for the

sums. Since C∗

l+1/C∗

l < 1 and C∗∗

l+1/C∗∗

l < 1 for all l, the infinite sums converge,

courtesy of the ratio test for convergence.

(vi) The result follows immediately from part (v) and equation (5).

(vii) Equation (A5) can be rearranged into

r∗l+1

r∗l

[
r∗l (r

∗
1 + ...+ r∗l )

β

r∗l+1

(
r∗1 + ...+ r∗l+1

)β

] 1

2β+1

=
1

1 + βr̂l
∗ ,

which is obviously smaller than one. But the left-hand-side equals p∗
l

r∗
l

/
p∗
l+1

r∗
l+1

by equations (4) and (5). So
p∗
l

r∗
l
<

p∗
l+1

r∗
l+1

, i.e.,
p∗
l

r∗
l
is strictly increasing in l.

Similarly, applying the inequality to equations (4) and (6), and (9) and (10)

respectively yields the results that
C∗

l

r∗
l
and

C∗∗

l

r∗
l

are strictly increasing in l.

By equation (4),
n∗

l
f∗

l

r∗
l

=

(
αβwβRβ

l

) 1
2β+1

(r∗l )
1− 1

2β+1

. As l increases, r∗l tends to zero, so

n∗

l
f∗

l

r∗
l

tends to infinity. Similarly,
n∗

l
f∗∗

l

r∗∗
l

also tends to infinity. So by equations

(5), (6), and (10),
p∗
l

r∗
l
,
C∗

l

r∗
l
, and

C∗∗

l

r∗∗
l

all approach infinity.

A7. Proof of Lemma 3

Consider a travel circle of radius r miles instead of one mile. To find the market

RDP, follow the same steps as in the proof of Proposition 3, except that the lengths

of legs sum to r instead of 1 in the constrained minimization problem (A1). The

change in the constraint constant from 1 to r has no effect on any of the steps

leading up to equation (A3). (The proof of of Proposition 3 for the market RDP

relies on equations (4) and (6) from Proposition 1, but Proposition 1 does not require

restricting the radius to one mile.)
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Therefore the algorithm (11) in Proposition 3, which follows from equation (A3),

still holds when the radius is r. In other words, the ratios of the lengths of legs

follow the same algorithm regardless of the radius. So if the radius is r instead of

1, then the length of leg l in the market RDP is simply r times r∗l , which depends

on β only. So by equations (4) and (6), with rl replaced by r · r∗l ,

C∗
r (α, β, w) =

∞∑

l=1



(
1

β
+

5

4

)
αβr · r∗l (β) · w

β (2π)β rβ

(
l∑

k=1

r∗l (β)

)β



1

2β+1




= rβ̂ · C∗
1(α, β, w).

A8. Proof of Proposition 4 and Corollary 1

By Lemma 3, the cost of traveling r miles is rβ̂C∗
1 . Therefore, the representative

traveler maximizes u(r, s) = rθs1−θ subject to I = rβ̂C∗
1+pss. Rewrite the objective

function as u(r, s(r)) = rθ
(

I−rβ̂C∗

1

ps

)1−θ

without constraints. Taking derivative with

respect to r leads to θ
1−θ ·

(
I − rβ̂C∗

1

)
= β̂rβ̂C∗

1 . Solving for r yields the result for

r∗. Corollary 1 is obvious.

A9. Proof of Lemma 4

As explained in the proof of Lemma 3, if the radius of the travel circle is r, then

the length of leg l in the market RDP for the vacation model is simply rr∗l . Since

the radius is r∗ under market allocation, the market RDP is (r∗r∗1, r
∗r∗2, ...).


