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Abstract

This paper analyses the properties of (strong) core allocations in a two-period

asymmetric information economy that also involves both negligible and non-

negligible agents as well as an infinite dimensional commodity space. Within

this setup, we allow the consumption set of each agent to be an arbitrary subset

of the commodity space that may not have any lower bound. Our first result

deals with the robustness of the core and the strong core allocations with respect

to the restrictions imposed on the size of the blocking coalitions in an economy

with only non-negligible agents. The second result is a generalization of the

first result to an economy that allows the simultaneous presence of negligible as

well as non-negligible agents with the consideration of Aubin coalitions. Finally,

we show that (strong) core allocations are coalitional fair in the sense that no

coalition of negligible agents could redistribute among its members the net trade

of any other coalition containing all non-negligible agents in a way that could

assign a preferred bundle to each of its members, and vice versa.
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1 Introduction

The core of an economy is a solution concept that acknowledges the fact that coalitions

of agents may corporate to improve their own welfare. In other words, for any allocation

not belonging to the core, there is a coalition whose members achieve better commodity

bundles that the non-core allocation by redistributing their initial endowments with

themselves. In a classical exchange economy with a continuum of agents, the core

coincides with the set of competitive allocations, refer to Aumann [2]. However, the

equivalence theorem fails to hold, in general, if there are some non-negligible market

participants in addition to the negligible ones (see Schitovitz [28]). The purpose of

the paper is to study the core allocations in the exchange economy embodying a large

number of agents some of which are non-negligible. Note that the market participants

become non-negligible due to the following two reasons: (i) first reason is some agents

may be endowed with an exceptional initial endowments, because their initial ownership

of commodities are sufficiently large with respect to the total market endowment. This

is typical in monopolistic or, more generally, in oligopolistic markets; and (ii) the second

reason is, while the initial endowment is spread over of continuum of negligible agents,

some of them may join forces and decide to act as a single agent in the form of cartels,

syndicates, or similar institutions.

The economic activity is taken into account uncertainty, where agents subscribe to

contracts at the time τ = 0 ( ex-ante) that are contingent upon the realized state of

nature at time τ = 1 (ex-post), in a way so that their expected payoff is maximized.

In this paper, we consider an infinite dimensional commodity space, as it arises nat-

urally due to several reasons: modeling allocations over an infinite time horizon, and

economies with commodity differentiation, among others. We refer to Mas-colell and

Zame [24] for more details. Our primary focus is an ordered Banach space having a

non-empty positive interior. One major issue that arises while dealing with the main

results is that Lyapunov’s convexity theorem fails to hold in the exact form. The con-

sumption set for each agent in each state to assumed to be an arbitrary subset of the

commodity space, which may not have any lower bound. Thus, not only the private

information restricts the trade of individuals in the ex-ante stage the structure of the

consumption sets prevent us to apply strong monotonicity condition at certain bundles.

In the above setup, we study the veto power of arbitrary-sized coalitions for non-core

allocations and the coalitional fairness of the core allocations. This significantly extends

the scope of the theory, incorporating much larger class of models as it involves the four

aspects together: negligible as well as non-negligible agents, infinite-dimensional com-

modity spaces, uncertainty with asymmetric information and arbitrary consumption
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set do not necessarily have lower bounds.

Extensions of the Schmeidler-Vind theorems: For an atomless economy with

restricted consumption sets and asymmetric information, we investigate the size of the

blocking coalition for a non-core allocation in our setup. This type of investigation goes

back to the seminal contributions of Schmeidler [29] and Vind [33] in a framework with

the positive cone of the Euclidean space as the consumption sets of agents and without

uncertainty. More precisely, Schmeidler [29] showed that if a feasible allocation is not

the core of the economy then it can be blocked by coalitions of small measures. Thus,

the core (in particular, the set of competitive allocations) can be implemented only

through the formation of small coalitions. Schmeidler’s idea of a blocking mechanism

was further extended by Vind [33] by showing that for any feasible allocation outside

the core of an economy then for any measure ε less than the measure of the grand

coalition there is a coalition S whose measure is exactly ε such that the non-core

allocation is blocked by S. One of the implications of this theorem is normative in

the following sense: as an arbitrarily large size of coalitions are entitled to block each

non-core allocation, the core can be seen as a solution supported by an arbitrarily

large majority of agents. Later, these results were extended to several frameworks by

Bhowmik [4], Bhowmik and Cao [5, 6], Bhowmik and Graziano [8], Evren and Hüsseinov

[13], Graziano and Romaniello [17], Hervés-Beloso et al. [19], Hervés-Beloso et al. [21],

Pesce [26, 27] among others. Recently, Bhowmik and Graziano [9] have extended this

result in a setting where agents’ consumption sets are arbitrary subsets (without any

lower bound restrictions) of a finite-dimensional space and ex-ante trades are defined

in terms of some general restrictions. Such restrictions include two different scenarios:

asymmetric information economies and asset market economies. In the present paper,

we generalize the above result of Bhowmik and Graziano [9] to an economy with an

infinite dimensional commodity space but only consider an asymmetric information

scenario. Not only that, our paper also extends all of the above results in the following

direction.

- First, we consider an ex-ante strong core allocation, which is a feasible allocation

that cannot be weakly blocked by a non-null coalition. By definition, the ex-ante strong

core allocation is an ex-ante core allocation, but the converse fails to hold, in general.

Nevertheless, by adopting continuity and strong monotonicity of preferences, one can

readily verify that two core notions are the same in a classical economy without uncer-

tainty with asymmetric information in which the positive cone is the consumption set

of each agent. However, in a model that involves either uncertainty with asymmetric

information or arbitrary consumption sets, such a conclusion cannot be immediately

drawn in the presence of continuity and strong monotonicity of preferences. The present
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paper deals with this issue and formulates a set of sufficient conditions that ensures the

equivalence of two core notions in our framework. As a consequence, our Vind’s theo-

rem is also valid for the ex-ante strong core in a framework of an infinite dimensional

commodity space.

- We show that the core of a mixed economy coincides with the core of an atomless

economy derived by splitting each atom into a continuum of small agents, and vice

versa. In view of this result and Vind’s theorem for atomless economies, we can gen-

eralize Vind’s theorem to a mixed economy by considering generalized coalitions. It is

worthwhile to point out that this result is the first generalization of Vind’s theorem in

an economy with asymmetric information and a finite-dimensional commodity space,

where the feasibility is defined as exact and the consumption set for each agent is an

arbitrary subset of the commodity space.

Coalitional fairness of ex-core allocations: Next, we investigate the coalitional

fairness of core allocations, which is property of equity, introduced by Gabszewicz in his

seminal paper Gabszewicz [15], in which bundle comparisons are allowed between coali-

tions of agents according to the concept of coalitional envy.1 According to Gabszewicz

[15], an allocation is coalitionally unfair if a coalition is treated under the allocation in

a discriminatory way by the market. More generally, an allocation is coalitionally fair

if no coalition could benefit from achieving the net trade of some other coalition, which

means under coalitional fairness, no coalition could redistribute among its members

the net trade of any other coalition in a way that could assign a preferred bundle to

each of its members. It is well-known that a core allocation is not necessarily coali-

tionally fair in a mixed economy, refer to Gabszewicz [15]. Thus, we restricts ourselves

to coalitions containing either no large agents or all of them, and show that any core

allocation is coalitionally fair in the sense that no coalition of small agents envies the

net trade of a disjoint coalition comprised of all large agents or vice versa. Therefore,

despite their privileged initial position, large agents can not enforce a core allocation

because this would render the allocation unfair towards some coalition of small agents,

and vice versa. Related research in this direction either focuses on a finite-dimensional

commodity space or an infinite dimensional commodity space with the positive cone

as the consumption set of each agent, see Bhowmik [4], and Bhowmik and Graziano

[9]. Thus, our result generalizes the above results to centain extent.

1See also Schmeidler and Vind [30] and Varian [32].
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2 Description of the model

We consider a standard pure exchange economy with uncertainty and asymmetric in-

formation. We assume that the economic activity takes place over two periods τ = 0, 1.

The exogenous uncertainty is described by a measurable space (Ω,F ), where Ω is a

finite set denoting all possible states of nature at time τ = 1 and the σ-algebra F

denotes all events. At time τ = 0 (ex-ante stage) there is uncertainty about the state

of nature that will be realized at time τ = 1 (ex-post stage). At the ex-ante stage,

agents arrange contract on redistribution of their initial endowments. At τ = 1, agents

carry out previously made agreements, and consumption takes place2.

Economic agents: The space of economic agents is described by a complete proba-

bility space (T,T , µ), where T represents the set of agents, the σ-algebra T represents

the collections of allowable coalitions whose economic weights on the market are given

by µ. Since µ(T ) <∞, the set T of agents can be decomposed in the disjoint union of

an atomless sector T0 of non-influential (small or negligible) agents and the set T1 of

influential (large or non-negligible) agents, which is the union of at most countable fam-

ily {A1, A2, · · · } of atoms of µ. Abusing notation, we also denote by T1 the collection

{A1, A2, · · · }. Thus, the space of agents not only allow us to investigate in a unified

manner the markets that are competitive and the markets that are not, but also deal

with the simultaneous action of influential and non-influential agents. This general

representation permits to cover simultaneously the case of an economy with a finite set

of agents (when T0 is empty and T1 is finite), the case of an atomless economy (when

T1 is empty), the case of mixed markets in which an ocean of negligible agents coexists

with few influential agents (when both T0 and T1 have positive measure). Moving from

this representation, we can also identify two relevant subfamilies from T by defining

T0 := {S ∈ T : S ⊆ T0} and T1 := {S ∈ T : T1 ⊆ S}.

Thus, T0 is a subfamily of T containing no atoms whereas T1 is a subfamily of T

containing all atoms. Finally, we denote by

T2 := T0 ∪ T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T formed by coalitions containing either no atoms or all atoms.

Commodity Spaces: The commodity space in our model is an ordered separable

Banach space with the interior of the positive cone is non-empty. We denote by Y the

2For simplicity, we assume that there are no endowments and thus no consumption at τ = 0.

Hence, agents are only concerned with allocating their second period (τ = 1) endowments.
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commodity space of our economy whereas the notation Y+ is employed to denote the

positive cone of Y. Let Y++ be the interior of Y+.

Defining an economy: We introduce a mixed economy with uncertainity and asym-

metric information, and an ordered separable Banach space whose positive cone has

non-empty interior as the commodity space.

Definition 2.1. An economy is defined as E := {(Xt,Ft, ut, e(t, ·),Pt) : t ∈ T} with

the following specifications:

(A) Xt : Ω ⇒ Y denotes the (state-contingent) consumption set of agent t ∈ T 3;

(B) Ft is the σ-algebra generated by a measurable partition Pt of Ω (i.e. Pt ⊆ F )

denoting the private information of agent t;

(C) ut : Ω× Y → R is the state-dependent utility function of agent t;

(D) e(t, ·) : Ω → Y is the random initial endowment of agent t;

(E) Pt : Ω → [0, 1] is the prior of agent t.

Available Information and Expected Utilities: The family of all paritions of

Ω is denoted by P. Since Ω is finite, P has only finitely many different elements:

P1, · · · ,Pn. We assume that Ti := {t ∈ T : Pt = Pi} is T -measurable for all

1 ≤ i ≤ n. For every 1 ≤ i ≤ n, define Gi to be the set of all functions ϕ : Ω → Y such

that ϕ is Pi-measurable.4 For any x : Ω → Y, define the ex-ante expected utility

of agent t by the usual formula

Vt(x) =
∑

ω∈Ω

ut(ω, x(ω))Pt(ω).

We now state our main assumptions to be used throughout the paper.

Assumptions: Consider an economy E as defined in Definition 2.1.

(A1) For all (t, ω) ∈ T × Ω, Xt(ω) is a closed convex cone.

(A2) The correspondence Θ : T × Ω ⇒ Y, defined by Θ(t, ω) := Xt(ω), is such that

Θ(·, ω) is T -measurable for all ω ∈ Ω.

3Notice that we do not impose non-negative constraints on consumption sets. Thus, short sales

are allowed.
4By Pi-measurability, we mean the measurability with respect to the σ-algebra generated by Pi.
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(A3) The mapping e(·, ω) : T → Y is T -measurable for all ω ∈ Ω and e(t, ω) is an

interior point of Xt(ω) for all ω ∈ Ω.

(A4) The mapping ϕ : T → [0, 1]Ω, defined by ϕ(t) = Pt, is T -measurable.

(A5) For all (t, ω) ∈ T1 × Ω, ut(ω, ·) is quasi-concave.

(A6) For all (t, ω) ∈ T × Ω, ut(ω, ·) is continuous and for all x ∈ Y, t 7→ ut(ω, x) is

T -measurable.

(A7) For all (t, ω) ∈ T × Ω, ut(ω, y) > ut(ω, x) for all x, y ∈ Xt(ω) with y ≥ x and

x 6= y.

(A8) For all (t, ω) ∈ T × Ω, x ∈ Xt and ε > 0, there is an y ∈ Gt ∩ B(0, ε)Ω such that

x+ y ∈ Xt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω))
5.

(A′
8) For all (t, ω) ∈ T ×Ω, x ∈ Xt and ε > 0, there is an y ∈

⋂
{εGi : i ∈ K}∩B(0, ε)Ω

such that x+ y ∈ intXt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω)).

Remark 2.2. The assumptions in (A1)-(A7) are standard in the literature of general

equilibrium in economies with asymmetric information and/ or restricted consump-

tion sets. Assumptions (A8) and (A′
8) are satisfied under the monotonity assumption

whenever Xt(ω) = Y+ for all (t, ω) ∈ T × Ω.

3 The Schmeidler-Grodal-Vind theorems

Our aim in this section is to introduce the ex-ante (Aubin) core allocations in an

economy with a mixed measure space of agents by considering ordinary (generalized)

coalitions and providing characterizations of ex-ante (Aubin) core allocations by means

of the size of coalitions in the sense of Schmeidler [29], Grodal [18], and Vind [33] either

in an economy containing a continuum of negligible agents or in a economy which

comprised of both negligible and non-negligible agents.

3.1 Defining (Aubin) core allocations

In this subsection, we introduce the notion of ex-ante (Aubin) core for a two-period

economy with uncertainty either by considering strong blocking or weak blocking. We

assume implicitly that the trade takes place at time τ = 0 and that contracts are bind-

ing: they are carried out after the resolution of uncertainty and there is no possibility

5B(0, ε) denotes the closed ball centered at 0 and radius ε in Y.
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of their renegotiation. Moreover, the consumption of each agent is compatible with her

private information. In what follows, we deal with the relationship between the two

different notions of core allocations. We start introducing the concept of an allocation,

which is a specification of the amount of commodities assigned to each agent.

Definition 3.1. An allocation in E is a Bochner integrable function f : T × Ω → Y

such that

(i) f(t, ω) ∈ Xt(ω) for all (t, ω) ∈ T × Ω; and

(ii) f(t, ·) ∈ Gi for all (t, ω) ∈ Ti × Ω and all 1 ≤ i ≤ n.

It is said to be feasible if
∫
T
f(·, ω)dµ =

∫
T
e(·, ω)dµ for all ω ∈ Ω. We assume that e

is an allocation.

An element of T with positive measure is interpreted as an ordinary coalition

or simply, a coalition of agents. Each S ∈ T can be regarded as a function χS : T →

{0, 1}, defined by

χS(t) :=

{
1, if t ∈ S;

0, otherwise.

Here, χS(t) means the degree of membership of agent t ∈ T to the coalition S. Following

this interpretation for an ordinary coalition, it is natural to introduce a family of

generalized coalitions as follows (see [25]). To this end, for any function γ : T → R,

define the support of the function γ as

Sγ = {t ∈ T : γ(t) 6= 0}.

AnAubin or a generalized coalition of E is a simple, measurable function γ : T → R

whose support has a positive measure. It is worthwhile to point out that γ(t) represents

the share of resources employed by agent t. By identifying S ∈ T with χS, we can

treat S as a generalized coalition. The weight of a generalized coalition γ, denoted

by µA(γ), is given by µA(γ) =
∫
T
γ dµ. For any ordinary coalition, this weight simply

coincides with the measure of the coalition itself.

Our first notion of (Aubin) core aims to study the blocking mechanism under the

assumptions that a coalition deviates from a proposed allocation if its members guar-

antee a strictly better commodity bundle for themselves by the redistribution.

Definition 3.2. An allocation f is ex-ante blocked by a generalized coalition γ

if there is an allocation g such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ, and
∫

T

γg(·, ω)dµ =

∫

T

γe(·, ω)dµ
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for all ω ∈ Ω. The ex-ante Aubin core of E , denoted by C A(E ), is the set of feasible

allocations that are not ex-ante blocked by any generalized coalition. If the generalized

coalitions are replaced with ordinary coalitions, the corresponding set of allocations is

called the core of E , denoted by C (E ).

The next formalization of core differs from the earlier one in the sense that agents

within a blocking generalized coalition are not worse-off by the re-distribution whereas

some are strictly better-off. To formally define, we consider a sub-coalition of a

generalized coalition γ is a generalized coalition ρ such that Sρ ⊆ Sγ.

Definition 3.3. An allocation f is ex-ante weakly blocked by a generalized

coalition γ if there is a sub-coalition ρ of γ and an allocation g such that

(i) Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sρ;

(ii) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on Sγ; and

(iii)
∫
T
γg(·, ω)dµ =

∫
T
γe(·, ω)dµ for all ω ∈ Ω.

The ex-ante Aubin strong core of E , denoted by C AS(E ), is the set of feasible

allocations that are not ex-ante weakly blocked by any generalized coalition. If the

generalized coalitions are replaced with ordinary coalitions, the corresponding set of

allocations is called the ex-ante strong core of E , denoted by C S(E ).

Recognized that if an allocation f is ex-ante blocked by a generalized coalition γ

then it is also ex-ante weakly blocked by the same coalition. For the converse, we

additionally assume in our next result that if an allocation f is ex-ante weakly blocked

by a generalized coalition γ via some allocation g and if ρ is a sub-coalition of γ in which

members of Sρ strictly prefer g to f then the information available to both coalitions

is the same, i.e, ISγ
= ISρ

, where IG := {i : µ(Gi) > 0} for any ordinary coalition G in

which Gi := G ∩ Ti for all 1 ≤ i ≤ n. The basic intuition is that members belonging

to Ri, where R := Sγ \ Sρ and i ∈ IR, can be allocated Pi-measurable consumption

bundles that give higher utilities by reducing the utility level of the members of Sρ∩Ti
due to continuity and strong monotonicity. However, such an argument cannot be

made easily in arbitrary consumption sets. In what follows, we establish this result

in a continuum economy by showing that if an allocation is ex-ante Aubin blocked by

a generalized coalition then it can also be blocked by an ordinary coalition. In this

regard, Lemma 6.1 and Lemma 6.2 in Appendix play vital roles.
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Proposition 3.4. Let E be a continuum economy satisfying (A1)-(A8). Suppose that

γ is a generalized coalition and g is an allocation such that Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e.

on Sγ. Assume further that the measurable set

B := {t ∈ Sγ : Vt(g(t, ·)) > Vt(f(t, ·))}

has strictly positive measure and ISγ
= IB. Then there are coalitions E,R, an element

λ0 ∈ (0, 1), an element η > 0, and an allocation y such that

(i) R ⊆ E ⊆ Sγ and IR = IE = ISγ
;

(ii)
∫
E
(y − e) dµ = λ0

∫
T
γ(g − e) dµ;

(iii) y(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R; and

(iv) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R.

Proof. The proof of the proposition is relegated to Appendix.

Corollary 3.5. For a continuum economy E satisfying (A1)-(A8) and an allocation f ,

assume that f is ex-ante weakly blocked by a generalized coalition γ via some allocation

g satisfying Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sρ for some sub-coalition ρ of γ satisfying

ISγ
= ISρ

. Then there is a coalition E such that f is blocked by E.

Remark 3.6. Notice that, in the proof of Proposition 3.4, the number λ0 can be

chosen sufficiently close to 1. Moreover, it also follows that, if γ is replaced with

ordinary coalition S, then the coalition E can be choosen so that µ(E) ≥ λ0µ(S).

In view of the above proposition, we have the following theorem whose proof is

immediate.

Theorem 3.7. Suppose that E is a continuum economy satisfying (A1)-(A8). Then

C A(E ) = C (E )

3.2 The size of blocking coalitions in a continuum economy

In this subsection, we address the issues related to the size of a blocking coalition,

extending the corresponding results of Schmeidler [29], Grodal [18] and Vind [33] to the

case of a continuum economy with arbitrary consumption sets and private information.

Extending the Schmeidler theorem: The insight of Schmeidler theorem was that,

in a continuum economy, if a feasible non-core allocation is blocked by some coalition

S then it can also be blocked by a coalition of any given measure less than that of

10



S. The immediate implication of this theorem includes the fact that the core (and

thus, the set of competitive allocations) can be implemented by the formation of small

coalitions only. In what follows, we extend this result to our framework. This definitely

extends the corresponding result of Bhowmik and Graziano [9] to a certain extent. It

is worthwhile to point out that the techniques adopted in the proof of Bhowmik and

Graziano [9] are not appropriate in our setup of infinitely many commodities. Thus,

in order to obtain the Schmeidler theorem in our framework, we first establish the

following proposition. This proposition can be considered an extension of the Lyapunov

convexity theorem.

Proposition 3.8. Let E be a mixed economy and let the assumptions (A1)-(A8) be

satisfied. Suppose that ψ, f and g are allocations such that Vt(g(t, ·)) > Vt(f(t, ·))

µ-a.e. on some coalition S ∈ T0 and 0 < δ < 1. Assume further that g(t, ω) is an

interior point of Xt(ω) for all (t, ω) ∈ R × Ω for some sub-coalition R of S satisfying

IR = IS. Then there are an η0 > 0, two coalitions B and C, and an allocation ϕ such

that

(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B) = δµ(S);

(ii) ϕ(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on C;

(iv) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(v)
∫
B
(ϕ(·, ω)− ψ(·, ω))dµ = δ

∫
S
(g(·, ω)− ψ(·, ω))dµ for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

The following theorem is an immediate implication of the above proposition, which

extends Schmeidler’s [29] theorem to our framework.

Theorem 3.9. Consider a continuum economy E and assume that the assumptions

(A1)-(A8) are satisfied. Let f be an allocation of E blocked by some coalition S. Then,

for any ε ∈ (0, µ(S)), there is a coalition R such that µ(R) = ε and f is blocked by R.

Proof. The proof of the theorem is relegated to Appendix.

Extending the Grodal Theorem: Given an ε > 0, it was shown in [?] for an

atomless economy that the blocking coalition S can be chosen as a union of finitely

many disjoint sub-coalitions, each of which having measure and diameter less than ε.

A coalition whose measure and diameter are less than ε intuitively means that the
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coalition consists of relatively few agents and that the agents in the coalition resemble

one another in chosen characteristics. Next, we extend this result to a club economy

with an atomless measure space of agents, where the consumption sets of agents’ are

arbitrary subsets of an ordered Banach space having non-empty interior of the positive

cone.

Theorem 3.10. Let E be a continuum economy such that E satisfies (A1)-(A8). Sup-

pose further that T is endowed with a pseudometric which makes T a separable topo-

logical space such that B(T ) ⊆ T . If f is an allocation and R is a coalition blocking

f then there exists some α > 0 such that any coalition S ⊆ R satisfying µ(R \ S) < α

blocking f . Furthermore, for any f 6∈ C (E ) and any ε, δ > 0, there exists a coali-

tion S with µ(S) ≤ ε blocking f and S =
⋃n

i=1 Si for a finite collection of coalitions

{S1, · · · , Sn} with diameter of Si smaller than δ for all i = 1, · · · , n.

Extending the Vind theorem: Vind’s theorem (refer to [33]) states that, in a

continuum economy, if a feasible allocation is not in the core of the economy then

there is a blocking coalition of any given measure less than the measure of the grand

coalition. Thus, the core allocations (and hence, the competitive allocations) can also

be characterized by means of coalitions of arbitrarily large sizes. We now intend to

show a similar result in our framework. To this end, we first establish the following

result, which claims that if an allocation is blocked by a coalition S via some allocation

g then there is another allocation h in which everyone is better off than what she gets

under f . This Proposition extends the corresponding results in Bhowmik and Cao [7]

and Hervés-Beloso and Moreno-Garćıa [22].

Proposition 3.11. Let E be a continuum economy such that the assumptions (A1)-

(A8) are satisfied. Suppose that f and g are two allocations such that Vt(g(t, ·)) >

Vt(f(t, ·)) µ-a.e. on some coalition S with g(t, ω) being an interior point of Xt(ω) for

all (t, ω) ∈ R × Ω for some sub-coalition R of S satisfying IR = IS. Then, for any

0 < δ < 1, there exists some allocation h such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on

S, h(t, ·) is an interior point of Xt for all t ∈ G for some sub-coalition G of S with

IG = IS, and ∫

S

h(·, ω)dµ =

∫

S

(δg(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Corollary 3.12. Consider now a mixed economy where all large agents have contin-

uous and quasi-concave utility functions. For any large agent A and x, y ∈ XA, if
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VA(y) > VA(x) and 0 < δ < 1 then, by Lemma 5.26 of Aliprantis and Border [1], we

have VA(δy+(1− δ)x) > VA(x). In view of this, the conclusion of Proposition 3.11 can

be obtained in a mixed model.

Next, we formulate a version of Vind’s (1972) theorem on blocking by an arbitrary

coalition.

Theorem 3.13. Consider a continuum economy E in which the assumptions (A1)-

(A′
8) are satisfied. Let f be a feasible allocation such that f /∈ C (E ). Then for any

ε ∈ (0, 1), there is some coalition R such that µ(R) = ε and f is blocked by R.

Proof. The proof of the theorem is relegated to Appendix.

Remark 3.14. We now complete the proof by replacing the assumption [A′
8] with

IS = IT and [A8]. Let D := T \ S. For each i ∈ ID, there is some coalition Fi ∈ TDi

such that µ(Fi) = δµ(Di) and

bi(ω) := δ

∫

Di

(g(·, ω)− e(·, ω)) dµ−

∫

Fi

(g(·, ω)− e(·, ω)) dµ ∈ B (0, ηδµ(Ci)) .

Define z : C × Ω → Y by letting z(t, ω) := bi(ω)
δµ(Ci)

if (t, ω) ∈ Ri × Ω and i ∈ ID; and

z(t, ω) := 0, otherwise. Let g̃ : T × Ω → Y be an allocation such that

g̃(t, ω) :=

{
g(t, ω)− z(t, ω), if (t, ω) ∈ C × Ω;

g(t, ω), otherwise.

By Proposition 3.11, there exist some G -assignment h such that Vt(h(t, ·)) > Vt(f(t, ·))

µ-a.e. on S, and

∫

S

h(·, ω)dµ =

∫

S

(δg̃(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. We define an assignment y : T × Ω → Y defined by

y(t, ω) :=

{
ψ(t, ω), if (t, ω) ∈ F × Ω;

h(t, ω), otherwise.

It can be raedily verified that f is blocked by the coalition E := F ∪ S via y.
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3.3 The size of blocking coalitions in a mixed economy

In this subsection, we generalize the main results of Subsection 3.2 to a mixed economy.

To this end, we first associate E with an atomless economy Ẽ and study the connection

between the ex-ante (Aubin) core allocations of these two economies. This extends the

result of Greenberg and Shitovitz [14] and some of its follow-up papers as mentioned

in Section 1.

Interpretation via an atomless economy: Given the economy E , the economy

Ẽ is obtained by splitting each large agent into a continuum of small agents whose

characteristics are the same as that of large agent. Therefore, the space of agents of

Ẽ , denoted by (T̃ , T̃ , µ̃), satisfies the following: (i) T̃0 = T0 and µ̃(T̃1) = µ(T1), where

T̃1 := T \ T0; (ii) T̃ and µ̃ are obtained by the direct sum of T and µ restricted to T0
and the Lebesgue atomless measure space over T̃1; and (iii) each atom Ai one-to-one

corresponds to a Lebesgue measurable subset Ãi of T̃1 such that µ(Ai) = µ̃(Ãi), where

{Ãi : i ≥ 1} can be expressed as the disjoint union of the intervals {Ãi : i ≥ 1} given

by Ã1 := [µ(T0), µ(T0) + µ(A1)), and

Ãi :=

[
µ(T0) + µ

(
i−1⋃

j=1

Aj

)
, µ(T0) + µ

(
i⋃

j=1

Aj

))
,

for all i ≥ 2. Furthermore, the space of states of nature and the commodity space of

Ẽ are the same as those of E . Finally, the characteristics (X̃tF̃t, ũt, ẽ(t, ·), P̃t) of each

agent t ∈ T̃ in Ẽ is defined as follows:

X̃t :=

{
Xt, if t ∈ T0;

XAi
, if t ∈ Ãi,

F̃t :=

{
Ft, if t ∈ T0;

FAi
, if t ∈ Ãi,

ũt :=

{
ut, if t ∈ T0;

uAi
, if t ∈ Ãi,

ẽ(t, ·) :=

{
e(t, ·), if t ∈ T0;

e(Ai, ·), if t ∈ Ãi,

and

P̃t :=

{
Pt, if t ∈ T0;

PAi
, if t ∈ Ãi.
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We now introduce some notations for the rest of the section. To an allocation f in E ,

we associate an allocation f̃ := Ξ[f ] in Ẽ , defined by

f̃(t, ω) :=

{
f(t, ω), if (t, ω) ∈ T0 × Ω;

f(Ai, ω), if (t, ω) ∈ Ãi × Ω.

Reciprocally, for each allocation f̃ in Ẽ , we define an allocation f := Φ[f̃ ] in E such

that

f(t, ω) :=

{
f̃(t, ω), if (t, ω) ∈ T0 × Ω;

1

µ̃(Ãi)

∫
Ãi
f̃(·, ω) dµ̃, if t = Ai and ω ∈ Ω.

Recognized that if f is a feasible allocation in E then Ξ[f ] is a feasible allocation in Ẽ .

Similarly, for each feasible allocation f̃ in Ẽ , the allocation Φ[f̃ ] is feasible in E .

We show that an allocation is in the ex ante core of a mixed economy assigns

indifferent consumption plans to all large agents. This is due to the fact that all agents

have the same characteristics.

Proposition 3.15. Let the assumptions (A1)-(A
′
8) be satisfied for a mixed economy

E . Let R be a coalition in T1
6 having the same characteristics. If f is in the ex ante

core of E then Vt(f(t, ·)) = Vt(xf ) µ-a.e. on R, where

xf (ω) :=
1

µ(R)

∫

R

f(·, ω)dµ

for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Remark 3.16. If Y is finite dimensional then one can dispense with the assumption

(A′
8). In fact, the assumption (A′

8) help us to apply Proposition 3.8 in the proof of

Proposition 3.15. In the case of finite dimension, we can just use (A8) and apply the

Lyapunov convexity theorem instead of Proposition 3.8.

Lemma 3.17. Let E be a continuum economy and let the assumptions (A1)-(A7) be

satisfied. Suppose that f and g are allocations such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e.

on some coalition S and g(t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ R×Ω for

some sub-coalition R of S satisfying IR = IS. Assume further that µ(S ∩H) ≥ α for

some coalition H of E and some α > 0. Then there are a coalition B and an allocation

h such that f is blocked by B via h and µ(B ∩H) = α.

6If T1 is empty then R contains only negligible agents.
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Proof. The proof of the lemma is relegated to Appendix.

Proposition 3.18. Let E be a mixed economy satisfying the assumptions (A1)-(A
′
8).

If f̃ ∈ C (Ẽ ) then f := Φ[f̃ ] ∈ C A(E ).

Proof. The proof of the proposition is relegated to Appendix.

Proposition 3.19. Let E be a mixed economy satisfying the assumptions (A1)-(A
′
8).

Suppose also that R ∈ T1 is a coalition having the same characteristics. Then f ∈

C (E ) ⇒ f̃ := Ξ[f ] ∈ C (Ẽ ) if either of the following two conditions are true:

(i) R = T1 has at least two elements.

(ii) T1 has exactly one element and µ(R \ T1) > 0.

Proof. The proof of the proposition is relegated to Appendix.

Extending the Grodal Theorem: Next, an extension of Theorem 3.10 to an econ-

omy with a mixed measure space of agents is presented. Basically, we show that for

any given ε, δ > 0, there is a generalized coalition γ whose measure is less than ε and

γ can be expressed as some of the pairwise disjoint generalized coalitions each of its

diameters is less than δ. To this end, we say that two generalized coalitions γ1 and γ2
are disjoint if (γ1 ∧ γ2)(t) := min{γ1(t), γ2(t)} = 0 for all t ∈ T . As a consequence

of this, we have Sγ1 ∩ Sγ2 = ∅. Following Gerla and Volpe [?] (see also Bhowmik and

Graziano [8]), the diameter of a generalized coalition γ is defined by

diam(γ) := sup
{
min{α, β}‖a− b‖ : λαa , λ

β
b are fuzzy points of γ

}
,

where a fuzzy point λξa is a function λξa : T → (0, 1] for each a ∈ T and ξ ∈ (0, 1],

such that λξa(t) = 0 if t 6= a and λξa(t) = ξ if t = a.

Theorem 3.20. Let E be a mixed economy such that E satisfies (A1)-(A8). Suppose

further that T is endowed with a pseudometric which makes T a separable topological

space such that B(T ) ⊆ T and f 6∈ C A(E ). For any ε, δ > 0, there exist a generalized

coalition γ with µA(γ) ≤ ε and a finite collection {γ1, · · · , γn} of pairwise disjoint

characteristics functions7 of ordinary coalitions such that the diameter of γi smaller

than δ and Sγi ⊆ T0 for all i ∈ {1, · · · , n}, f is blocked by γ and

γ =

{ ∑n

i=1 γi +
∑

k∈K αkχAk
, if K 6= ∅;

∑n

i=1 γi, if K = ∅,

where K := {k : Ak ∈ Sγ} and αk ∈ (0, 1] if k ∈ K.

7Thus, γi can be treated as an ordinary coalition.
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Remark 3.21. Notice that each sub-coalition γi of γ|T0
is chosen as the set of agents

sharing their full initial endowments and the diameter of γj is exactly the same as

that of Sγj . Therefore, agents in γi have δ-similar characteristics in the ordinary sense,

implying the second part of Theorem 3.10 as a simple corollary. For a mixed economy,

the blocking coalition γ contains atmost finitely many atoms, which means that each

sub-coalition of diameter δ is either δ-similar non-atomic agents or a single atom, not

a neighborhood of points contained in an atom. Since an atom can be treated as δ-

similar to itself for any δ > 0, our approach for taking a neighborhood containing a

single atom does not violate Grodal’s requirements. Therefore, similar to Grodal [18].

Therefore, it can be considered as an extension Grodal’s theorem to a mixed economy.

Extending the Vind Theorem: In view of above results and Theorem 3.13, one can

readily derive the following result as in Bhowmik and Graziano [8].

Theorem 3.22. Consider a mixed economy E in which the assumptions (A1)-(A
′
8) are

satisfied. Let f be a feasible allocation such that f /∈ C A(E ). Then for any ε ∈ (0, 1),

there is some Aubin coalition γ such that µA(γ) = ε and f is Aubin blocked by γ.

Proof. The proof of the theorem is relegated to Appendix.

Remark 3.23. It is clear from the proof of Theorem ?? that for an ε > 0, there

exists a generalized coalition γ such that f is blocked by γ, µ̃(γ) = ε and γ(t) = 1 if

t ∈ Sγ ∩ T0. Thus, as in the case of atomless economies, non-atomic agents in Sγ use

their full initial endowments. However, the atomic agents in γ only use parts of their

initial endowments and the share αi for an atomic agent Ai depends on the size of γ.

So, Theorem ?? can be treated as an extension of that in an atomless economy.

4 Coalitional fairness of core allocations

In this section, we study the coalitional fairness of the ex ante core allocations. This

means that the stability of an allocation under the coalitional improvement guaran-

tees that it is also equitable in the sense that no coalition envies the net trade of any

other disjoint coalition. The concept of a coalitionally fair allocation was first proposed

by Gabszewicz in his seminal paper Gabszewicz [15] for an exchange economy, where

an allocation is said to be coalitionally fair if no coalition can redistribute among

its members the net trade of any other coalition, in such a way that each of them is

better-off. It is worthwhile to pointing out that competitive equilibrium allocations

are coalitionally fair, which also belongs to the core of the economy. For a classical
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economy with an atomless measure space of agents, Aumman’s core-equivalence theo-

rem guarantees that the set of coalitionally fair allocations coincides with the core of

the economy. However, it is unclear to us whether such a result holds true whenever

the consumption sets are not bounded from below and restrictions imposed on ex ante

trade. On the other hand, in a classical mixed economy, it is well known (refer to Shi-

tovitz [28]) that the core-equivalence theorem does not hold in general, and one should

expect a kind of exploitation of small agents by large agents. Fortunately, Bhowmik

and Graziano [9] obtained a partial result on the coalitional fairness of the core allo-

cations in the sense that no coalition of small agents envies the net trade of a disjoint

coalition comprised of all large agents and vice versa in a framework similar to us but

only for finitely many commodities. This result extends Theorem 2 in Gabszewicz

[15], who established the result in a classical deterministic economy with finitely many

commodities.

The first notion fairness requires that no coalition of small agents envies the net

trade of a disjoint coalition comprised of all large agents.

Definition 4.1. A feasible allocation f is called C(T0,T1)(E )-fair if there do not exist

two disjoint elements S ∈ T0, E ∈ T1 and an G -assignment g such that µ-a.e. on S

and for each ω ∈ Ω:

(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫

S

(g(·, ω)− e(·, ω))dµ =

∫

E

(f(·, ω)− e(·, ω))dµ.

In what follows, we show that any allocation in the ex-ante core is coalitionally fair

in a way that no coalition of small agents can redistribute among its members the net

trade of any other coalition containing all large agents, in such a way that each of them

is better-off.

Theorem 4.2. Let (A1)-(A?) be satisfied. Then any allocation in the ex-ante core of

E is C(T0,T1)(E )-fair.

Proof. The proof of the theorem is relegated to Appendix.

In the next notion fairness, the role of coalitions are opposite, i.e., no coalition

containing all large agents envies the net trade of a disjoint coalition of small agents.

Definition 4.3. A feasible allocation f is called C(T1,T0)(E )-fair if there do not exist

two disjoint elements S ∈ T1, E ∈ T0 and an G -assignment g such that µ-a.e. on S

and for each ω ∈ Ω:
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(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫

S

(g(·, ω)− e(·, ω))dµ =

∫

E

(f(·, ω)− e(·, ω))dµ.

To prove that any ex-ante core allocation is C(T1,T0)(E )-fair we establish the follow-

ing lemma.

Lemma 4.4. Assume that f and h are two allocations such that Vt(h(t, ·)) > Vt(f(t, ·))

µ-a.e. on some coalition S. Then there exist 0 < λ, η < 1, a sub-coalition R of S and

an allocation y such that

(i) y(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R;

(ii) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S;

(iii) Vt(y(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S \R; and

(iv)
∫
S
(y − e)dµ = (1− λ)

∫
S
(h− e)dµ.

Proof. The proof of the theorem is relegated to Appendix.

The following theorem demonstrates that any allocation in the ex-ante core is coali-

tionally fair in a way that no coalition comprised of all large agents can redistribute

among its members the net trade of any other coalition containing only small agents,

in such a way that each of them is better-off.

Theorem 4.5. Let (A1)-(A
′
8) be satisfied. Then any allocation in the ex-ante core is

C(T1,T0)(E )-fair.

Proof. The proof of the theorem is relegated to Appendix.

5 Concluding remarks

We have investigated the blocking of any allocation not belonging to the (strong) core of

an atomless economy with asymmetric information and infinitely many commodities.

It has been shown that the ex-ante (strong) core can be characterized by means of

coalitions of a given size less than that of the grand coalition, extending the results

in Schmeidler [29] and Vind [33]. Thus, it is enough to consider coalitions of either

arbitrarily small sizes or arbitrarily large sizes to find the (strong) core of a continuum

economy. It is further shown that Grodal’s theorem (refer to Grodal [18]) holds true in a

continuum economy. All of these results have also been carried out to a mixed economy
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by considering generalized coalitions instead of standard coalitions. To do this, we

associated an atomless economy with a mixed economy and showed that the Aubin

(strong) core of the mixed economy is equivalent to the (strong) core of the atomless

economy. Lastly, we proved that any (strong) core is coalitionally fair in the sense

that no coalition of small agents envies the net trade of a coalition containing all large

agents and vice versa. All of these results have been obtained without assuming the

separability condition on the commodity space. The difficulties that arise in all of these

results are due to the following facts: (i) the standard Lyapunov convexity theorem

does not hold, it holds only in a weak form in an infinite dimensional commodity space;

(ii) the consumption sets are arbitrary subsets of the commodity space which may not

satisfy the free-disposal condition Xt+YΩ
+ ⊆ Xt for t ∈ T , thus the strong monotonicity

condition may not be applied whenever required; and (iii) information asymmetry,

which further restricts the consumptions of each agent. All of these difficulties are

taken care of by establishing several key propositions, out of which Proposition 3.4 has

its own interest. In fact, as a consequence of this proposition, we conclude that the

ex-ante strong core is equivalent to the ex-ante core in a continuum economy.

We close with further remarks dealing with possible extensions and applications of our

results.

Remark 5.1. Hervés-Beloso and Moreno-Garćıa [22] provides a characterization of

Walrasian allocations in terms of robustly efficient allocations in a continuum economy.

Later, it is extended by Bhowmik and Cao [7] to a mixed economy with asymmetric

information and an ordered separable Banach space whose positive cone has an interior

point by applying Vind’s theorem and a result similar to Proposition 3.11. Thus, in

view of Proposition 3.11 and Theorem 3.13, it would be interesting to know whether

the main result of Bhowmik and Cao [7] can be extended to our framework.

6 Appendix

Lemma 6.1. Suppose that f and g are two allocations such that Vt(g(t, ·)) > Vt(f(t, ·))

µ-a.e. on some coalition S with g(t, ω) being an interior point of Xt(ω) for all (t, ω) ∈

S × Ω. Then for any 0 < ε < µ(S), there are some η > 0 and a sub-coalition R of S

such that

(i) µ(R) > µ(S)− ε;

(ii) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ R× Ω; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R.
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Proof. Define a correspondence Υ : S ⇒ R+ by letting

Υ(t) :=
{
η ∈ (0,∞) : g(t, ·) + z ∈ Xt and Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω

}
.

By the continuity of preferences and the fact that g(t, ω) is an interior point of Xt(ω)

for all (t, ω) ∈ S × Ω, we have Υ(t) 6= ∅ µ-a.e. on S. As Υ(t) is bounded from above,

the function ϕ : S → R+, defined by ϕ(t) := supΥ(t), is well-defined. We show that ϕ

is TS-measurable. To this end, first note that the function ψ : S × YΩ → R, defined

by ψ(t, z) := Vt(g(t, ·) + z) − Vt(f(t, ·)), is a Carathéodory function, and thus, it is

TS ⊗ B(YΩ)-measurable. Define a correspondence G : S ⇒ YΩ by letting

G(t) :=
{
z ∈ YΩ : ψ(t, z) > 0

}
.

It follows that G is non-empty valued and has TS ⊗ B(YΩ)-measurable graph, as

GrG = ψ−1(0,∞). Consider a correspondence H : S ⇒ YΩ defined by

H(t) :=
{
z ∈ YΩ : g(t, ω) + z(ω) ∈ Xt(ω) for all ω ∈ Ω

}
.

Due to the closeness of Xt(ω), H(t) can be equivalently expressed as8

H(t) =
{
z ∈ YΩ : dist(g(t, ω) + z(ω), Xt(ω)) = 0 for all ω ∈ Ω

}
.

In view of the fact that 0 ∈ H(t), we have H(t) 6= ∅ µ-a.e. on S. Moreover, GrH
is TS ⊗ B(YΩ)-measurable as GrH = y−1({0}), where y : S × YΩ → R is defined

by y(t, ω) := dist(g(t, ω) + z(ω), Xt(ω)), is TS ⊗ B(YΩ)-measurable. Finally, define

a correspondence Φ : S ⇒ YΩ such that Φ(t) := G(t) ∩ H(t) for all t ∈ S. As

0 ∈ Φ(t), we have Φ(t) 6= ∅ µ-a.e. on S. Moreover, GrΦ is TS ⊗ B(YΩ)-measurable.

Analogously, the correspondnce Θη : S ⇒ YΩ, defined by Θη(t) := B(0, η)Ω, has

TS ⊗ B(YΩ)-measurable graph, for all η > 0. Thus,

Υ(t) = {η ∈ R+ : Θη(t) ⊆ Φ(t)} = {η ∈ R+ : Λη(t) = ∅} ,

where Λη : S ⇒ YΩ, defined as Λη(t) := Θη(t)∩(YΩ\Φ(t)), has TS-measurable graph.

Finally, the TS-measurability of ϕ follows from the fact that for each α > 0, we have

{t ∈ S : ϕ(t) < α} =
⋃

η∈Q∩(0,α)

ProjSΛη.

For each η ∈ Q ∩ (0, 1), define Bη := {t ∈ S : ϕ(t) ≥ η}. Thus, {Bη : η ∈ Q ∩ (0, 1)}

is family of TS-measurable sets such that Bη ⊆ Bη′ if and only if η ≥ η′ and S ∼⋃
{Bη : η ∈ Q ∩ (0, 1)}9. Let ε ∈ (0, µ(S)). Then there is some η0 ∈ Q ∩ (0, 1) such

8For any x ∈ Y and A ⊆ Y, the distance between x and A, denoted by dist(x,A). defined as

dist(x,A) := inf{‖x− y‖ : y ∈ A}.

9C ∼ D means µ(C∆D) = 0, where C∆D = (C \D) ∪ (D \ C).
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that µ(Bη0) > µ(S)− ε. Set R := Bη0 and note that, for t ∈ R, as ϕ(t) ≥ η0, we have

B(0, η0)
Ω ⊆ Φ(t). This completes the proof.

The following lemma on the convexity of vector measure is an application of the

infinite dimensional version of the Lyapunov convexity theorem (refer to Uhl (1969)),

whose proof can be found in Bhowmik and Cao (2013) and Evren and Hüsenov (2008).

Lemma 6.2. Consider a continuum economy and assume that f ∈ L1

(
µ,YΩ

)
. Suppose

also that S,R are two coalitions of E such that µ(S ∩R) > 0. Then,

H := cl

{(
µ(B ∩R),

∫

B

fdµ

)
: B ∈ TS

}

is a convex subset of R × YΩ. Moreover, for any 0 < δ < 1, there is a sequence

{Gn}n≥1 ⊆ TS such that µ(Gn ∩R) = δµ(S ∩R) for all n ≥ 1 and

lim
n→∞

∫

Gn

f(·, ω)dµ = δ

∫

S

f(·, ω)dµ

for all ω ∈ Ω.

Proof of Proposition 3.4: It is given that

(i) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on Sγ; and

(ii) Vt(g(t, ·)) > Vt(f(t, ·)) for all t ∈ B and IB = ISγ
.

Define ϕ : T × Ω × (0, 1) → Y by letting ϕ(t, ω, λ) := λg(t, ω) + (1 − λ)e(t, ω). By

Lemma 5.28 in Aliprantis and Border [1], we conclude that ϕ(t, ω, λ) is an interior point

of Xt(ω) for all (t, ω, λ) ∈ T×Ω×(0, 1). For each t ∈ B, by the continuity of preference,

there is an element λt ∈ (0, 1) such that Vt(ϕ(t, ·, λ)) > Vt(f(t, ·)) for all λ ≥ λt. For

each λ ∈ (0, 1) ∩ Q, define Bλ := {t ∈ B : λ ≥ λt}. Thus, {Bλ : λ ∈ Q ∩ (0, 1)} is a

family of TB-measurable sets such that Bλ ⊆ Bλ′ if and only if λ ≤ λ′. Furthermore,

B ∼
⋃

{Bλ : λ ∈ Q ∩ (0, 1)}.

Let ε > 0 be such that ε < min{µ(Bi) : i ∈ IB}. Therefore, there is an λ0 ∈ (0, 1) ∩Q

such that µ(Bλ0
) > µ(B)− ε, which implies IBλ0

= IB = ISγ
. By Lemma 6.1, there are

some η > 0 and a sub-coalition B̂ of Bλ0
such that

(a) IB̂ = IBλ0
;

(b) ϕ(t, ω, λ0) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ B̂ × Ω; and
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(c) Vt(ϕ(t, ·, λ0) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and t ∈ B̂.

Since γ is simple and measurable, there is a collection {Q1, · · · , Qm} of pairwise disjoint

measurable sets such that γ(t) := γj for some γj ∈ [0, 1] and all t ∈ Qj. We define

J := {j : γj 6= 0}. So, the support of γ is given by

Sγ =
⋃

{Qj : j ∈ J}.

Let K := {(i, j) ∈ IB̂×J : µ(B̂i∩Qj) > 0}. Pick an element (i, j) ∈ K. By Lemma 6.2,

there exists a sequence {Gn}n≥1 ⊆ TB̂i∩Qj
of coalitions such that µ(Gn) = γjµ(B̂i∩Qj)

and for all ω ∈ Ω,

lim
n→∞

∫

Gn

(ϕ(·, ·, λ0)− e(·, ω))dµ = γj

∫

B̂i∩Qj

(ϕ(·, ·, λ0)− e(·, ω)) dµ.

The function ξn : Ω → Y, defined by

ξn(ω) = γj

∫

B̂i∩Qj

(ϕ(·, ·, λ0)− e(·, ω)) dµ−

∫

Gn

(ϕ(·, ·, λ0)− e(·, ω))dµ,

satisfies ξn ∈ Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω.

Choose an integer nij ≥ 1 such that

ξnij
(ω) ∈ B

(
0,
ηµ(B̂i)

3m

)

for all ω ∈ Ω. It follows that

∑

{j:(i,j)∈K}

ξnij
(ω) ∈ B

(
0,
ηµ(B̂i)

3

)
.

We define

R :=
⋃{

Gnij
: (i, j) ∈ K

}
.

Letting F := Sγ \ B̂, we note that IF ⊆ ISγ
. Define

M := {(i, j) ∈ IF × J : µ(Fi ∩Qj) > 0} .

For any (i, j) ∈ M, similar to above, there is a subcoalition Hij of Fi ∩ Qj such that

µ(Hij) = λ0γjµ(Fi ∩Qj) and for all ω ∈ Ω,

bij(ω) := λ0γj

∫

Fi∩Qj

(g(·, ω)− e(·, ω)) dµ−

∫

Hij

(g(·, ω)− e(·, ω)) dµ ∈ B

(
0,
ηµ(B̂i)

3m

)
.
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As a consequence, we have

∑

{j:(i,j)∈M}

bij(ω) ∈ B

(
0,
ηµ(B̂i)

3

)
.

Pick an (i, j) ∈ M, and define

Di := Gi ∩ B

(
0,
ηµ(B̂i)

3m

)Ω

.

As in Lemma 6.1, the correspondence Fij : Hij ⇒ Di, defined by

Fij(t) := {z ∈ Di : g(t, ·) + z ∈ Xt and Vt(g(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has THij
⊗ B(Di)-measurable graph, which further implies

the existence of a THij
-measurable selection ξij of Fij. Define

ζij :=
1

µ(Hij)

∫

Hij

ξijdµ.

By properties of the Bochner integral (see Diestel and Uhl [11], Corollary 8, p. 48), one

has ζij ∈ co{ξij(t) : t ∈ Hij}
10, which, in view of the fact that Di is closed and convex,

immediately implies that ζij ∈ Di. Therefore, βij := ζijµ(Hij) ∈ Di. Consequently,

∑

{j:(i,j)∈M}

βij(ω) ∈ B

(
0,
ηµ(B̂i)

3

)
.

Let C :=
⋃
{Hij : (i, j) ∈ M}. For each i ∈ ISγ

, let xi : Ω → Y be a function defined

by

xi(ω) :=

{ ∑
{j:(i,j)∈K} ξnij

(ω) +
∑

{j:(i,j)∈M}[bij(ω)− βij(ω)], if ω ∈ Ω and i ∈ IF ;
∑

{j:(i,j)∈K} ξnij
(ω), if ω ∈ Ω and i /∈ IF .

It follows that xi(ω) ∈ B(0, η). Finally, we define a function y : T × Ω → Y defined

by11

y(t, ω) :=





ϕ(t, ω, λ0) +
xi(ω)
Gnij

, if (t, ω) ∈ Gnij
× Ω and (i, j) ∈ K;

g(t, ω) + ξij(t, ω), if (t, ω) ∈ Hij × Ω and (i, j) ∈ M;

g(t, ω), otherwise.

10Here, co stands for the closed convex hull.
11ξ(t, ω) denotes the ωth-coordinate of ξ(t).
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Recognized that y is an allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := C ∪ R.

It can be readily verified that
∫

E

(y(·, ω)− e(·, ω))dµ = λ0

∫

T

γ(g(·, ω)− e(·, ω))dµ.

For each t ∈ Ri, define

ηi := min

{
η − dist

(
0,
xi(ω)

Gnij

)
: ω ∈ Ω and (i, j) ∈ K

}
.12

Let η0 := min{ηi : i ∈ IR}. As a consequence, we have y(t, ·) + B(0, η0)
Ω ⊆ Xt and

Vt(y(t, ·) + z) > Vt(f(t, ·)) µ-a.e. on R. This completes the proof.

Proof of Proposition 3.8: Let ε > 0 be such that ε < min{µ(Ri) : i ∈ IR}. By

Lemma 6.1, one can find an η > 0 and a sub-coalition C of R such that

(i) µ(C) > µ(R)− ε;

(ii) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ C × Ω; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on C.

It follows from (i) that IC = IR = IS and IS\C ⊆ IS. Pick an i ∈ IC . By Lemma 6.2,

there exists a sequence {Gn}n≥1 ⊆ TCi
such that µ(Gn) = δµ(Ci) and for all ω ∈ Ω,

lim
n→∞

∫

Gn

(g(·, ω)− ψ(·, ω))dµ = δ

∫

Ci

(g(·, ω)− ψ(·, ω)) dµ.

The function ξn : Ω → Y, defined by

ξn(ω) = δ

∫

Ci

(g(·, ω)− ψ(·, ω)) dµ−

∫

Gn

(g(·, ω)− ψ(·, ω)) dµ,

satisfies ξn ∈ Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω.

Choose an ni ≥ 1 such that

ξni
(ω) ∈ B

(
0,
ηδµ(Ci)

2

)

for all i ∈ IS and ω ∈ Ω. Similarly, for each i ∈ ID (where D := S \ C), there is some

Fi ∈ TDi
such that µ(Fi) = δµ(Di) and

bi(ω) := δ

∫

Di

(g(·, ω)− ψ(·, ω)) dµ−

∫

Fi

(g(·, ω)− ψ(·, ω)) dµ ∈ B

(
0,
ηδµ(Ci)

2

)
.

12Note that z(·, ω) is constant on Ri.
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For each ω ∈ Ω, define zi(ω) := bi(ω) if i ∈ ID; and zi(ω) := 0, if i ∈ IS \ ID.

Analogously, define

Ki :=

{
Gni

∪ Fi, if i ∈ ID;

Gni
, if i ∈ IS \ ID.

Recognized that, for each i ∈ IS, we have

Si :=

{
Ci ∪Di, if i ∈ ID;

Ci, if i ∈ IS \ ID.

For each i ∈ IS, define a function ϕi : Ki × Ω → Y such that

ϕi(t, ω) :=

{
g(t, ω) + 1

δµ(Ci)
(ξni

(ω) + zi(ω)), if (t, ω) ∈ Gni
× Ω;

g(t, ω), otherwise.

It follows that ϕi(t, ·) is Fi-measurable. Furthermore, in light of (ii) and (iii), we have

ϕi(t, ω) ∈ Xt(ω) for all (t, ω) ∈ Ki × Ω and Vt(ϕ
i(t, ·)) > Vt(f(t, ·)) µ-a.e. on Ki.

Lastly, note that

∫

Ki

(ϕi(·, ω)− ψ(·, ω))dµ = δ

∫

Si

(g(·, ω)− ψ(·, ω))dµ

for all ω ∈ Ω. Let B :=
⋃
{Ki : i ∈ IS} and

η0 := min

{
η − dist

(
0,

1

δµ(Ci)
(ξni

(ω) + zi(ω))

)
: i ∈ IR and ω ∈ Ω

}
.

Thus, the function ϕ : T ×Ω → Y, defined by ϕ(t, ω) := ϕi(t, ω) for all (t, ω) ∈ Ti ×Ω,

satisfies the requied properties for the above choices of B, C and η0.

Proof of Theorem 3.9: Pick an ε ∈ (0, µ(S)). In view of Proposition 3.4 and Remark

3.6, we can choose two coalitions E, R and an allocation g such that (i) µ(E) > ε;

(ii) R ⊆ E ⊆ S and IR = IE = IS; (ii) f is blocked by E via g; and (iii) g(t, ω) is an

interior point of Xt(ω) for all (t, ω) ∈ R × Ω. Let δ ∈ (0, 1) be such that ε = δµ(E).

By Proposition 3.8 that there are an η0 > 0, two coalitions B, C and an allocation ϕ

such that

(i) C ⊆ B ⊆ E, IC = IB = IE, and µ(B) = δµ(E);

(ii) ϕ(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ (0, η0)
Ω and µ-a.e. on C;

26



(ii) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(iii)
∫
B
(ϕ(·, ω)− e(·, ω))dµ = δ

∫
E
(g(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Consequently, µ(B) = ε and
∫
B
(ϕ(·, ω)− e(·, ω))dµ = 0 for all ω ∈ Ω. This means that

f is blocked by B.

Proof of Theorem 3.10: Let f be an allocation and R be a coalition blocking f .

Let β := µ(R)− α
2
. As in the proof of Theorem 3.9, there are an η > 0, two coalitions

B, C and an allocation ϕ such that

(i) IC = IB = IR and µ(B) = β;

(ii) ϕ(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on C; and

(iv) f is blocked by B via ϕ.

Let i ∈ IB. By absolute continuity of the Bochner integral, there exists some ζi > 0

such that
2

µ(Ci)

∫

Gi

(ϕ(·, ω)− e(·, ω)) dµ ∈ B(0, η)

for all ω ∈ Ω and Gi ∈ TBi
satisfying µ(Gi) < ζi. Define

α := min {2ζi, µ(Ci) : i ∈ IB} .

For all i ∈ IB, pick any Di ∈ TBi
such that µ(Bi \Di) <

α
2
. Therefore, µ(Ci ∩Di) >

µ(Ci)
2

. It follows that

xi(ω) :=
1

µ(Ci ∩Di)

∫

Bi\Di

(g(·, ω)− e(·, ω)) dµ ∈ B(0, η)

for each ω ∈ Ω. Let hi : T × Ω → Y+ such that

hi(t, ω) :=

{
ϕ(t, ω) + xi(ω), if (t, ω) ∈ (Ci ∩Di)× Ω;

ϕ(t, ω), otherwise.

By (ii) and (iii), it follows that hi(t, ·) ∈ Xt and Vt(hi(t, ·)) > Vt(f(t, ·)) µ-a.e. on

Ci ∩Di. Furthermore,

∫

Di

(hi(·, ω)− e(·, ω))dµ =

∫

Bi

(ϕ(·, ω)− e(·, ω)) dµ
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for all ω ∈ Ω. Let S ∈ TR be a coalition such that µ(R \ S) < α. It follows that

µ(B \ S) < α
2
and hence, µ(Bi \ Si) <

α
2
for all i ∈ IB. Consequently, for each i ∈ IB,

there is an allocation hi such that Vt(hi(t, ·)) > Vt(f(t, ·)) µ-a.e. on Si, and

∫

Si

(hi(·, ω)− e(·, ω))dµ =

∫

Bi

(g(·, ω)− e(·, ω)) dµ

for all ω ∈ Ω. We consider an allocation h : T ×Ω → Y+, defined by h(t, ω) = hi(t, ω)

if (t, ω) ∈ Si×Ω, i ∈ IR and h(t, ω) = g(t, ω), otherwise. Recognized that S blocks the

allocation f via h.

For the second part, assume that f 6∈ C (E ) and choose ε, δ > 0. Applying Theorem

3.9, we find a coalition R with µ(R) = ε blocking f via some allocation g. Let

{tn : n ≥ 1} be a countable dense subset of R. For all n ≥ 1, define

Gn := R ∩ B

(
tn,

δ

2

)

Letting Fn :=
⋃
{Gk : 1 ≤ k ≤ n} for all n ≥ 1, we see that {Fn : n ≥ 1} is an

ascending sequence and R =
⋃
{Fn : n ≥ 1}. Thus, there is an n0 ≥ 1 such that

µ(R \ Fn0
) < δ. This completes the proof.

Proof of Proposition 3.11: Let 0 < δ < 1. In view of Proposition 3.8, there are an

η0 > 0, two non-null coalitions B and C, and an allocation ϕ such that

(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B) = δµ(S);

(ii) ϕ(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(iv)
∫
B
(ϕ(·, ω)− f(·, ω))dµ = δ

∫
S
(g(·, ω)− f(·, ω))dµ for all ω ∈ Ω.

Let E := S \B and define, for each i ∈ IE, the set

Di := Gi ∩ B (0, η0µ(Ci))
Ω ,

where Ci := C ∩ Ti. As in Lemma 6.1, the correspondence Fi : Ei ⇒ Di, defined by

Fi(t) := {z ∈ Di : f(t, ·) + z ∈ Xt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,
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has a TEi
⊗ B(Di)-measurable graph. By our stated assumptions, Fi(t) 6= ∅ for all

t ∈ Ei. By the Aumann-Saint-Beuve measurable selection theorem, there is a TEi
-

measurable selection ξi of Fi. Define

ζi :=
1

µ(Ei)

∫

Ei

ξidµ.

As in the proof of Proposition 3.4, one can show that ζi ∈ Di. So, εi := ζiµ(Ei) ∈ Di

and

bi :=
εi

µ(Ci)
∈ Gi ∩ B (0, η0)

Ω .

Let h : S × Ω → Y be a function such that

h(t, ω) :=





ϕ(t, ω)− bi(ω), if (t, ω) ∈ Ci × Ω and i ∈ IE;

f(t, ω) + ξi(t, ω), if (t, ω) ∈ Ei × Ω and i ∈ IE;

ϕ(t, ω), otherwise.

It is evident that h is an allocation and Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on S. It can be

readily verified that

∫

S

h(·, ω)dµ =

∫

S

(δg(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. This completes the proof.

Proof of Theorem 3.13: Since f is a non-core allocation, there exists a coalition S

and an allocation g such that f is blocked by S via g. Then for each ε ∈ (0, µ(S)), by

Theorem 3.9, there are a coalition R and an allocation ϕ such that µ(R) = ε and f is

blocked by R via ϕ. If µ(S) = µ(T ), then there is nothing more to verify. Thus, we

assume that µ(S) < µ(T ) and choose an ε ∈ (µ(S), µ(T )). Define

δ := 1−
ε− µ(S)

µ(T \ S)
.

By Lemma 6.1, one can find an η0 > 0 and a sub-coalition C of B such that

(A) IC = IB;

(B) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω; and

(C) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on C.
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Define

D :=
⋂

{η0δµ(C)Gi : 1 ≤ i ≤ n} ∩ B (0, η0δµ(C))
Ω .

As in Lemma 6.1, the correspondence F : T \ S ⇒ D, defined by

F(t) := {z ∈ D : f(t, ·) + z ∈ intXt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has TT\S ⊗ B(D)-measurable graph, which further implies

the existence of a TT\S-measurable selection ξ of F. Define

ζ :=
1

µ(T \ S)

∫

T\S

ξdµ.

As in the proof of Proposition 3.4, one can show that ζ ∈ D. So, ε := ζµ(T \ S) ∈ D

and

γ :=
ε

δµ(C)
∈
⋂

{η0Gi : 1 ≤ i ≤ n} ∩ B (0, η0)
Ω .

In view of Proposition 3.8 there exist a coalition F and an allocation ψ such that

(a) µ(F ) = (1− δ)µ(T \ S);

(b) Vt(ψ(t, ·)) > Vt(f(t, ·)) µ-a.e. on F ; and

(c)
∫
F
(ψ(·, ω)− e(·, ω))dµ = (1− δ)

∫
T\S

(f(·, ω) + ξ(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Let g̃ : T × Ω → Y be an allocation such that

g̃(t, ω) :=

{
g(t, ω)− γ(ω), if (t, ω) ∈ C × Ω;

g(t, ω), otherwise.

By Proposition 3.11, there exist some allocation h such that Vt(h(t, ·)) > Vt(f(t, ·))

µ-a.e. on S, and
∫

S

h(·, ω)dµ =

∫

S

(δg̃(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. We define a function y : T × Ω → Y by setting

y(t, ω) :=

{
ψ(t, ω), if (t, ω) ∈ F × Ω;

h(t, ω), otherwise.

Recognized that y is an allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := F ∪ S.

It can be readily verified that µ(E) = ε and
∫

E

(y(·, ω)− e(·, ω))dµ = (1− δ)

∫

T

(f(·, ω)− e(·, ω))dµ = 0.
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This completes the proof.

Proof of Proposition 3.15: Denoting by XR, FR, VR, and eR(·) the common values

of Xt, Ft, Vt, and e(t, ·), respectively. Suppose, on contrary, that VR(xf ) > VR(f(t, ·))

for all t ∈ B for some sub-coalition B of R. Without loss of generality, we may assume

that µ(R) < µ(T ). Otherwise, f will be be blocked by B via xf . This can be seen as

follows: ∫

B

xfdµ =
µ(B)

µ(R)

∫

R

xfdµ =
µ(B)

µ(R)

∫

R

edµ =

∫

B

edµ.

Therefore, we assume that µ(R) < µ(T ). Then there are an λ ∈ (0, 1) and a sub-

coalition D of B such that

VR(λxf + (1− λ)eR) > VR(f(t, ·))

for all t ∈ D. By Lemma 5.28 of Aliprantis and Border [1], we have λxf + (1− λ)eR is

an interior point of XR. It follows that there are an η > 0 and a sub-coalition E of D

such that

VR(λxf + (1− λ)eR − z) > VR(f(t, ·))

for all z ∈ B(0, η)Ω and t ∈ E. Let δ ∈ (0, 1] be such that µ(E) = δµ(R). Define

D :=
⋂

{ηµ(E)Gi : 1 ≤ i ≤ n} ∩ B (0, ηµ(E))Ω .

As before, one can find an allocation ξ : T0 × Ω → Y such that

(i) ξ(t, ·) ∈ D µ-a.e. on T0;

(ii) f(t, ·) + ξ(t, ·) ∈ intXt µ-a.e. on T0; and

(iii) Vt(f(t, ·) + ξ(t, ·)) > Vt(f(t, ·)) µ-a.e. on T0.

By Proposition 3.8, there exists a coalition C ∈ TT\R and an allocation ϕ such that

(A) µ(C) = δµ(T \R);

(B) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on C; and

(C)

∫

C

(ϕ− e)dµ = λδ

∫

T\R

(f + ξ − e)dµ.

Define

ζ :=
1

µ(T \R)

∫

T\R

ξdµ.
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As in the proof of Proposition 3.4, one can show that ζ ∈ D, which further implies

α := λδζµ(T \R) ∈ D. Consequently,

γ :=
α

µ(E)
∈
⋂

{ηGi : 1 ≤ i ≤ n} ∩ B (0, η)Ω .

Finally, we define an assignment y : T × Ω → Y defined by

y(t, ω) :=

{
λxf (ω) + (1− λ)eR(ω)− γ(ω), if (t, ω) ∈ E × Ω;

ϕ(t, ω), otherwise.

It can be readily verified that S := C∪E blocks f via y. This is a contradiction. Hence,

VR(f(t, ·)) ≥ VR(xf ) µ-a.e. on R. Let G be a sub-coalition of R such thatVR(f(t, ·)) >

VR(xf ) for all t ∈ G. By applying Jensen’s inequality, one obtains

VR

(
1

µ(G)

∫

G

fdµ

)
> VR(xf )

and

VR

(
1

µ(R \G)

∫

R\G

fdµ

)
≥ VR(xf ).

Let α := µ(G)
µ(R)

. By Lemma 5.26 in Aliprantis and Border (2005), one has

VR(xf ) = VR

(
α

µ(G)

∫

G

fdµ+
1− α

µ(R \G)

∫

R\G

fdµ

)

> VR(xf ),

which is a contradiction. Therefore, VR(f(t, ·)) = VR(xf ) µ-a.e. on R.

Proof of Lemma 3.17: By Lemma 6.1, there exists an η > 0 such that g(t, ·)+z ∈ Xt

and Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and all t ∈ R. Let δ ∈ (0, 1] be a

number such that α = δµ(S ∩ H). Pick an element i ∈ IS. By Lemma 6.2, there is

a sequence {Cn
i : n ≥ 1} ⊆ TSi

such that µ(Cn
i ∩H) = δµ(Si ∩H) for all n ≥ 1 and

{xni : n ≥ 1} converges to 0 in norm-topology, where

xni := δ

∫

Si

(g − e)dµ−

∫

Cn
i

(g − e)dµ

for all n ≥ 1. Let n0 ≥ 1 be such that

xn0

i

µ(Cn0

i )
∈ B(0, η)Ω
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for all i ∈ IS. Define G :=
⋃
{Cn0

i : i ∈ IS}. Consider an allocation h : T × Ω → Y

defined that

h(t, ω) :=





g(t, ω) +
x
n0

i

µ(C
n0

i )
, if (t, ω) ∈ Cn0

i × Ω and i ∈ IS;

g(t, ω), otherwise.

It can be readily verified that f is blocked by G via h and µ(G ∩H) = α.

Proof of Proposition 3.18: Let f̃ ∈ C (Ẽ ). Suppose by the way of contradiction that

f := Φ[f̃ ] /∈ C A(E ). Consequently, there are an Aubin coalition γ and an allocation g

such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ and

∫

Sγ

γg(·, ω) dµ =

∫

Sγ

γe(·, ω) dµ

for all ω ∈ Ω. Define J := {j : Aj ⊆ Sγ}. By Theorem 3.7, we may assume that J 6= ∅.

Consequently,
∫

Sγ∩T0

γ(g − e) dµ+
∑

j∈J

γ(Aj)µ(Aj)(g(Aj)− e(Aj)) = 0.

In view of Proposition 3.4, there is an r0 ∈ (0, 1) and an allocation y such that

ut(y(t, ·)) > ut(f(t, ·)) µ-a.e. on Sγ ∩ T0 and

∫

Sγ∩T0

(y − e) dµ = r0

∫

Sγ∩T0

γ(g − e) dµ.

By the Lyapunov convexity theorem, there is a sub-coalition B̃j of Ãj such that

µ̃(B̃j) = r0γ(Aj)µ̃(Ãj).

Define an allocation ϕ : T → Y by letting

ϕ(t, ω) :=

{
g̃(t, ω), if (t, ω) ∈ B̃i × Ω and i ∈ J;

y(t, ω), otherwise,

where g̃ := Ξ[g]. Define

S̃ := (Sγ ∩ T0) ∪
⋃

{B̃j : j ∈ J}.

It fdollows that ∫

S̃

(ϕ− e) dµ = 0.
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Pick an j ∈ J. For a continuum economy E with T1 = ∅ and R ∩ T0 = Ãj, we have in

view of Proposition 3.15, the equaility Vt(f(Aj, ·)) = Vt(f̃(t, ·)) µ-a.e. on Ãj. Therefore,

µ-a.e. on B̃j, we have

Vt(ϕ(t, ·)) = VAi
(g(Ai, ·)) > VAi

(f(Ai, ·)) = VAj
(f̃(t, ·)).

Hence, f̃ is blocked by S̃ via ϕ, which leads to a contradiction.

Proof of Proposition 3.19: First, we define x
f̃
: Ω → Y by letting

x
f̃
(ω) :=

1

µ̃(R)

∫

R

f̃(·, ω)dµ̃

for all ω ∈ Ω. Thus, consider a feasible allocation f̃A : T × Ω → Y such that

f̃A(t, ω) :=

{
f̃(t, ω), if (t, ω) ∈ (T \R)× Ω;

x
f̃
(ω), otherwise.

In view of Proposition 3.15, we have Vt(f̃(t, ·)) = Vt(f̃
A(t, ·)) µ-a.e. on R. Suppose, by

the way of contradiction, that f̃ /∈ C (Ẽ ). Thus, f̃A is not in the core of Ẽ .

Case 1. R = T1 and |T1| ≥ 2. Choose an element A0 ∈ T1 and let µ(A0) = ε > 0.

By Theorem 3.13, f̃A is blocked by a coalition B̃ of Ẽ with µ̃(B̃) = µ̃(T0) + ε, which

gives µ̃(B̃ ∩ T̃1) ≥ ε. Therefore, in the light of Lemma 3.17, there exist a coalition Ẽ

and an assignment ỹ such that f̃A will be blocked by Ẽ via ỹ and µ̃(Ẽ∩ T̃1) = ε. Define

a coalition S of E such that S := (Ẽ ∩ T0) ∪ A0, and define a function y : T × Ω → Y

by

y(t, ω) =

{
ỹ(t, ω), if (t, ω) ∈ (T \ A0)× Ω;

1
ε

∫
Ẽ∩T̃1

ỹ(·, ω)dµ̃, otherwise.

Recognized that y is an allocation of E such that

∫

S

y(·, ω)dµ =

∫

S

e(·, ω)dµ

for all ω ∈ Ω. Furthermore, by the quasi-concavity of VT1
, we have Vt(y(t, ·)) >

Vt(f(t, ·)) µ-a.e. on S, which leads to a contradiction.

Case 2. µ(R \ T1) > 0. Define C := R ∩ T0. Since f̃A is not in the core of Ẽ , by

Proposition 3.4, we conclude that there are a coalition B̃ and an allocation ỹ such that

f̃A will be blocked by B̃ via ỹ and ỹ(t, ·) is an interior point of Xt for all t ∈ G̃ for

some sub-coalition G̃ of B̃ satisfying IB̃ = IG̃. If B̃ ⊆ T0, there is noting more to verify.
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Thereofore, we assume that µ̃(B̃ ∩ T̃1) > 0. Let ε := µ̃(B̃ ∩ T̃1). Define a function

ỹA : T̃ × Ω → Y by

ỹA(t, ω) :=

{
1
ε

∫
B̃∩T̃1

ỹ(·, ω)dµ̃, if (t, ω) ∈ (B̃ ∩ T̃1)× Ω;

ỹ(t, ω), otherwise.

It follows that VT1
(ỹA(t, ·)) > VT1

(f̃A(t, ·)) µ-a.e. on B̃ and
∫

B̃∩T0

(ỹA − e)dµ̃+ ε(ỹA − eT1
) = 0. (6.1)

As IB̃ = IG̃, one of the following must hold: IR ⊆ IG̃. If µ̃(C) ≥ ε then we choose a

coalition R̂ ⊆ C such that µ̃(R̂) = ε. Consequently, by Equation (6.1), we have
∫

B̃∩T0

(ỹA − e)dµ̃+ µ̃(R̂)(ỹA − eT1
) = 0.

If µ̃(C) < ε then first choose an α ∈ (0, 1) such that µ̃(C) = αε. By Proposition 3.8,

there are two coalitions K̂ and D̂ and an allocation ϕ such that K̂ ⊆ D̂ ⊆ B̃ ∩T0 with

IK̂ = ID̂ = IB̃∩T0
; Vt(ϕ(t, ·)) > Vt(f(t·)) for all t ∈ D̂; ϕ(t, ω) is an interior point of

Xt(ω) for all (t, ω) ∈ K̂ × Ω; and
∫

D̂

(ϕ− e)dµ̃ = α

∫

B̃∩T0

(ỹA − e)dµ̃.

In view of Equation (6.1), we have IK̂∪C = ID̂∪C = IB̃ and

∫

D̂

(ϕ− e)dµ̃+ µ̃(C)(ỹA − eT1
) = 0.

Hence, in either of these cases, there are coalitions D,K,R and allocation ξ such that

K ⊆ D ⊆ B̃ ∩ T0 and N ⊆ C such that IK∪N = ID∪N = IB̃ and

∫

D

(ξ − e)dµ̃+ µ̃(N)(ỹA − eT1
) = 0.

If µ̃(D ∩N) = 0 then D ∪N blocks the allocation f̃A via ζ, where the allocation ζ is

defined by

ζ(t, ω) =

{
ξ(t, ω), if (t, ω) ∈ D × Ω;

ỹA(t, ω), otherwise.

If µ̃(D ∩N) > 0 then we define E := (D \N)∪ (N \D) and G := D ∩N . Recognized

that ζ(t, ω) is an interior point of Xt(ω) for all t ∈ H for some sub-coalition H of K∪N
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satisfying IH = I(K∪N)∩E. By Proposition 3.8, there is some coalition F ⊆ E and an

allocation h such that ∫

F

(h− e)dµ̃ =
1

2

∫

E

(ζ − e)dµ̃.

By Proposition 3.11, there exist an allocation ι and a sub-coalition V of G such that

IV = IG, Vt(ι(t, ·)) > Vt(f(t, ·)); and
∫

G

(ι− e)dµ =
1

2

∫

G

(ξ − e)dµ+
1

2

∫

G

(ỹA − e)dµ.

Then S := F ∪G blocks the allocation f̃A via ψ, where the allocation ψ is defined by

ψ(t, ω) =

{
h(t, ω), if (t, ω) ∈ F × Ω;

ι(t, ω), otherwise.

This contradicts with the fact that f is in the ex-ante core of E .

Proof of Theorem 3.20: Let us choose ε, δ > 0. Let f /∈ C A(E ). Defining f̃ := Ξ[f ],

we note that f = Φ[f̃ ]. Thus, by Proposition 3.18, we have f̃ /∈ C (Ẽ ). In view of

Theorem 3.10,we have a coalition S with µ̃(S) ≤ ε blocking f and S =
⋃n

i=1 Si for a

finite collection of coalitions {S1, · · · , Sn} with diameter of Si smaller than δ for all

i = 1, · · · , n. Let

B1 := S1 and Bi = Si \
⋃

{Sj : 1 ≤ j < i}

for all i ≥ 2. Define Gi := Bi ∩ T0 for each i ∈ {1, · · · , n} and note that

S =
⋃

{Gi : 1 ≤ i ≤ n} ∪ (S ∩ T1).

Put,

I :=
{
k : µ̃(Ãk ∩ S) > 0

}
.

Applying Theorem 3.10, we can find some η > 0 such that for any coalition F of S satis-

fying µ(S\F ) < η blocking f . Choose a finite subsetK of I such that
∑

k∈I\K µ(Ak) < η.

We define R := S if S ⊆ T0; and

R :=
⋃

{Gi : 1 ≤ i ≤ n} ∪
⋃

{Ãk ∩ S : k ∈ K}.

Therefore, R is a coalition containing either no atom or finitely many atoms. For

K 6= ∅, let γ : T → [0, 1] be an Aubin coalition such that

γ(t) :=





1, if t ∈ R ∩ T0;

αk, if t = Ak, k ∈ K;

0, otherwise,
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and for K = ∅, define an Aubin coalition γ : T → [0, 1] such that

γ(t) :=

{
1, if t ∈ R ∩ T0;

0, otherwise,

where

αk :=
µ̃(Ãk ∩ S)

µ̃(Ãk)
.

For all 1 ≤ i ≤ n, let γi : T → [0, 1] be an Aubin coalition such that γi := χGi . Thus,

{γ1, · · · , γn} is a finite collection of pairwise disjoint generalized coalitions and Sγi ⊆ T0
for all 1 ≤ i ≤ n. It follows from the definition of the diameter of a generalized coalition

by taking α = β = 1 that

diam(γi) = sup {‖a− b‖ : a, b ∈ Sγi} = diam(Sγi) < δ.

Furthermore, it can be readily verified that

γ =

{ ∑n

i=1 γi +
∑

k∈K αkχAk
, if K 6= ∅;

∑n

i=1 γi, if K = ∅,

This completes the proof.

Proof of Theorem 3.22: Let f be a feasible allocation of E such that f /∈ C A(E ) and

let ε ∈ (0, 1). Letting f̃ := Ξ[f ], we note that f = Φ[f̃ ]. Thus, applying Proposition

3.18, one has f̃ /∈ C (Ẽ ). Therefore, in view of Theorem 3.13, one can find a coalition

S and an allocation g̃ in Ẽ such that µ̃(S) = ε and f̃ is blocked by the coalition S via

some allocation g̃. Put J = {j : µ̃(S ∩ Ãi) > 0}. The rest of the proof is decomposed

into two cases:

Case 1. J 6= ∅. In this case, we have
∫

S∩T0

g̃ dµ̃+
∑

j∈J

∫

S∩Ãj

g̃ dµ̃ =

∫

S∩T0

ẽ dµ̃+
∑

j∈J

∫

S∩Ãj

ẽ dµ̃.

For each j ∈ J, choose some γj ∈ (0, 1] such that µ̃(S ∩ Ãj) = γiµ(Ai) and define

gj :=
1

µ̃(S ∩ Ãj)

∫

S∩Ãj

g̃ dµ̃.

By Jensen’s inequality, we have VAj
(gj) > VAj

(f(Aj)) for all j ∈ J and
∫

S∩T0

g̃ dµ̃+
∑

j∈J

γjgjµ(Aj) =

∫

S∩T0

ẽ dµ̃+
∑

j∈J

γjejµ(Aj).
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Define an allocation g : T → Y+ by

g(t) :=





g̃(t), if t ∈ S ∩ T0;

gj, if t = Aj and j ∈ J;

f(t), otherwise,

and an Aubin coalition γ : T → [0, 1] by

γ(t) :=





1, if t ∈ S ∩ T0;

γj, if t = Aj and j ∈ J;

0, otherwise.

Consequently, we have Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ and

∫

T

γg(·, ω) dµ =

∫

T

γe(·, ω) dµ

for all ω ∈ Ω. Furthermore, note that

∫

T

γ dµ = µ(S ∩ T0) +
∑

j∈J

∫

Aj

γj dµ = µ̃(S) = ε.

Case 2. J = ∅. Analogous to Case 1, one can show that f is blocked by an Aubin

coalition γ via g, where the function g : T → Y+ is defined by

g(t) :=

{
g̃(t), if t ∈ S ∩ T0;

f(t), otherwise,

and the Aubin coalition γ : T → [0, 1] is defined by

γ(t) :=

{
1, if t ∈ S ∩ T0;

0, otherwise.

Recognized that
∫
T
γ dµ = µ̃(S ∩ T0) = µ̃(S) = ε.

Proof of Theorem 4.2: Let f be in the ex-ante core of E . Assume by the way of

contradiction that f is not C(T0,T1)(E )-fair. This means that there exist two disjoint

elements S ∈ T0, E ∈ T1 and an allocation g such that µ-a.e. on S and for each ω ∈ Ω:

(i) Vt(g(t, ·)) > Vt(f(t, ·)); and
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(ii)

∫

S

(g(·, ω)− e(·, ω))dµ =

∫

E

(f(·, ω)− e(·, ω))dµ.

By Proposition 3.8, there are an η0 > 0, two coalitions B and R, and an allocation g̃

such that

(1) R ⊆ B ⊆ S and IR = IB = IS;

(2) g̃(t, ·) + z ∈ Xt for all z ∈ B(0, η0)
Ω and µ-a.e. on R;

(3) Vt(g̃(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on R;

(4) Vt(g̃(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on B \R; and

(5)
∫
B
(g̃(·, ω)− e(·, ω))dµ = 1

2

∫
S
(g(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Define G := S \B and

Di :=
⋂{

η0µ(Ri)

6
Gj : 1 ≤ j ≤ n

}
∩ B

(
0,
η0µ(Ri)

6

)Ω

.

for each i ∈ IG, where Ri := R ∩ Ti. Pick an i ∈ IG. Then there is some coalition

Ci ∈ TGi
such that

bi :=
1

3

∫

Gi

(f − e) dµ−

∫

Ci

(f − e) dµ ∈ B

(
0,
η0µ(Ri)

6

)Ω

.

As in Lemma 6.1, the correspondence Fi : Ci ⇒ Di, defined by

Fi(t) := {z ∈ Di : f(t, ·) + z ∈ Xt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has TCi
⊗B(Di)-measurable graph, which further implies the

existence of a TCi
-measurable selection ξi of Fi. Define

ζi :=
1

µ(Ci)

∫

Ci

ξdµ.

As in the proof of Proposition 3.4, one can show that ζi ∈ Di. So, εi := ζiµ(Ci) ∈ Di.

For each i ∈ IG, let zi : Ri × Ω → Y be a function define by

zi(t, ω) :=
3

2µ(Ri)
(bi(ω)− εi(ω))

for all (t, ω) ∈ Ri × Ω. Thus,

zi(t, ·) ∈
⋂{η0

2
Gj : 1 ≤ j ≤ n

}
∩ B

(
0,
η0
2

)Ω
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for all t ∈ Ri with i ∈ IG. Consider an allocation ϕ : T × Ω → Y defined by

ϕ(t, ω) :=

{
g̃(t, ω) + zi(t, ω), if (t, ω) ∈ Ri × Ω and i ∈ IG;

g̃(t, ω), otherwise.

Firstly, note that Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B. Furthermore, by (ii) and (iii),

we have

ϕ(t, ω) + B

(
0,
η0
2

)
⊆ Xt(ω)

for all (t, ω) ∈ R× Ω.

Case 1. µ(S ∪E) = µ(T ). By Proposition 3.11, there is an allocation h such that

Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on B, and

∫

B

(h− e)dµ =
2

3

∫

B

(ϕ− e)dµ+
1

3

∫

B

(f − e)dµ.

Define

C :=
⋃

{Ci : i ∈ IG} and K := B ∪ C.

Let ψ : T × Ω → Y be an allocation such that

ψ(t, ω) :=

{
f(t, ω) + ξ(t, ω), if (t, ω) ∈ C × Ω;

h(t, ω), otherwise.

It can be readily verified that

∫

K

(ψ − e)dµ =
1

3

∫

S∪E

(f − e)dµ = 0,

which contradicts with the fact that f is in the ex-ante core of E .

Case 2. µ(S ∪E) < µ(T ). Define Q := T \ (S ∪E). Applying an argument similar

to that in the proof of Theorem 3.13, one can show that there exists an element

c ∈
⋂{

η0µ(R)

3
Gj : 1 ≤ j ≤ n

}
∩ B

(
0,
η0µ(R)

3

)Ω

such that c =

∫

Q

γdµ, where

(a) γ(t) ∈
⋂{

η0
3
Gi : 1 ≤ j ≤ n

}
∩ B

(
0, η0

3

)Ω
;

(b) f(t, ·) + γ(t) ∈ intXt; and
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(c) Vt(f(t, ·) + γ(t)) > Vt(f(t, ·))

µ-a.e. Q. By applying Proposition 3.8, one obtains a coalition D and an allocation κ

such that Vt(κ(t, ·)) > Vt(f(t, ·)) µ-a.e. on D and
∫

D

(κ− e)dµ =
1

3

∫

Q

(f + γ − e)dµ

for all ω ∈ Ω. Let ϕ̃ : T × Ω → Y be an allocation such that

ϕ̃(t, ω) :=

{
ϕ(t, ω)− 3

2µ(R)
c(ω), if (t, ω) ∈ R× Ω;

ϕ(t, ω), otherwise.

It follows that ϕ̃(t, ω) ∈ Xt(ω) for all (t, ω) ∈ R × Ω and Vt(ϕ̃(t, ·)) > Vt(f(t, ·)) µ-a.e.

on R. By Proposition 3.11, there is an allocation h such that Vt(h(t, ·)) > Vt(f(t, ·))

µ-a.e. on S, and
∫

B

(h− e)dµ =
2

3

∫

B

(ϕ̃− e)dµ+
1

3

∫

B

(f − e)dµ.

Let

C := D ∪
⋃

{Ci : i ∈ IG} and K := B ∪ C

Let ψ : T × Ω → Y be an allocation such that

ψ(t, ω) =

{
f(t, ω) + γ(t, ω), if (t, ω) ∈ C × Ω;

h(t, ω), otherwise.

Therefore, as in Case 1, ψ is blocked by K via ψ. This is a contradiction.

Proof of Lemma 4.4: For any i ∈ IS and r ≥ 1, define

Sr
i :=

{
t ∈ Si : e(t, ω) + B

(
0,

1

r

)
⊆ Xt(ω) for all ω ∈ Ω

}
.

It follows that {Sr
i : r ≥ 1} is an increasing sequnce of T -measurable sets and

limr→∞ µ(Si \ S
r
i ) = 0 for all i ∈ IS. Pick an interger r0 such that µ(Sr0

i ) > 2µ(Si)
3

for all i ∈ IS. Let {ηm : m ≥ 1} ⊆ (0, 1) be a sequence of real numbers converging to 0,

and b ∈ Y++ be such that b ∈ B

(
0, 1

3r0

)
. Consider a function hm : S ×Ω → Y defined

by

hm(t, ω) := (1− ηm)h(t, ω) + ηm(e(t, ω)− 2b).

Put,

Bm :=
{
t ∈ S : Vt(h

k(t, ·)) > Vt(f(t, ·)) for all k ≥ m
}
.
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By (A4) and (A6), the mapping ξk : S → R, defined by

ξk(t) := Vt(h
k(t, ·))− Vt(f(t, ·)),

is T -measurable and so is Bm. It is obvious that {Bm : m ≥ 1} is an ascending

sequence and S ∼
⋃
{Bm : m ≥ 1}. Define c := min{µ(Si) : i ∈ IS}, and choose some

υ > 0 such that
2

c

∫

R

(h− e)dµ ∈ B

(
0,

1

3r0

)Ω

for any R ∈ T with R ⊆ S and µ(R) < υ. Let m0 ≥ 1 be an integer such that

µ(S \Bm0) < min{υ, d
4
}, where d := min{µ(Sr0

i ) : i ∈ IS}. In view of this, we get

µ(Sr0
i ∩ Bm0) >

3µ(Sr0
i )

4
>
µ(Si)

2
≥
c

2

and
2

c

∫

Si\Bm0

(h− e)dµ ∈ B

(
0,

1

3r0

)Ω

for all i ∈ IS, which further implies

1

µ(Si ∩Bm0)

∫

Si\Bm0

(h− e)dµ ∈ B

(
0,

1

3r0

)Ω

.

for all i ∈ IS. We are ready to choose λ := ηm0
. As in the proof of Proposition 3.4, one

can show that
1

µ(Si \Bm0)

∫

Si\Bm0

(h− e)dµ ∈ Gi

for all i ∈ IS. Recognized that µ(Si \ B
m0) < µ(Sr0

i ∩ Bm0) for each i ∈ IS. Convexity

of Gi and 0 ∈ Gi further yield that

1

µ(Sr0
i ∩ Bm0)

∫

Si\Bm0

(h− e)dµ ∈ Gi ∩ B

(
0,

1

3r0

)Ω

for all i ∈ IS. Thus,

xi :=
1

µ(Sr0
i ∩Bm0)

∫

Si\Bm0

(h− e)dµ

satisfies xi ∈ Gi ∩ B

(
0, 1

r0

)Ω
for all i ∈ IS, and thus, by the definition of Sr0

i , we have

e(t, ω) − xi(ω) ∈ Xt(ω) for all (t, ω) ∈ Sr0
i × Ω and i ∈ IS. For all i ∈ IS, consider an

assignment gi : Si × Ω → Y defined by

gi(t, ω) :=

{
(1− λ)h(t, ω) + λ(e(t, ω)− xi(ω)), if (t, ω) ∈ (Sr0

i ∩ Bm0)× Ω;

h(t, ω), otherwise.
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It is obvious that gi(t, ω) ∈ Xt(ω) for all (t, ω) ∈ Si × Ω and gi(t, ·) − e(t, ·) ∈ Gi

for all t ∈ Si. As gi(t, ω) ≫ hm0(t, ω) for all t ∈ Sr0
i ∩ Bm0 , we have Vt(gi(t, ·)) >

Vt(h
m0(t, ·)) > Vt(f(t, ·)) for all t ∈ Sr0

i ∩ Bm0 . Therefore, Vt(gi(t, ·)) > Vt(f(t, ·)) for

all t ∈ Si, and ∫

Si

(gi − e)dµ = (1− λ)

∫

Si

(h− e)dµ.

for all i ∈ I. Thus, the allocation y : T × Ω → Y, defined by

y(t, ω) :=

{
gi(t, ω), if (t, ω) ∈ Si × Ω, i ∈ I;

h(t, ω), otherwise,

satisfies the required condition.

Proof of Theorem 4.5: Let f be not in the ex-ante core of E . Suppose, on contrary,

that it is not C(T1,T0)(E )-fair, which means that there exist two disjoint elements S ∈

T1, E ∈ T0 and an allocation g such that µ-a.e. on S and for each ω ∈ Ω:

(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫

S

(g(·, ω)− e(·, ω))dµ =

∫

E

(f(·, ω)− e(·, ω))dµ.

By Lemma 3.8, there exist 0 < λ, η < 1, a sub-coalition R of S with IR = IS and an

G -assignment y such that

(1) y(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R;

(2) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R;

(3) Vt(y(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S \R; and

(4)

∫

S

(y − e)dµ = (1− λ)

∫

S

(g − e)dµ.

By combining (ii) and (4), we have

∫

S

(y − e)dµ = (1− λ)

∫

E

(f − e)dµ.

This implies that

∫

S

(y − e)dµ+ λ

∫

E

(f − e)dµ+

∫

T\E

(f − e)dµ = 0.
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As a consequence, we have

1

2

∫

S

(y − e)dµ+
1

2

∫

S

(f − e)dµ+
λ

2

∫

E

(f − e)dµ+
1

2

∫

T\(S∪E)

(f − e)dµ = 0.

Applying an argument similar to that in the proof of Theorem 4.2, one can show that

there exists a function ξ : E × Ω → Y such that

(i) ξ(t, ·) ∈
⋂{ηµ(R)

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0, ηµ(R)

2

)Ω
;

(ii) f(t, ·) + ξ(t, ·) ∈ intXt; and

(iii) Vt(f(t, ·) + ξ(t, ·)) > Vt(f(t, ·))

for all t ∈ E. Again, by Lemma 3.8, there exist a sub-coalition B of S with IB = IE

and an G -assignment ϕ such that
∫

B

(ϕ− e)dµ =
λ

2

∫

E

(f + ξ − e)dµ.

Define c :=
∫
E
ξdµ and note that

c ∈
⋂{

ηµ(R)

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
ηµ(R)

2

)Ω

.

It follows that

γ :=
c

µ(R)
∈
⋂{η

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η

2

)Ω
.

Consider an allocation ỹ : T × Ω → Y defined by

ỹ(t, ω) =

{
y(t, ω)− γ(ω), if (t, ω) ∈ R× Ω;

y(t, ω), otherwise.

It is obvious that Vt(ỹ(t, ·)) > Vt(f(t, ·)) µ-a.e. on S. Furthermore, by (ii) and (iii), we

have

ỹ(t, ω) + B

(
0,
η

2

)
⊆ Xt(ω)

for all (t, ω) ∈ R× Ω.

Case 1. µ(S ∪ E) = µ(T ). By Proposition 3.11, there exists an allocation h such

that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on B, and

∫

S

(h− e)dµ =
1

2

∫

S

(ỹ − e)dµ+
1

2

∫

S

(f − e)dµ.
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Let ψ : T × Ω → Y be an allocation such that

ψ(t, ω) =

{
ϕ(t, ω), if (t, ω) ∈ B × Ω;

h(t, ω), otherwise.

It can be readily verified thatK := B∪S blocks f via ψ, which leads to a contradiction.

Case 2. µ(S ∪ E) < µ(T ). As in the proof of Case 2 of Theorem 4.2, one can

derive a contradiction.
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[13] O. Evren, Hüsseinov, F., Theorems on the core of an economy with infinitely many

commodities and consumers. Journal of Mathematical Economics 44 (2008), 1180–

1196.

[14] J.J. Gabszewicz, Shitovitz, B., A simple proof of the equivalence theorem for

oligopolistic mixed markets. Journal of Mathematical Economics 15 (1986), 79–

83.

[15] J.J. Gabszewicz, Coalitional fairness of allocations in pure exchange economies,

Econometrica 43 (1975), 661–668.

[16] M.G. Graziano, Pesce, M.. A Note on the Private Core and Coalitional Fairness

under Asymmetric Information, Mediterranean Journal of Mathematics 7 (2010),

573-–601.

[17] M.G. Graziano, Romaniello, M., Linear cost share equilibria and the veto power

of the grand coalition. Social Choice and Welfare 38 (2012), 269–303.

[18] B, Grodal, A second remark on the core of an atomless economy. Econometrica

40 (1972), 581–583.
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[20] C. Hervés-Beloso, E. Moreno-Garćıa, Yannelis, N.C., An equivalence theorem for

a differential information economy. J. Math. Econ. 41 (2005), 844–856.
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