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Abstract

A novel for multivariate dynamic panel data analysis with correlated random effects is proposed when

estimating high dimensional parameter spaces. A semiparametric hierarchical Bayesian strategy is used

to jointly deal with incidental parameters, endogeneity issues, and model misspecification problems. The

underlying methodology involves addressing an ad-hoc model selection based on conjugate informative

proper mixture priors to select promising subsets of predictors affecting outcomes. Monte Carlo al-

gorithms are then conducted on the resulting submodels to construct empirical Bayes estimators and

investigate ratio-optimality and posterior consistency for forecasting purposes and policy issues. An em-

pirical approach to a large panel of economies is conducted describing the functioning of the model.

Simulations based on Monte Carlo designs are also performed to account for relative regrets dealing with

cross-sectional heterogeneity.
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1 Introduction

Dynamic Panel Data (DPD) models are widely used in empirical economics for forecasting individuals’

future outcomes (see, e.g., Hirano (2002), Gu and Koenker (2017b), Liu (2018), and Liu et al. (2020))

and allowing the possibility of controlling for unobserved time-invariant individual heterogeneity (see, e.g.,

Chamberlain (1984) and Arellano and Bond (1991) (linear case); and Chamberlain (2010) and Arellano and

Bonhomme (2011) (non-linear case)). Such heterogeneity is an important issue and failure to control for it

results in misleading inferences. That problem is even more severe when the unobserved heterogeneity may

be correlated with covariates.

Consider a simple DPD model:

yit = wi,t−1µi + βyi,t−1 + uit (1)

where i = 1, . . . , N , t = 1, . . . , T , yit and yi,t−1 denote the outcomes and their first lags, µi refers to

individual-specific intercept with wi,t−1 = 1, and uit ∼ N(0, σ2) is an independent and identically dis-

tributed (i.i.d.) shock.

In the dynamic panel literature, the focus is to find a consistent estimate of β in the presence of the

incidental parameters µi to avoid the incidental parameters problem and then perform better forecasts of

the outcomes in period T + 1 (yT +1). In the context of panel data, the incidental parameters problem

typically arises from the presence of individual–specific factors. The challenges because of incidental pa-

rameters are highly severe in dynamic panels where behavioural effects over time are jointly measured with

individual–specific effects. Whereas the incidental parameters to be estimated are consistent in least squares

methods, maximum likelihood estimation leads to inconsistent estimates of them affecting the dynamics of

data (see, for instance, Nickell (1981)). Both fixed and random effects have been used to evaluate these

individual–specific factors. The former treats them as parameters to be estimated, leaving the distribution

of unobserved heterogeneity relatively unrestricted at the cost of introducing a large number of nuisance

parameters; random effects typically assume that their distributions belong to a known parametric family

indexed by a finite dimensional parameter. Closely related studies addressing similar deconvolution problem

and estimates of the µi’s distribution are Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano

and Bover (1995), Blundell and Bond (1998), and Alvarez and Arellano (2003) (Instrumental Variables (IV)

and Generalized Method of Moments (GMM) estimators); Hahn and Newey (2004), Carro (2007), Arellano

and Hahn (2007, 2016), Bester and Hansen (2009), Fernandez-Val (2009), and Hahn and Kuersteiner (2011)

(fixed effects approach in non-linear panel data); and Compiani and Kitamura (2016) (mixture models-based

approach).

Earlier works regarding empirical Bayes methods with parametric priors on heterogeneous parameters
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refer to Robbins (1964), Robert (1994), Brown and Greenshtein (2009), and Jiang and Zhang (2009). More

recently, nonparametric approaches have been developed by Liu et al. (2019, 2020) (hereafter LMS) and

Gu and Koenker (2017a,b) (hereafter GK). LMS aim to forecast a collection of short time-series using

cross-sectional information. Then, they construct point forecasts predictors using Tweedie’s formula1 for

the posterior mean of heterogeneous individual–specific factors under a correlated random effects distri-

bution. They show that the ratio optimality of point forecasts asymptotically converge to the one based

on a nonparametric kernel estimate of the Tweedie correction. However, they replace the µi’s distribution

with a kernel density estimator that would perform less accurate forecasts than alternative estimates of

the Tweedie correction such as nonparametric maximum likelihood estimation and finite mixture of normal

distributions. They also estimate relative regrets for these two alternative approaches via Markov chains

simulations, but specifying bounds for the domain of the µi’s and partitioning it into default setting bins.

It would compromise the estimates because of weak empirical forecast optimality limited to restrictive and

constrained classes of models. GK use Tweedie’s formula to construct an approximation to the posterior

mean of the heterogeneous parameters. They build on Kiefer and Wolfowitz (1956) and implement the

empirical Bayes predictor based on a nonparametric maximum likelihood estimator of the cross-sectional

distribution of the sufficient statistics. However, no theoretical optimality results are provided. In addition,

neither LMS nor GK face variable selection problems and causality relationships in the shrinkage of large

panel parameter spaces.

The methodology proposed in this study aims to overtake the aforementioned issues by developing a

structural semiparametric hierarchical Bayesian approach to conduct inference in high dimensional dynamic

panel data with cross-sectional heterogeneity, where ’structural’ stands for designing a more conventional

empirical procedure to provide reduced-form causal relationships. The model takes the name of Hierarchical

Dynamic Panel Bayesian model with Correlated Random Effects (HDPB-CRE) and is achieved by combin-

ing an implemented version of the Pacifico (2020)’s analysis, which develops a Robust Open Bayesian (ROB)

procedure for improving Bayesian Model Averaging (BMA) in multiple high dimensional linear regression

models, and the Liu et al. (2020)’s framework, which constructs point predictors using Tweedie’s formula

for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. In this

study, the multivariate panel data model is unbalanced and includes large cross-sectional dimension N and

sufficiently large time-series T . Methodologically, Markov Chain Monte Carlo (MCMC) algorithms and

implementations are used to construct posterior distributions and then perform cross-country conditional

forecasts and policy issues. Theoretically, ratio-optimality and posterior consistency are also investigated

to account for relative regrets when modelling individual–specific heterogeneity.

The contributions of this paper are threefold. First, let the framework be hierarchical, multivariate

Conjugate Informative Proper Mixture (mvCIPM) priors are used to select the best promising subset of

1The formula is attributed to the astronomer Arthur Eddington and the statistician Maurice Tweedie.
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covariates according to their Posterior Model Probability (PMP), which denotes the probability to better

explain and thus fit the data in high dimensional model classes. Here, best stands for the model providing

the most accurate predictive performance over all candidate models. The mvCIPM priors are an implemen-

tation of the conjugate informative priors in Pacifico (2020) by adapting the prior specification strategy to

large multidimensional (panel) setups with incidental parameters. The main thrust is to jointly deal with

variable selection problems and causal relationships. The former stand for endogeneity issues (because of

omitted factors and unobserved heterogeneity), structural model uncertainty (because of some functional

forms of misspecification), and overfitting (when complex2 models always provide a somewhat better fit

to the data than simpler models). Causality in dynamic panel data is assessed according to the Granger

(Non-)Causality test (see, for instance, Dumitrescu and Hurlin (2012)).

Second, to accomodate the correlated random coefficients model, I involve in the previous shrinking pro-

cess an Empirical Bayes (EB) procedure, where the posterior mean of the µi’s is expressed in terms of the

marginal distribution of a sufficient statistic (µ̂i(β)) estimated from the cross-sectional whole information

(Tweedie’s formula). Dealing with variable selection problems and causal inference, I implement the Liu

et al. (2020)’s framework by constructing nonparametric Bayesian statistics through Finite Mixture ap-

proximation of Multivariate (FMM) distributions. The latter are evaluated via MCMC integrations to (i)

maximize the log likelihood function of the estimation procedure (Expectation-Maximization (EM)), (ii)

use EB estimators to draw posteriors for µ̂i(β) from the joint distribution between some sufficient statis-

tics designed for the µi’s and indivudal outcomes (Metropolis-Hastings algorithm), and (iii) analytically

compute posterior distributions for the time-varying estimates (Kalman-Filter algorithm). In this context,

lagged covariates and outcomes from AutoRegressive (AR) processes are introduced on the right-hand side

of the estimation model as external instruments to account for (potential) correlation between predictors

and residual errors (see, e.g., Arellano and Bond (1991)).

Third, better conditional forecasts are involved in HDPB-CRE because of three main features: (i) the

use of a semiparametric Bayesian approach modelling either time-varying and fixed effects; (ii) the use of

a hierarchical framework to construct proper informative priors disentangling heterogeneous and common

parameters; and (iii) the observation of incidental parameters treated as random variables possibly cor-

related with some of the predictors within the system.

An empirical application is conducted to highlight the functioning and the performance of the method-

ology. It builds on a pool of advanced and emerging economies and evaluates a large set of data in-

cluding socioeconomic–demographic factors, policy tools, and economic–financial issues during the period

1990 − 2021. Forecasting analysis is addressed to perform policy-relevant strategies safeguarding against

(future) sudden outbreak on the global economy.

A simulated experiment using MCMC-based designs is also addressed to highlight the performance of the

2The ‘complexity’ stands, for example, for the number of unknown parameters.
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estimating procedure with related works.

The remainder of this paper is organized as follows. Section 2 introduces the econometric model and the

estimating procedure. Section 3 displays prior specification strategy and posterior distributions accounting

for Empirical Bayes estimator (Tweedie Correction), ratio-optimality, and Markov Chain algorithms. Sec-

tion 4 describes the data and the empirical analysis. Section 5 presents the simulated experiment dealing

with relative regrets for Tweedie Correction. The final section contains some concluding remarks.

2 Dynamic Panel Data and Shrinking Process

2.1 Econometric Model

The baseline hierarchical DPD model is:

yit = βlyi,t−l + αxit + γlzi,t−l + µi + uit (2)

where the subscripts i = 1, 2, . . . , N are country indices, t = 1, 2, . . . , T denotes time, yit is a N · 1 vector of

outcomes, yi,t−l and zi,t−l are N · 1 vectors of predetermined and directly observed (endogenous) variables

for each i, respectively, with l = 0, 1, 2, . . . , λ, βl̃ and γl̃ are the autoregressive coefficients to be estimated

for each i, with l̃ = 1, . . . , λ, xi,t is a N · 1 vector of strictly exogenous factors for each i, with α denoting

the regression coefficients to be estimated, µi is a N · 1 heterogeneous intercept containing – for example

– time-constant differences (such as territorial competitiveness, infrastructural system, competitiveness de-

velopments, macroeconomic imbalances), and uit ∼ i.i.d.N(0, σ2
u) is a N · 1 vector of unpredictable shock

(or idiosyncratic error term), with E(uit) = 0 and E(uit · ujs) = σ2
u if i = j and t = s, and E(uit · ujs) = 0

otherwise. In this study, I consider the same lag order (or optimal lag length) for both predetermined (yi,t−l)

and observed variables (zi,t−l).

Here, some considerations are in order: (i) the predetermined variables contain lagged control variables

(e.g., economic status) and lagged outcomes (capturing, for example, the persistence); (ii) the µi’s denote

cross-sectional heterogeneity affecting the outcomes; (iii) correlated random effects matter and then µi’s

are possibly correlated with some of the covariates within the system; (iv) the roots of l̃(L) = 0 lie outside

the unit circle so that the AutoRegressive (AR) processes involved in the model (2) are stationaries, with

L denoting the lag operator; (v) the xit’s strictly exogenous factors contain dummy variables to test – for

example – the presence of structural breaks or policy shifts; and (vi) the instruments are fitted values

from AR parameters based on all the available lags of the time-varying variables. In this study, the order

of integration and the optimal lag length have been set using the the Augmented Dickey-Fuller (ADF) test

for each i and the Arellano’s test (see, for instance, Arellano (2003) and Arellano and Honore (2001)),
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respectively.

Let the stationarity hold in (2), the time-series regressions would be valid and the estimates feasible.

However, some moment restrictions need to hold in order to address exact identification in a context of

correlated random effects and estimate βl̃ and γl̃ for T ≥ 3 (see, for instance, Anderson and Hsiao (1981),

Arellano and Honore (2001), and Blundell and Bond (1998)). In this study, I assume that µi and ui,t are

independently distributed across i and have the familiar error components structure:

E(µi) = 0, E(uit) = 0, E(uit · µi) = 0 for i = 1, . . . , N and t = 2, . . . T (3)

E(uit · uis) = 0 for i = 1, . . . , N and t 6= s (4)

Then, I also assume the standard assumption concerning the initial conditions yi,t=1:

E(yi,t=1 · uit) = 0 for i = 1, . . . , N and t = 2, . . . T (5)

2.2 Multivariate ROB Procedure in Longitudinal Data

When cross-sectional dimension (N) and time-series (T ) are high dimensional, the estimates of the common

parameters (βl, α γl, σ2
u) in (2) would result biased and inconsistent. Furthermore, leaving the individual

heterogeneity unrestricted, the number of individual–specific effects would grow with the sample size and be

highly contaminated from the shock uit, leading in inaccurate forecasts. Last but not least, when dealing with

time-varying and high dimensional data, variable selection problems such as overshrinkage/undershrinkage,

model misspecification problems, endogeneity issues, and model uncertainty3 also matter in DPD models

involving inconsistent estimates. The multivariate ROB procedure involved in this study arises from the

above-mentioned issues. It moves forward three steps. (i) MCMC-based PMPs are conducted to obtain a

reduced subset of promising model solutions (or combination of predictors) fitting the data when dealing with

variable selection problems. (ii) A further shrinkage is conducted to obtain a smaller subset of promising

submodels having statistically significant predictive capability (accurate forecast). Here, nonparametric

Bayesian statistics are also addressed through MCMC implementations in order to model and quantify

correlated random effects in large longitudinal data. (iii) A final shrinkage is addressed according to the

Granger (Non-)Causality test in multivariate dynamic panel data. The idea is to exclude the predictors

when no causal link holds across units within the panel (homogeneity under the null hypothesis); conversely,

whether highly strong causal links matter for a subgroup of units (heterogeneity under the alternative), the

same parameters should be taken into account in order to deal with overestimation of effect sizes (or

3Model uncertainty matters when a given model is set to be true without estimating the evidence for alternative model
solutions.
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individual contributions). I recall that, in this study, the optimal lag length testing Granger-causality is set

using the Arellano’s test. This latter step refers to the main novelty with respect to the Pacifico (2020)’s

analysis.

Given the HDPB-CRE in (2), I decompose the vectors of the observed endogenous variables: yi,t−l =
[

yo′

i,t−l, yc′

i,t−l

]
′

, with yo′

i,t−l denoting lagged outcomes to capture the persistence and yc′

i,t−l including lagged

control variables such as general economic conditions; and zi,t−l =
[

zs′

i,t−l, zp′

i,t−l

]
′

, referring to other lagged

factors such as socioeconomic conditions (zs′

i,t−l) and policy implications (zp′

i,t−l). Then, I combine the (non-

)homogeneous parameters into the vector θ =
(

βo′

l , βc′

l , α
′

, γs′

l , γp′

l

)
′

.

In order to model the key latent heterogeneities (µi) and observed determinants (yi,t−l, xit, zi,t−l) when

dealing with high dimensional analysis, I define the conditioning set at period t (cit) and the structural

density (D(yit|·)) as:

cit =
(

yo
i,0:t−l, yc

i,0:t−l, zs
i,0:t−l, zp

i,0:t−l, xi,0:t

)

(6)

and

D
(

yit|yi,t−l, xit, zi,t−l, µi

)

= D
(

yit|yi,t−l, xit, zi,t−l, yi0, µi

)

(7)

The error terms (uit) are individual-time-specific shocks characterized by zero mean and homoskedastic

Gaussian innovations. In a unified and hierarchical framework, I combine the individual heterogeneity into

the vector φi =
(

µi, σ2
u

)

under cross-sectional homoskedasticity. Assuming correlated random coefficients

model, φi and ci0 could be correlated with each other, with:

ci0 =
(

yo
i,0, yc

i,0, zs
i,0, zp

i,0, xi,0:T

)

(8)

Given these primary specifications, the HDPB-CRE model in (2) would be less parsimonious and harder

to implement due to high dimensional parameter spaces.

Let F be the full panel set containing all (potential) model solutions, the first step of the multivariate

ROB procedure is addressed by imposing an auxiliary indicator variable χh, with h = 1, 2, . . . , m, containing

every possible 2m subset choices, where χh = 0 if θh is small (absence of h-th covariate in the model) and

χh = 1 if θh is sufficiently large (presence of h-th covariate in the model). According to the Pacifico (2020)’s

framework, I match all potential candidate models to shrink both the model space and the parameter

space. The shrinking jointly deals with overestimation of effect sizes (or individual contributions) and

model uncertainty (implicit in the procedure) by using Posterior Model Probabilities for every candidate

model. They can be defined as:
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π
(

y|θh

)

=

∫

B
π
(

y, µi|θh, Mh

)

· dµ (9)

where B denotes the multidimensional (natural) parameter space for θh, Mh = (M1, . . . , Mm) denotes a

countable collection of all (potential) model solutions given the data. The integrand in (9) is defined

as:

∫

B
π
(

y, µi|θh, Mh

)

= π
(

θh, µi, Mh|y
)

· π
(

y|Mh

)

(10)

where π(θh, µi, Mh|y) denotes the joint likelihood and π(y|Mh) =
∫

π(y|Mh, θh, µi) · π(θh, µi|Mh)dθh is the

marginal likelihood, with π(θh, µi|Mh) referring to the conditional prior distribution of θh and µi. With

N high dimensional and T sufficiently large, the calculation of the integral π(y|Mh) is unfeasible and then

Markov Chain Monte Carlo algorithms need to be conducted.

The subset containing the best model solutions will correspond to:

S =

{

Mj : Mj ⊂ S, S ∈ F , Θj ⊂ Θh,
∑̟

j=1

π
(

Mj |yi = yi, χ
)

≥ τ

}

(11)

where Mj denotes the submodel solutions of the HDPB-CRE in (2), with Mj < Mh, j ≪ h, {1 ≤ j < h},

and τ is a threshold chosen arbitrarily for an enough posterior consistency4. In this study, I use τ = 0.5%

with N high dimensional (predictors ≥ 15). In this study, I am able to jointly manage all equations within

the system (through the conditioning set cit), their (potential) interactions (through AR coefficients), and

their possible causal links (through Granger (Non-)Causality test).

The second step consists of reducing the model space S to obtain a smaller subset of best submodel

solutions:

E =

{

Mξ : Mξ ⊂ E , E ∈ S,
∑̟

j=1

π
(

Mj |yi = yi, χ̇
)

≥ τ̇

}

(12)

where Mξ ≪ Mj , π(Mj |yi = yi, χ̇) denotes the PMPs, with χ̇ denoting a new auxiliary variable containing

the only best model solutions in the subset S and τ̇ referring to a new arbitrary threshold to evaluate the

probability of the model solutions in S performing the data (PMPs). In this study, I still use τ = 0.5% –

independently of N – for a sufficient prediction accuracy explaining the data.

Finally, the multivariate ROB procedure comes to a conclusion (third step) once a further shrinkage is

conducted according to the panel Granger (Non-)Causality test in order to obtain the smallest final subset

of best promising submodel solutions (Mξ∗ ⊂ E). More precisely, this last step consists of including the

4In Bayesian analysis, posterior concistency ensures that the posterior probability (PMP) concentrates on the true model.
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only candidate predictors displaying highly strong causal links for at least a subgroup of units (heterogeneity

under the alternative) with p-value ≤ τ̇ . To deal with endogeneity issues and misspecified dynamics, all

available lags of the best candidate predictors – obtained in the previous step – are included as instruments.

The final model solution to have to be considered for performing forecasting and policy-making will

correspond to one of the submodels Mξ∗ with higher log natural Bayes Factor (lBF):

lBFξ∗,ξ = log

{

π(Mξ∗ |yi = yi)

π(Mξ|yi = yi)

}

(13)

In this analysis, the lBF is interpreted according to the scale evidence in Pacifico (2020), but with more

stringent conditions:



















































0.00 ≤ lBξ∗,ξ ≤ 4.99 no evidence for submodel Mξ∗

5.00 ≤ lBξ∗,ξ ≤ 9.99 moderate evidence for submodel Mξ∗

10.00 ≤ lBξ∗,ξ ≤ 14.99 strong evidence for submodel Mξ∗

lBξ∗,ξ ≥ 15.00 very strong evidence for submodel Mξ∗

(14)

3 Semiparametric Hierarchical Bayesian Approach

3.1 Prior Specification Strategy and Tweedie’s Formula

The variable specification strategy entails estimating χh and θh as posterior means (the probability that a

variable is in the model). All observal variables in cit and individual heterogeneity in φi are hierarchically

modelled via multivariate Conjugate Informative Proper Mixture priors:

π(θ, φ, χ) = π(θ|χ) · π(µi|χ, yi0) · π(σ2
u|χ) · π(χ) (15)

where

π
(

θ|F−1

)

= N
(

θ̄, ρ̄
)

(16)

π(µi|θ) = N
(

δµi
, Ψµi

)

with δµi
∼ N

(

0, ζ
)

and Ψµi
∼ IG

(

ϕ

2
,

ε

2

)

(17)

π(yi0|µi) = N(0, κ) (18)

π(χ) = w|χ| ·

(

h

|χ|

)−1

(19)
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π(σ2
u) = IG

(

ω̄

2
,
ν

2

)

(20)

where N(·) and IG(·) stand for Normal and Inverse-Gamma distribution, respectively, F−1 refers to the

cross-sectional information available at time −1, κ in (18) refers to the decay factor, and w|χ| in (19) denotes

the model prior choice related to the sum of the PMPs (or Prior Inclusion Probabilities) with respect to

the model size |χ|, through which the θ’s will require a non-0 estimate or the χ’s should be included in the

model. The decay factor usually varies in the range [0.9 − 1.0] and controls the process of reducing past

data by a constant rate over a period of time. In this way, one would weight more according to model size

and – setting w|χ| large for smaller |χ| – assign more weight to parsimonious models.

All hyperparameters are known. More precisely, collecting them in a vector ω̃, where ω̃ =
(

θ̄, ρ̄, ζ, ϕ, ε, κ, w|χ|, ω̄, ν
)

,

they are treated as fixed and are either obtained from the data to tune the prior to the specific applications

(such as ϕ, κ, w|χ|, ω̄) or selected a priori to produce relatively loose priors (such as θ̄, ρ̄, ζ, ε, ν). Here, w|χ|

is restricted to a benchmark prior max
(

NT, |χ|
)

according to the non-0 components of χ.

Nevertheless, to accomodate the correlated random coefficients model where the individual–specific het-

erogeneity (µi) can be correlated with the conditioning variables ci0 and yi0, I use an empirical Bayes

procedure where the posterior mean of the µi’s is expressed in terms of the marginal distribution of a suffi-

cient statistic (µ̂i(θ)) estimated from the cross-sectional whole information (Tweedie’s formula). The main

difference between an empirical and fully Bayesian approach is that the former picks the µi distribution

by maximizing the Maximum Likelihood (ML) of the data5, whereas a fully Bayesian method constructs a

prior for the correlated random effects and then evaluates it in view of the observed panel data6. Even if

the fully Bayesian approach tends to be more suitable for density forecasting and more easily extended to

non-linear case, it would be a lot more computationally intensive.

In this study, I implement the EB predictor used in Liu et al. (2020) by using nonparametric Bayesian

statistics to model and quantify correlated random effects. The latter are addressed through Finite Mixture

approximation of Multivariate (FMM) distributions, evaluated via MCMC integrations in order to max-

imize the log likelihood function (Expectation-Maximization (EM)) and then use EB estimators to draw

posteriors for µ̂i(θ) from the joint distribution between the µi’s sufficient statistic and individual outcomes

(Metropolis-Hastings algorithm).

Given the CIPM priors in (16) - (20), I define the compound risk and loss functions – under which the fore-

casts will be evaluated – accounting for expectations over the observed trajectories Yi =
(

y0:T
1 , . . . , y0:T

N

)

,

with y0:T
i =

(

yi0, yi1, . . . , yiT

)

, the unobserved heterogeneity (µi = µ1, . . . , µN ), and the future shocks

ui,T +k =
(

u1,T +k, . . . , uN,T +k

)

:

5See, e.g., Chamberlain and Hirano (1999), Hirano (2002), Lancaster (2002), Jiang and Zhang (2009), and Gu and Koenker
(2017a,b).

6See, for instance, Liu (2018) and Liu et al. (2020) (linear case); and Liu et al. (2019) (non-linear case).
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R
(

ŷi,T +k

)

= E
(YN ,µi,ui,T +k)

θ,φ,π(·)

[

LN

(

ŷi,T +k, yi,T +k

)

]

(21)

where LN

(

ŷi,T +k, yi,T +k

)

=
∑N

i=1

(

ŷi,T +k − yi,T +k

)2
denotes the compound loss obtained by summing over

the units i the forecast error losses (ŷi,T +k − yi,T +k), with ŷi,T +k = (ŷ1,T +k, . . . , ŷN,T +k)
′

is a vector of

k-period-ahead forecasts.

In the compound decision theory, the infeasible oracle forecast (or benchmark forecast) implies that the

φi’s and the distribution of the unobserved heterogeneity (π(µi, yi0)) are known, the trajectories (Yi) are

observed, and the values of the µi’s are unknown across units i. Moreover, the integrated risk in (21) is

minimized performing individual–specific forecasting that minimizes the posterior risk for each Yi. Thus,

according to the Liu et al. (2020)’s framework, the posterior risk can be defined as:

E
(YN ,µi,ui,T +k)

θ,φ,π(·)

[

LN

(

ŷi,T +k, yi,T +k

)

]

=
N
∑

i=1

{

(

ŷi,T +k − E
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k]

)2

+

+ V
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k]

}

(22)

where V
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k] is the posterior predictive variance of yi,T +k. The optimal predictor would be

the mean of the posterior predictive distribution:

ŷop
i,T +k = E

(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k] = E
(Yi,µi)
θ,φ,π(·)[µi] + (θ · cit) (23)

where the acronym op stands for ’optimal’. Then, the compound risk in (21) associated with the infeasible

oracle forecast can be rewritten as:

Rop = E
(Yi,µi,ui,T +k)

θ,φ,π(·)

{

N
∑

i=1

(

V
(Yi,µi)
θ,φ,π(·)[µi] + σ2

u

)

}

(24)

The optimal compound risk in (24) consists of two components: uncertainty concerning the individual–

specific heterogeneity on the observations i and uncertainty with respect to the error terms. Because of

infeasible benchmark forecast, the parameter vectors (θ, φ) and the CRE distribution (π(·)) are unknown.

Thus, the posterior mean E
(Yi,µi)
θ,φ,π(·)[µi] in (23) is assessed through the Tweedie’s formula by evaluating the

marginal distribution of a sufficient statistic of the heterogeneous effects. The likelihood function associated

with the multivariate HDPB-CRE in (2) is:
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π
(

y1:T
i |yi0, µi, θ

)

∝ exp

{

−
1

2σ2
u

T
∑

t=1

(

yit − (cit−l|χ)θt − µi(θ)

)2
}

∝

{

−
T

2σ2
u

(

µ̂i(θ) − µi

)2
}

(25)

where µ̂i(θ) denotes the sufficient statistic and equals to:

µ̂i(θ) =
1

T

T
∑

t=1

(

yit − (θ · cit−l)

)

(26)

According to Bayes’s theorem, the posterior distribution of µi can be obtained as:

π
(

µi|y
0:T
i , θ

)

= π
(

µi|µ̂i, yi0, θ
)

=
π
(

µ̂i|µi, yi0, θ
)

· π
(

µi|yi0

)

exp

{

ln
(

π(µ̂i|yi0)
)

} (27)

The last step to obtain the Tweedie’s formula is to differentiate the equation π
(

µi|µ̂i, yi0, θ
)

in (27) with

respect to µ̂i and solve the equation for the posterior mean E
(Yi,µi)
θ,φ,π(·)[µi] in (23). Thus, the Tweedie’s formula

equals to:

E
(Yi,µi)
θ,φ,π(·)[µi] = µ̂i(θ) +

σ2
u

T
·

∂

∂µ̂i(θ)
ln
(

µ̂i(θ), yi0

)

(28)

where the second term in (28) denotes the correction term capturing heterogeneous effects of the prior of

µi (π(·)) on the posterior. It is expressed as a function of the marginal density of µ̂i(θ) conditional on yi0

and θ; contrarily to the full Bayesian approach, where one needs to avoid the deconvolution problem that

disentangle the prior density π(µi|yi0) from the distribution of the error terms (uit).

3.2 Tweedie Correction and MCMC Implementations

Tweedie correction entails substituting the unknow parameters θ and the joint distribution between the

µi’s sufficient statistic and individual outcome values π
(

µ̂i(θ), yi0

)

in (28) by estimates. According to the

multivariate ROB procedure, the cross-sectional information uploaded within the system set into E

. In dynamic panel data, consistent estimates of the unkown parameters θ can be obtaining through

Genelarized Method of Moments estimators. In this study, they correspond to the AR(λ) coefficients related

to predetermined and endogenous variables7. Let the stationarity and moment conditions in (3)-(5) hold

in the system, the time-series regressions are valid (or computational) and GMM estimators are feasible.

Concerning the density π
(

µ̂i(θ), yi0

)

, I estimate it by using Finite Mixture approximation of Multivariate

(FMM) distributions:

7See, e.g., Arellano (2003), Arellano and Honore (2001), Arellano and Bover (1995), and Blundell and Bond (1998).
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πmix

(

µ̂i, yi0 | |χ|, ci0

)

= |χ| · πξ

(

µ̂i, yi0 | ci0

)

with |χ| > 0 (29)

where πξ(·) is the conditional density distribution of heterogeneous effects with sample size |χ|. In this

way, I would able to account for the whole cross-sectional information in order to obtain estimates of

(non-)homogenous parameters θ (first step) and density πξ(·) (second step). Here, I focus on the only

best promising submodels achieved through the shrinking process, working with sufficiently high posterior

consistency.

The FMM distributions and their moments themselves (means and covariance matrices) are evaluated by

maximizing the log likelihood function via an Expectation-Maximization (EM) algorithm. More precisely,

I suppose m̄ regimes in which heterogeneous effects (φi) can vary in each submodel solution, where m̄ =

0, 1, . . . ,κ is close to |χ|, with 0 indicating the uninformative model where heterogeneous effects do not

affect outcomes (e.g., DPD with fixed effects), and m̄ ⊂ E . Then, I use Metropolis-Hastings algorithm8

to draw posteriors for µ̂i from the (proposal) joint density distribution πm̄ = |χ| · π∗
ξ

(

µ̂m̄
i , ym̄

i0 | cm̄
i0

)

, with

probability pm̄ equals to:

pm̄ =

π

(

µ̂m̄
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄−l

π

(

µ̂m̄−l
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄

(30)

where π∗
ξ stands for the conditional density distribution of heterogeneous effects involved in the final model

solution (third step).

Let |χ|∗ be the sample size according to the uninformative model in which neither (non-)homogeneous

parameters nor unobserved effects achieve sufficient posterior consistency, and θ∗
t = 1

i be a vector of ones,

the probability function takes the form:

π
(

θt | Yi

)

· π∗(θ∗
t | θt) · p(θ∗

t , θt) = π
(

θ∗
t | Yi

)

· π∗(θt | θ∗
t ) (31)

where

p(θ∗
t , θt) = min

[

π(θ∗
t | Yi) · π∗(θt | θ∗

t )

π(θt | Yi) · π∗(θ∗
t | θt)

, 1

]

∼= pm̄ (32)

with p(θ∗
t , θt) displaying the probability to accept or reject a draw9 and π∗(·) denoting the density distribu-

tion according to sample size |χ|∗. In this way, I am able to get the same probability that each submodel

8See, for instance, Levine and Casella (2014).
9See, for instance, Jacquier et al. (1994) and Pacifico (2021) for some applications to multicountry and multidimensional

time-varying panel setups with stochastic and time-varying volatility, respectively.
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Mξ would be true. In addition, since posterior distributions corresponds – by construction – to the FMM

distributions, I define three possible intervals – displayed in (33) – in which the posterior predictive variance

of µi

(

V
(Yi,µi)
θ,φ,π(m̄)[µi]

)

can vary according to the model size (|χ|). Thus, I am able to obtain exact posteriors

on the predictive variance of the µi’s, by taking into account both the model space and the parameter space.

According to the shrinking process (Section 2.2), I ensure that lower variability will be associated to less

relative regrets during the estimating procedure, achieving more accurate forecasts.































































0.5 < V
(Yi,µi)
θ,φ,π(m̄)[µi] ≤ 1.0

(high dimension)

with ξ∗ > 10 ( heterogeneity )

0.1 ≤ V
(Yi,µi)
θ,φ,π(m̄)[µi] ≤ 0.5

(moderate dimension)

with 5 < ξ∗ ≤ 10 ( sufficient-homogeneity )

0.0 ≤ V
(Yi,µi)
θ,φ,π(m̄)[µi] < 0.1

(small dimension)

with ξ∗ ≤ 5 ( near-homogeneity )

(33)

3.3 Ratio Optimality and Posterior Distributions

Ratio optimality is a necessary tool to be addressed for evaluating empirical forecast optimality. However,

it tends to be very weak when dealing with large parameter spaces because of limited to restrictive classes

of models. According to the multivarite ROB procedure involved in (2), I am able to work on a restricted

set of submodels well specified in order to obtain better available forecast models. In this context, the

optimal point forecasts’ objective is predicting the outcomes (yit) by minimizing the expected loss in (24).

Methodologically, it means proving that the predictor ŷi,T +k achieves ϑ0-ratio-optimality uniformly for priors

πm̄ ⊂ E , with ϑ0 ≥ 0. Thus,

lim sup
N→∞ πm̄⊂E

R
(

ŷi,T +k, πm̄
)

− Rop
(

πm̄
)

{

Nξ∗ · EYi,µi

θ,φ,πm̄

(

V
(Yi,µi)
θ,φ,πm̄ [µi]

)

}

+ N(ξ∗)ϑ0

≤ 0 (34)

In (34), some considerations are in order. (i) The predictor ŷi,T +k in (21) is constructed by replacing

θ with a consistent estimator θ̂ (estimated AR(λ) coefficients) and individual outcome values π
(

µ̂i(θ), yi0

)

in (28) with estimates based on the FMM distributions. (ii) Taking expectations over y0:T in (24), it

follows that optimal point forecasts aim to work well on average rather than on a particular value (or single

draw) of the outcomes. More precisely, the individual–specific forecasts do not consist of estimating the

realization of the outcomes themselves, but rather a function of their predictive conditional distributions.

(iii) The prediction accuracy of optimal forecasts can be assessed through the Mean Squared Errors
(

MSE(θ̂) = E
θ̂

[

∑N
i=1(ŷi,T +k − yi,T +k)2

])

, computed as the average of the squared forecast errors for all

observations assigned to the model class Mξ∗ . For high V
(Yi,µi)
θ,φ,π(m̄) (e.g., with ξ∗ > 10), the further µ̂i’s will
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be in the tails of their distribution, the larger the MSEs. Conversely, the MSEs will be smaller for less

V
(Yi,µi)
θ,φ,π(m̄) (e.g., with ξ∗ ≤ 5) and moderate for quite high V

(Yi,µi)
θ,φ,π(m̄) (e.g., with 5 ≤ ξ∗ ≤ 10). (iv) In a

semiparametric context, whether model classes in E are high dimensional (e.g., highly large heterogeneity

among subgroups), the expected loss in (24) is minimized as N → ∞ and πm̄ will converge to a limit that

is optimal. Indeed, the final model solution will correspond to the oracle forecast of the prior (or correlated

random effect distribution) that most favours the true model (Tweedie correction). For a sufficiently large

sample size, the EB method will give a solution close to the Bayesian oracle, by exploiting information more

efficiently than a fixed choice of the µi’s (e.g., full Bayesian solutions)10. (v) The ratio-optimality in (34)

allows for the presence of estimated parameters in the sufficient statistic µ̂i and uniformity with respect to

the correlated random effect density πm̄, allowed to have unbounded support.

For m̄ > 0, the resulting predictor is:

ŷi,T +k =

[

µ̂m̄
i (θ) +

σ̂2
u

T
·

∂

∂µ̂m̄
i (θ)

ln
(

µ̂m̄
i (θ), ym̄

i0

)

]m̄

+ θ̂yit (35)

with m̄ < ∞ according to all possible submodel solutions Mξ∗ ⊂ E .

The posterior distributions for ω̃ (¨̃ω) are calculated by combining the prior with the (conditional) likelihood

for the initial conditions of the data. The resulting function is then proportional to

L
(

y0:T
i | ¨̃ω

)

∝ exp

{

−
1

2

[

T
∑

t=1

(

yit − (cm̄
it |χ̇)θ̂t − µ̂m̄

i (θ̂)
)

′

]

· (σ̂2
u)−1 ·

[

T
∑

t=1

(

yit − (cm̄
it |χ̇)θ̂t − µ̂m̄

i (θ̂)
)

]}

(36)

where y0:T
i = (yi0, yi1, . . . , yiT ) denotes the data and ¨̃ω refers to the unknowns whose joint distributions need

to be found.

Despite the dramatic parameter reduction implicit in the shrinking process, the analytical computation of

posterior distributions (¨̃ω|ŷi,T +k) is unfeasible, where ŷi,T +k denotes the expectations of outcomes associated

with the infeasible oracle forecast to be estimated (equation (23)). Thus, I include a variant of the Gibbs

sampler approach – the Kalman-Filter technique – to analytically draw conditional posterior distributions

of (θ1, θ2, . . . , θT |ŷi,T +k, ¨̃ω−θt
), with ¨̃ω−θt

referring to the vector ¨̃ω but excluding the parameter θt. Starting

from θ̄T |T and ρ̄T |T , the marginal distributions of θt can be then computed by averaging over draws in the

nuisance dimensions, and the Kalman filter backwards can be run to compute posterior distributions for

¨̃ω:

θt|θt−l, ŷi,T +k, ¨̃ω−θt
∼ N

(

¨̄θt|T +k, ¨̄ρt|T +k

)

(37)

10See, for instance, George and Foster (2000) and Scott and Berger (2010).
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where

¨̄θt|T +k =

[

(

¨̄ρ−1
t|T +k

· θ̄
)

+
T
∑

t=1

(

(cm̄
it |χ̇)

′

· (σ̂2
u)−1 · (cm̄

it |χ̇)

)

θ̂t

]

(38)

¨̄ρt|T +k =
[

Ih −
(

ρ̄ · ¨̄ρ−1
T +k|t

)]

· ρ̄ (39)

with

θ̂t =
[

(cm̄
it |χ̇)

′

· (σ̂2
u)−1 · (cm̄

it |χ̇)
]−1

·
[

(cm̄
it |χ̇)

′

· (σ̂2
u)−1 · yit

]

(40)

The equations (39) and (40) denote the variance-covariance matrix of the conditional distribution of ¨̄θt|T +k

and the GMM estimator, respectively. By rearranging the terms, equation (38) can be rewritten as

¨̄θt|T +k =

[

(

¨̄ρ−1
t|T +k

· θ̄
)

+

(

T
∑

t=1

(cm̄
it |χ̇)

′

· (σ̂2
u)−1 · yit

)]

(41)

where ¨̄θt|T +k and ¨̄ρt|T +k stand for the smoothed k-period-ahead forecasts of θt and of the variance–covariance

matrix of the forecast error, respectively.

Generated a random trajectory for
{

θt

}T

t=1
from N

(

¨̄θT |T , ¨̄ρT |T

)

11 in (37), the other posterior distributions

can be defined as:

π(µ̂i|ŷi,T +k, θ̂t) ∼ N
(

δ̃µi
, Ψ̃µi

)

(42)

π(ŷi0|µ̂m̄
i ) = N(0, κ̂) (43)

π(χ̇) = w̃|χ| ·

(

ξ∗

|χ|

)−1

(44)

π(σ̂2
u|ŷi,T +k) = IG

( ¨̄ω

2
,
ν̃

2

)

(45)

Here, some considerations are in order.

In equation (42), δ̃µi
∼ N

(

0, ζ̄
)

and Ψ̃µi
∼ IG

(

ϕ̄/2, ε̄/2
)

, where ζ̄ = ζ + (u
′

ituit), ϕ̄ = ϕ · χ̇, and ε̄ = ε · χ̇,

with (ζ, ε) denoting the arbitrary scale parameters (sufficiently small) and ϕ referring to the arbitrary de-

gree of freedom (chosen to be close to zero). In this analysis, Ψ̃µi
is obtained by using the (proposal) joint

posterior density (πm̄) sampled via EM algorithm, (ζ, ε) ∼= 0.001, and ϕ ∼= 0.1.

In equation (43), κ̂ = κ · V
(Yi,µi)
θ,φ,π(m̄)[µi], with κ and V

(Yi,µi)
θ,φ,π(m̄)[·] denoting the arbitrary scale parameter and

the posterior predictive variance of µi, respectively. In this analysis, κ ∼= 1.0 and V
(Yi,µi)
θ,φ,π(m̄)[µi] is obtained

11See, for instance, Carro (2007).
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according to the sample size |χ| as described in (33).

In equation (44), w̃|χ| refers to the model posterior choice according to the sum of the PMPs, with

w̃|χ| = max∗(NT, |χ|) accounting for the non-0 components of χ̇.

In equation (45), ¨̄ω = ω̄ + ˆ̄ω and ν̃ = ν + ν̂, with ω̄ and ν denoting the arbitrary degrees of freedom (suf-

ficiently small) and the arbitrary scale parameter, respectively, ˆ̄ω =
(

∑T
t=1 log(τt)/t

)

+ log
(

∑T
t=1(1/τt)

)

−

log(t) and ν̂ = (t · ˆ̄ω)/
(

∑T
t=1(1/τt)

)

referring to the Maximum Likelihood Estimates (MLEs). This latter

is obtained by numerically computing ˆ̄ω. In this analysis, τt = {τ1, . . . , τT } is the random sample from the

data {0, T}, ω̄ ∼= 0.1, and ν ∼= 0.001.

Finally, the last two hyperparameters to be defined are θ̄ = θ̂0, with θ̂0 denoting the GMM estimators of

equation (2) related to the posteriors ŷi0 in (43), and ρ̄ = Iξ∗ .

4 Empirical Evidence

4.1 Data Description and Results

The HDPB-CRE in (2) contains 22 country-specific models, including 9 advanced economies12, 7 emerging

economies13, and 6 non European countries14. All advanced countries – except for SV – refer to Western

Europe (WE) economies and all emerging countries – except for GR – refer to Central-Eastern Europe

(CEE) economies, respectively. All European countries are Eurozone members, except for CZ and PO,

and thus interdependencies and inter-country linkages can be investigated in depth. The estimation sam-

ple is expressed in years and covers the period from 1990 − 2021, and all data comes from World Bank

database. Given the hierarchical structural conformation of the model and a sufficiently large number of

years describing economic–financial and policy issues, it is able to investigate: (i) endogeneity issues; (ii)

interdependency, commonality, and homogeneity; (iii) relevant monetary and fiscal policy interactions;

and (iv) misspecified dynamics.

The panel set contains 92 observable variables dealing with all potential determinants and policy tools

described through the vectors yi,t−l and zi,t−l. In this study, I split them in four groups: (i) Economic

Status, including 41 determinants combining information on education, income, economic development, and

labour market; (ii) Healthcare Statistics, addressing 11 determinants combining information on health

coverage and expenditures on health; (iii) Demographic and Environment Statistics, accounting for 28

determinants combining information on population and sources of electricity; and (iv) Economic–financial

Issues, referring to 12 determinants dealing with real–financial economy and financial markets.

12Austria (AU ), Finland (FI ), France (FR), Germany (DE), Ireland (IR), Italy (IT), Netherlands (NL), Slovenia (SV ), and
Spain (ES).

13Czech Republic (CZ), Poland (PO), Slovak Republic (SV ), Estonia (ES), Latvia (LV ), Lithuania (LT), and Greece (GR).
14United States (US), China (CH ), Korea (KO), Japan (JP), United Kingdom (GB), and Chile (CH ).
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By running the shrinking process, in the first step, I find that 53 best covariates15 better fit the data

with PIPs ≥ τ and χ = 1 (Table 1). Thus, I obtain 253 submodel solutions (Mj ⊂ S). Because of the curse

of dimensionality, I further shrink the data performing the second step involved in the multivariate ROB

procedure. Overall, 31 best promising covariates are found, obtaining 231 submodel solutions (Mξ ⊂ E)

with χ̇ = 1. Here, some preliminary results can be addressed. (i) Most of model uncertainty and overfitting

are avoided. Indeed, dealing with the sign certainty, the Conditional Posterior Sign (CPS)16 tends to be

close to 0 (such as predictors 7, 25) and 1 (such as predictors 2, 9, 11, 26, 31). (ii) Uncertain effects tend

to persist for predictors 3, 5, 10, 16, 20, 22: thus, they should be interpreted with care. (iii) Socioe-

conomic factors matter more than economic status because of the ongoing outbreak of the epidemiology.

(iv) The main policy tools correspond to some of the core variables of real and financial business cycles

affecting the spreading and the transmission of spillover effects (such as current account balance, gross fixed

capital formation, credit, and inflation rate). And (v) all predictors with PIPs ≥ τ̇ (in bold in Table 1) will

correspond to the ones to be accounted for the final solution.

Nevertheless, although the intense shrinkage in the parameter space, the final solution would still require

some effort: indeed, there are 20 best promising that would better fit the data. Thus, according to the

third step, I test for panel Granger (Non-)Causality among all selected predictors. In Table 2, I display

the only covariates with p-value < τ̇ to be included in the submodels Mξ∗ ⊂ E .

15More precisely, 19 predictors refer to Economic Status, 8 predictors account for Healthcare Statistics, 16 predictors
account for Demographic and Environment Statistics, and 10 predictors refer to Economic–financial Issues.

16The CPS takes values close to 1 or 0 if a covariate in cit has a positive or negative effect on the outcomes, respectively.
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Table 1: Best Candidate Predictors – second stage

Idx. Predictor Label Unit PIP (%) CPS

Economic Status

1 Current Education Expenditure, Secondary edusec total exp. (%) 0.43 0.63

2 Employers, Total emto total emp. (%) 46.75 1.00

3 Employment to Population Ratio, 15+ empo total pop. (%) 0.17 0.33

4 Foreign Direct Investment, Net Inflows fdinet % GDP 16.41 0.96

5 Labor Force Partecipation Rate, 15+ labpar total pop. (%) 0.22 0.27

6 Labor Force, Total labtot logarithm (thousands) 33.65 0.68

7 Unemployment Change unem total labor force (%) 65.51 0.00

8 Wage and Salaried Workers wage total emp. (%) 27.40 0.91

Healthcare Statistics

9 Capital Health Expenditure cahe % GDP 31.56 1.00

10 Current Health Expenditure cuhe % GDP 44.02 0.37

11 Dom. Gen. Gov. Health Expenditure gghe % GDP 41.04 0.95

12 Dom. Gen. Gov. Health Expenditure hegg % gen. gov. exp. 28.13 1.00

13 Current Tobacco Use tobuse % adults (15+) 17.37 0.61

14 Alcohol Consumption per Capita alcuse logarithm (adults, 15+) 0.36 0.33

Demographic and Environment Statistics

15 CO2 Emissions, Total co2tot total (%) 23.06 0.16

16 Age Dependency Ratio arat working-age pop. (%) 48.12 0.44

17 Fertility Rate, Total frat births per woman 35.43 0.10

18 Death Race, Crude death per 1,000 people 0.15 0.06

19 Energy Imports, Net eneim energy use (%) 28.31 0.71

20 Population, Total pop logarithm (thousands) 0.23 0.47

21 Rural Population rural total pop. (%) 0.18 0.35

22 Urban Population urban total pop. (%) 21.33 0.51

23 School Enrollment, Secondary school total pop. (% net) 0.36 0.68

24 Human Capital Index hci working-age pop. [0-1] 0.32 0.81

Economic–financial Issues

25 Central Government Debt, Total debt % GDP 37.87 0.00

26 Current Account Balance cab % GDP 67.31 1.00

27 Domestic Credit, Financial Sector crefin % GDP 0.41 0.83

28 Gen. Gov. Final Consumption Exp. ggfce % GDP 0.24 0.75

29 Gross Fixed Capital Formation gfcf % GDP 61.50 0.92

30 Inflation, Consumer Prices inf % GDP 63.24 0.04

31 GDP Growth per Capita gdpg annual % 74.45 1.00

- GDP per capita gdp PPP - -

The Table is so split: the first column denotes the predictor number; the second and the third column describe

the predictors and the corresponding labels, respectively; the fourth column refers to the measurement unit;

and the last two columns displays the PIPs (in %) and the CPS, respectively. The last row refers to the

outcomes of interest. All contractions stand for: exp., ’expenditure’; emp., ’employment’; pop., ’population’;

and dom. gen. gov., ’domestic general government’. All data refer to World Bank database.

Finally, the final model solution better performing the data – with lBF = 13.49 – consists of 10 final
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best covariates so split: predictors 2, 7 for yc′

i,t−l; predictors 10, 11, 16, 17 for zs′

i,t−l; and predictors 26, 29,

30, 31 for zp′

i,t−l. All their available lags, including lagged outcomes (yo′

i,t−l), are then included as external

instruments. In the estimation method, I also include two time-invariant effects (x1t and x2t) denoting the

presence of structural breaks in 2008 (due to the global financial crisis) and in 2020 (due to the COVID-19

pandemic).

Table 2: Granger (Non-)Causality Test – third step

From c∗
it to yit emto unem cuhe gghe arat frat cab gfcf inf gdpg

Z-tilde 5.40
(0.00)

4.56
(0.00)

5.85
(0.00)

4.08
(0.00)

5.17
(0.00)

3.66
(0.00)

5.39
(0.00)

4.04
(0.00)

3.42
(0.00)

5.98
(0.00)

From yit to c∗
it emto unem cuhe gghe arat frat cab gfcf inf gdpg

Z-tilde 7.59
(0.00)

3.45
(0.00)

3.10
(0.00)

2.50
(0.01)

4.21
(0.00)

3.23
(0.00)

5.03
(0.00)

2.48
(0.01)

6.05
(0.00)

3.44
(0.00)

The Table displays all Z-tilde test statistics and p-values (in parenthesis) based on the panel

Granger (Non-)Causality test. Here, c∗
it stands for the best final candidate predictors in

Mξ∗ ⊂ E with higher lBF (equation (13)).

In Table 3, I display the main estimation outputs and diagnostic tests highlighting the performance of the

HDPB-CRE model. Here, some considerations are in order. (i) The best optimal lag chosen according to

Arellano (2003)’s test is 3. (ii) All estimates are consistent and valid, showing no autocorrelation among

residuals and highly strong linear dependencies; thus, variable selection problems are dealt with. (iii) The

posterior predictive variance of the µi’s reenters in the range displayed in (33), dealing with high dimensional

data carefully (VYi,µi

θ,φ,π(m̄)[µi] = 0.74 with ξ∗ > 10). (iv) In Table 2, highly strong causal links confirms the

presence of heterogeneity across units. (v) The Posterior Model Size Distribution (PMSD) is close to 10 and

then to the best candidate predictors better explaining the data (χ̇). And (vi) the estimating procedure

is robust dealing with the most of the explained variability of the outcomes (R2
adj. = 0.78).
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Table 3: Estimation Outputs and Diagnostic Tests

Main Statistics Results

AR(l∗) 3

ξ∗ 10

LGBs 0.00

LGBr 0.91

V
Yi,µi

θ,φ,π(m̄)[µi] 0.74

PMSD 9.92

lBF 13.49

R2
adj. 0.78

Here, l∗ denotes the optimal lag; LGBs and LGBr

stand for Ljung-Box test statistics of series and resid-

uals (p-values), respectively; PMSD refers to the Pos-

terior Model Size Distribution; and R2
adj. denotes the

adjusted R2.

4.2 Forecasting and Policy Purposes

Concerning dynamic analyses, the total number of draws has been 2, 000+3, 000 = 5, 000, which corresponds

to the sum of the final number of draws to discard and save, respectively. The convergence is obtained at

about 1, 000 draws17, used to conduct posterior inference at each t.

The natural conjugate prior refers to three subsamples: (i) 2007–2009 to evaluate the impact of the

Great Recession; (ii) 2010–2018 to adress how fiscal consolidation periods affected the dynamics of the

productivity among countries; and (iii) 2019–2023 to investigate the evolution of the productivity ac-

cording to an ongoing pandemic crisis and the Russia-Ukraine war (predictors 15, 19). The time frame

2022 − 2023 refers to outcomes absorbed in the forecasting analysis.

Without restrictions, the estimation sample amounts to 726 regression parameters: every estimate of

the HDPB-CRE in (2) account for 22 country indices and 33 time periods. Let hyperparameters in ω̃

be all known and estimable, posterior distributions are computed according to equations (37)-(39) for

θt|θt−l, ŷi,T +k, (42)-(43) for moment distributions in µi|ŷi,T +k given initial values (ŷi0|µ̂m̄
i ), (44) for the final

best parameter space, and (45) for ut|ŷi,T +k. All data are expressed in standard deviations.

In Figure 1, conditional forecasts for outcomes ŷi,T +k are drawn for advanced (top plot) and emerging

17The convergence has been found by amounting to about 1.2 draws per regression parameter.
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(bottom plot) economies. The yellow and red curves denote the 95% confidence bands, and the blue and pur-

ple curves denote the conditional18 and unconditional19 projections of outcomes ŷi,T +k for each N country

indexes and T time periods.

Figure 1: The plot draws conditional forecasts for outcomes ŷi,T +k given individual–specific (µi) and time-
fixed (α) effects given a pool of socioeconomic–demographic, real–financial, and policy determinants. All
time-varying parameters are posterior means.

From a modelling perspective, three main findings are addressed. (i) Even if there has been evidence of

significant co-movements and interdependencies among countries, consistent heterogeneities matter in both

the spreading and the intensity of countries’ dynamics. Thus, the need for forecasters and policymakers to

account for heterogeneous effects (correlated random coefficients) when formulating policy strategies and

forecasting in multivariate dynamic panel data. (ii) Conditional projections lie in the confidence interval;

conversely, unconditional projections tend to diverge over T . Thus, when studying large time-varying panel

data, cross-unit lagged interdependencies, dynamic feedback, and interactions have to be assessed in order

to deal with endogeneity issues and misspecified dynamics. (iii) A hint of boosting productivity to po-

tential growth (2022 − 2023) can be observed among countries, mainly among advanced economies. Thus,

although recent dynamics would suggest significant improvements in fiscal sustainability (e.g., during post-

crisis periods), the risk of a cascade of policy errors, adverse political economy incentives, and divergence

in financial integration become relevant issues for an early and coordinated fiscal consolidation.

From a policy perspective, three main results are highlighted. (i) Empirical forecasts show that most

18Generally, the conditional projection in forecasting models is the one that the model would have obtained over the same
period conditionally on the actual path of unexpected dynamics for that period (µi dependent on yi0).

19Generally, the unconditional projection in forecasting models is the one that the model would obtain for output growth
for that period only on the basis of historical information, and it is consistent with a model-based forecast path for the other
variables (µi independent of yi0).
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European emerging economies are strongly exposed to financial interlinkages and then highly dependent

on other European countries (e.g., Western European countries). Nevertheless, the presence of persistent

heterogeneities among countries’ responses emphasize the need for accelerating financial development in

developing countries, stimulating domestic resource mobilization, and supporting consistent reforms of the

international financial system in order to boost investment and growth. (ii) Even if several measures have

already been taken at the international and European Union levels, most countries have been limited to use

monetary and fiscal tools effectively due to stringent economic–institutional interdependencies, and then

they have not been able to deploy conventional consolidation measures during triggering events. Moreover,

most countries have failed to control the extent of COVID-19 due to people’s attitudes of denial and mis-

understanding of social distancing for the control of the outbreak. Thus, in a context of radical uncertainty

and heterogeneous territorial effects, appropriate policy measures need to be addressed at the local level

rather than globally. (iii) Heterogeneity among countries’ responses would matter because of different

policy adjustments applied by governments during a recession. Indeed, they have been led to follow dis-

tinct national rather than consensual international standards (such as in the current outbreak and previous

pandemic crises). Overall, policy tools should be implemented by closely monitoring the evolution of the

economic status for every country. More coordinated country-specific European and international measures

and a participatory government are needed for ensuring robust health systems and more resilient economic

development so as to safeguard against sudden outbreak on the global economy.

5 Relative Regrets for Tweedie Correction: MCMC-based Experiments

In this example, the performance of the estimation method is investigated by summarizing the regrets

for Tweedie correction in (29) relative to the posterior predictive variance of the µi’s. More precisely,

according to (33), I consider three sequences of
(

N, ξ∗,VYi,µi

θ,φ,π(m̄)[µi]
)

with correlated random coefficients

homoskedastic case to evaluate different improvements in the forecasting performance: (i) (10000, 15, 1.0),

heterogeneity with high dimension; (ii) (10000, 10, 0.5), sufficient-homogeneity with moderate dimension;

(iii) (10000, 5, 0.0), near-homogeneity with small dimension. I suppose a basic HDPD-CRE model with

α = γ = 0, homoskedastic variance σ2 = 1, and regimes m̄ = 1 (e.g., a unique common individual–specific

effect across units).

Table 4: MCMC-based Designs

Law of Motion yit = µi + βyi,t−1 + uit where β = 0.5 , uit ∼ i.i.d.N(0, 1)

Initial Observations yi0 ∼ N(0, 1)

Correlated Random Effects µi|yi0 ∼ N(0, Ψµi
) where Ψµi

∼ IG
(

0.1
2 , 0.01

2

)

The Table shows the three sequences of
(

N, ξ∗,VYi,µi

θ,φ,π(m̄)[µi]
)

with correlated random coefficients

homoskedastic case conducted in the simulated example according to (33).
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I include two additional empirical Bayes estimators dealing with alternative Tweedie corrections (Table

4): Kernel Density (KD) estimator (see, for instance, Liu et al. (2020)) and NonParametric Maximum

Likelihood (NPML) estimation (see, for instance, Gu and Koenker (2017b)). Concerning the former, the

problem of forecasting a collection of short time-series processes is dealt with the cross-sectional information

in a dynamic panel data. A nonparametric kernel estimate of the Tweedie correction is then constructed,

showing its asymptotic equivalence to the risk of an empirical predictor treating the CREs’ distribution

as known. As regards the NPML estimation, the EB estimators are constructed by specifying appropriate

bounds for the domain of CREs and then partitioning them into a predetermined set of bins.

Table 5 provides the relative regrets for Tweedie corrections according to the three supposed MCMC-based

designs. The best choice of ϑ0 improving the forecasting performance in terms of ratio-optimality was set 0.5

(middle point in an arbitrary range [0.1 - 0.9]). The findings highlight the usefulness of the multivariate ROB

procedure for dramatically shrinking the model size with high dimensional data, and the performance of

the semiparametric Bayesian statistics based on the FMM distributions (Tweedie correction) for performing

better forecasts. For instance, lower posterior predictive variances of the µi’s are associated to less relative

regrets. Compared to KD and NPLM estimates, FMM distributions show lower regrets. Replicating the

experiment for highly larger sample size (e.g., N = 100, 000) and lower ratio-optimality (e.g., ϑ0
∼= 0.1), I

find that the relative regrets are negatively correlated with the number of cross-sectional units N and that

less ratio-optimality – even if reduces computational costs – would suffer to higher associated regrets.

Table 5: Relative Regrets for Tweedie Corrections by MCMC-based Designs

Design I Design II Design III

N 10000 10000 10000

V
Yi,µi

θ,φ,πm̄ [µi] 1.0 0.5 0.0

ξ∗ 15 10 5

Nsim 10000 10000 10000

KD 0.026 0.051 0.074

FMM 0.014 0.010 0.007

NPML 0.021 0.019 0.013

Relative regrets for Tweedie corrections accord-
ing to the three supposed MCMC-based de-
signs. The regret is standardized by the aver-
age posterior predictive variance of the µi’s, with
ϑ0 = 0.5.

All results in Table 5 find confirmation in Figure 2. More precisely, lower posterior predictive variances of

the µi’s are associated to less Mean Squared Errors (MSEs) and then better accuracy forecasts (associated

with less relative regrets). Moreover, the (designed) joint density distribution of πm̄ – depicting posterior

draw samples of the empirical distribution of µ̂i – asymptotically converges to a Normal and then the FMM-

based Tweedie Correction – in Theorem (1.6) – approaches linear distribution function. Furthermore, in the
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second and third designs, the empirical realizations of µ̂i are greater and lie in the distribution, highlighting

lower MSEs and less sampling variance in the estimated posterior means.

Figure 2: The panels show the MSEs associated to the three supposed MCMC-based designs. The solid
lines display the posterior draw samples of the empirical distribution of µ̂i according to the (designed) joint
density distribution πm̄ and the FMM-based Tweedie Correction.

6 Concluding remarks

This study aims to construct and develop a methodology to improve the recent literature on DPD mod-

els when dealing with (i) individual–specific forecasts, (ii) ratio-optimality and posterior consistency

in dynamic panel setups, (iii) empirical Bayes approaches and alternative Tweedie corrections for non-

parametric priors, and (iv) the curse of dimensionality and variable selection problems when estimating

time-varying data.

The contributions of this study are threefold. First, a multivariate shrinking procedure is used to select

the best promising subset of covariates according to their Posterior Model Probability, which denotes the

probability to better explain and thus fit the data in high dimensional model classes. Second, the correlated

random effects are addressed by involving in the shrinking process an Empirical Bayes procedure, where

the posterior mean of the unobserved heterogeneity is expressed in terms of the marginal distribution of

sufficient statistics estimated from the cross-sectional whole information (Tweedie’s formula). Third, bet-

ter conditional forecasts can be involved in the estimation model because of the use of a semiparametric

Bayesian approach modelling either time-varying and fixed effects, and the observation of incidental param-
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eters possibly correlated with some of the predictors within the system.

An empirical application on a pool of advanced and emerging economies is assessed describing the func-

tioning and the performance of the methodology. The estimation sample refers to the period 1990 − 2021,

covering a sufficiently large sample to address potential causal links and interdependencies between out-

comes and a set of time-varying factors, including heterogeneous individual-specific and time-fixed effects.

A simulated experiment using MCMC-based designs is also addressed to highlight the performance of the

estimating procedure with related works.
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