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Abstract

This paper studies the endogenous state dependence of the aggregate

investment dynamics stemming from synchronized lumpy investments

at the firm level. I develop a heterogeneous-firm real business cycle

model where the semi-elasticities of large and small firms’ investments

are matched with the empirical estimates. In the model, following a

negative TFP shock, the timings of large firms’ lumpy investments are

persistently synchronized due to the low sensitivity to the general equi-

librium effect, leading to a surge of lumpy investments. After the surge,

TFP-induced recessions are especially severe, and the semi-elasticity of

the aggregate investment drops significantly.
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1 Introduction

Why does a recession happen? For this fundamental question in Eco-

nomics, a macroeconomic model often finds an answer from the large mag-

nitude of a negative aggregate shock that hits the economy. However, this

answer is only partially satisfactory as the source of recession is assumed as

exogenous. To the same question, this paper finds a different answer: there is

an endogenous pre-condition of an economy that makes the aggregate alloca-

tions respond differently to the shocks with the same magnitude. In particular,

I study a mechanism that makes an economy more fragile to a negative TFP

shock after synchronized large-scale investments of large firms.

The large-scale investment of large firms is distinguished from the others

as they are highly interest-inelastic.1 Then, if a negative TFP shock hits

after a surge of large firms’ lumpy investments, the lowered real interest rate

due to the shrunk investment demand does not motivate the interest-inelastic

large firms to make another round of lumpy investments. Therefore, due to

missing large firms’ investments, the economy suffers from a deeper recession

and slower recovery than it would otherwise be despite a moderate magnitude

of the negative aggregate shock.

To investigate this channel, I develop and analyze a business cycle model

with heterogeneous firms where the semi-elasticities of large and small firms’

investments are matched with the empirical estimates. In the existing mod-

els in the literature, the cross-sectional ranking of the interest-elasticities of

investment between large and small firms are counterfactually flipped: the

large becomes more interest-elastic than the small. So, I introduce the size-

1I use the terms lumpy investment and large-scale investment interchangeably in this
paper.
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dependent fixed adjustment cost to overcome this problem. Using the model,

I qualitatively and quantitatively analyze the amplification of productivity-

driven aggregate fluctuations. Due to the low interest-elasticity, the large

firms’ nonlinear investment patterns are not washed out by the general equi-

librium effect, leaving the lumpy investment timings synchronized persistently

after a negative aggregate TFP shock. These synchronized investments of

large firms generate macro-level state dependence.

Large firms are a particular focus of this paper for three reasons. First,

large firms are insensitive to fluctuations in macroeconomic conditions, in-

cluding the general equilibrium effect. Therefore, their firm-level nonlinearity

generates a significant macro-level nonlinearity in the aggregate investment

dynamics. Second, large firms are the most observable group of firms as most

of them are listed and subject to financial disclosure regulations mandated by

the U.S. Securities and Exchange Commission (SEC). Therefore, any forward-

looking information contained in the large firms’ investment dynamics can be

traced in a timely manner and be conducive to designing contemporaneous

policies. Lastly, large firms account for a substantial portion of the aggregate

investment. Therefore, the large firms’ investment fluctuations significantly

impact the aggregate investment dynamics.

The state dependence in the business cycle induced by the firm-level hetero-

geneity has been underexplored in the related literature due to the computa-

tional difficulty: the true nonlinear law of motion for the distribution cannot

be properly specified. Using a new methodology concurrently developed in

Lee (2022), I globally and accurately solve the nonlinear dynamic stochas-

tic general equilibrium without a perfect foresight assumption. By doing so,

the endogenous state dependence in the aggregate investment fluctuation is

sharply quantified in this paper.
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Especially, I develop a fragility index based on the large firms’ recent capital

adjustment history. This index has predictive power on the one-period-ahead

investment growth and serves as a sufficient statistic on the post-shock dy-

namics of the aggregate investment after a TFP shock. In practice, this index

is easy to trace contemporaneously compared to other indices in the literature,

as the index is based on large firms’ observable variables. Using the fragility

index, I show that the economy becomes significantly more fragile to a neg-

ative aggregate shock after a surge of lumpy investment of large firms, and I

validate the model implication with the data.

Lastly, I show that aggregate investment’s interest elasticity depends on the

level of the fragility index over the business cycle. This result implies that the

monetary policy’s effectiveness can be low after a surge of large firms’ lumpy

investments.2 Also, this provides a solid explanation of why monetary policy

has not been effective during the recessions, especially through the business

investment channel (Tenreyro and Thwaites, 2016).

Related literature This paper is related to the literature that studies how

firm-level lumpy investments affect the business cycle. Abel and Eberly (2002)

empirically showed that firm-level investments feature statistically and eco-

nomically significant nonlinearity. They point out that tracking the cross-

sectional distribution of firm-level investments is necessary to account for ag-

gregate investment. Cooper et al. (1999) and Gourio and Kashyap (2007)

found that aggregate investment is largely driven by establishment-level capi-

tal adjustment in the extensive margin. Especially, Cooper et al. (1999) found

that synchronized lumpy investments can generate an echo effect of aggregate

2The policy implication is limited to a positive implication, as the model does not include
a monetary policy block.
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shocks in partial equilibrium. Gourio and Kashyap (2007) pointed out that if

a fixed cost is drawn from a highly concentrated non-uniform distribution, ag-

gregated lumpy investments show different impulse responses than frictionless

models in partial equilibrium. In contrast, Khan and Thomas (2008) found

that lumpiness in investment at the establishment level is washed out after

aggregation due to a strong general equilibrium effect. Towards this point,

Winberry (2021) and Koby and Wolf (2020) show the lumpiness in the firm-

level investment survives the aggregation if the average interest-elasticity is

disciplined at the empirically observed range.

The fragility index of my paper is closely related to several papers measur-

ing the responsiveness of an economy to exogenous aggregate shocks. Caballero

et al. (1995) develops a micro-level adjustment-hazard function that captures

heterogeneous price adjustment probability. dynamics in the cross-section of

the hazard rates generate substantial nonlinearity in the economy’s aggregate

dynamics. Bachmann et al. (2013) defines a responsiveness index as a function

of aggregate productivity and sufficient statistics of the joint distribution of

capital stocks and idiosyncratic productivities. They show that the respon-

siveness index is significantly driven by the fraction of capital-adjusting firms.

Baley and Blanco (2021) shows that two sufficient statistics can characterize

aggregate investment dynamics: 1) the capital-to-productivity ratio’s disper-

sion and 2) its covariance with the duration of inaction. Compared to these

papers, my paper highlights the role of the marginal distribution of large firms’

inaction duration over the business cycle, which is readily observable in the

data in a timely manner due to their mandated financial disclosure.

Also, this paper is related to the literature studying the state-dependent ef-

fectiveness of monetary policy. The most closely related paper is Tenreyro and

Thwaites (2016), which shows that business investment and durables expen-
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diture are less responsive to monetary policies during recessions. I document

that the rising fragility index substantially accounts for the investment drop

during the recession of the dot-com bubble crash. At the same time, I show

that the interest-elasticity of aggregate investment significantly decreases in

the fragility index. According to this result, monetary policy could not have

functioned effectively during the dot-com bubble crash. Likewise, my paper

gives a micro-founded explanation of why monetary policy is not effective

during a recession. Going one step further, it gives a testable implication:

monetary policy in a recession not preceded by a surge of large firms’ lumpy

investments might be as effective as in normal years.

Lastly, this paper contributes to the nonlinear business cycle literature. A

large body of research has focused on the nonlinearity in aggregate fluctuations

that arise when heterogeneous agents are subject to micro frictions. Berger

and Vavra (2015) concludes that lumpiness in households’ durable adjustment

results in pro-cyclical responsiveness of aggregate durable expenditures to an

aggregate shock. Fernandez-Villaverde et al. (2020) found that financial fric-

tions can generate endogenous aggregate risk under the heterogeneous house-

hold model. In this setup, the aggregate allocations display state-dependent

responsiveness to an aggregate TFP shock. Volatility shocks to real inter-

est rates studied in Fernandez-Villaverde et al. (2011) and uncertainty shocks

in Bloom et al. (2018) are also highlighted as an important source of the

nonlinearity in the business cycle. To this literature, this paper contributes

by analyzing interest-inelastic large firms’ lumpy investments as a significant

source of nonlinearity in the aggregate investment dynamics.

Roadmap Section 2 shows motivating facts about surges of large firms’

lumpy investments before and after the recessions. Section 3 develops a
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heterogeneous-firm business cycle model where the cross-section of the interest-

elasticities is matched with the empirical estimates. Section 4 analyzes the

macroeconomic implications of the calibrated model. Section 5 concludes.

Proofs and other detailed figures and tables are included in appendices.

2 Motivating fact

In this section, I empirically analyze the cyclical pattern of the lumpy in-

vestments of large firms. I use U.S. Compustat data for the firm-level empirical

analysis. While Compustat data covers only public firms, its coverage is rela-

tively less of an issue in this analysis because the focus is on firms with large

capital stocks. Throughout the empirical analysis, large firms are defined as

firms that hold capital stocks greater than the 40th percentile of the capital dis-

tribution in each industry of the two-digit NAICS code. The choice of the 40th

percentile is to define large firms in the Compustat space consistent with large

firms in Zwick and Mahon (2017), which estimated the interest-elasticities of

firm-level investments.3 The sample period covers from 1980 to 2016. Firms

with negative assets and zero employment are excluded from the sample. All

the firm-level variables except capital stock and investment are deflated by

the GDP deflator. Investment is deflated by non-residential fixed investment

deflator available from National Income and Product Accounts data (NIPA

Table 1.1.9, line 9). The firm-level real capital stock is obtained by applying

the perpetual inventory method to net real investment. The industry is cate-

3In Zwick and Mahon (2017), large and small firms are defined as the top 30% and
bottom 30% of sales distribution. From the size cutoffs (15.4M, 48.8M) in terms of sales in
the years 1998 through 2000 and 2005 through 2007 (Table B.1, panel (d)), I compute the
corresponding capital size cutoffs in Compustat.
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gorized by the first two-digit NAICS code.4

2.1 Surges of large firms’ lumpy investments and reces-

sions

In the following analysis, I empirically analyze the relationship between

large firms’ lumpy investments and the timing of recessions. I define an in-

vestment spike as a firm-specific event where a firm makes a large-scale in-

vestment greater than 20% of the firm’s existing capital stock.5 I refer to this

investment spike as a lumpy investment or capital adjustment in the extensive

margin interchangeably. Then, I define spike ratio as follows:

Spike ratioj,t :=

∑
i∈j

I{iit/kit > 0.2}

# of j-type firms at t
, j ∈ {small, large}

The numerator counts all the incidences of investment spikes from firm type

j ∈ {small, large} at time t, and it is normalized by the total number of j-type

firms.

Figure 1 plots the time series of the spike ratio of large firms. On average,

9.2% of large firms adjust their existing capital stocks in the extensive margin

in a year. As can be seen from Figure 1, since 1980, there have been only four

periods (1980, 1996, 1998, and 2007) where the fraction of large firms making

spiky investments surged beyond one-standard deviation. Three out of the

4If only SIC code is available for a firm, I imputed the NAICS code following online
appendix D.2 of Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next
available industry code for the firm.

520% cutoff is from the non-convex adjustment cost literature (Cooper and Haltiwanger,
2006; Gourio and Kashyap, 2007; Khan and Thomas, 2008). If a firm’s acquired capital
stock is greater than 5% of existing capital stock in a certain year, I rule out the observation
from the sample due to possible noise in the reported items in the balance sheet during the
acquisition year.
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Figure 1: Three surges of large firms’ lumpy investments before recessions

0.07

0.09

0.11

0.13

1980 1990 2000 2010

Years

%
 o

f 
fi
rm

s
 m

a
k
in

g
 l
a

rg
e

−
s
c
a

le
 I

n
v
.

Recession

Types

Large's spike

Mean

1−SD band

Notes: The firm-level large-scale investment is defined as an investment greater than 20% of
the existing capital stock. The solid line plots the time series of the fraction of large firms
making large-scale investments. The grey areas highlight the NBER recession periods.

four events were followed by recessions within two years.

Conversely, there were four recessions in the U.S. over the same period, and

three out of four recessions were preceded by the surge of large firms’ lumpy

investments. The exception was the recession in 1990, and it was the mildest

recession among the four recessions.

Figure 2: Conditional heteroskedasticity of aggregate investment
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past two spike ratios for each observation of residualized investments. The years overlaid
on the dots are the observation year of the residualized investment-to-capital ratios.
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In the following analysis, I show aggregate investment rate is conditionally

heteroskedastic on the average lagged spike ratio of large firms. That is, the

residualized volatility of aggregate investment rate is high if a great fraction

of large firms have made lumpy investments in recent years.

For this analysis, I use aggregate data on non-residential investment (NIPA

Table 1.1.5, line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line

4) from BEA.6 The thick line in Figure 2 plots the estimates of the log standard

deviation of residuals from the autoregression of aggregate investment rates as

a function of the recent average of large firms’ spike ratio.7 The recent average

is based on the average spike ratio of the past three years. As can be seen

from this figure, aggregate investment rates are heteroskedastic conditional on

the lagged average spike ratio. Table E.9 reports the regression coefficients for

the fitted line. According to the regression result, a one-standard-deviation

increase (1.47%) in the large firms’ past spike ratio is associated with a one-

standard-deviation increase (0.50%) in the aggregate investment’s residualized

volatility. Consistent with the patterns in Figure 1, the three recession years

of interest are located at the top-right corner in Figure 2.

3 Model

I develop and analyze a heterogeneous-firm real business cycle model in

which the cross-section of the semi-elasticities of firm-level investment is matched

with the empirical estimates. In the model, time is discrete and lasts forever.

There is a continuum of measure one of firms that own capital, produce busi-

ness outputs, and make investments. The business output can be reinvested

6All the data sources are included in Online Appendix.
7This empirical analysis is motivated from the conditional heteroskedasticity analysis in

Figure 1 of Bachmann et al. (2013).

10



as capital after a firm pays adjustment costs.

3.1 Technology

A firm owns capital. It produces a unit of goods that can be converted to

a unit of capital after paying an adjustment cost. The production technology

is a Cobb-Douglas function with decreasing returns to scale:

zitAtf(kit, lit) = zitAtk
α
itl

γ
it, α + γ < 1

where kit is firm i’s capital stock at the beginning of period t; lit is labor

input; zit is idiosyncratic productivity; At is aggregate TFP. Idiosyncratic

productivity, zit, and aggregate TFP, At, follow the stochastic processes as

specified below:

ln(zit+1) = ρzln(zit) + ϵz,t+1, ϵz,t+1 ∼iid N(0, σz)

ln(At+1) = ρAln(At) + ϵA,t+1, ϵA,t+1 ∼iid N(0, σA)

where ρs and σs are persistence and standard deviation of i.i.d innovation in

each process s ∈ {z, A}, respectively. Both stochastic processes are discretized

using the Tauchen method in computation.

3.1.1 Investment and adjustment cost

I assume a firm-level large-scale investment could be made only after paying

a total adjustment cost, Cit, which varies over firm-level allocations. The

total adjustment cost is a function of capital stock, kit, investment size Iit,

and a fixed cost shock ξit ∼iid Unif [0, ξ] as in Winberry (2021). And this
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total adjustment cost is composed of two additively separable parts: a convex

adjustment cost and a fixed adjustment cost. The convex adjustment cost is

a function of the current capital stock, kit, and the investment Iit as assumed

in the literature. The fixed adjustment cost, Fit, is a function of the current

capital stock kit and a fixed cost shock ξit ∼iid Unif [0, ξ]. The fixed cost does

not incur if a firm adjusts capital within a moderate range (Iit ∈ Ω(kit) :=

[−νkit, νkit]). A firm needs to pay a fixed cost for investment beyond this

range. The fixed cost is assumed to be overhead labor cost, so it varies over

the business cycle due to wage fluctuations.8

To summarize, I assume the following total adjustment cost structures:

Cit = C(kit, Iit, ξit;wt)

= µ

(
Iit
kit

)2

kit + F (kit, ξit)wt

F (kit, ξit) =





ξitk
ζ if Iit ̸∈ Ω(kit) = [−νkit, νkit]

0 if Iit ∈ Ω(kit) = [−νkit, νkit]

This model’s difference from the existing literature is the size-dependent

fixed cost parametrized by the extensive-margin elasticity dispersion parame-

ter, ζ. As ζ increases, the extensive-margin elasticity gap between small and

large firms widens, leaving the cross-section of the interest-elasticity consis-

tent with the empirical level in Zwick and Mahon (2017) and Koby and Wolf

(2020). In Section 4, I quantitatively investigate how the ζ parameter affects

the dispersion of interest-elasticity.

8This setup is following Khan and Thomas (2008) and Winberry (2021).
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3.1.2 Size-dependent fixed cost: A theoretical explanation

In this section, I provide a theoretical explanation for size-dependent fixed

cost. The presence of the fixed cost in the investment has been widely accepted

in the micro-level investment literature. However, it has been relatively less

investigated whether the fixed cost occurs at the establishment or firm levels.

Depending on the model specification and the granularity of the data, each

paper flexibly defines the fixed cost.

In this paper, the fixed cost is modeled at the firm level, but its functional

form is grounded on the establishment-level fixed cost. I argue that if a firm

decides to make a large-scale investment by expanding establishments, fixed

cost occurs at each existing establishment due to interdependence across the

establishments. For example, if a new establishment is constructed, the pro-

duction lines in the existing establishments have to be adjusted to coordinate

with the new one, and managers have to be reallocated across the different

production units. Therefore, intuitively, firm-level fixed cost increases in the

number of establishments and the degree of interdependence across the estab-

lishments.

To sharpen the theoretical points, let’s assume a firm has n establishments

and plans to expand a new factory. Then, if establishments are coordinated

pairwise, and if the fixed cost of each coordinated pair is ξ, the total firm-level

fixed cost F is as follows:

F2 =


n

2


× ξ =

n(n− 1)

2
ξ

which features quadratic growth in the number of establishments. This was

when each establishment is interdependent pairwise. Then, if an establish-
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ment’s operation is dependent on ζ − 1 number of other establishments on

average, the firm-level fixed cost becomes as follows:

Fζ =


n

ζ


× ξ =

n(n− 1)(n− 2) . . . (n− ζ + 1)

ζ!
ξ

The firm-level fixed cost Fζ exponentially increases in the number of estab-

lishments to the power of ζ. For a higher interdependence across the estab-

lishments, the fixed cost increases faster. Even if the source of the fixed cost

is not at the establishment level, the intuitive explanation is that the interde-

pendence across the basic operation unit (e.g., department or team) convexly

raises the complexity inside the firm. And this increases the firm-level fixed

cost when the firm makes a large-scale capital adjustment.

In this paper, the number of establishments (or basic production units) is

proxied by the total capital stock kit. This is consistent with Cao et al. (2019).

Using the US administrative data, Cao et al. (2019) points out that the firm

growth is substantially driven by the expansion in the number of establish-

ment. Therefore, the number of establishments is well-proxied by the size of

the capital stock kit.

3.2 Household

A stand-in household is considered. The household consumes, supplies

labor, and saves in a complete market. In the beginning of a period, the

household is given with an equity portfolio a, information on the contempora-

neous distribution of firms Φ, and the aggregate TFP level A. The household
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problem is as follows:

V (a;S) = max
c,a′,lH

log(c)− ηlH + βEV (a′;S ′)

s.t. c+

∫
ΓA,A′q(S, S ′)a(S ′)dS ′ = w(S)lH + a(S)

GΦ(S) = Φ′, P(A′|A) = ΓA,A′ , S = {Φ,A}

where V is the value function of the household; Φ is a distribution of firms;

A is an aggregate productivity; ΓA,A′ is the state transition probability; c is

consumption; a′ is a state-contingent future saving portfolio; lH is labor supply;

w is wage, and r is real interest rate. Household is holding the equity of firms

as their asset.

From the household’s first-order condition and the envelope condition, I

obtain the following characterization of the stochastic discount factor q(S, S ′):

q(S, S ′) = β
C(S)

C(S ′)

I define p(S) := 1
C(S)

. In the recursive formulation of a firms’ problem in the

next section, I use p(S) to normalize the firm’s value function following Khan

and Thomas (2008).

3.3 A firm’s problem: Recursive formulation

In this section, I formulate a firm’s problem in the recursive form. A firm

is given with capital k, an idiosyncratic productivity z, in the beginning of

a period. Also, they are given with the knowledge on the contemporaneous

distribution of firms Φ and the aggregate TFP level A. For each period, firm

determines investment level I and labor demand nd. A firm’s problem is
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formulated in the following recursive form:

J(k, z;S) = π(k, z;S) + (1− δ)k

+

∫ ξ

0

max {R∗(k, z;S)− F (k, ξ)w(S), Rc(k, z;S)} dGξ(ξ) (1)

R∗(k, z;S) = max
k′≥0

− k′ − c(k, k′) + Eq(S, S ′)J(k′, z′;S ′)

Rc(k, z;S) = max
kc∈Ω(k)

− kc − c(k, kc) + Eq(S, S ′)J(kc, z′;S ′)

The following lines explain the details of each component in the value function.

(Operating profit) π(z, k;S) := max
nd

zAkαnγ
d − w(S)nd (nd: labor demand)

(Convex adjustment cost) c(k, k′) :=
(
µI/2

)
((k′ − (1− δ)k)/k)

2
k

(Size-dependent fixed cost) F (k, ξ) := ξkζ

(Constrained investment) kc ∈ Ω(k) := [−kν, kν] (ν < δ)

(Idiosyncratic productivity) z′ = Gz(z) (AR(1) process)

(Stochastic discount factor) q(S, S ′) = β (C(S)/C(S ′))

(Aggregate states) S = {A,Φ}

(Aggregate law of motion) Φ′ := H(S), A′ = GA(A) (AR(1) process),

Then, I multiply p(S) = 1/C(S) on the both sides of line (1) to obtain

p(S)J(k, z;S) = p(S)(π(k, z;S) + (1− δ)k)

+

∫ ξ

0

max {p(S)R∗(k, z;S)− p(S)w(S)F (k, ξ), p(S)Rc(k, z;S)} dGξ(ξ)
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I define the normalized value functions as follows:

J̃(k, z;S) := p(S)J(k, z;S)

R̃∗(k, z;S) := p(S)R∗(k, z;S)

R̃c(k, z;S) := p(S)Rc(k, z;S)

It is necessary to check whether the recursive formulation naturally follows for

the normalized value functions. Using p(S)q(S, S ′) = βp(S ′),

R̃∗ = max
k′≥0

(−k′ − c(k, k′))p(S) + Ep(S)q(S, S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + Eβp(S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + βEJ̃(k′, z′;S ′)

Similarly,

R̃c = max
kc∈Ω(k)

(−kc − c(k, kc))p(S) + βEJ̃(kc, z′;S ′).

Therefore, the recursive form is preserved for the normalized value functions.

As in Khan and Thomas (2008), the recursive form based on the normalized

value function eases computation of the dynamic stochastic general equilibrium

because the price, p, depends only on the current aggregate state variable, S.

A firm makes a large scale investment only if R∗(k, z;S) > Rc(k, z; s).

Therefore, a firm-level extensive-margin investment decision can be character-

ized by the threshold rule, gξ∗ , as follows:

gξ∗(k, z;S) = min

{
R̃∗(k, z;S)− R̃c(k, z;S)

w(S)p(S)kζ
, ξ

}
.
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This threshold rule is distinguished from the threshold rules in other existing

models in that the threshold weakly decreases in the size of a firm. In other

words, the required marginal benefit of large-scale investment is greater for

large firms to make the extensive-margin investment than for small firms.

This generates an empirically-supported cross-section of interest-elasticities. I

quantitatively show this in Section 4.

I denote gk∗ as the optimal future capital stock conditional on the extensive-

margin investment, gkc as the optimal future capital stock conditional on the

small-scale investment, and gk as the unconditional optimal investment.

Then, the following relationship holds:

gk(k, z;S) =





gk∗(k, z;S) if ξ < gξ∗(k, z;S)

gkc(k, z;S) if ξ ≥ gξ∗(k, z;S).

That is, if a fixed cost shock ξ is less than the threshold, a firm makes a large-

scale investment.

3.4 Recursive competitive equilibrium

In this section, I define the recursive competitive equilibrium in the econ-

omy.

(gc, ga, glH , gk∗ , gkc , gξ∗ , gnd
, Ṽ , J̃ , R̃∗, R̃c, p, w) is a recursive competitive equi-

librium if the following conditions are satisfied.

1. gc, glH , Ṽ and ga, solves the household’s problem.

2. gk∗ , gkc , gξ∗ , gnd
, J̃ , R̃∗, and R̃c solve a firm’s problem.
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3. Market Clearing:

(Labor Market) glH(Φ;S) =

∫ (
gnd

(k, z;S)

+

(
gξ∗(k, z;S)

ξ

)(
gξ∗(k, z;S)

2

)
kζ

)
dΦ

(Product Market) gc(Φ;S) =

∫ (
zAkαgnd

(k, z;S)γ

−

(
(gk∗(k, z;S)− (1− δ)k) + c(k, gk∗(k, z;S))

)

×
gξ∗(k, z;S)

ξ

−

(
(gkc(k, z;S)− (1− δ)k) + c(k, gkc(k, z;S))

)

×
1− gξ∗(k, z;S)

ξ

)
dΦ

4. Consistency Condition:9

(Consistency) GΦ(Φ) = H(Φ) = Φ′, where for ∀K ′ ⊆ K and z′ ∈ Z,

Φ′(K ′, z′) =

∫
Γz,z′

(
I{gk∗(k, z;S) ∈ K ′}

gξ∗(k, z;S)

ξ

+ I{gkc(k, z;S) ∈ K ′}
1− gξ∗(k, z;S)

ξ

)
dΦ

4 Quantitative analysis

This section quantitatively analyzes the macroeconomic implications of

9
K and Z are the supports of the marginal distributions of capital and productivity

induced from Φ.
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large firms’ lumpy investments. First, I discipline the baseline model to fit

the data moments by calibration.Especially, the different interest elasticities

between small and large firms are the key moments to be fitted, which are

hardly captured in alternative models. Second, I study the nonlinear dynamics

of lumpy investments using impulse response analysis. The nonlinear dynam-

ics arise from the synchronization of large-scale investment timing. Lastly, I

quantitatively analyze how the large firms’ synchronization pattern affects the

aggregate investment dynamics after a one-standard-deviation TFP shock and

the aggregate interest-elasticity.

4.1 Calibration

In this section, I elaborate on how the model is fitted to the data and

compare the fitness with alternative models. Table 1 reports the target and

untargeted moments from the data and the simulated moments in the model.

Table 2 reports the calibrated parameters given the fixed parameters reported

in Table E10. In the simulation step, I use the non-stochastic method in Young

(2010).

The target semi-elasticity of average investment is from Zwick and Mahon

(2017).10 The cross-sectional semi-elasticity ratio is also from the same paper,

which documents that small firms’ investments are around twice elastic as large

firms towards the interest rate change. In the paper, large and small firms are

defined as the top 30% and bottom 30% firms in terms of size, respectively. I

define large and small firms consistently in the model with their definition. The

cross-sectional average and dispersion of the investment-to-capital ratio and

the average spike ratio are targeted to match the levels in Zwick and Mahon

10The semi-elasticity definition is available in Appendix A.3.
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Table 1: Fitted Moments

Moments Data Model Reference

Targeted moments

Semi-elasticity of investment (%) 7.20 6.63 Zwick and Mahon (2017)
Cross-sectional semi-elasticity ratio (%) 1.95 2.13 Zwick and Mahon (2017)
Cross-sectional average of it/kt ratio 0.10 0.10 Zwick and Mahon (2017)
Cross-sectional dispersion of it/kt (s.d.) 0.16 0.16 Zwick and Mahon (2017)
Cross-sectional average spike ratio 0.14 0.14 Zwick and Mahon (2017)
Positive investment rate 0.86 0.86 Winberry (2021)
Time-series volatility of log(Yt) 0.06 0.07 NIPA data (Annual)

Untargeted moments (all in yrs.)
Average inaction periods 6.38 7.72 Compustat data
Dispersion of inaction periods 4.87 5.50 Compustat data
Average of lag diff. of inaction periods 0.27 0.67 Compustat data
Dispersion of lag diff. of inaction periods 6.47 8.36 Compustat data

Notes: The data moments are from the sources specified in the reference column. The
same sample restriction as in the empirical analysis applies to Compustat data. I use
linearly detrended real GDP from the National Income and Product Accounts at the annual
frequency for the aggregate output volatility.

(2017) as in Winberry (2021). Consistent with the literature, I define the spike

ratio as the fraction of firms investing greater than 20% of the existing capital

stock. The target of positive investment rate is from Winberry (2021). The

positive investment rate is defined as the fraction of firms with an investment

that is greater than 1% but smaller than 20% of existing capital stock. Only

a negligible fraction of firms make a negative investment in both data and

the model as the average spike ratio and positive investment sum to unity.

To discipline the aggregate TFP-driven fluctuations in the model, I target

the output volatility calculated from annual National Income and Product

Accounts (NIPA) data.

In the model, variations in the fixed cost parameter and convex adjust-

ment cost parameter lead to a sharply divergent effect on the dispersion of the
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Table 2: Calibrated Parameters

Parameters Description Value

Internally calibrated parameters

ζ Fixed cost curvature 3.500

ξ Fixed cost upperbound 0.440
µI Capital adjustment cost 0.780
ν Small investment range 0.041
σ Standard deviation of idiosyncratic TFP 0.130
σA Standard deviation of aggregate TFP shock 0.025

Externally estimated parameters

ρ Persistence of idiosyncratic TFP 0.750

Notes: Parameters in the upper part of the table are calibrated to match the
moments in Table 1. The persistence of idiosyncratic TFP is directly computed
from fitting the estimated firm-level TFP (Compustat) into AR(1) process. The
firm-level TFP is estimated following Ackerberg et al. (2015) using US Compustat
data.

investment rate (investment-to-capital ratio), while both lowers the average in-

vestment rate. For a higher fixed cost parameter, the dispersion of investment

rate is higher as the difference in the investment rate between extensive-margin

adjusters and non-adjusters increases.11 On the other hand, a higher convex

adjustment cost uniformly mutes down the investment rate, leading to a lower

dispersion in the investment rate. These two divergent effects, together with

the average investment rate, identify the fixed and convex adjustment cost

parameters.

The fixed cost curvature parameter ζ is identified from the cross-sectional

semi-elasticity ratio between small and large firms. As ζ increases beyond

unity, the large firms’ interest-elasticity decreases through both the extensive

and the intensive margins. The extensive margin channel operates by making

it harder for larger firms to make a large-scale investment even if the interest

11If a fixed cost is too high, the fraction of adjusters become too small to have meaningful
contribution to the investment rate dispersion.
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rate decreases. The intensive margin channel is through the selection effect

on the adjusting large firms: those who remain to adjust the capital even

when a fixed cost increases are on average less interest-elastic firms than those

marginal firms that change their adjusting stance when a fixed cost increases.

The calibrated level of ζ is 3.5, which I interpret as 3.5 establishments are

involved per production line on average.

As can be seen from Table 1, the baseline model (column 1) can cor-

rectly capture the cross-sectional elasticity ratio between small and large firms.

Therefore, the baseline model provides an appropriate framework for analyz-

ing the role of large firms’ investment in the dynamic stochastic general equi-

librium. This is one of this paper’s contributions, as the interest-elasticity

cross-section is not well-captured in the existing model framework.12

Figure 3: Semi-elasticities of investments across different models
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(a) Baseline
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(b) Fixed cost only
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(c) Convex + Fixed

Notes: The figure plots the deviation of investment from the steady-state level when the
interest rate changes for each different model. The vertical axis is the interest rate in per
cent, and the horizontal axis is the percentage deviation from the steady-state investment.
The horizontal dotted line indicates the equilibrium interest rate.

Figure 3 visualizes the large and small firms’ interest-elasticities for the

baseline model (panel (a)), for a model with fixed cost only (panel (b)), and

12I theoretically and quantitatively point out that the cross-sectional ranking of the
interest-elasticities of investment between large and small firms is counterfactually flipped
in existing model frameworks in Appendix A.
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for a model with convex and fixed cost (panel (c)).13 In each panel, the

vertical axis is the interest rate in per cent, and the horizontal axis is the

percentage deviation from the steady-state investment. The horizontal dotted

line indicates the equilibrium interest rate. As the interest rate decreases,

all models’ average deviation of investment from the steady-state increases.

However, in the model with convex and fixed adjustment cost (panel (c)), the

large firms’ average deviation of investment from the steady-state increases

faster than small firms as the interest rate decreases. In the model with a

fixed cost only, the interest-elasticities of all groups are significantly higher

than the ones in the other two models, as can be checked from the large-scale

variation along the horizontal axis.

Finally, I compare the business cycle statistics implied in the baseline model

with the aggregate-level data. The aggregate-level data at the annual fre-

quency is from National Income and Product Accounts (NIPA) data, and the

sample period starts from 1955. All the variables are in log and linearly de-

trended. Table E.11 reports the business cycle statistics from the data and

the model. Among the statistics, the time-series volatility of the log output is

the targeted moment.

The correlations across the aggregate variables in the baseline model are

well-matched with the observed level in the data. Especially, the autocorre-

lation of aggregate investment and the cross-correlation between the aggre-

gate investment and output are sharply matched even if they are not the

targeted moment. For the relative volatilities of consumption and investment,

the model’s moments are slightly lower than the observed level.

13The model with convex and fixed adjustment cost is a prototype of the models in
Winberry (2021) and Koby and Wolf (2020).
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4.2 Synchronization

In this section, I analyze how the large and small firms differently respond

to the same productivity shock using the impulse response analysis. Figure 4

plots the impulse responses of the spike ratios of all, large, medium, and small

firms to the negative one-standard-deviation aggregate TFP shock.14 The

impulse response is obtained from the method that computes the transition

path to the stationary allocation after an unexpected negative one-standard

deviation TFP shock. All the responses are expressed in percentage deviation

from the steady-state level.

Figure 4: Impulse response of spike ratio
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Notes: The impulse response of spike ratios are obtained from the tran-
sition dynamics to the stationary equilibrium allocations after an unex-
pected negative one-standard-deviation TFP shock.

Upon the arrival of the negative aggregate TFP shock, all the firms’ extensive-

margin investment timings are synchronized. It is because firms realize it is

not a good idea to install new large-scale capital as the business prospect is

not promising in the near future. So, firms that are ready for the extensive-

margin investment tend to delay the plan, leading to synchronized timings of

large-scale investments. The dynamics of investment timings after this initial

14The shock is assumed to be as persistent as the calibrated aggregate TFP shock.
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synchronization are starkly different across the different firm sizes.

For large firms, initial synchronization leads to a surge in spiky investments.

This is because the large firms are interest-inelastic in the model and thus

strictly less affected by the general equilibrium effect.

On the other hand, the synchronized investment timings of small and

medium firms are spread out over the post-shock period. This is because

the general equilibrium effect makes the small and medium firms deviate from

the concentrated period for large-scale investment. In other words, the general

equilibrium effect strongly smoothens their investment timings.

4.3 Fragility after a surge of lumpy investments

I solve the model with the aggregate uncertainty using a new methodology

called the repeated transition method. Due to the highly nonlinear aggregate

dynamics, the existing solution algorithms fail to accurately compute the so-

lution. So, I have contemporaneously developed the new methodology in Lee

(2022), which is specialized for solving nonlinear dynamic stochastic general

equilibrium. The method is described in Appendix D.Using the equilibrium

allocations obtained from the new methodology, I study how the synchronized

investment timings of large firms affect the aggregate investment dynamics

over the business cycle. First, I define a fragility index that captures the por-

tion of large firms that have just finished large-scale investments as follows:

Fragilityt :=

∑
I{sit ≤ s}I{kit > k}∑

I{kit > k}

where sit is the time from the last lumpy investment; s is the threshold where

any firm i with sit below the level has recently adjusted its capital in the

extensive margin; k is the size threshold of large firms. If a great fraction
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of large firms have just finished a large-scale investment, a relatively small

fraction of large firms are willing to make a large-scale investment due to the

presence of the fixed adjustment cost. Over the business cycle, the fluctuations

in this index interplay with the exogenous TFP fluctuations, as the following

analyses will conclude.

The median duration between two lumpy investments is 6 years in both

the model and the data. In the regression that includes the fragility index,

reported in Table 3, I found s = 3 maximizes the fitness of the regression. The

size cutoff k is set consistent with Section 2.

It is worth noting that the fragility index is constructed from the readily

observable micro-level variables. Especially, the measure is based on the past

investment history of large firms, which are mostly listed and subject to finan-

cial reporting regulations. Therefore, the index can be measured in a timely

manner and can contribute to predicting the near future of aggregate invest-

ment. This is starkly contrasted with the existing indices in the literature

based on the joint distribution between capital stock and productivity that

is not directly observable (Caballero and Engel, 1993; Bachmann et al., 2013;

Baley and Blanco, 2021).

Figure 5 shows the time series of fragility index and spike ratio in the

simulation (panel (a)) and the data (panel (b)), where each series is normalized

by the standard deviation around the average. In both panels, the time series of

the spike ratio leads the fragility index by two to three years. As the average

inaction takes around six years, around three years after a surge of lumpy

investment (spike ratio), a trough is expected to arrive. By the definition of

the fragility index, during this trough of lumpy investment, the index will rise,

indicating only a small fraction of firms are willing to make a lumpy investment.

Therefore, the growth rate of the spike ratio and the fragility index tend to
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Figure 5: Time series of fragility indices in simulation and data
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Notes: Using the histogram method in Young (2010), firms are simulated for 1,000 periods
(years) based on the dynamic stochastic general equilibrium allocations. Panel (a) plots a
part of the simulated allocations. The solid line plots the aggregate investment growth rate
(%). The dotted line plots the fragility indices normalized by the standard deviation. The
fragility indices are calculated based on the distribution of large firms.

co-move in the opposite direction. Figure 6 is the scatter plot of the simulated

time series where the horizontal axis is the fragility index normalized by the

standard deviation, and the vertical axis is the growth rate of the large firms’

spike ratio.15 By fitting the relationship between the fragility and the growth

rate of spike ratio into linear regression, I find the following relationship:

∆log(SpikeRatiot)(%) =− 1.8936 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.828

(0.0274)

The relationship indicates that one standard deviation increase in fragility is

negatively associated with the growth rate of the large firms’ spike ratio by

1.89%. As can be seen from the high R2, these two variables are tightly related
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Figure 6: Fragility index and the growth rate of the large firms’ spike ratio
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Notes: The vertical axis of the scatter plot is the spike ratio in percentage devia-
tion from the average, and the horizontal axis is the fragility index in the standard
deviation from the average. Using the histogram method in Young (2010), firms
are simulated for 1,000 periods (years) based on the dynamic stochastic general
equilibrium allocations. The fragility indices are calculated based on the distribu-
tion of large firms.

along the business cycle. While the growth rate of the large firms’ spike ratio

is not known before period t, the fragility index is known ahead of period t.

This implies the growth rate of the large firms’ spike ratio features a state

dependence; the fragility index has predictability for the one-period-ahead

growth rate of the large firms’ spike ratio.

Then, I study how the fragility index fluctuations affect aggregate invest-

ment growth, jointly with the exogenous output shocks. Table 3 reports the

regression result of the following specification in both the model and the data:

∆log(It) = α + βOutputShockOutputShockt + βFragilitylog(Fragilityt) + ϵt

where ∆log(It) is the aggregate investment. OutputShockt is a shock in the

log output, obtained from the residuals in the AR(1) fitting of the log output

15The past aggregate shock At−1 and the contemporaneous shock At are controlled by
taking out fixed effects. The different colors of the dots are for different combinations of
At−1 and At.
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process. The aggregate investment and output data are from National Income

and Product Accounts data. In this specification, OutputShockt exogenously

arrives at t, while the Fragilityt is determined at t−1. Therefore two variables

are independent of each other.

Table 3: Regressions of investment growth rate on fragility indices

Dependent variable: ∆log(It)

Model Data

OutputShockt 2.425 3.231
(0.020) (0.477)

log(Fragilityt) -0.177 -0.140
(0.005) (0.047)

Constant Yes Yes
Observations 1,000 32
R2 0.942 0.628
Adjusted R2 0.941 0.602

Notes: The dependent variable is the growth rate of aggregate investment. The
independent variables are output shocks obtained from fitting output series into
AR(1) process, log of lagged fragility indices, and the growth rates of the fragility
indices. The first column reports the regression coefficients from the simulated
data. The fragility index is based on the years from the last lumpy investment of
large firms. The second column reports the regression coefficients using a measure
based on the years from the last lumpy investment of large firms in Compustat data.
Output shock process is computed using National Income and Product Account
(NIPA). The numbers in the brackets are standard errors.

As reported in Table 3, the coefficient estimates from the model and data

are statistically indifferent. When the fragility index increases by 1%, aggre-

gate investment decreases by 0.175% and 0.140% in the model and the data.

The negative effect of the fragility index on aggregate investment growth is due

to the lack of lumpy investments from large firms. In Table C.6, I report the

full regression results under different fragility indices and specifications. In the

fourth column of the full table, when the output shock is the only independent

variable in the regression, around 51% of the investment growth rate variation
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is explained. Once the fragility fluctuation is considered, R2 increases to 63%.

Using the estimate from the data in Table 3, I quantify the portion of

the investment growth rate that is accounted for by the fluctuations in the

fragility index. From the total standard deviation comparison, around 36% of

aggregate investment volatility can be explained by the fragility fluctuations

(0.36 ≊ 0.022/0.060).

Table 4 compares the investment growth rate and the fragility-adjusted

investment growth rate in the recent three recessions of the sample period. The

fragility is adjusted by deducting the predicted variation by the fragility index

from the investment growth rate. In stark contrast to the other recessions, the

recession in 2001 was greatly explained by the fragility fluctuations. Without

the fragility fluctuations, the investment growth rate is mitigated to -4.340%

instead of -7.627%, which is around a 43% deduction in terms of magnitude.

This is consistent with the well-known facts about the dot-com bubble crash,

which caused the recession in 2001. Just before the crash, a great fraction of

firms jumped into a large-scale investment. This surge of lumpy investments

increased the U.S. economy’s fragility in the subsequent period.

Table 4: Investment growth rates during the recessions

Investment growth rate (%):∆log(It)

Raw data (NIPA) Fragility-adjusted Adjusted portion (%)

Recession-1991 -2.140 -1.889 11.729
Recession-2001 -7.627 -4.340 43.097
Recession-2009 -16.359 -16.551 -1.174

Notes: The first column reports the investment growth rate (%) at recession years
of 1991, 2001, and 2009. The second column reports the adjusted investment
growth rate after removing the predicted component from the fragility indices
using the coefficients of the third column in Table 3. The third column reports the
adjusted portion (%).
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The recession in 1991 was the mildest recession among the recent reces-

sions, and the explained component by the fragility is not large (11.7%). The

recession in 2009 was the most different event compared to the others as the

fragility index does not even predict the drop in investment growth. Despite

the sharp rise in the fraction of lumpy investments in the prior years to the

event, the fragility index did not rise much as the rise was concentrated to only

a short period. In contrast, the drop in the investment rate was the largest

among the recent three recessions. There are two possible explanations for

this inconsistency. The first is the nature of the aggregate shock in 2009 was

different from the ones in the prior recessions. Especially, the shock in 2009

originated from the financial sector, and the first-hand effect was likely through

the financial constraint. Therefore, the most affected firms were small firms

(Fort et al., 2013). As the fragility fluctuations affect the aggregate investment

through large firms’ lumpy investments, its explainability on the Financial cri-

sis cannot be satisfactory. Second, the financial crisis was the largest recession

after the Great Depression before the pandemic period. Therefore, the mag-

nitude of the exogenous shock might have been greater than the ones in the

prior recessions.

To quantify the extra variation of aggregate investment driven by the

fragility fluctuations at each time on the business cycle, I hit the economy

with an unexpected one-standard-deviation TFP shock and compute the con-

temporaneous response under the general equilibrium. Figure 7 shows the

state-dependent contemporaneous responses of aggregate investment.16 The

horizontal axis is the fragility index normalized by the standard deviation.

The vertical axis is the deviation of aggregate investment response from the

16Figure 2 can be understood as a data counterpart of this figure, as the residualized
investment variation increases in the average of the recent spike ratio of large firms.
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response at the steady state in a percentage point. The prior aggregate shock

At−1 is controlled by teasing out the fixed effect, and the different colors of

dots represent the different fixed-effect groups. Here the fragility index at t is

a state of the economy at t as the index is determined before the beginning of

period t.

Figure 7: State-dependent instantaneous responses to a negative aggregate
TFP shock

-3 -2 -1 0 1 2 3 4

Fragility (s.d)

-3

-2

-1

0

1

2

3

g
(I

t) 
(p

.p
.)

Notes: The vertical axis of the scatter plot is the instantaneous response of ag-
gregate investment to a negative one-standard-deviation TFP shock in percentage
deviation from the average, and the horizontal axis is the fragility index in the
standard deviation from the average. In each responses, contemporaneous and
one-period-prior aggregate TFP fixed effects are controlled. Using the histogram
method in Young (2010), firms are simulated for 1,000 periods (years) based on
the dynamic stochastic general equilibrium allocations. The fragility indices are
calculated based on the distribution of large firms.

As can be seen from the figure, there is a significant negative relationship

between the contemporaneous response of aggregate investment g(It) and the

fragility index. By fitting the relationship into linear regression, I obtain the

following result:

g(It) (p.p.) =− 0.5605 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.580

(0.0151)
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When the fragility index increases by one standard deviation, the contem-

poraneous response of the aggregate investment to the negative one-standard-

deviation shock decreases by 0.56 percentage points. This result shows that the

fragility fluctuations amplify the productivity-driven aggregate fluctuations.

4.4 Policy implication: State-dependent interest-elasticity

of aggregate investment

In this section, I discuss the policy implications of the fluctuations of the

fragility index over the business cycle. In the economy captured in the baseline

model, the aggregate investment features a strong history dependence.17 This

history dependence not only affects the aggregate investment’s response to the

TFP shock but affects its elasticity to the interest rate change.

To study how the aggregate investment responds differently to the same

interest shock depending on the fragility state, I hit the economy with an unex-

pected interest rate shock and compute the contemporaneous response under

the partial equilibrium.18 In particular, I compare the contemporaneous aver-

age change in the investment when the interest rate unexpectedly changes and

returns immediately in the subsequent period to the level where the interest is

supposed to be without the exogenous shock. And the benchmark investment

level is the contemporaneous investment when the interest rate is assumed to

be staying at the same level. I calculate the average between the elasticity

measured when the interest rate increases by 1% and the one measured when

the interest rate drops by 1% to address the asymmetry in the responses to

17Given that the aggregate state includes all the relevant information from history, the
state dependence and the history dependence are interchangeably used in this paper.

18Therefore, the analysis is measuring the semi-elasticity of investment at each timing on
the business cycle.
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the positive and negative interest rate shocks.19

Figure 8: State-dependent semi-elasticities of aggregate investment
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Notes: The vertical axis of the scatter plot is the semi-elasticity of aggregate in-
vestment in percentage point deviation from the average, and the horizontal axis is
the fragility index in the standard deviation from the average. For each elasticity,
contemporaneous and one-period-prior aggregate TFP fixed effects are controlled.
Using the histogram method in Young (2010), firms are simulated for 1,000 peri-
ods (years) based on the dynamic stochastic general equilibrium allocations. The
fragility indices are calculated based on the distribution of large firms.

Figure 8 is the scatter plot of the interest-elasticities of the aggregate in-

vestment in relation to the fragility state. The horizontal axis is the fragility

index normalized by the standard deviation; the vertical axis is the interest-

elasticity in percentage point deviation from the steady-state.20 According to

the figure, there is a significant negative relationship between the fragility and

the interest-elasticity of aggregate investment. By fitting the relationship into

19For example, if the interest is 0.03 at period t, I first compute the firm-level investment
in three cases: i) when the interest rate jumps up to 0.04 only in period t and then stays in
0.03; ii) when the interest rate drops down to 0.02 only in period t and then stays in 0.03;
iii) when the interest rate stays at 0.03 forever. Then, I obtain the mean of the investment
difference between case iii) and case i) and the investment difference between case iii) and
case ii).

20The prior aggregate shock At−1 is controlled by teasing out the fixed effect, and the
different colors of dots represent the different fixed-effect groups.
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linear regression, I obtain the following result:

∆Elasticityt (p.p) =− 0.2689 ∗ Fragilityt (s.d) + ϵt, R2 = 0.497

(0.0086)

One standard deviation increase in the fragility index decreases the interest

elasticity of aggregate investment by around 0.27 percentage points. The in-

tuitive explanation for the result is that when the fragility index is high, there

are not many large firms that can flexibly participate in and out of large-scale

investment. This decreases the interest-elasticity of aggregate investment in a

high-fragility state.

An important policy implication of the simulated result is that if the

fragility index is high, the monetary policy would not effectively operate

through the firm-level investment channel. Given there were recessions in

the recent periods that happened in the time of high fragility, the policy im-

plication echoes Tenreyro and Thwaites (2016) that monetary policies are less

powerful during recessions. However, this paper adds to the findings by sug-

gesting an endogenous mechanism of state dependence in monetary policy

effectiveness. And importantly, the fragility index is a forward-looking vari-

able and can be measured in a timely manner using readily observable large

firms’ data. Therefore, the fragility index can potentially contribute to the

optimal monetary policy design in practice.

5 Concluding remarks

This paper analyzes the endogenous state dependence in the aggregate in-

vestment dynamics driven by synchronized firm-level lumpy investments. An

36



economy becomes substantially more fragile to a negative aggregate shock after

a surge of large firms’ lumpy investments than it would otherwise be. I show

that this is due to large firms’ interest-inelastic investments. The economic

significance of this channel is quantified in a heterogeneous-firm real business

cycle model in which the cross-section of the semi-elasticities of firm-level in-

vestment is matched with the empirical estimates. In the model, the aggregate

investment features a significant state dependence in the interest elasticities

driven by fragility index fluctuations. This implies that after a surge of large

firms’ lumpy investments, the effectiveness of monetary policy can substan-

tially fall due to the lowered interest elasticity of the aggregate investment.
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