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Abstract 

This paper is to analyze Susceptible-Exposed-Infectious-Recovered (SEIR) COVID-19 pandemic 

model. In this article, a modified SEIR model is constructed, and is also discussed various aspects 

of it with mathematical analysis to study the dynamic behavior of this model. The spread of this 

disease through immigration can be represented by the SEIR model. COVID-19 is a highly 

infectious disease that spreads through talking, sneezing, coughing, and touching. In this model, 

there is an incubation period during the spread of the disease. During the gestation period, a patient 

is attacked by SARS-CoV-2 coronavirus and shows symptoms of COVID-19, but cannot spread the 

disease. The horizontal transmission of COVID-19 worldwide can be represented and explained by 

SEIR model. Maximal control of the pandemic disease COVID-19 can be possible by the optimum 

vaccination policies. The study also investigates the equilibrium of the disease. In the study, a 

Lyapunov function is created to analyze the global stability of the disease-free equilibrium. The 

generation matrix method is analyzed to obtain the basic reproduction number and has discussed the 

global stability of COVID-19 spreading. 
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1. Introduction 

       

No man can avoid diseases. But deadly infectious diseases can cause afraid in human lives. Millions 

of people in the world suffer or die every year because of infectious diseases. Comparative 

knowledge of the effectiveness and efficacy of different control strategies is necessary to have a 

desirable goal for controlling diseases [Samsuzzoha, 2012]. In the 21
st
 century, the research on the 

infectious disease through mathematical modeling has increased [Ratchagar & Subramanian, 2015]. 

When the pandemic breakout, mathematical models play an important role in comparing, planning, 

implementing, evaluating, and optimizing various detection, prevention, therapeutic, and control 

programs and these significantly contribute for combatting the spread and control of infectious 

diseases [Samsuzzoha, 2012]. Compartmental transmission models have become an invaluable tool 

to study the dynamics of infectious diseases. Epidemiological SEIR model can predict disease 

control policies to reduce severe transmission [Heng & Althaus, 2020].  

   

Mathematical epidemiology seems to have grown exponentially starting in the middle of the 20
th

 

century. Epidemic diseases cause many deaths before disappearing. SEIR model can be represented 

by ordinary differential equations. COVID-19 has spread worldwide through immigration and there 

is an incubation interval in the spread of this disease [Yang et al., 2021].  

        

Mathematical modeling also plays an important role to measure possible disease control strategies 

for pandemic diseases like COVID-19. It focuses on the important aspects of the disease. It also 

tries to determine threshold quantities for disease survival and tries to find out the control strategies 

of the disease [van den Driessche, 2017]. The exposed or latent period of an infectious disease is the 

time interval between infection and becoming infectious. COVID-19 has an exposed or latent 

period, 10 to 14 days, after transmission of infection. Therefore, for a long exposure period, an 

exposed compartment should be included to give an SEIR model [Fine, 2003].  

         

In the SEIR model, we consider that the total host population  tN  is divided into four 

compartments: susceptible,  tS ; exposed,  tE ; infectious,  tI ; and recovered,  tR . We assume 
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that the population has a homogeneous spatial distribution. In the model, we consider that the 

natural birth rate and death rate are equal, so the population is constant, i.e., 

          NtNtRtItEtS  , throughout the time interval   ,0t  [Demirci et al., 2011]. 

        

The dynamic nature of the SEIR model can be determined by the basic reproduction number 0R . 

For 10 R , the disease-free equilibrium is globally asymptotically stable, and the disease will not 

persist for a long time i.e., will disappear with time. On the other hand, if 10 R , the equilibrium 

will be unstable and the disease will not abolish; the number of infected people may increase [Al-

Sheikh, 2012]. 

        

Vaccination is a highly effective method for preventing and reducing viral infections. It is essential 

for the reduction of COVID-19. Therefore, mass vaccination can create herd immunity to combat 

the disease. In this study, we have used SEIR model equipped with the effectiveness of vaccination 

to reduce the COVID-19 pandemic rapidly. COVID-19 control policy with vaccination can 

minimize the total death due to infection and the cost related to vaccination [Biswas et al., 2014; 

Mohajan, 2021b]. 

 

2. Literature Review 

        

David Greenhalgh has operated the SEIR epidemic model for an infectious disease where the death 

rate depends on the number of individuals in the population. He has stated three steady-state values: 

i) the population is extinct, ii) the population maintains itself at a constant level, but the disease is 

extinct, and iii) there is a unique equilibrium with the disease that remains present [Greenhalgh, 

1992]. Tao Tang and his coworkers have proposed a deterministic compartmental model that 

includes the progression of clinical disease, individual epidemiological status, and participant 

behavior [Tang et al., 2020].  

        

Puntani Pongsumpun and her coauthors solve the system of nonlinear partial differential equations 

in SEIR model by using the method of separation of variables. They have considered the spread of 

exposed and infectious populations in a contact mode of the propagation of the disease in which the 

populations have only local motions [Pongsumpun et al., 2013]. Andreas Hornstein has modified 

the basic SEIR model to integrate demand for healthcare that highlights the relative effectiveness of 

policy interventions, such as social distancing, quarantine, contact tracing, and random testing 

[Hornstein, 2020]. David Berger and his coworkers have extended the SEIR infectious disease 
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epidemiology model to realize the role of testing and case-dependent quarantine but they do not 

include contact tracing [Berger et al., 2020].  

        

Sarah A. Al-Sheikh has investigated the existence and stability of disease-free and endemic 

equilibria, where the basic reproduction number plays a big role in determining their stability [Al-

Sheikh, et al., 2012]. P. Widyaningsih and his coworkers have analyzed the SEIR model with 

immigration. In their study, they have obtained two equilibrium points that are unstable 

[Widyaningsih et al., 2018]. Pauline van den Driessche focuses on the basic reproduction number, 

0R , for infectious diseases. First, she has developed 0R  for a threshold value to determine whether 

or not the disease dies out. Then, she describes the next-generation matrix method to calculate 0R
 

[van den Driessche, 2017]. Suwardi Annas and his coauthors have constructed the stability analysis 

and numerical simulation of the SEIR model on the spread of COVID-19 by considering 

vaccination and isolation factors as model parameters. The analysis of the model uses the 

generation matrix method to obtain the basic reproduction numbers and the global stability of the 

COVID-19 distribution model [Annas et al., 2020]. 

        

Haradhan Kumar Mohajan, in his series of papers, has tried to discuss aspects of the global 

pandemic COVID-19 with economic analysis for the welfare of global humanity. He stresses on 

social consciousness to prevent the disease. He also tries to discuss SIR model with detailed 

mathematical analysis [Mohajan, 2017b, 2020a, b; 2021a, b, 2022]. Md. Haider Ali Biswas and his 

coauthors have shown optimal control policy to test and compare different vaccination strategies of 

a compartmental SEIR model [Biswas et al., 2014]. Qianying Lin and her coworkers have proposed 

SEIR models for the COVID-19 outbreak. They have used the data from China by considering the 

impact of social isolation policies including governmental actions, and successfully capture the 

sequence of the disease [Lin et al., 2020].  

        

Ruiwu Niu and his coworkers in the five compartmental SEIHR model have found that for COVID-

19, a highly contagious disease, when the adjacent region’s epidemic is not severe, a large 

migration rate can reduce the speed of local epidemic spreading at the price of infecting the 

neighboring regions. They have stressed that infected patients are isolated immediately; the 

transmission rate of the epidemic is more sensitive to that of the exposed persons [Niu et al., 2020].  
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3. Methodology of the Study 

         

In this study, we have analyzed the epidemic SEIR model. We have formulated a mathematical 

SEIR model with some initial values for systems of ordinary differential equations. We have 

introduced some theorems with proof. We have observed that herd immunity against COVID-19 

can be built through vaccination. Equilibrium analysis of COVID-19 is essential for the stability of 

the disease and we have tried to provide it in brief. In the analysis, we have used the generation 

matrix method to obtain the basic reproduction number and the global stability for COVID-19. We 

have taken attempts to show the immunity loss of vaccines and re-infection procedures of the 

vaccinated people with proper mathematical presentations due to COVID-19. 

        

The paper is prepared to depend on the secondary data sources that are collected from previous 

research articles, published books, websites, etc. In the study, we have tried to maintain reliability 

and validity throughout the research [Chawdhury et al., 2013; Mohajan, 2013, 2014a, b, 2017a]. To 

make this article significant we have followed both quantitative and qualitative research 

methodologies [Islam et al., 2012; Mohajan, 2011, 2012, 2016, 2018a, b, 2020c]. 

 

4. Objective of the Study 

          

The principal objective of this paper is to form an epidemic SEIR model through proper 

investigation to prevent the COVID-19 pandemic strongly. Some other specific objectives are; 

a) to provide the background of the disease,  

b) to show the mathematical calculations elaborately, and  

c) to encourage people in vaccinatation for reducing the transmission of COVID-19.  

 

5. Background of COVID-19 

         

The SARS-CoV-2 is a large family of non-segmented, enveloped, positive-sense, single-stranded 

RNA viruses that typically cause mild to severe respiratory disease in humans [Centers for Disease 

Control and Prevention, CDC, 2020]. It is a new human coronavirus that developed at the end of 

December 2019 in Wuhan, Hubei Province, China [Li et al., 2020]. On 11 February 2020, the 

International Committee on Taxonomy of Viruses (ICTV) named the zoonotic coronavirus disease 

COVID-19 (“CO” stands for “corona”, “VI” for “virus” and “D” for “disease”, while “19” was for 

the year), and the COVID-19 virus as “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
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CoV-2)” [ECDC, 2020]. On 11 March 2020, the WHO declared the global outbreak as a pandemic 

to minimize the infection and mortality rate [WHO, 2020]. 

       

Minor or major symptoms of this illness are fever (>100.4°F/38°C), dry cough, fatigue, sputum 

production, dyspnoea, shortness of breath, lymphopenia, anorexia, headache, hypoxemia, chills, 

nausea or vomiting, rhinorrhoea, muscle or joint pain, grand-glass opacities, myalgia, haemoptysis, 

sore throat, sneezing, nasal congestion, RNAaemia, diarrhea, etc. An infected patient faces one or 

more such symptoms. Some patients experienced a loss of taste, appetite, or smell. Some COVID-

19-infected persons show no symptoms even after the exposure period and infected the susceptible 

people [Huang et al. 2020; Ren et al., 2020; Mohajan, 2021b]. Older age, diabetes, cardiovascular 

disease, chronic respiratory disease, asthma, hypertension, and cancer are all associated with 

increased risks of death worldwide from infection of COVID-19 [Yang et al., 2020]. Obesity and 

smoking also increase the risks of death [Wang et al., 2020]. 

       

On 30 August 2022, the disease spreads up to 228 countries and territories globally; the total 

confirmed deaths become 6,490,632, the total confirmed cases 606,816,698, with a total recovery of 

582,652,695 and a total of 12,449,443,718 vaccine doses have been administered. On 30 December 

2022, the total confirmed deaths become 6,693,938, the total confirmed cases 664,005,108, and  

total recovery become 636,106,351. It is uncertain when COVID-19 will abolish completely 

[Worldometer, 2022]. 

 

6. Elementary Discussion 

       

Some infectious diseases incubate inside the hosts for a period of time before the hosts become 

infectious. Every year millions of people die worldwide due to various infectious diseases. 

Epidemics, such as COVID-19, spread through human interactions with the horizontal incidence. 

Proper management of this highly infectious disease is necessary to save the people of the world 

from death and infection [Ojo & Akinpelu, 2017, Mohajan, 2022].  

 

Epidemic: An epidemic (from Greek epi means “upon or above” and demos means “people”) is 

one “affecting many persons at the same time, and spreading from person to person in a locality 

where the disease is not permanently prevalent.” Therefore, an epidemic is unusually large, and it 

occurred at the level of a region or community on a temporary basis. It is actively spreading; new 

cases of the disease substantially exceed what is expected. It is often localized to a region, but the 

number of those infected in that region is significantly higher than the normal. It involves not only 
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infectious agent, mode of transmission, latent period, infectious period, susceptibility and 

resistance, but also social, cultural, demographic, economic and geographic factors. For example, 

when COVID-19 was limited to Wuhan, China; it was an epidemic [Green et al., 2002; 

Intermountain Healthcare, 2021].  

 

Endemic: An endemic (from Greek en means “in or within” and demos means “people”), on the 

other hand, is a constant presence in a specific location, region, or population [Phillips, 2021]. A 

disease is considered endemic if it is present in a population for more than 10 or 20 years. 

Therefore, an organism that is restricted or peculiar to a locality or region is endemic. For 

example, malaria is said to be endemic to tropical regions [Intermountain Healthcare, 2021].  

 

Pandemic: A pandemic disease is an epidemic that has spread over a large area, i.e., it is “prevalent 

throughout an entire country, continent, or the whole world.” A pandemic is an epidemic that 

travels, i.e., a pandemic has a passport [Intermountain Healthcare, 2021].  

 

Outbreak: An outbreak is a greater than anticipated increase in the number of endemic 

cases. COVID-19 is both an epidemic and a pandemic; we simply call it an “outbreak”. Therefore, 

an outbreak is a “sudden breaking out or occurrence or eruption.” If it is not quickly controlled, an 

outbreak can become an epidemic and eventually a pandemic if it spreads on large scale. For 

example, on March 11, the WHO officially declared the COVID-19 outbreak a pandemic due to the 

global spread and severity of the disease [Intermountain Healthcare, 2021]. 

 

Susceptible: The susceptible (vulnerable) refers to a group of people who are not yet infected, but 

may be infected with the SARS-CoV-2 virus at any time [Mohajan, 2022]. The total number of 

susceptible people at time t is denoted by  tS , where   ,0t . A person is placed in the  tS  

compartment if s/he is vulnerable to catching the disease [Biswas et al., 2014]. The susceptible 

population is increased by the newborn and those who have a loss of immunity due to earlier 

infection and vaccination. The susceptible population is reduced through vaccination, infection 

(moving to  tE  compartment), and natural death [Samsuzzoha, 2012]. 

 

Exposed: The persons who are hosts for infectious but they initially do not show any symptoms 

and are not yet able to transmit the disease [Widyaningsih et al., 2018]. The total number of 

exposed people at time t is denoted by  tE . The exposed population is increased by infected 

individuals that are now in the latent period. The exposed population is reduced by the recovery 
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(moving to class  tR ), natural death and the onset of infection (moving to class  tI ) after the end 

of the latent period [Samsuzzoha, 2012].  

 

Infective: The infective refers to a group of people who have been infected and have infectivity. 

Infected individuals can spread the disease to susceptible individuals. After the recovery, they enter 

the recovered compartment [Mohajan, 2022]. The total number of infective people at time t is 

denoted by  tI . The population of infective individuals is reduced by natural death, disease-related 

death, and recovery from the disease [Samsuzzoha, 2012]. 

 

Removals: The removed refers to a group of people who have been removed from the COVID-19 

infected people, such as died, are isolated or recovered, and are immune to the SARS-CoV-2 virus 

[Mohajan, 2022]. Let,  tR  is the number of recovered/removed individuals who are removed from 

the population by recovery from exposed and infective classes, immunization, hospitalization, 

death, or by any other means. All the individuals who recovered are considered immune. The 

person in the removal compartment is reduced by re-infection and natural death [Biswas et al., 

2014; Samsuzzoha, 2012].  

 

Incubation Period: The time period in which an individual with COVID-19 is infectious remains 

uncertain. The incubation period ranges from 1 to 14 days and the estimated median is 5 to 6 days. 

About 97.5% of people develop symptoms within 11.5 days of exposure [Mohajan, 2021b]. 

 

7. Analysis of SEIR Model 

        

In many infectious diseases, there is an exposed period or a latent period after transmission of 

infection. The exposed persons are apparently healthy but can transmit the infection. During the 

exposure period, the pathogen is in the host, but in low numbers so that the host is not yet infectious 

[van den Driessche, 2021]. In Susceptible-Exposed-Infectious-Recovered (SEIR) model, the total 

population of the world at a particular time t is divided into four compartments: Susceptible,  tS ; 

Exposed,  tE ; Infectious,  tI ; and Recovered,  tR  populations [Widyaningsih et al., 2018]. The 

total population size at time t is denoted by,  tN , i.e., 

         tRtItEtStN  .      (1) 

At the start at 0t ,   00 0  NN ,   00 0  SS ,   00 0  EE ,   00 0  II , and   00 0  RR . 

In this model,    tItE   is the total infected population. 
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The SEIR model only applies to variables and parameters that are smooth, continuous functions of 

time. Its differential equations do not include stochastic error terms. In the basic SEIR model, the 

natural death rate of all individuals is equal to the birth rate, and hence, 
 

0
dt

tdN
, then (1) 

indicates,           NtRtItEtStN  ,   ,0t . Contacted individuals are exposed by the 

disease, and transferred into  tE  compartment; after the latent period the individuals become 

infectious and are caused acute morbidity, and subsequently move to  tI  compartment. The major 

portion of the infected people in the  tI  compartment recovered, and they are immune from 

infection for life. A small fraction of the infected people in the  tI  compartment may die, thus 

reducing the population of the  tR  compartment. 

         

At the start, we shall establish a set of equations that do not consider births or deaths. If 0b  be the 

effective contact rate, an exposed individual able to transmit the disease with  tbN  to others per 

unit of time and the fraction of contacts by an exposed with a susceptible is 
 
 tN

tS
. The number of 

new exposures in unit time    
 tN

tS
tbN .  gives the rate of new exposure as    

   tI
tN

tS
tbN ..

   tItbS . Therefore, in the  tS  compartment,    tItbS  individuals will be decreased. Hence, the 

rate of change of the number of susceptible persons; 

     tItbS
dt

tdS
 .       (2) 

In the  tE  compartment,    tItbS  individuals will be increased. Let, 0c  be the rate of exposed 

persons become infected. After latent period,  tcE  individuals will be infected per day, where the 

mean exposed period is denoted by 
c

1
. Hence, the rate of change on the number of individuals 

exposed can be expressed as, 

       tcEtItbS
dt

tdE
 .      (3) 

In the  tI  compartment, the number of infected individuals increases,  tcE  per day. Let 0r  be 

the recovered rate; the infected individuals will be recovered  trI . Hence, the rate of change of 

infected persons can be expressed as; 

     trItcE
dt

tdI
 .       (4) 
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In the  tR  compartment,  trI  recovery individuals will be added. Hence, the rate of change of 

recovered can be expressed as; 

 
   trI

dt

tdR
 .        (5) 

Here the parameters are all possess positive values, i.e., 0,0,0,0  cba , and 0r . 

Flowchart of populations in the SEIR model can be represented by Figure 1, where the boxes 

denote compartments, and arrows indicate flux between the compartments. 

 

                                                    tItbS                    tcE                     trI                   

                        

                   

       

Figure 1: Flowchart of SEIR model that represents four compartments:  tS ,  tE ,  tI , and  tR . 

 

Theorem 1: At 0t  we have   0StS   and   0RtR 
 
then, 

i)    
b

r

tS

S
RtR 








 0

0 ln

 

ii) If 00 R
 
then,    

b

r

tS

S
tR 








 0ln . 

Proof: Dividing (2) by (5) we get, 

 
 

   
 trI

tItbS

tdR

tdS 
  

 
   tdR

r

b

tS

tdS 
 .        (6) 

Integrating (6) we get, 

    1ln CtR
r

b
tS 


 .        (7) 

At 0t  we have   0StS   and   0RtR  , then (7) gives, 001 ln R
r

b
SC  . 

Hence,      00 lnln SR
r

b
tR

r

b
tS   

   
b

r

tS

S
RtR 








 0

0 ln .        (8)
 

 

 tS

 

 

 tE

 

 

 tI  
  

 tR
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If initially there is no removal then 00 R ; consequently, 

   
b

r

tS

S
tR 








 0ln .        (9)

 

 

Theorem 2: By using two parameters  tS  and  tR  the second-order differential equation can be 

formed as, 

     
 

 
    0

2









 tRc

tS

tS

b

c

tS

tS

b

c
tSctR 


 . 

Proof: Differentiating (2) with respect to t we get, 

         
dt

tdI
tbStI

dt

tdS
b

dt

tSd


2

2

 

 
 

       
dt

tdI
tbS

dt

tdS

dt

tdS

tSdt

tSd


1
2

2

 ,  by using (2), 
 

   tbI
dttS

tdS
 . 

 
   

     
dt

tdI
b

dt

tdS

dt

tdS

tSdttS

tSd


22

2 1
  

 
 

 
   tIb
tS

tS

tS

tS 



2

2

,   by using 
   tS

dt

tdS    and 
   tS

dt

tSd 
2

2

. 

   
 

 
 tS

tS

btS

tS

b
tI


 11

2









 .       (10) 

Differentiating (10) with respect to t we get, 

   
dt

tdI
r

dt

tRd


2

2

 

     tIrtrcE
dt

tRd 2

2

2

  

     
dt

tdR
rtrcE

dt

tRd


2

2

,  by using (5).      (11) 

Differentiating (11) with respect to t we get, 

     
2

2

3

3

dt

tRd
r

dt

tdE
rc

dt

tRd
  

         
2

2
2

3

3

dt

tRd
rtErctItrcbS

dt

tRd
  

         
2

2
2

3

3

dt

tRd
rtcIr

dt

tdI
rc

dt

tdS
rc

dt

tRd
 ,  by using (2) and (4). 

          02  tcIrtIrctSrctRrtR  .     (12) 
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Equation (12) is a non-linear differential equation of three parameters;  tS ,  tI , and  tR . 

Using (10) and (5) in (12) we get, 

       
 

 
    0

2









 tRrc

tS

tS

b

rc

tS

tS

b

rc
tSrctRrtR 


 .   (13) 

If the rate of change of the acceleration of R is infinitesimally small then,   0tR , (13) becomes,  

     
 

 
    0

2









 tRc

tS

tS

b

c

tS

tS

b

c
tSctR 


 . 

This is a non-linear differential equation of two parameters;  tS  and  tR . 

 

7.1 SEIR Model with Birth and Death  

        

Let in a particular time t, during the pandemic outbreak, the population of the world is constant, so 

that, the birth rate is equal to the death rate. Let the birth rate be, 0a , and also the death rate is, 

0 ; consequently, a . Let newborn babies be susceptible, hence, the increase of 

susceptibility in the total population is    taNtB   and  tS  is the natural death of susceptible 

persons per day, where 0  is the natural mortality rate. Hence, the rate of change in the number 

of susceptible persons [Biswas et al., 2014]; 

         tStItbStB
dt

tdS  .      (14) 

From    tItbS  persons,  tE  individuals of exposed persons per day face natural death. After 

latent period,  tcE  individuals will be infected per day. Hence, the rate of change on the number of 

individuals exposed can be expressed as, 

         tEctItbS
dt

tdE  .      (15) 

The infected individuals from  tE  compartment will increase as,  tcE  per day. Let 0r  be the 

recovered rate; the infected individuals will be recovered,  trI , and  tI  is natural death of 

infected persons per day. Hence, the rate of change of infected persons can be expressed as; 

       tIrtcE
dt

tdI  .       (16) 

From the recovered persons  trI  let,  tR  individuals will die naturally per day. Hence, the rate of 

change of recovered can be expressed as; 

   
     tRtrI

dt

tdR  .        (17) 
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Here the parameters are all possess positive values, i.e., 0,0,0,0  cba , and 0r . 

 

Flowchart of populations in the SEIR model by considering natural birth and death can be 

represented as in Figure 2.  

 

                               tS                      tE                      tI                    tR                                 

                        tB                     tItbS                       tcE                    trI                  

                        

                   

       

Figure 2: Flowchart of SEIR model by considering birth and natural death. 

 

Equations (14) and (15) are highly non-linear and difficult to solve. The exact semi-analytical 

solution of SEIR model is impossible, but approximate solutions are possible. We assume that the 

number of susceptible people is double of the exposed people, i.e.,    tEtS 2  ; the number of 

exposed people is double of the infected people, i.e.,    tItE 2 , so that    tItS 4 ; and the 

number of infected people is four times of removed people, i.e.,    tRtI 4 , so that    tItR
4

1
  

and          tRtItEtStN          tItItItI
4

1
24   tI

4

29
 . Also, we consider the birth 

rate is equal to the natural death rate, i.e., a . 

 

Theorem 3: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

7

3

14

29 c
r 


. Further, if 0004.0  and 0005.0c , then 000614.0r . 

Proof: Dividing (14) by (17) we get, 

 
 

       
   tRtrI

tStItbStB

tdR

tdS







  

 
 

       

   tItrI

tItItbItI

tdI

tdI





4

1

44
4

29

4

1

4




  

 

 tS

 

 

 tE

 

 

 tI  

  

 tR
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 





4

1

44
4

29

16






r

tbI

 

 
b

r

b
tI

4

4

29



.        (18) 

Dividing (15) by (16) we get, 

 
 

       
     tIrtcE

tEctItbS

tdI

tdE







  

 
 

       
     tIrtcI

tIctItbI

tdI

tdI








2

242
 

   
 






rc

ctbI

2

24
2  

 
b

r

b

c
tI

22

3
 .        (19) 

Equalizing (18) and (19) we get, 

2

3

4

29

2

7 c
r 


 

7

3

14

29 c
r 


.         (20) 

If 0004.0  and 0005.0c , then (20) gives 000614.0r . 

 

Theorem 4: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

3

7

24

29 c
r 


. Further, if 0004.0  and 0005.0c , then 00068.0r . 

Proof:  Dividing (14) by (15) we get, 

 
 

       
       tEctItbS

tStItbStB

tdE

tdS







  

 
 

       
       tIctItbI

tItItbItI

tdI

tdI










24

44
4

29

2

4
 

 
   








ctbI

tbI

24

44
4

29

2  

 
b

c

b
tI

348

29



.        (21) 

Dividing (14) by (16) we get, 
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 
 

       
     tIrtcE

tStItbStB

tdI

tdS







  

 
 

       
     tIrtcI

tItItbItI

tdI

tdI










2

44
4

29
4

 

 
 








rc

tbI

2

44
4

29

4  

 
b

c

b

r

b
tI

2

16

29



.        (22) 

Equalizing (21) and (22) we get, 

3

7

24

29 c
r 


.        (23) 

If 0004.0  and 0005.0c  then (23) gives, 00068.0r . 

 

7.2 Vaccination Policy 

        

Vaccines protect us from the infection of diseases. It also keeps the community safe and stops 

diseases from spreading to other susceptible people. Therefore, it is equally important for personal, 

family, and public health.  During the five decades, vaccinations have saved more than a billion 

lives and have prevented countless illnesses globally. COVID-19 is indeed preventable through 

vaccination. In a community, herd immunity is grown if the majority of people in that community 

are vaccinated [Nicho, 2010].  

       

Let p is the proportion of the total population N is vaccinated and then  p1  is the proportion left 

unvaccinated, where 10  p . The individuals that are vaccinated are  ptaN , which are safe and 

will be added to the recovery compartment  tR , and the unvaccinated people is   ptaN 1 , 

which still remain in the susceptible compartment  tS . After vaccination the SEIR model can be 

ornamented as; 

          tStItbSptB
dt

tdS  1       (24) 

         tEctItbS
dt

tdE        (25) 

       tIrtcE
dt

tdI         (26) 
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       ptBtRtrI

dt

tdR
  .       (27) 

 

The flowchart of SEIR model after vaccination can be given as in Figure 3. 

 

                            tS                         tE                       tI                    tR        

                 ptB 1                     tItbS                     tcE                      trI            

                                                                                                                                       ptB  

                   

Figure 3: The flowchart of SEIR model after vaccination. 

Theorem 5: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

 
   

 
58

124

5820

7

5840

1287












r

rr

rcrc

r
c


. Further, if 0004.0 , 00068.0r , and then 

00092.0c . 

Proof: Dividing (24) by (26) we get, 

 
 

        
     tIrtcE

tStItbSptB

tdI

tdS








1

 

 
 

        
     tIrtcI

tItItbIptI

tdI

tdI










2

441
4

29
4

 

   
 








rc

tbIp

2

441
4

29

4  

 
b

r

b

c

b
tI  

160

87
.        (28) 

Dividing (24) by (25) we get, 

 
 

        
       tEctItbS

tStItbSptB

tdE

tdS








1

 

 
 

       
       tIctItbrI

tItItbItI

tdI

tdI










4

443.0
4

29

2

4
 

 
   








ctbrI

tbI

4

443.0
4

29

2  

 

 tS

 

 

 tE

 

 

 tI  

  

 tR
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     1280

7

122 





rbrb

c
tI


.      (29) 

Equalizing (28) and (29) we get, 

   1280

7

122160

87







rbrb

c

b

r

b

c

b

  

 
   

 
58

124

5820

7

5840

1287












r

rr

rcrc

r
c


.     (30) 

If 0004.0 , 00068.0r  in (30) then, 00092.0c . 

 

7.3 Immunity Loss of Vaccine 

         

Over time the immunity to vaccines decreases and after a fixed period the immunity to COVID-19 

due to vaccination will be disappeared. These vaccinated but immunity-loss people will be 

susceptible to COVID-19. Let 0e  be the rate of immunity loss, then in  tR  compartment,  teR  

people will be reduced due to loss of immunity, and these  teR  individuals will add to  tS  

compartment. The system of equations in SEIR model becomes, 

            teRtStItbSptB
dt

tdS
 1      (31) 

         tEctItbS
dt

tdE        (32) 

       tIrtcE
dt

tdI         (33) 

  
         ptBtRetrI

dt

tdR
  .      (34) 

The flowchart of SEIR model after immunity loss of vaccines can be given as in Figure 4. 

  

                             tS                        tE                      tI                    tR                                 

                     ptB 1                      tItbS                    tcE                      trI                     

                                                                                                                                        ptB  

                             teR                                                                                            teR  

Figure 4: The flowchart of SEIR model after immunity loss of vaccine. 

 

 

 tS

 

 

 tE

 

 

 tI  

  

 tR

 



 

 

18 

 

Theorem 6: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

 
   

 
58

124

5820

7

5840

1287












r

rr

rcrc

r
c


. Further, if 0004.0 , 00068.0r , and then 

00092.0c . 

Proof: Dividing (31) by (33) we get, 

 
 

          
     tIrtcE

teRtStItbSptB

tdI

tdS








1

 

 
 

         
     tIrtcI

teItItItbItI

tdI

tdI










2

4

1
44

4

29
4

 

 
b

e

b

c

b

r

b
tI

16

2

16

29
  .       (35) 

Dividing (31) by (34) we get, 

 
 

          
       ptBtRetrI

teRtStItbSptB

tdR

tdS







1
 

 
 

         

        3.0
4

1

4

1
4

1
443.0

4

29

4

1

4






tItIetrI

teItItItbItI

tdI

tdI




 

 

  3.0
4

1

4

1
4

1
443.0

4

29

16










er

etbI

 

 
b

r

b

e

b
tI

4

16

17

160

39



.       (36) 

Equalizing (35) and (36) we get, 

cre 25
160

251



.         (37) 

If 0004.0 , 00068.0r ,  00092.0c  in (37) then, 0021875.0e . 

 

7.4 Re-infection of the Persons 

           

A portion of first-time infected persons that recovered may be re-infected by COVID-19 again. Let, 

0g  be the rate of re-infected individuals; then the  tgR  persons will be reduced from  tR  

compartment, and these  tgR  people will add to the  tE  compartment. After the gestation period, 

 tgR  individuals from the  tE  compartment will add to the  tI  compartment. Of the newly re-
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infected people, some may die. Let 0h , be the death rate of the re-infected individuals, where 

h , consequently,  thI  will be reduced in the  tI  compartment, consequently,  thI  people 

added in  tR  compartment. The system of equations in SEIR model becomes; 

            teRtStItbSptB
dt

tdS
 1      (38) 

           tgRtEctItbS
dt

tdE
       (39) 

         tIhrtEgc
dt

tdI
        (40) 

  
         ptBtRhgetrI

dt

tdR
  .     (41) 

In SEIR model after vaccination people re-infected by COVID-19 again can be given as in Figure 5. 

 

                         tSh                     tEh                   tIh                 tRh                                 

                   ptB 1                    tItbS                      tcE                    tIhr                  

                                                                                                                          
   

 thR

tptB


                          

                         teR                          tgR                      tgR                     teR  

 

Figure 5: The flowchart of SEIR model the vaccinated people that are re-infected. 

 

Theorem 7: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

48

957

3
4

24

25

48

47 


c
r

ge
h . Further, if 0004.0 , 000008.0r , and then 00092.0c ,

0021875.0e  and 006.0g  in (44) then, 006263.0h . 

Proof: Dividing (38) by (39) we get, 

 
 

          
         tgRtEctItbS

teRtStItbSptB

tdE

tdS







1
  

 
 

         

         tgItIctItbI

teItItItbItI

tdI

tdI

4

1
24

4

1
443.0

4

29

2

4









 

 

 tS

 

 

 tE

 

 

 tI  

  

 tR
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 

    gctbI

etbI

4

1
24

4

1
443.0

4

29

2









 

 
b

g

b

e

bb

c
tI

2448160

87

3



.      (42) 

Dividing (39) by (41) we get, 

 
 

         
       ptBtRhgetrI

tgRtEctItbS

tdR

tdE








   

 
 

         

       tItIhgetrI

tgItIctItbI

tdI

tdI

40

203

4

1
4

1
24

4

1

2








  

   

 
40

203

4

1
4

1
24

8 








hger

gctbI

 

 
bb

h

b

g

b

e

b

c

b

r
tI

20

203

216

9

22

2 
 .     (43) 

Equalizing (42) and (43) we get, 

b

g

b

e

bb

c

bb

h

b

g

b

e

b

c

b

r

2448160

87

320

203

216

9

22

2



 


80

1537

324

25

24

25


c
r

ge
h .      (44) 

If 0004.0 , 00068.0r , 00092.0c , 0021875.0e , and 006.0g  in (44) then, 

006263.0h . Here negative value of h indicates that re-infected people will not die, i.e., the 

vaccinated people has strong immunity will not die from COVID-19 infection. 

 

7.5 Immigration Analysis 

        

Healthy people may be infected by COVID-19 through the contact with infected individuals. We 

consider that all the migrated people will be infected. Let, j be the immigration rate so that  tjN  

newly infected people per day will increase with the previously infected individuals. We have 

considered that the total population in a particular time t is constant so that natural death at each 

compartment will change from   to  j . Hence, after immigration SEIR model can be 

represented as [Niu et al. 2020];  
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                teRtSjtItbSptBtjN
dt

tdS
 1    (45) 

           tgRtEjgctItbS
dt

tdE
       (46) 

         tIjhrtEgc
dt

tdI
       (47) 

         ptBtRjhgetrI
dt

tdR
  .    (48) 

 

Theorem 7: We consider that    tItS 4 ,    tItE 2 ,    tItR
4

1
 , and    tItN

4

29
 , then 

48

957

3
4

24

25

48

47 


c
r

ge
h . Further, if 0004.0 , 00068.0r , 00092.0c , 000005.0e , 

000006.0g , and 0000005.0h  then 046.0j . 

Proof: Dividing (45) by (47) we get, 

 
 

              
       tIjhrtEgc

teRtSjtItbSptBtjN

tdI

tdS







1
 

 
 

               
       tIjhrtIgc

teItIjtItbItBtItjI

tdI

tdI










2

4

1
443.0

4

29

4

29
4

 

   
 jhrgc

ejtbIj










22

4

1
44

40

87

4

29

4  

 
b

h

b

r

b

g

b

c

b

e

bb

j
tI 

160

2332

1640

87

16

29 
.     (49) 

Dividing (45) by (47) we get, 

 
 

         
       ptBtRjhgetrI

tgRtEjgctItbS

tdR

tdE








 

 
 

         

        7.0
4

29

4

1
4

1
24

4

1

2






tItIjhgetrI

tgItIjgctItbI

tdI

tdI




 

   

  7.0
4

29

4

1
4

1
24

8










jhger

gjgctbI

 

 
b

e

b

g

bb

c

b

h

b

r
tI

21620

203

22

2



.     (50) 
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Equalizing (49) and (50) we get, 

29

8

290

233

29

9

29

16

29

40

145

638 hgerc
j 


.     (51) 

If 0004.0 , 00068.0r , 00092.0c , 000005.0e , 000006.0g , and 0000005.0h , then 

046.0j . 

 

8. Equilibrium of the Model 

         

Equilibrium points of the model can be found by setting, 0
dt

dR

dt

dI

dt

dE

dt

dS
. Hence, from 

(45) to (48) we get,  

               01  teRtSjtItbSptBtjN 
 
   (52) 

          0 tgRtEjgctItbS       (53) 

        0 tIjhrtEgc        (54) 

        0 ptBtRjhgetrI  .     (55) 

A disease-free equilibrium is an equilibrium when there is no spread of the disease, i.e., at an 

equilibrium point,     000  IE  at 0t  [Wintachai & Prathom, 2021]. Hence, from (55) we get,  

     ptBtRjhge   

       tpRtpStRjhge  
 

     tpStRjhgep  
 

 
    jhgep

p

tS

tR




1


.      (56) 

From (52) we get,  

               01  teRtSjtItbSptBtjN   

                011  teRtSjptRptStjRtjS 
 

      tpStRjep  1  

 
    jep

p

tS

tR




1


.       (57) 

Comparing (56) and (57) we get, 0 hg , i.e., there is neither re-infection nor death for re-

infection in disease-free equilibrium state. For non-disease-free equilibrium;   0tS ,   0tE , 

  0tI ,   0tR . From (54) we get,  

        0 tIjghrtEgc   
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     tE
jghr

gc
tI







.       (58) 

From (53) we get,
 

       
 tbS

tgRtEjgc
tI





.      (59) 

Comparing (58) and (59) for   0tR  we get, 

    
 gcb

jgcjghr
tS







.     (60) 

Equations (45) to (48) can be written as, 

                  tRejtIjtEjtStbI
dt

tdS
  3.03.03.07.0   (61) 

           tgRtEjgctItbS
dt

tdE
         (62) 

         tIjhrtEgc
dt

tdI
         (63) 

               ptBtRjhgetIrtEtS
dt

tdR
  3.07.07.07.0 .  (64) 

 

Theorem 8: The equilibrium point of the SEIR model is locally asymptotic stable [Wintachai & 

Prathom, 2021].  

Proof: The Jacobian method used for the SEIR model yields a biologically reasonable 0R . We 

consider the Jacobian matrix of the SEIR model formed by the equations (61), (62), (63), and (64) 

as, 

 
 

 
 


























jhger

jghrgc

gjcbI

ejjjbI

J







3.0          7.0                       7.0                     7.0     

0                                                          0        

                                      0                                             

3.0                    3.0                    3.0           7.0

. 

Let us consider the vaccination individuals are not re-infected and there is no immigration, then 

0 gh , 0j , also temporarily ignore the value of p; consequently,  

 
 

 
 


























er

rc

cbI

ebI

J







                                              

0                                           0     

0                  0                             

                                           

. 

Characteristic equation is,  

0 JI
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 

 

0

                                     

0                                          0     

0                 0                             

                                   











er

rc

cbI

ebI







 

 
 











                        

                         0   

    0                     

r

rc

cbI

e   0

                          0     

    0                         

                     














rc

cbI

bI

e

 
        234 324   bIrcebrIIbbcIrcebIrc

 
  bceIbreIeerbeIere  222334 3222

 
  0222 22222334  bcreIebeeceec   

043

2

2

3

1

4  DDDD          (65)  

where, 

041  ebIrcD   

     0322   bIrcebrIIbbcIrcD  

03222 222334

3  bceIbreIeerbeIereD   

0222 22222334

4  bcreIebeeceecD  . 

Here 1D , 2D , 3D , and 4D  are positive real numbers. Therefore, all the solutions (eigenvalues) of 

equation (65) have negative real values, i.e., 0,,, 4321  . Therefore, the equilibrium point of 

the SEIR model is locally asymptotic stable. 

 

9. Basic Reproductive Number 

        

The basic reproduction number is denoted by, 0R , and is defined as the expected number of 

secondary cases produced by infection in a completely susceptible population. Actually, 0R  is not a 

rate and it is a dimensionless real number with units of 
1time 
. For SEIR model, 0R  is fixed over 

all time. 0R  is the number of secondary infections that one infected person would produce in a fully 

susceptible population through the entire duration of the infectious period. It provides a threshold 

condition for the stability of the disease-free equilibrium point. If 10 R , the disease-free 

equilibrium point is locally asymptotically stable, and the disease dies will abolish. If 10 R , the 

disease-free equilibrium point is unstable and the disease establishes itself in the population or an 

epidemic/pandemic occurs. 
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Now we consider that           TT
tRtItEtS ,,,,,,, 4321    be the number of people in each 

compartment. Consider the equation,    
ii

i VF
dt

d
 , 4,3,2,1i , where  iF  is the rate of 

appearance of new infections in compartment i, and  iV  is the rate of other transitions between 

compartment i and other infected compartments. Now, 
 

















j

iF
F


0  and 

 
















j

iV
V


0  . Here F 

is entry wise non-negative that represents the paths to infection, and V is a non-singular M-matrix 

that represents the remaining dynamics corresponding to the compartments  tE  and  tI . 

Consequently, 
1

V  is entry wise non-negative. Let,  0P  be the number of initially infected people, 

then  01
PFV


 is an entry wise non-negative vector giving the expected number of new infections. 

Matrix 
1 FVQ  has  ji,  entry equal to the expected number of secondary infections in 

compartment i produced by an infected individual introduced in compartment j. Hence, 
1 FVQ  

is the next generation matrix. The dominant eigenvalues of 
1

FV  and FV
1

 are the same [van den 

Driessche, 2017]. 

          

To find the basic reproductive number 0R , we follow the matrices generation method by the use of 

seminal work of Pauline van den Driessche [van den Driessche, 2017]. Here 0R  is the dominant 

eigenvalue of 
1 FVQ , where 

   











0       

      0

gc

tbS
tFF  and       (66)  














jhr

gc
V




               0

0            j
.   

   














jgc
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jhrjgc
V




                0

0            11
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 

























 0                      

                                0

jgc

gc

jhr

tbS




.     (67) 

Using (66) and (67) we get, 

   
  jhrjgc

tSgcb
R





0 .      (68)  

 

Theorem 9: If 10 R , then the disease-free equilibrium is globally asymptotic stable; on the other 

hand, if 10 R , the equilibrium is unstable. 

Proof: Let,    
  








tI

tE
t , where  t  is a zero matrix only at the disease-free equilibrium [van den 

Driessche, 2017; Wintachai & Prathom, 2021]. 

 
 

 




















dt

tdI

dt

tdE

dt

td
 

 













jhrc

tbSgc




               g

            j
 

    tVtF  .         (69)         

Now we define the Lyapunov function  tL  as, 

   tuVtL 1         (70)         

where  

     jhrgcRtu  0          1  

is a 1×2 matrix. For the matrices  tF  and V that are defined in (66) and (67) we can find 

     tFVtuRtu
1

0

 .        (71)         

Now we see that 
1

uV  is a 1×2 matrix of positive real components and is a non-negative matrix. So 

that   0tL , and   0tL  is possible only if    0tE  and   0tI , i.e., if in the model there is no 

infection [Perko, 2013]. Differentiating (70) we get,  

     
dt

td
Vtu

dt

tdL 1  

      tVtFVtu  1

 

        ttutFVtu  1
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      ttuRtu  0 ,   by (71) 

      tRtu
dt

tdL 10  .       (72)         

From (72) we observe that 
 

0
dt

tdL
 if 10 R , i.e., the disease-free equilibrium is globally 

asymptotic stable. If 10 R ,
 
then (72) implies 

 
0

dt

tdL
, i.e., the equilibrium is unstable.  

If 10 R  then we have, 
   

0
dt

tdI

dt

tdE
, then from (46) and (47) we get, 

              022  tIjhrtgRtEjgctItbS  .    (73) 

In equation (73) we consider that   0tE  and   0tR , i.e., there is no people in latent period or 

recovery then, 

        0 tIjhrtItbS   

         00 



tIjhrtIR
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jhrjgc 
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
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
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
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jhr

  

  010 
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



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gc

jgc
jhr

 .       (74) 

In equation (74), 
gc

jgc




 

is an improper fraction. Therefore, 10 R
 
and hence from (72) we 

get, 
 

0
dt

tdL
 . Consequently, the disease-free equilibrium is globally asymptotic stable. A similar 

reason 10 R
 
implies the equilibrium is unstable. 

 

10. Conclusions  

         

We have observed that SEIR model is a reference model for the spread of COVID-19. In the study, 

we have tried to construct an SEIR model for the outbreak of COVID-19. We have investigated the 

impact of vaccination on the spread of COVID-19. We have perceived that vaccination is the best 

policy to reduce COVID-19 infection. The model supports that the vaccination rate and the 

efficiency of vaccines play an important role to reduce the transmission and survival of the disease. 

Many researchers have obtained the value of the basic reproduction number 0R
 
of COVID-19, and 

their results support that it is greater than 1. Consequently, the COVID-19 pandemic will not 
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terminate from the world immediately. We hope that the fatality of COVID-19 transmission will 

decrease gradually and eventually it will abolish from the world. 
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