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Abstract

This paper develops a novel methodology to globally solve nonlinear dy-

namic stochastic general equilibrium models with high accuracy. The algorithm

is based on the ergodic theorem: if a simulated path of the aggregate shock is

long enough, all the possible equilibrium allocations are realized, enabling a

complete characterization of the rationally expected future outcomes at each

point on the path. The algorithm is applied to a heterogeneous-firm business

cycle model where firms hoard cash as a buffer stock. Using the model, I ana-

lyze the state-dependent shock sensitivity of consumption over corporate cash

stocks and provide empirical evidence.
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1 Introduction

This paper develops a novel algorithm that solves dynamic stochastic general equi-

librium models without specifying the law of motion. I name the algorithm repeated

transition method. This method solves a broad class of business cycle models that

feature rich nonlinear aggregate dynamics globally and accurately.1 The methodology

is particularly useful for heterogeneous-agent models with highly nonlinear aggregate

dynamics.

Under the rational expectation, heterogeneous agents are aware of the true law

of motion in the aggregate states and correctly predict the future aggregate state.

In contrast, there is no specific form of the law of motion known to a researcher.

Moreover, it is computationally costly to track the evolution of a distribution of the

individual states that is an infinite-dimensional object. To overcome this problem,

Krusell and Smith (1998) suggested a log-linear prediction rule of the finite number

of moments of the individual state distribution as an approximation to the true law of

motion. Afterward, numerous research papers in the literature have found that this

prediction rule gives a surprisingly accurate approximation to the true law of motion

in the broad class of heterogeneous agent models with aggregate uncertainty.

Still, there are macroeconomic environments where the log-linear rule does not

apply. In Fernandez-Villaverde et al. (2022), the nonlinear dynamics due to the en-

dogenous aggregate risk coming out of the interaction between the heterogeneous

households and the financial sector make it difficult to approximate the true law of

motion using the log-linear specification. Also, the state dependence of the consump-

tion responsiveness to a fiscal stimulus shock in Kaplan and Violante (2014) and the

state-dependent aggregate investment dynamics in Lee (2022) are examples of such

cases. According to Krusell and Smith (1997, 1998), these problems can be handled

by tracking more moments of the state distribution. However, the functional form of

1Representative-agent business cycle models featuring highly nonlinear dynamics can also be
accurately solved using the methodology.
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the prediction rule and selection of the moments still remain an open-ended problem.

The repeated transition method overcomes these problems by relying on the the-

oretical fact of the ergodic theorem: if a simulated path of stationary shock process

is long enough, all the possible allocations should be realized on the simulation path.

This fact implies that state-contingent future allocations are obtainable somewhere

on the simulation path as a realized outcome. Then, by properly identifying which

period has the corresponding outcome to each of the expected future states, an agent’s

rational expectation at any time on the simulated path can be fully recovered. In the

identifying step for the corresponding periods for expected future outcomes, the law

of motion does not need to be specified: the only information needed for this step is

a measure of similarity among the aggregate states across the periods.

For example, suppose an agent is at time t, and a macroeconomist needs to come

up with a rationally expected value function of period t+1. For each possible exoge-

nous aggregate shock realization s ∈ S in t+1, I find a period t̃s+1 in the simulation

history where the endogenous aggregate states are the closest to the ones in period

t + 1, and the aggregate shock realization is s. Then, I combine the value functions

from these periods {t̃s+1}s∈S to construct the expected future value function. Due to

the ergodic theorem, if the simulation path is long enough, there almost surely exists

a period t̃s+1 where the endogenous aggregate allocations such as the distribution of

individual states are perfectly identical to the ones in period t+1 among the periods

where the aggregate shock realization is s. Therefore, the expected value function

can be correctly constructed by combining these state-contingent value functions on

the path.

The repeated transition algorithm runs until the time series of the expected al-

locations and the simulated allocations converge. Therefore, the solution is highly

accurate, featuring R2 at unity and mean squared error close to zero, even for

highly nonlinear models. This method also provides an accurate global solution for

the representative-agent models with aggregate uncertainty. The application to the
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representative-agent model smoothly follows once the endogenous distribution of the

individual states is replaced by the endogenous aggregate allocations. In terms of

speed, the repeated transition algorithm outperforms the algorithm of Krusell and

Smith (1997) in models with non-trivial market-clearing conditions, as it does not

require an extra loop for the market-clearing price.

Using the repeated transition method, I study the role of corporate cash stocks

on the business cycle in a heterogeneous-firm business cycle model. In the model,

the optimal future cash stock displays a kink after the target cash holding level. On

top of this kink, due to the missing general equilibrium force to flatten the dynamics

of aggregate cash holdings, the TFP-driven aggregate fluctuations of the cash stocks

are highly nonlinear.

In the calibrated model, lagged aggregate cash stock significantly mitigates the

aggregate consumption responsiveness to a negative productivity shock and inten-

sifies the responsiveness to a positive productivity shock. Especially, the corporate

cash stock gives an asymmetrically stronger insurance effect toward the negative TFP

shock than the consumption boosting effect when the positive TFP shock hits. The

data counterpart empirically supports this model’s prediction of state dependence,

and the empirical pattern is observed only after the early 1980s.2 The fact that cor-

porate cash holding has dramatically increased since the early 1980s partly explains

why such a significant nonlinear effect is observed only after the early 1980s.

Related literature The repeated transition method builds upon the method uti-

lizing perfect-foresight impulse response suggested by Boppart et al. (2018). In the

paper, aggregate allocations’ impulse responses are obtained from the transition dy-

namics induced by MIT shocks to the steady-state distribution. Then, the law of mo-

tion of aggregate allocations is locally approximated around the steady state. There-

fore, the method assumes certainty equivalence between the expected deterministic

2The result is robust over other choices of the cutoff year around 1980.
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path and the expected path when the aggregate uncertainty is present. In contrast,

the repeated transition method does not assume certainty equivalence and globally

solves the model. And it directly computes aggregate allocations and market-clearing

prices in each period on the simulation path without specifying the law of motion.

Therefore, the repeated transition algorithm is distinguished from the solution

methods based on perturbation and linearization (Reiter, 2009; Boppart et al., 2018;

Ahn et al., 2018; Winberry, 2018; Childers, 2018; Auclert et al., 2019). As this

method utilizes a single path of simulated aggregate shock that is long enough to

fully represents the stochastic process, its approach is closely related to Kahou et al.

(2021). Kahou et al. (2021) utilizes the fact that a whole economy’s dynamics can be

characterized by solving a finite number of agents’ problems on a single Monte Carlo

draw of individual shocks under the permutation-invariance condition. And the law

of motion is nonlinearly computed using the deep-learning algorithm. Instead of the

law of motion being characterized as an equilibrium object, the repeated transition

algorithm computes the path of equilibrium allocations at each point on the simulated

path. Then the law of motion can be backed out from the time series of the realized

allocations. My method relies only on relatively simple computational techniques but

computes highly accurate solutions. Also, the algorithm is widely applicable as the

algorithm does not rely on the particular characteristics of the problem presented in

this paper.

Roadmap Section 2 explains the repeated transition method based on the model in

Krusell and Smith (1998). Section 3 validates the accuracy of the repeated transition

method by comparing the computed outcome with the existing well-known results in

the literature. Section 4 introduces a heterogeneous-firm business cycle model where

firms save cash. Section 5 discusses the business cycle implication of corporate cash

holdings predicted by the model compared to the observations from the data. Section

6 concludes.
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2 Repeated transition method

2.1 A model for algorithm introduction: Krusell and Smith

(1998)

I explain the repeated transition method based on the heterogeneous agent model

with aggregate uncertainty in Krusell and Smith (1998). In this section, I briefly

introduce the basic environment of the model.

A measure one of ex-ante homogeneous households consumes and saves. At the

beginning of a period, a household is given wealth at and an idiosyncratic labor

supply shock zt. Households are aware of the distribution of households Φt, the

aggregate productivity shock At, and how the aggregate states evolve in the future

G(Φt, At, At+1). The idiosyncratic shock and the aggregate shock follow the stochastic

Markov processes elaborated in Krusell and Smith (1998). The Markov process is

specified by the transition matrix π

π :=




πuB,uB πuB,eB πuB,uG πuB,eG

πeB,uB πeB,eB πeB,uG πeB,eG

πuG,uB πuG,eB πuG,uG πuG,eG

πeG,uB πeG,eB πeG,uG πeG,eG



=




0.525 0.350 0.03125 0.09375

0.035 0.84 0.0025 0.1225

0.09375 0.03125 0.292 0.583

0.0099 0.1151 0.0245 0.8505




In each element of the matrix, the first index indicates the current individual state s ∈

{u, e}, where u indicates an unemployed status and e indicates an employed status;

the second index indicate the current aggregate state S ∈ {B,G} where B indicates

a bad aggregate productivity state and G indicates a good aggregate productivity

state. The third and fourth indices are the future individual and aggregate states,

respectively. For example, πuB,uB implies a transition probability that an unemployed

worker stays unemployed in the next period when the economy is bad and stays bad

in the future period.

The income sources of a household are labor work and capital stock. The budget
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constraint of the household is as follows:

ct + at+1 = wtzt + (1 + rt)at

The wage wt and capital rent rt are determined at the competitive input factor mar-

kets. Households are subject to a borrowing constraint at+1 ≥ 0. I close the model by

introducing a representative firm producing output from a constant returns-to-scale

production function. The recursive formulation of the model is as follows:

(Household) v(a, s;S,Φ) = max
c,a′

log(c) + βE(v(a′, s′;S ′,Φ′))

s.t. c+ a′ = w(S,Φ)z(s) + (1 + r(S,Φ))a

a′ ≥ 0, Φ′ = G(Φ, S, S ′)

(Production sector) max
K,L

A(S)KαL1−α − w(S,Φ)L− (r(S,Φ) + δ)K

(Market clearing) K̂(S,Φ) =

∫
adΦ

L̂(S,Φ) =

∫
zdΦ

(Shock processes) P(s′, S ′|s, S) = πsS,s′S′ , s, s′ ∈ {u, e}, S, S ′ ∈ {B,G}

All the variables with an apostrophe indicate variables in the future period. Following

the original model assumption, z = 0.25 when s = u and z = 1 when s = e. If S = B,

I assume A = 0.99, and when S = G, A = 1.01.3

2.2 Intuition behind the methodology

In this section, I explain the basic intuition behind the methodology. For this,

I first briefly describe the methodology. Suppose I simulate T periods of aggregate

shocks {At}
T
t=0, and hypothetically the simulated path is long enough to make almost

3For brevity, I omit the explanation of the other parameter levels.
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all the possible equilibrium allocations happen on the simulated path.4 Then, I start

from guessing the following three time series: 1) value functions, {V
(0)
t }Tt=0, 2) distri-

butions of individual states {Φ
(0)
t }Tt=0, and 3) prices {p

(0)
t }Tt=0. Using these guesses,

I solve the allocations backward from the terminal period T to obtain {V ∗
t }

T
t=0, and

simulate the economy forward using the solution. The forward simulation generates

the time series of the distribution of individual states {Φ∗
t}

T
t=0 and prices {p∗t}

T
t=0 from

the market-clearing conditions. Using these, I update the guess to move on to the

next iteration, {V
(1)
t ,Φ

(1)
t , p

(1)
t }Tt=0.

Now, suppose that I’ve run the nth iteration and that I am now at the (n + 1)th

iteration at period t after solving the problem backward from the terminal period T

until period (t + 1). On the simulated aggregate state path, suppose that the shock

realization at period t+1 is G, St+1 = G (At+1 = 1.01). For the problem of an agent

at t, a macroeconomist needs to construct a rationally expected future value function

EtṼt+1. However, this is a difficult task because only Vt+1(·, S = G) is available

from the backward solution, while Vt+1(·, S = B) is not. This is natural as only one

shock can be realized in a period. I define this unobserved values Vt+1(·, S = B) as a

counterfactual conditional value function.

In the standard state-space-based approach, this problem is handled by replacing

the time index with the distribution or sufficient statistics and specifying a law of

motion in these aggregate states. Then, the counterfactual conditional value function

is obtained by interpolating the unconditional value function at the predicted future

state. Therefore, the accuracy of this predicted future state from the law of motion

determines the accuracy of the solution. However, before obtaining the solution and

simulating the economy based on the solution, it is hardly known whether the law

of motion is correctly specified or not. Then, if the law of motion turns out to be

incorrect, a researcher needs to restart solving the problem from scratch, coming up

4In theory, an infinitely-long simulation needs to be considered, but for the illustrative purpose,
I consider a T -period long simulation. Later in the application, a long-enough finite simulation is
used as an approximation for the infinitely-long ergodic simulation.
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with a new guess about the law of motion. However, a proper guess is difficult to

obtain, as there is an infinite degree of freedom in the new guess. Particularly, there

are two types of difficulties in this step. One is about which statistics to include in

the law of motion; the other is about what parametric forms to choose for the law of

motion. Unless the aggregate dynamics are well-known to be log-linear, as in Krusell

and Smith (1998), this problem cannot be easily resolved.

Then, I consider a new approach where the counterfactual conditional value func-

tion is obtained from the value function of another period t̃+1 in which the endogenous

aggregate state is exactly the same as the period t+ 1, but the counterfactual shock

is realized:

Φ
(n)

t̃+1
= Φ

(n)
t+1

St̃+1 = B ̸= G = St+1

Then, all the aggregate states of the realized state of period t̃+1 are identical to the

ones in the counterfactual state of period t+ 1. Thus, I am given that

V
(n)

t̃+1
(·, S = B) = V

(n)
t+1(·, S = B).

Importantly, V
(n)

t̃+1
(·, S = B) is the observed factual conditional value function avail-

able in the nth iteration. As both V
(n)
t+1(·, S = G) and V

(n)
t+1(·, S = B)(= V

(n)

t̃+1
(·, S = B))

are available, the rationally expected future value function EtṼt+1 can be correctly

constructed. Even when the aggregate shock process is discretized finer than two

grid points, the rationally expected future value function can be obtained using the

same procedures. Due to the ergodic theorem, if a simulated path is long enough, the

existence of such period t̃+ 1 is almost surely guaranteed.

In this new approach, a law of motion does not need to be specified to construct

the rational expected future value function. As long as the period t̃+ 1 that mimics

the counterfactual realization of t + 1 is identified, the problem can be solved. For

9



this step, tracking {Φ
(n)
t }Tt=0 is important, as it allows us to identify the period t̃+ 1.

In the following section, I elaborate on the detailed steps to implement the repeated

transition method.

2.3 Algorithm

I simulate a single path of exogenous aggregate TFP shocks for a long-enough

period T , A = {At}
T
t=0, using the aggregate transition matrix πA. So, I also have the

time series of the corresponding aggregate states, S = {St}
T
t=0, where St ∈ {B,G}.

The aggregate transition matrix is as follows:5

πA =


πB,B πB,B

πG,B πG,B


 =


0.875 0.125

0.125 0.875




For the brevity of notation, I define a price vector pt := (wt, rt). I define a time

partition T (S) that groups periods with the same shock realization as follows.

TS := {τ |Sτ = S} ⊆ {0, 1, 2, ..., T} for S ∈ {B,G}.

The pseudo algorithm of the repeated transition method is as follows:

Step 1. Guess on the paths of the value functions, the state distributions, and the prices.

{V
(n)
t ,Φ

(n)
t , p

(n)
t }Tt=0.

6

Step 2. Solve the model backward from the terminal period T in the following sub-steps.

The explanation is based on an arbitrary period t. Without a loss of generality,

I assume St = G and St+1 = G:

2-a. Find t̃+1 where the endogenous aggregate allocation in period is identical

to the one in period t+1, but the shock realization is different from period

5The transition matrix is from Krusell and Smith (1998).
6In practice, I use the stationary equilibrium allocations for all periods as the initial guess.
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t+ 1 (St̃+1 = B):7

t̃+ 1 = arg inf
τ∈TB

||Φ(n)
τ − Φ

(n)
t+1||∞,

2-b. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,BV

(n)

t̃+1

2-c. Using EtṼt+1 and p
(n)
t , solve the individual agent’s problem at the period

t. Then, I obtain the solution {V ∗
t , a

∗
t+1}

After the taking these sub-steps for ∀t, {V ∗
t , a

∗
t+1}

T
t=0 are available.

Step 3. Using {a∗t+1}
T
t=0, simulate forward the time series of the distribution of the

individual states {Φ∗
t}

T
t=0 starting from Φ∗

0 = Φ
(n)
0 .8

Step 4. Using {Φ∗
t}

T
t=0, all the aggregate allocations over the whole path such as {K∗

t }
T
t=0

can be obtained. Using the market-clearing condition, compute the time series

of the implied prices {p∗t}
T
t=0.

9

Step 5. Check the distance between the implied prices and the guessed prices.

sup
BurnIn≤t≤T−BurnIn

||p∗t − p
(n)
t ||∞ < tol

7Such t̃ + 1 might not be unique. However, any of such t̃ + 1 is equally good to be used in the
next step.

8In this step, I use the non-stochastic simulation method (Young, 2010).
9It is worth noting that the prices here are not the market-clearing prices that are determined

from the interactions between demand and supply. Rather, they are the prices implied by the
market-clearing condition given either demand or supply fixed. In Section 3, I use this algorithm
to solve the model in Khan and Thomas (2008). In the algorithm of Khan and Thomas (2008),
a market-clearing price needs to be computed in an additional loop due to the non-trivial market-
clearing condition. The implied price cannot replace the market-clearing price in this algorithm,
as the misspecified price prediction rule can lead to a divergent law of motion of the aggregate
allocation. In contrast, due to the missing market clearing step, the repeated transition method
significantly saves computation time. I discuss further the computational gain in Section 3.
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Note that the distance is measured after excluding the burn-in periods at the

beginning and the end of the simulation path. This is an adjustment to handle a

potential bias from the imperfect guesses on the terminal period’s value function

V
(n)
T and the initial period’s distribution Φ

(n)
0 .

If the distance is smaller than the tolerance level, the algorithm is converged.

Otherwise, I make the following updates on the guess:10

p
(n+1)
t = p

(n)
t ψ1 + p∗t (1− ψ1)

V
(n+1)
t = V

(n)
t ψ2 + V ∗

t (1− ψ2)

Φ
(n+1)
t = Φ

(n)
t ψ3 + Φ∗

t (1− ψ3)

for ∀t ∈ {0, 1, 2, 3, ..., T}. With the updated guess {V
(n+1)
t ,Φ

(n+1)
t , p

(n+1)
t }Tt=0, I

go back to Step 1.

(ψ1, ψ2, ψ3) are the parameters of convergence speed in the algorithm. If ψi is

high, then the algorithm conservatively updates the guess, leaving the algorithm to

converge slowly. If the equilibrium dynamics are almost linear, as in Krusell and

Smith (1998), I found uniformly setting ψi around 0.8 guarantees convergence at a

fairly high convergence speed. However, if a model is highly nonlinear, as in the

baseline model in Section 4, the convergence speed needs to be controlled to be

much slower than the one in the linear models. This is because the nonlinearity

can lead to a sudden jump in the realized allocations during the iteration if a new

guess is too dramatically changed from the last guess. A heterogeneous updating rule

ψi ̸= ψj (i ̸= j) is also helpful in cases where the dynamics of certain allocations are

10In highly nonlinear aggregate dynamics, I have found that the log-convex combination updating
rule marginally dominates the standard convex combination updating rule in terms of convergence
speed. The log-convex combination rule is as follows:

log(p
(n+1)
t ) = log(p

(n)
t )ψ1 + log(p∗t )(1− ψ1)

12



particularly more nonlinear than the others.

As can be seen from the convergence criterion in Step 5, the algorithm stops

only when the expected allocation paths are close enough to the simulated allocation

paths. Therefore, once the convergence is achieved, the accuracy of the solution is

guaranteed. If the accuracy is measured in R2 or in the mean-squared errors, as in

Krusell and Smith (1998), the repeated transition method features R2 of unity, and

its mean-squared error becomes negligibly different than zero.

After the equilibrium allocations are computed over the in-sample path A, I esti-

mate the implied law of motion from the in-sample allocations. The law of motion can

potentially take any nonlinear form. Then, using the fitted law of motion, equilibrium

allocations are computed over out-of-sample paths of simulated aggregate shocks.

2.4 A sufficient statistic approach

In the algorithm explained in the previous section, Step 2-a is the most demanding

step as it needs to find a period t̃+ 1 that is identical to period t+ 1 in terms of the

distribution. Therefore, the similarity of the distributions across the periods needs to

be measured, which is a computationally costly process.

However, if there are sufficient statistics that can perfectly represent a period’s

endogenous aggregate state, such as aggregate capital stock in Krusell and Smith

(1998), the computational efficiency can be substantially improved.11 This is because

I can find period t̃+1 by only comparing the distance between these sufficient statistics

instead of the distributions. For example, in Krusell and Smith (1998), the aggregate

capital is the sufficient statistics, which makes Step 2-a easier:

t̃+ 1 = arg inf
τ∈TB

||K(n)
τ −K

(n)
t+1||∞,

As the algorithm relies on the ergodic theorem, a sufficiently long period of simu-

11I discuss under which condition the sufficient statistics approach can be used in Section 2.5
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lation is needed for accurate computation. However, in practice, the simulation still

ends in finite periods. Therefore, the period t̃ + 1 that shares exactly identical suffi-

cient statistics as period t+1 might not exist. For this hurdle, the following adjusted

versions of Step 2-a and Step 2-b help improve the accuracy of the solution:

2-a′. Find t̃up + 1 where the endogenous aggregate allocation is closest to the one in

period t+1 from above, but the shock realization is different from period t+1:

t̃up + 1 = arg inf
τ∈TB , K

(n)
τ ≥K

(n)
t+1

||K(n)
τ −K

(n)
t+1||∞,

Similarly, find t̃dn + 1 where the endogenous aggregate allocation is closest to

the one in period t + 1 from below, but the shock realization is different from

period t+ 1:

t̃dn + 1 = arg inf
τ∈TB , K

(n)
τ <K

(n)
t+1

||K(n)
τ −K

(n)
t+1||∞,

Then, I have K
(n)

t̃up+1
and K

(n)

t̃dn+1
that are closest to K

(n)
t+1 from above and below,

respectively. Using these two, I can compute the weight ω to be used in the

convex combination of value functions in the next step:

ω =
K

(n)
t+1 −K

(n)

t̃dn+1

K
(n)

t̃up+1
−K

(n)

t̃dn+1

2-b′. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,B

(
ωV

(n)

t̃up+1
+ (1− ω)V

(n)

t̃dn+1

)

Step 2-a’ and Step 2-b’ construct a synthetic counterfactual conditional value

function by the convex combination of the two value functions that are for the most
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similar periods to period t+1. These adjusted steps help accurately solve the problem

in relatively short periods of simulation. For example, the model in Krusell and Smith

(1998) can be accurately solved using only T = 500 periods of simulation (except for

100 burn-in periods at the beginning and the end of the simulation path).

2.5 A sufficient condition for the sufficient statistics

In this section, I analyze under which condition the sufficient statistic can re-

place the entire distribution in the repeated transition method to allow the sufficient

statistics approach (Section 2.4). In Krusell and Smith (1998), the law of motion in

the entire distribution is sharply approximated by the law of motion in the aggre-

gate capital stock. This is one example where a sufficient statistic can completely

represent the infinite-dimensional object. Likewise, various research in the literature

has considered sufficient statistics to overcome the curse of dimensionality, but there

has been little theoretical explanation of when such an approximation can be used.

Proposition 1 provides a sufficient condition for using sufficient statistics in the re-

peated transition method.

Proposition 1 (A sufficient condition for the sufficient statistics).

For a sufficiently large T , if there exists a time series of an aggregate allocation {xt}
T
t=0

such that for each time partition TS = {t|St = S}, ∀S ∈ {B,G} and for ∀(a, z),

(i) xτ0 < xτ1 ⇐⇒ V (n)
τ0

(a, z) < V (n)
τ1

(a, z) for any τ0, τ1 ∈ TS

or

(ii) xτ0 < xτ1 ⇐⇒ V (n)
τ0

(a, z) > V (n)
τ1

(a, z) for any τ0, τ1 ∈ TS
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then xt is the sufficient statistics of the endogenous aggregate state Φt for ∀t. In other

words, for ∀t ∈ TS,

arg inf
τ∈TS

||Φ(n)
τ − Φ

(n)
t ||∞ = arg inf

τ∈TS
||xτ − xt||∞.

Proof.

See Online Appendix. ■

Proposition 1 states that if a time series {xt}
T
t=0 monotonically ranks the level of

the corresponding period’s value function for each individual state, xt is the sufficient

statistic of time period t in the repeated transition method. The intuition behind the

proposition is as follows. Suppose a situation where a researcher is searching for a

value function to build a rationally expected future value function. If a time index of

the correct counterfactual period to use is explicitly given as τ to a researcher, then

the researcher can easily identify which value function to use, as all value functions

are indexed by time. So, in this case, Vτ is trivially the one to use.

Now instead of τ , suppose the level of xτ is known to the researcher. Then,

similar to the prior situation where τ is known, the researcher can identify which value

function to use because the ranking information uniquely pins down the corresponding

value function due to the strict monotonicity. For example, if two periods τ0 and τ1

share the same level of xt, thus xτ0 = xτ1 , then the strict monotonicity says Vτ0 = Vτ1 .

If this is not the case (Vτ0 ̸= Vτ1), then either the ergodicity or strict monotonicity

assumption is violated, and this is the key idea of the proof.

To summarize the theoretical results in this section, once the ranking informa-

tion across the different periods’ value functions is known, one can exactly pin down

which period’s value function to use. This is also a practically desired feature for the

implementation, as the strict monotonicity of value functions in the sufficient statis-

tic makes it feasible to smoothly interpolate the value functions along the sufficient

statistic (2-a’ and 2-b’ in Section 2.4).
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The sufficient condition provides a theoretical ground to understand how a suffi-

cient statistic approach works in the repeated transition method. In the quantitative

analysis of the baseline model in Section 5.4, the monotonicity is quantitatively vali-

dated for the converged solution. However, the sufficient condition is not constructive

for the algorithm as it cannot be checked prior to the implementation: the condition

can be verified only after the solution converges. Also, the sufficient statistics in the

repeated transition method do not imply that these statistics are only allocations to

be considered in the law of motion in the state-space-based approach. This is because

the former may not include sufficient information about the inter-temporal dynamics

in the endogenous aggregate state variables.12

3 Accuracy of the repeated transition method

This section compares the equilibrium allocations obtained from the repeated tran-

sition method and the ones from the methods of Krusell and Smith (1998) and Krusell

and Smith (1997). In the computation, parameters are set as in the benchmark model

in Krusell and Smith (1998) without idiosyncratic shocks in the patience parameter

β. Both of the algorithms are designed to stop when the largest absolute difference

between the simulated average capital stock and the expected average capital stock

is less than 10−6.

In the converged solution, the mean squared difference in the solutions between

the repeated transition method and Krusell and Smith (1998) algorithm is around

2 ∗ 10−4. It takes around 20 minutes for the repeated transition method to converge

under the convergence speed parameter ψ1 = ψ2 = ψ3 = 0.8; it takes around 20

mins for Krusell and Smith (1998) algorithm.13 The convergence speed might change

12When I fit the nonlinear aggregate dynamics of sufficient statistics obtained from the repeated
transition method to the parametric/non-parametric law of motion in Section 5.3, the fittest specifi-
cation includes multiple lagged terms of the sufficient statistics. However, the sufficient statistics for
each time period in the repeated transition method is just a single-dimensional aggregate allocation.

13This computation is done in 2015 MacBook Pro laptop with a 2.2 GHz quad-core processor
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depending on the updating weight.

Figure 1 plots the expected path (Predicted) and the simulated path (Real-

ized) of aggregate capital Kt obtained from the repeated transition method and

the simulated path from Krusell and Smith (1998).14 The expected path refers to

{V
(n)
t ,Φ

(n)
t , p

(n)
t }Tt=0 in Section 2.3, and the simulated path indicates {V ∗

t ,Φ
∗
t , p

∗
t}

T
t=0.

As can be seen from all three lines hardly distinguished from each other, the repeated

transition method computes almost identical equilibrium allocations as Krusell and

Smith (1998) algorithm at a similar speed. This is because the log-linear specification

almost perfectly captures the actual law of motion in Krusell and Smith (1998). Thus,

their algorithm with the log-linear specification can accurately compute the solution

at high speed.

150 200 250 300 350 400 450 500

34.5

35

35.5

36
Predicted

Realized

Krusell and Smith (1998)

Figure 1: Computed dynamics in aggregate wealth (Krusell and Smith, 1998)

However, the repeated transition method outperforms Krusell and Smith (1997)

algorithm when the market-clearing condition is not trivial, as in the model of Khan

and Thomas (2008).15 This is because the non-trivial market-clearing condition re-

quires an extra loop to find an exact market-clearing condition in each iteration, while

the repeated transition method does not.

14This figure is motivated from the fundamental accuracy plot suggested in Den Haan (2010).
15Krusell and Smith (1997) algorithm is a variant of the algorithm in Krusell and Smith (1998),

which is applicable to models with non-trivial market-clearing conditions. Khan and Thomas (2008)
uses this algorithm.
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I solve the model in Khan and Thomas (2008) using both the repeated transition

method and the Krusell and Smith (1997) algorithm with an external loop for the

non-trivial market-clearing condition. Both of the algorithms are designed to stop

when the following criterion is satisfied:16

max{sup
t

{||p∗t − p
(n)
t ||}, sup

t

{||K∗
t −K

(n)
t ||}} < 10−6

Figure 2 plots the dynamics of price pt and aggregate capital stock Kt computed

from the repeated transition method and Krusell and Smith (1997) algorithm. For

the allocations computed from the repeated transition method, both the predicted

time series and the realized time series are plotted. As shown in the figure, all three

lines display almost identical dynamics of the price and the aggregate allocations.

The mean squared difference in the solutions between the repeated transition method

and Khan and Thomas (2008) is less than 10−5.

In the application of the repeated transition method, I use ψ1 = ψ2 = ψ3 = 0.9

for the updating rule, which is higher than the previous application. The reason

for using this conservative updating rule is because the model in Khan and Thomas

(2008) features a strong general equilibrium effect; dramatic updates in the price

might lead to divergence. The repeated transition method took around 20 minutes to

converge on average, while Krusell and Smith (1997) algorithm converged in around

5 to 6 hours on average. The convergence speed might change depending on the

updating weight.

4 Application: Real business cycle model with the

corporate saving glut

In this section, I analyze the business cycle implications of the rising corporate

16The terminal condition is slightly different from the one in Step 5 of Section 2.3. Likewise, the

terminal condition can be flexibly adjusted based on different combinations of V
(n)
t ,Φ

(n)
t , and p

(n)
t .
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(a) Price pt (= 1/Ct)
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Figure 2: Computed dynamics in aggregate capital stocks (Khan and Thomas, 2008)

cash holding using the heterogeneous-firm real business cycle model. There are two

reasons why the algorithm is applied to this particular model. The first is the rising

importance of the corporate cash holding in the U.S. economy. Figure 3 plots the time

series of the aggregate cash holding to GDP ratio, where nominal cash holding is from

the Flow of Fund data, and the nominal GDP is from NIPA.17 As seen from the sharply

rising trend in the ratio, the corporate cash holding has risen substantially faster than

the output.18 Have these rising corporate cash holdings affected the business cycles

in the U.S.? This paper investigates the answer to this question through the lens of

the business cycle model with the corporate saving glut.

The second reason is the sharp contrast in the saving patterns between the models

with the heterogeneous firms and the heterogeneous households. Due to the external

financing cost, which generates a precautionary motivation for holding cash stock, the

firms’ saving pattern partly mimics the household’s savings. However, as the internal

financing does not trigger any adjustment cost, the contemporaneous component of

the objective function is concave only in the limited part of the domain, unlike the

counterpart in the household’s utility maximization problem. Therefore, a satiation

point exists for hoarding cash, leaving a kink in the inter-temporal saving decision.

17The calculation of the aggregate corporate cash stock is explained in Appendix C.
18The corporate finance literature has investigated reasons for rising corporate cash holding. How-

ever, analyzing these different reasons is out of the scope of this paper.
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Figure 3: The time-series of the corporate cash-to-GDP ratio

This kink is the starkest difference between the baseline model and the heterogeneous-

household models, which is to be investigated further in detail.

4.1 Technology

There is a continuum of measure one of ex-ante homogeneous firms that hoard

cash and produces business outputs. For simplicity, I assume a firm operates using

only labor input. This can be understood as an equivalent setup to a model where a

firm uses both capital and labor inputs, but the optimal capital demand decision is

already frictionlessly internalized in the labor demand decision. Consistent with this

explanation, I set the labor share (equivalent to the span of control parameter) at

γ = 0.85 in the quantitative analysis, which is greater than the standard labor share

and captures internalized capital demand decision.

The business output is produced by the following Cobb-Douglas production func-

tion:

f(nit, zit;At) = zitAtn
γ
it

where nit is labor demand; γ < 1 is the span of control parameter; zit and At are
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idiosyncratic and aggregate productivities, respectively. Each firm needs to pay a

fixed operation cost ξ > 0 in each period.

The log of idiosyncratic productivity shock process {zit} follows an AR(1) process:

log(zit+1) = ρzlog(zit) + ϵit+1, ϵit+1 ∼i.i.d N(0, σz)

For computation, the idiosyncratic productivity process is discretized by the Tauchen

method.19 The stochastic aggregate productivity process is from (Krusell and Smith,

1998):20

ΓA =


0.8750 0.1250

0.1250 0.8750




At ∈ {AB, AG} = {0.99, 1.01}.

4.2 External financing cost

A firm earns operating profit and decides how much to distribute as a dividend dit

to equity holders (a representative household). The remaining part of the operating

profit after the dividend payout is used to adjust cash holding, cat+1/(1 + rca)− cat.

The future cash holding is discounted at an internal discount rate rca > 0 as cash

is not traded in the market across the firms. rca is an exogenous parameter and

is assumed to be lower than the market interest rate rt. The cash holding level is

assumed to be non-negative cat ≥ 0. Thus, the model features a standard incomplete

market assumption with the borrowing limit as in Aiyagari (1994).

If a dividend is determined to be negative, then a firm is financing through an

external source, which incurs extra pecuniary cost C(dit) (Jermann and Quadrini,

19I discretize it using equally-spaced nine grid points within the two-standard deviation range
around the mean.

20The repeated transition method works for a finer discretization than two grid points. For
example, Lee (2022) uses a finer discretization (five grid points) for the repeated transition method.
However, to preserve the symmetry between the corporate cash-holding model and the household
saving model (Krusell and Smith, 1998), I assume the same aggregate productivity process.
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2012; Riddick and Whited, 2009). This external financing cost is specified as follows:

C(dit) :=
µ

2
I{dit < 0}d2it

Thus, the net dividend is dit−
µ

2
I{dit < 0}d2it. It is worth noting that this net dividend

function belongs to C
2 class as it smoothly changes the slope at dit = 0 without a

kink. Therefore, the standard theory of the concave utility of the household seamlessly

applies to the model.

If there is no external financing cost, hoarding cash is not the desired option for a

firm because it is more expensive than receiving the dividend
(

1
1+rca

> 1
1+rt

)
. How-

ever, due to the presence of an external financing cost, a firm has a precautionary

motivation to hoard cash, saving for rainy days (low zt or low At). Therefore, the

firms smooth their dividend payout in equilibrium. Consistent with this, rich empir-

ical evidence has been documented for corporate dividend smoothing behavior in the

corporate finance literature (Leary and Michaely, 2011; Bliss et al., 2015). Especially,

Leary and Michaely (2011) empirically showed that cash-rich firms smoothen their

dividend significantly more than others. The equilibrium patterns in this model can

match these empirical patterns.

4.3 Recursive formulation

At the beginning of each period, a firm i is given with a cash holding cait and

an idiosyncratic productivity level zit. Thus, the individual state variable xit is as

follows:

xit = {cait, zit}

All firms rationally expect the future and are aware of the full distribution of the
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firm-level state variables. The aggregate state variable Xt is as follows:

Xt = {At,Φt}

where At is the aggregate productivity, and Φt is the distribution of the individual

state variable xit.

The recursive formulation of a firm’s problem is as follows:

[Firm] J(ca, z;X) = max
ca′,d

d− C(d) + E(q(X,X ′)J(ca′, z′;X ′))

s.t. d+
ca′

1 + rca
= π(z;A,Φ) + ca

ca′ ≥ 0, Φ′ = G(Φ, A)

[Operating profit] π(z;A,Φ) := max
n

zAnγ − w(A,Φ)n− ξ

[Idiosyncratic productivity] z′ = Gz(z) (AR(1) process)

[External financing cost] C(d) :=
µ

2
I(d < 0)d2

[Aggregate state] X := {A,Φ}

where J is the value function of a firm; ca and z are cash holding and idiosyncratic

productivity, respectively; A is the aggregate productivity; Φ is the distribution of

the individual state variables; w and q are wage and stochastic discount factor which

are functions of aggregate state variables X = {A,Φ}.

4.4 Equilibrium

I close the model by introducing a stand-in household that holds equity as wealth

and saves on equity. The household consumes and supplies labor and rationally

expects the future aggregate states. The income sources of the household are labor

work and dividends from equity.
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The recursive formulation of the representative household’s problem is as follows:

V (a;X) = max
c,a′,lH

log(c)− ηlH + βEA′

V (a′;X ′)

s.t. c+

∫
ΓA,A′a′q(X,X ′)dX ′ = w(X)lH + a

G(X) = Φ′

GA(A) = A′ (AR(1) process)

where V is the value function of the household; a is wealth; c is consumption; a′ is

a future saving level; lH is labor supply; w is wage, and q is the stochastic discount

factor. The household is holding the equity of firms as their wealth.

The recursive competitive equilibrium is defined based on the following market-

clearing conditions:

(Labor market) lH(X) =

∫
n(ca, z;X)dΦ

(Equity market) a(X) =

∫
(J(ca, z;X) + C(d(ca, z;X)))dΦ

The external financing costs and the aggregate firm values jointly form the supply of

equity. In the market clearing condition, the supply meets the demand for equity in

the form of household wealth.

The model does not assume a centralized market for cash holding. Therefore, rca

is not endogenously determined in the market. This is a realistic assumption, as a

firm’s cash holding is not tradable across firms. I interpret this setup as the cash

holding return is determined by each firm’s idiosyncratic financing status indepen-

dently from the centralized capital market condition. rca is the average level of the

idiosyncratic financing cost.21

21For simplicity, the model is abstract from the heterogeneity in the financing cost. All the
exogenous heterogeneity is loaded on the heterogeneous productivities.
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4.5 The role of market incompleteness and the financial con-

straint: Comparison with Aiyagari (1994)

In this section, I study the individual firm’s cash hoarding patterns in the sta-

tionary equilibrium. This analysis is essential to understand why the model would

feature highly nonlinear dynamics under aggregate uncertainty. Due to the external

financing cost, a firm saves cash out of precautionary motivation. However, there

exists a target cash level, which the optimal cash holding does not go beyond. This

is because after the target level of cash, holding cash becomes costlier: if a firm holds

a large stock of cash, then the future risk of external financing is almost perfectly

hedged while carrying additional cash bears only a smaller return than the market

interest rate. Proposition 2 states the existence of the target cash level.22

Proposition 2 (The existence of the target cash-holding level).

Suppose policy functions are non-trivial: ca′(ca, z) > 0 and d(ca, z) > 0 for some

ca > 0, given z. Then, there exists ca(z) > 0 such that ca′(ca, z) ≤ ca(z) for ∀ca ≥ 0.

Proof. See Online Appendix. ■

Therefore, the future cash holding policy function features a kink due to the

flat region after the target cash holding level.23 Figure 4 shows the future cash

holding policy function for the lowest and highest productivity firms. For the highest

productivity firms, due to the persistence of the productivity shock, the target cash

holding level is lowest: they are the least concerned firms about the future external

financing cost. As can be seen from the figure, the policy function crosses the 45-

degree ray. That is, the highest productivity firms with little cash increase the cash

22It is worth noting that the implication of Proposition 2 is different from Proposition 4 of Aiyagari
(1993). Proposition 4 of Aiyagari (1993) implies that a household with a excessively large wealth
would gradually decrease the wealth. In contrast, Proposition 2 implies that a firm with a excessively
large cash stock would immediately reduce the cash stock to the target level.

23The existence of the target cash holding level is similar to the prediction of the consumption
buffer stock model (Carroll, 1997).
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Figure 4: Cash holding policy function of individual firms

holding until they reach the target level. On the other hand, the lowest productivity

firms’ target cash holding level is the highest, but their low profit makes them decrease

their future cash holding. Therefore, the lowest productivity firms’ policy function

does not cross the 45-degree ray.

The kinked cash-holding policy function becomes starkly contrasted with the

wealth accumulation pattern of households in Aiyagari (1994). To make a direct

comparison feasible, I define the liquidity on hand, which is a firm-side counterpart

of the total resource in Aiyagari (1994):

Liquidity on handt := πt︸︷︷︸
Liquidity from operating profit

+ cat︸︷︷︸
Cash

.

Figure 5 plots the saving and dividend policies in panel (a) and the future liquidity

on hand in panel (b) as functions of the liquidity on hand. This figure is the firm-side

counterpart of Figure I in Aiyagari (1994).24 For a sharp illustration, I only plot the

policy functions for a firm at the lowest productivity (z = minZ). For both firms in

my model and households in Aiyagari (1994), there are cases where the borrowing

limit is bound, leaving the saving policy flat near the borrowing limit. However, that

24Dividend d is the counterpart of consumption c, and future cash holding ca′ is the counterpart
of future wealth at+1.
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region spans only a tiny range for the firm side, so it is not visible in panel (a) of

Figure 5.25 If a firm does not hold enough liquidity on hand, an extra dollar increase

in liquidity goes to both saving and dividend. Especially a greater amount goes to the

saving than dividends. However, if a firm holds enough liquidity on hand, additional

liquidity is solely paid out as a dividend, as can be seen from the parallel dividend

curve to the 45-degree line for the high liquidity on hand region. In panel (b), the

future liquidity on hand displays a kinked pattern over the current liquidity on hand,

similar to the dynamics of the cash policy function in Figure 4.
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Figure 5: Liquidity on hand and the policy functions (when z = minZ)

The kinked policy function plays an important role in the business cycle, as it

generates nonlinearity in the business cycle. Depending on the fraction of firms that

are located over the flat policy region, the aggregate cash dynamics vary. In other

words, the aggregate fluctuations in this model crucially depend on the endogenous

state Φ, the distribution of individual states.

5 Quantitative analysis

In this section, I quantitatively analyze the recursive competitive equilibrium al-

25Households behave in a similar pattern in Krusell and Smith (1998). However, in both Aiyagari
(1994) and Krusell and Smith (1998), the fraction of these constrained households are small as well.
Especially, this is one of the major reasons why the aggregate dynamics in Krusell and Smith (1998)
display only a negligible nonlinearity.
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locations computed from the repeated transition method. For easier computation, I

first normalize the firm’s value function by contemporaneous consumption ct follow-

ing Khan and Thomas (2008). I define a price pt := 1/ct and the normalized value

function J̃t := ptJt. From the intra-temporal and inter-temporal optimality condi-

tions of households, I have wt = η/pt and qt = βpt+1/pt. Thus, pt is the only price

to characterize the equilibrium. I take the sufficient statistics approach described in

Section 2.4, and the aggregate cash holdings CAt (the first moment of the distribu-

tion of cash holding) is the sufficient statistics. I validate this approach by showing

Proposition 1 is satisfied in Section 5.4.

5.1 Calibration

The model’s key parameters are the external financing cost parameter µ and the

operating cost parameter ξ. The external financing cost µ is identified from the cor-

porate cash-to-output ratio. In the moment calculation, the aggregate cash stock

is obtained from the Flow of Funds of the Federal Reserve Board, and the aggre-

gate output (GDP) is from the National Income and Product Accounts (NIPA) from

Bureau of Economic Analysis (BEA).26 In the model, as µ increases, the corporate

cash-to-output ratio increases due to the heightened precautionary motivation.

Parameters Target Moments Data Model Level

µ Corporate cash holding/Output (%) 10.00 9.28 0.40
ξ Consumption/Output (%) 66.00 64.02 0.15
η Labor supply hours 0.33 0.34 3.90

Table 1: Calibration target and parameters

The identifying moment of the operating cost parameter ξ is the consumption-

to-output ratio. The consumption data is from NIPA.27 As operating cost increases,

26The detailed definition of aggregate cash holding is available in Appendix C.
27Consumption includes both durable and non-durable consumptions.
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the ratio decreases due to the reduced dividends. The calibrated parameters and the

corresponding moments are summarized in Table 1. The other fixed parameters are

summarized in Appendix B.

5.2 Nonlinear business cycle

Using the repeated transition method, I compute the recursive competitive equi-

librium allocations over the simulated path of aggregate shocks. Using the aggregate

cash stock, I take the sufficient statistics approach described in Section 2.4. The

dynamics of the aggregate cash stocks are highly nonlinear for two reasons. First, the

individual firm’s cash holding policy function features a kink, as described in Section

4.5. Second, the general equilibrium effect does not strongly affect each firm’s cash

holding demand. It is because the price of cash holding is exogenously fixed at rca as

the cash is not allowed to be traded across the firms.
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Figure 6: Aggregate fluctuations in the economy

Figure 6 plots a part of the simulated path of the price pt (panel (a)) and aggregate

corporate cash holding CAt (panel (b)) obtained from both the repeated transition

method and the log-linear specification of the law of motion. The solid line plots the

expected allocations (guess from the nth iteration), and the dot-dashed line plots the

realized allocations (simulation based on the policy in (n + 1)th iteration) in the re-
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peated transition method. The dashed line represents the dynamics of the allocations

in the log-linear specification of the law of motion. To obtain the parameters in the

log-linear specification, I fit the equilibrium allocations from the repeated transition

method into the log-linear specification, and the result is as follows:

log(CAt+1) = −0.5742 + 0.9061 ∗ log(CAt), if At = AB , and R
2 = 0.9971, MSE = 0.0017

log(CAt+1) = −0.8949 + 0.6829 ∗ log(CAt), if At = AG, and R
2 = 0.9823, MSE = 0.0039

log(pt) = 1.3232− 0.0018 ∗ log(CAt), if At = AB , and R
2 = 0.8828, MSE = 0.0000

log(pt) = 1.3093− 0.0011 ∗ log(CAt), if At = AG, and R
2 = 0.8928, MSE = 0.0000

In the repeated transition method, the expectation path and the realized path con-

verge as can be seen from the figure. Therefore, R2s are unity and the mean squared

errors are as small as 10−6 for both pt and CAt. On the other hand, the log-linear

fitting results in low R2 and high mean squared errors. This results show that the

aggregate fluctuations in this economy are highly nonlinear.

One important reason for the nonlinearity is the missing general equilibrium effect

on cash. If the price of cash is determined in the competitive market, the dynamics

of aggregate cash stocks are smoothed. For example, when there is a surge of cash

holding demand, the price of cash holding goes up to mitigate the surge and vice

versa for the case of decreasing cash holding demand. In many of the models in

the literature, this flattening force from the general equilibrium has been proven

to be powerful enough to guarantee the log-linear specification as the true law of

motion. One example is Khan and Thomas (2008), where the micro-level lumpiness

is smoothed out by real interest rate dynamics. However, due to the missing general

equilibrium effect, the log-linear prediction rule fails to capture the true law of motion

in this paper.

On top of the nonlinearity, there is another complication in the model that the

prototype algorithm of Krusell and Smith (1998) cannot simply address: there is

a non-trivial market-clearing condition with respect to price pt. Krusell and Smith

(1997) suggests an algorithm to solve this problem by considering an external loop in
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the algorithm that solves market-clearing price pt in each iteration. This algorithm

is known to successfully solve the log-linear models with non-trivial market-clearing

conditions, such as Khan and Thomas (2008). However, due to the extra loop in each

iteration, the algorithm entails high computation costs. In contrast, the repeated

transition method tracks the implied price instead of the market clearing price on the

simulated path. Therefore, the method does not require an extra loop for computing

market-clearing price, so it saves a great amount of computation time. In the baseline

model, computation time is reduced by a factor of 10.28

5.3 Recovering the true nonlinear law of motion

In this section, I recover the true law of motion from the converged equilibrium

outcomes over the simulated path. Then, I test the validity of the true law of motion

by fitting the law of motion into the out-of-sample simulation path.

Specifically, the following laws of motion are studied:

CAt+1 = GCA(CAt, CAt−1, CAt−2, . . . , CAt−n;At)

pt = Gp(CAt, CAt−1, CAt−2, . . . , CAt−n;At)

Table 2 reports the goodness of fitness (R2) of the different specifications. The

first five rows report the fitness when only the contemporaneous aggregate cash stock

CAt is considered up to different polynomial orders. When a single argument is

considered without the higher-order polynomials, R2 gets as low as 0.8956 for GCA if

the contemporaneous productivity state is G.29 As the more higher-order polynomials

are included, the better the fitness becomes. However, the fitness of the specification

28The KS algorithm takes around five hours to compute a converged solution when the simulation
length is T = 500 and the cross-sectional grid of cash holding is 50 points. However, in the repeated
transition method, it takes only around 30 minutes to make a convergence. For the fair comparison,
the initial guess of the KS algorithm is from the log-linear relationship implied in the initial guess
of the repeated transition method.

29This pure linear specification is different from the log-linear specification in Section 5.2.
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of Gp stops improving after a certain threshold. This shows that the true law of

motion can be recovered only by including further historical allocations.

The bottom seven rows of Table 2 report the fitness of the law of motion when the

additional lagged terms of the aggregate cash stock are considered. Up to the third

order polynomials are included for each of lagged terms on top of the polynomial

terms of the contemporaneous cash stocks up to the fifth order.30 As more lagged

terms are considered in the law of motion, the fitness improves, especially in Gp.

However, only after the polynomials of the seven-period lagged aggregate cash stock

are included in the law of motion, the accurate law of motion is recovered.

Goodness of fitness: R2

# of lagged order CAt+1 : Good CAt+1 : Bad pt : Good pt : Bad

Contemp. 0 1 0.8956 0.9452 0.9922 0.9966
0 2 0.9839 0.9952 0.9927 0.9976
0 3 0.9973 0.9995 0.9930 0.9976
0 4 0.9993 0.9999 0.9932 0.9976
0 5 0.9996 1.0000 0.9933 0.9976

Add. history 1 3 0.9999 1.0000 0.9987 0.9979
2 3 0.9999 1.0000 0.9997 0.9984
3 3 0.9999 1.0000 0.9998 0.9987
4 3 0.9999 1.0000 0.9998 0.9991
5 3 0.9999 1.0000 0.9998 0.9994
6 3 0.9999 1.0000 0.9998 0.9996
7 3 0.9999 1.0000 0.9998 0.9997

Table 2: The fitness of law of motion across different specifications

This exercise starkly shows the substantial nonlinearity of the aggregate fluctua-

tions in this model. In the repeated transition method, the contemporaneous aggre-

gate cash stock is used as a sufficient statistic of each period’s cross-section. However,

this does not imply that the true aggregate law of motion is a function of only the

contemporaneous cash stock. The contemporaneous cash stock is rather a labeling of

each period that correctly sorts the rankings of the value functions across the periods

in the repeated transition method (Proposition 1). In Section 5.4, the monotonicity

30The results only negligibly change over different order choices.
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of value functions in the contemporaneous cash stock is verified.

I validate the recovered law of motion by fitting it on the out-of-sample simula-

tion path.31 Specifically, I solve the model on another simulation path to obtain the

converged equilibrium dynamics using the repeated transition method and compare

the dynamics with the implied dynamics in the recovered true law of motion on the

in-sample path. Figure 7 plots pt (panel (a)) and CAt (panel (b)) for 1) predicted

time series (solid line), 2) realized time series (dot-dashed line), 3) time series im-

plied by the recovered in-sample law of motion (solid line with ticks), and 4) time

series implied by the linear law of motion (dashed line). The predicted time series

and the realized time series are indistinguishably close to each other due to the con-

vergence requirement of the repeated transition method. The time series implied by

the recovered law of motion also closely track the converged equilibrium dynamics,

validating the specification. The goodness of fitness (R2) in the time series implied

by the recovered law of motion is greater than 0.999 for both GCA and Gp in all shock

realizations.
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Figure 7: Fitting into the out-of-sample path

31The recovered true of motion refers to the specification that considers up to the seven-period
lagged aggregate cash stocks, where R2 is the highest in Table 2.
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5.4 Monotonicity of the value function

In this section, I check the monotonicity of the value function in the aggregate

cash stock. The monotonicity is the sufficient condition for the aggregate cash stock

to be used as a sufficient statistic (Proposition 1). Specifically, I check whether the

value function is strictly monotone in the aggregate cash stock CAt for individual

state variables (at, zt) and aggregate shock realizations At.
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(d) Individual cash = 0.47

Figure 8: Monotonicity of value function in aggregate cash stock

Figure 8 plots the level of the value function for different individual states for the

aggregate shock realization At = AB. Four different levels of individual cash stock

cat are considered, and the corresponding figures are panels (a),(b),(c), and (d).32

Each panel is the scatter plot of value function levels for the five different levels of the

idiosyncratic productivity zt.
33 The horizontal axis is the aggregate cash stock CAt

32The four different levels of cat are 1e-8, 0.09, 0.23, and 0.47
33The five different levels of zt are 0.7950, 0.8916, 1, 1.1215, and 1.2579.
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and the vertical axis is the level of value function Vt. As can be seen from the figure,

the scatter plot of the values forms five different linear lines. This shows that the value

functions are strictly monotone in the aggregate cash, validating the qualification of

the aggregate cash as the sufficient statistics in the repeated transition method.

5.5 Macroeconomic implications and empirical evidence

In this section, I analyze the role of corporate cash holdings on aggregate con-

sumption fluctuations using the baseline model and support the model prediction

from the empirical evidence.

In the model, the aggregate productivity At can take one of two values {AB, AG},

and it follows a persistent process. I define the negative aggregate productivity shock

as a TFP shift from AG to AB and the positive aggregate productivity shock as a

TFP shift from AB to AG. In the baseline model, depending on the cash stock a

firm holds, the responsiveness of the firm-level dividends to the exogenous aggregate

TFP shock changes. For example, when a firm is short of cash, a negative TFP shock

in productivity makes a firm reduce dividends further than it would do when it has

abundant cash stocks. It is because the firm with little cash needs to not only pay

out dividends but save cash out of concern for the future.
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Figure 9: State-dependent shock responses of consumption
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Then, due to this dividend channel, the responsiveness of household consumption

becomes dependent on the aggregate cash stock. Figure 9 plots the relationship be-

tween the consumption responsiveness over the aggregate cash stocks separately for

negative aggregate shock (panel (a)) and positive aggregate shock (panel (b)). In this

model, the magnitude of aggregate shock is uniform at |AG−AB|(= 2% TFP shock).34

Therefore, If the consumption shock responses are different across the periods, it is

due to the endogenous state dependence of the responsiveness rather than the shock

magnitude variation. Then, I separately collect the periods of negative aggregate

shock and positive aggregate shock and compute the consumption ct and one-period-

ahead aggregate cash stock CAt−1 for each period. As can be seen from Figure 9, the

consumption responsiveness decreases in the aggregate cash stock for the negative ag-

gregate shock. From a similar intuition with the opposite direction, the consumption

responsiveness increases in the aggregate cash stock for the positive aggregate shock.

Dep. Var.: |log(ct)| (p.p.)

Neg. Pos.
(1) (2)

Casht−1(s.d.) -0.166 0.07
(0.001) (0.001)

Constant Yes Yes
Observations 83 84
R2 0.996 0.994

Table 3: State-dependent consumption response to negative and positive shocks

Table 3 reports the regression coefficient when the observations in Figure 9 are

fitted into the linear regression. The numbers in the bracket are the standard er-

rors. When the lagged aggregate cash stock increases by one standard deviation, the

consumption responsiveness to the negative aggregate TFP shock (-2% TFP shock)

significantly decreases by 0.17 percentage points. For the positive aggregate TFP

shock (+2% TFP shock), the consumption responsiveness decreases by 0.07 percent-

34The aggregate shock is defined as a shift from one productivity to the other.
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age points when the lagged aggregate cash stock increases by one standard deviation.

Therefore, the aggregate cash holding gives a consumption buffer against a nega-

tive aggregate shock by smoothing the dividend stream in the simulated data. Also,

the aggregate cash holding helps a positive productivity shock solely pass down to

the consumption. And the consumption buffer effect against the negative TFP shock

is significantly stronger than the consumption boosting effect for the positive TFP

shock in the model. I support this model prediction from the macro-level data. The

data is the quarterly frequency and covers from 1951 to 2018. Consumption and the

total dividend of the corporate sector are from NIPA; the aggregate cash holding and

the total asset holding are obtained from the Flow of Funds.35

Dependent variables:

|log(ct)| (p.p.) before 1980 |log(ct)| (p.p.) after 1980

Neg. Pos. Neg. Pos.
(1) (2) (3) (4)

Casht−1(s.d.) -0.108 0.036 -0.226 0.164
(0.09) (0.072) (0.085) (0.09)

Constant Yes Yes Yes Yes
Observations 63 49 77 79
R2 0.023 0.005 0.086 0.041

Table 4: Sensitivity of consumption to aggregate TFP shock contingent on corporate
cash holdings

Table 4 reports the data counterpart of the results in Table 3, separately for the

periods before 1980 (the first two columns) and after 1980 (the last two columns).36

For this analysis, the consumption variations derived from the TFP variation are

controlled by consumption residualization over the polynomials of TFP up to the

fourth order.37 As can be seen from Figure 3, since around 1980, the corporate cash

stock has rapidly increased. This rising corporate cash holding has brought a change

35All time series are detrended using the HP filter with a frequency parameter at 1600.
36The result is not sensitive to the choice of the cutoff year.
37I use the utilization-adjusted TFP from Fernald (2014).
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in the relationship between corporate cash stock and consumption. In the pre-1980

periods, consumption responsiveness was not dependent on the one-period-ahead cor-

porate cash stock. In contrast, in the post-1980 periods, consumption responsiveness

becomes significantly dependent on the corporate cash stock. When the lagged aggre-

gate cash stock increases by one standard deviation, the consumption responsiveness

to the negative aggregate shock significantly decreases by 0.23 percentage points.

For the positive aggregate shock, the consumption responsiveness increases by 0.16

percentage points when the lagged aggregate cash stock increases by one standard de-

viation.38 In Appendix A, I show that this effect in the data is driven by the dividend

channel. These results tightly support the model prediction.

6 Concluding remarks

This paper develops a novel algorithm to solve general equilibrium models with

highly nonlinear aggregate fluctuations. The method utilizes the ergodic theorem’s

prediction that if the simulated path is long enough, all the possible equilibrium

outcomes are realized on the path. Therefore, the rationally expected future value

function can be perfectly recovered at each period on the path by identifying coun-

terfactual state-contingent outcomes on the path. The algorithm runs until the ex-

pected path converges to the realized path, so the solution is highly accurate. Using

this methodology, I study the role of the corporate cash stock on the consumption

response to the TFP shock in a heterogeneous-firm business cycle model. When the

economy is with large corporate cash stocks, consumption responds less sensitively

to a negative TFP shock and more strongly to a positive TFP shock than it would

otherwise do. This model prediction is well supported by the macro-level data.

When a model considers the aggregate fluctuations of the equilibrium allocations

separated from the (log-)linearly specified exogenous shock processes, the business

38These two estimates are statistically not different from the model-side estimates in Table 3.
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cycle in the model necessarily features nonlinearity. In such models, depending on

the endogenous states, the economy can respond differently to the same shock as in

this paper’s baseline model. Then, possibly a recession (or a boom) is not merely a

product of an enormous exogenous negative shock but rather a product of the inter-

action between the endogenous economic pre-condition and the moderate exogenous

shock. The repeated transition method can provide accurate and efficient solutions

for the research that identifies such pre-conditions of an economy through the non-

linear business cycle models.
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