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Abstract

Edgeworth�s paradox of taxation occurs when an increase in the unit cost of a
product causes a multiproduct monopolist to reduce prices. We give simple illus-
trations of the paradox, including how it can arise with uniform pricing. We then
give a general analysis of the case of linear marginal cost and demand conditions,
and characterize which matrices of cost passthrough terms are consistent with pro�t
maximization. When the �rm supplies at least one pair of substitute products we
show how Edgeworth�s paradox always occurs with a suitable choice of cost function.
We then establish a connection between Ramsey pricing and the paradox in a form
relating to consumer surplus, and use it to �nd further examples where consumer
surplus increases with cost.

JEL codes: D42, H22, L12

Keywords: Multiproduct pricing, Edgeworth�s paradox of taxation, cost passthrough,
Ramsey pricing.

1 Introduction

Recent analyses of the rate of passthrough from cost to price have focussed on single-

product �rms with market power: see, for example, Weyl and Fabinger (2013), and Miklos-

Thal and Sha¤er (2021). However, most �rms supply a number of products, and it is by

no means clear that cost passthrough results from the single-product case carry over to the

multi-product setting. The economics of multiproduct cost passthrough has a long history.

�Armstrong is at the Department of Economics, University College London, and Vickers is at the
Department of Economics and All Souls College, University of Oxford. We are grateful to Robert Ritz
and Jidong Zhou and to three referees for helpful comments. We are especially grateful to one referee who
gave helpful suggestions for how to extend our original two-product analysis to obtain more general multi-
product results. Armstrong thanks the European Research Council for �nancial support from Advanced
Grant 833849.
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In a remarkable article1 on the pure theory of monopoly published in 1897, Edgeworth

demonstrated his paradox of taxation�that a tax on (or cost increase of) one product

supplied by a multiproduct monopolist could lead to a reduction in the prices charged by

the monopolist, including the price of the more costly product. This �nding, controversial

at the time, was established in more detail by Hotelling (1932), who gave some illustrations

of the phenomenon that were somewhat easier to comprehend than Edgeworth�s.

In particular, Edgeworth (1925, pages 132-4) showed for the two-product case that

the second-order condition for pro�t maximization was compatible with consumer surplus

increasing with a tax on one product. He then provided a numerical example in which

both prices decreased with a tax on the �rst product.2 The example has zero costs but

Edgeworth notes that the conclusion is strengthened when there are costs of production,

�for then we have more functions at our disposal with which to manipulate a favourable

example�. He goes on to illustrate with rail fares: a tax on �rst-class tickets might lower

both �rst- and second-class fares, though the number of �rst-class travellers will nonetheless

decline, as the reduced second-class fare predominates.

An important application of Edgeworth�s insight, and multiproduct cost-passthrough

more generally, is to the price e¤ects of vertical integration or upstream cartel behaviour.

For instance, Salinger (1991) discussed a situation with a multiproduct retailer who sources

its products from a number of upstream suppliers. If the retailer integrates with one of its

suppliers, then the �double margin� for that product is eliminated and the retailer�s cost for

that product falls. If demand and cost conditions are such that the Edgeworth�s paradox

applies for the retailer, then the impact of this vertical integration, often considered to

be bene�cial for �nal consumers, would be to raise all retail prices.3 Luco and Marshall

(2020) investigate the empirical impact of partial vertical mergers in the carbonated drinks

market, and �nd that integration with one supplier does decrease the associated price, but

1In Italian, in the Giornale degli Economisti. The article appears in English with some modi�cations
in Edgeworth (1925).

2Edgeworth�s example had the prices p1 and p2 being related to to quantities x1 and x2 as p1 =
1:605_3� :2x1� 2

3
(x1� :96)

3

2 � 1

2
x2 and p2 = 3:9_1 _8�2

p
x2 � :6975� 1

2
x1. Production was assumed costless,

and the pro�t-maximizing quantities were x1 = x2 = 1, before the introduction of a tax on product 1.
3A related e¤ect can occur even with a single �nal product. Suppose multiple inputs are used in the

production of a single �nal product. If a input is inferior, i.e., less of it is used when more of the �nal
output is supplied, then a reduction in the price of that input causes the marginal cost (though not the
total cost) of the �nal product to rise, which induces the �rm to set a higher retail price. Hicks (1939, p.
93) noticed this possibility, observing that a decrease in the cost of one input will necessarily increase the
demand for the input, but might also decrease the supply of the output.
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raises the price for the non-integrated product (a cost passthrough e¤ect from one product

to another that they term the �Edgeworth-Salinger� e¤ect).4

In this paper, the Edgeworth paradox is said to occur when a unit tax on a product

(or uniform increase in that product�s marginal cost of supply) induces the �rm weakly to

reduce all its prices, with some prices decreasing strictly. As a preliminary comment it is

worth noting why this phenomenon cannot arise in the single-product case. If the cost of

supplying product i increases, the monopolist will want to reduce the amount of product i

that it supplies. (The revealed preference argument that con�rms this is set out in section

2 below.) If i is the only product, and demand as a function of price slopes down, then

the price of product i must go up, and consumer surplus decreases. But if i is not the only

product, the monopolist will in general adjust its supply of other products. If products

are substitutes, reduced supply of i will often induce the monopolist to supply more of

product j. The latter e¤ect will bear down on prices, including the price of i, o¤setting at

least partially the e¤ect of reduced supply of i. The paradox arises when the price e¤ect of

expanded supply of j more than o¤sets the reduced supply of i � a phenomenon compatible

with standard demand theory in the multiproduct case, just as Edgeworth observed.

Edgeworth�s paradox is of interest not only for it own sake. It is part of the much

wider question of which cost passthrough possibilities exist in the multi-product case.

For an n-product �rm there are n cost passthrough terms for each price, and therefore

(n� n) cost passthrough terms altogether. What properties of the (n� n) matrix of cost
passthrough terms are implied by standard theory of cost and demand? Our exploration

of Edgeworth�s paradox leads to an answer to this broader question. It also reveals a

connection with Ramsey pricing�in particular how Ramsey quantities move as the welfare

weight on consumer surplus varies.

The paper is organized as follows. We set out the model in section 2, and show how

a tax on product i will induce the �rm to reduce its supply of that product. This implies

that in order to obtain Edgeworth�s paradox for a tax on product i, that product i must

have at least one substitute. We use this output reduction insight to generate two examples

of Edgeworth�s paradox: one with discrete choice where one valuation is known, and the

other where the monopolist is restricted to uniform pricing of its outputs. In section 3 we

provide a general analysis of the case with linear marginal cost and demand conditions,

4See Asker and Nocke (2021, section 3.5.1) for further discussion of this topic.
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and show how this analysis extends to general smooth demand and cost functions. We

characterise the general range of possibilities for cost passthrough, and show that a matrix

is a possible matrix of cost-passthrough terms if and only it is similar (in the technical

sense) to a positive-de�nite matrix. We go on to show that, provided there is at least

one pair of substitute products, there are always cost conditions that give rise to the

paradox. In section 4 we turn to a weaker version of Edgeworth�s paradox that we call

the surplus paradox�i.e., that consumer surplus increases as the cost of one product rises.

Arguably, this is the more relevant of the two paradoxes, as consumers only care about their

surplus not the individual prices that generate this surplus. We show that there are always

cost conditions that give rise to the surplus paradox�and indeed to a paradox relating

to total welfare�even without products being substitutes. We also derive a connection

between Ramsey pricing and the surplus paradox. This paradox cannot happen in the cost

and demand conditions featured in section III of Armstrong and Vickers (2018), hereafter

abbreviated to AV, but is quite possible more generally. An implication of the Ramsey

connection is that the surplus paradox can be found whenever the pro�t-maximizing supply

of some product exceeds its supply with marginal cost pricing. This insight gives a way to

�nd further examples of the surplus paradox.

2 The model and output reduction result

A monopolist supplies n � 2 products. The price and quantity of product i are denoted by
pi and xi respectively, and p and x denote the price and quantity vectors. Total output is

X �
Pn

i=1 xi. As in AV, gross consumer utility u(x) is assumed to be strictly concave; the

inverse demand function is given by p(x) = ru(x), the vector of partial derivatives of u
(where these exist); and revenue is given by r(x) � (p(x))Tx, where �T � stands for transpose
and (p(x))Tx =

Pn

i=1 pi(x)xi is the inner product. Consumer surplus as a function of

quantities is given by the function s(x) � u(x) � r(x). Pro�t is �(x) = r(x) � c(x),
where the c(x) is the cost function. In general the monopolist maximizes the weighted sum

�(x) = �(x) + �s(x), with � 2 [0; 1]. Pro�t maximization corresponds to � = 0, e¢cient
supply corresponds to � = 1, while interior � correspond to more general Ramsey pricing.

While for the most part we model the �rm as choosing quantities x, where more convenient

we sometimes consider it to choose prices, in which case quantities are determined by the

(direct) demand function x(p).
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Suppose that the set of feasible quantity vectors lies in some set X � Rn+, and that
initially �(x) is maximized by x0 2 X. (In many cases it makes sense that X = Rn+, but, as
with the two illustrations of discrete choice and uniform pricing below, there are natural

situations where the feasible set of quantities is restricted.) Compare the situation when

product i has a per-unit cost increase (or tax) of ti > 0, and let x� 2 X then maximize
�(x)� tixi. By revealed preference we have

�(x0) � �(x�) and �(x�)� tix�i � �(x0)� tix0i :

Combining these inequalities we deduce that ti(x
0
i � x�i ) � 0, con�rming that the cost

increase causes supply of product i to fall, at least weakly. Moreover, if �(x) is smooth,

X = Rn+ and x
0
i > 0, then the supply of product i decreases strictly.5 For if not, i.e., if

x0i = x
�
i , then x

� also maximizes �, and we would have the contradiction that

@

@xi
�(x�) = 0 and

@

@xi
[�(x)� tixi]

�

�

�

�

x=x�

= 0) @

@xi
�(x�) = ti :

Note that the Edgeworth paradox requires at least some product pairs to be substitutes,

at least in the smooth case with a small cost increase. For if @x1=@t1 < 0 is the change in

the supply of product 1 in response to the small cost increase for product 1, say, then we

can decompose @x1=@t1 in terms of the direct demand function, x1(p), as

@x1
@t1

=
@x1
@p1

@p1
@t1

+ :::+
@x1
@pn

@pn
@t1

< 0 : (1)

Since each @pi=@t1 is negative with the paradox, in order for x1 to fall it is necessary that

at least one @x1=@pi be positive, i.e., for some product i to be a substitute in this direct

demand sense for product 1.6 Later, in section 3.2, we show that condition (1) is also

su¢cient for (@p1=@t1; :::; @p1=@t1) to be a possible pattern of price-cost passthrough (for

a given demand system), in the sense that we can �nd a cost function that induces such a

pattern of passthrough.

A recurring theme in this paper, explored more systematically in section 4, is that sit-

uations in which consumers bene�t from a cost increase are associated with over-provision

of the relevant product by the monopolist, relative to e¢cient supply. Intuitively, if the

5The following argument is in the spirit of Edlin and Shannon (1998).
6Two notions of substitutability are that xi increases with pj (which concerns the direct demand

functions as here) or that pi decreases with xj (which concerns the inverse demand functions). With two
products these notions coincide, but with more products they are distinct.

5



monopolist supplies too much of a product, a tax on the supply of that product�which as

we have seen reduces that supply�may well lead to better outcomes for consumers. The

fall in xi will by itself tend to increase pi but other xj will adjust too. Edgeworth�s paradox

occurs when their adjustment both outweighs the upward e¤ect on pi of the fall in xi, and

causes other pj to decrease too.

Before turning to a more systematic analysis, we present two simple illustrations of how

the output reduction result can lead directly to Edgeworth�s paradox. In both examples,

it is more convenient to consider the �rm as choosing prices rather than quantities.

Discrete choice where one product has known valuation: Consider a framework with discrete

choice, where a consumer chooses to buy (one unit of) one of the n � 2 products, or nothing,
where her valuation for product i is vi. Thus, she buys the product with the highest vi�pi
provided this is non-negative. Suppose that the valuation for product 1 is known and for

all consumers is equal to �v1, while other vi are continuously distributed in some fashion.

The unit cost of product i is ci, where c1 < �v1.

It is straightforward to see that the pro�t-maximizing �rm will choose the price p1 = �v1.
7

For if p1 < �v1 then all consumers buy something (as they get positive surplus if they buy

product 1) and if the �rm increases each price pi by the same small " > 0 each consumer

continues to buy the same product as before, and the �rm gains revenue " from each

consumer. Therefore, it cannot be optimal to set p1 < �v1.
8 In particular, if c1 increases

(but does not exceed �v1) the �rm does not change p1. Since p1 = �v1, the number of

consumers who buy product 1, x1, consists of those for whom vi < pi for all i � 2. But

since x1 falls when c1 rises, at least one other price pi must fall. Therefore, if there are just

two products (or if all products i � 2 are symmetric and the �rm sets the same price for

these products) then all prices weakly fall (and some strictly decrease) when c1 increases,

which illustrates the Edgeworth paradox.9

7More generally, there are other situations in which the �rm�s price for one product is �xed. For
example, aspects of the �rm�s service might be regulated, or the �rm might face strong competition in one
market. In these cases, the following analysis applies equally, so long as the �rm�s products are substitutes.

8It cannot be optimal to set p1 > �v1, since then when a consumer has vi > pi for all i > 1 she buys
nothing, and if the �rm reduced p1 down to �v1 such consumers would instead buy product 1 which yields
greater pro�t for the �rm. In addition, it continues to be optimal to set p1 = �v1 in the Ramsey problem
with � > 0.

9For instance, with two products, �v1 = 1, v2 uniformly distributed on [0; 1], 0 � c1 � 1, and c2 = 0,
one can check that pro�t is maximized with prices p1 = 1 and p2 = 1� 1

2
c1. More generally, suppose there

are n products where �v1 = 1 and the other other n� 1 product valuations are continuously distributed in
some fashion with full support on [0; 1]n�1, and that production is initially costless. Then the �rm initially
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Since all consumers buy something from the �rm, we have X =
Pn

i=1 xi = 1 (if the

number of consumers is normalized to 1), and so the feasible set of quantities is the simplex

X = fx j
Pn

i=1 xi = 1g. Since the �rm chooses prices pi > ci for i � 2, its supply x1 exceeds
the e¢cient supply of product 1, i.e., the supply corresponding to marginal-cost pricing.

As we will discuss later, this implies that an increase to c1 will bene�t consumers, even in

the more general case with n products where some prices pi might rise in response to the

cost increase.

Uniform pricing: Suppose now that the �rm is constrained to set the same price for each

of its products. For instance, regulation or social norms might require a restaurant to set

the same price for dinner regardless of the day of the week, or a chain-store might set the

same price across all of its retail outlets.10 In such situations it is more convenient to work

with direct demand x(p) rather than inverse demand p(x). Here, X is the set of quantity

vectors x traced out by the path x(P; :::; P ) as the scalar uniform price P varies.

Since an increase in product 1�s cost causes the �rm reduce its supply x1, it follows

that if x1(P; :::; P ) is an increasing function of P then the cost increase will induce the

�rm to reduce P , which is a version of Edgeworth�s paradox. In the di¤erentiable case, the

condition that x1 rises with P is equivalent to total quantity X increasing with p1. This is

because by Slutsky symmetry

d

dP
x1(P; :::; P ) =

n
X

i=1

@x1
@pi

=

n
X

i=1

@xi
@p1

=
@

@p1
X(P; :::; P ) :

This condition cannot occur in a situation with standard discrete choice, since in that case

the number of consumers who buy anything (which is X) weakly decreases when any price

rises. However, more generally it is possible that total quantity rises when a price rises.11

In any demand system total output X falls with the uniform price P . In particular,

in the two-product case if x1 increases with P then x2 must fall with P , in which case

the set X of feasible quantities with uniform pricing is a downward-sloping curve in R2+.

Revealed preference shows that the uniform price P that maximizes the Ramsey objective

chooses to supply product 1 to all consumers, but if c1 increases from zero one can show that all other
prices strictly fall, so that the Edgeworth paradox holds.
10Another reason why the �rm might choose to o¤er uniform prices is if consumers regard its various

products as perfect substitutes and if, for cost reasons, the �rm wishes to supply a positive quantity of all
products.
11For example, suppose demand functions are x1 = 1� p1 + 3

2
p2 and x2 = 3� 4p2 + 3

2
p1, and unit costs

are c1 (which varies) and c2 = 0. Then x1 increases with a uniform price P , and one can check that the
pro�t-maximizing uniform price is P = 1� 1

8
c1 which decreases with c1.
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� decreases with the weight on consumer surplus, �, and in particular that the pro�t-

maximizing uniform price exceeds the welfare-maximizing uniform price. Therefore, as

with the previous illustration, when x1 increases with P the �rm supplies too much product

1 relative to the e¢cient supply.

3 Patterns of cost passthrough and the Edgeworth

paradox

In this section we aim to analyze the possibility of Edgeworth�s paradox in general terms,

by studying the feasible patterns of cost passthrough. To do this, we �rst study the simpler

situation in which both marginal costs and demands vary linearly with quantities. While

some of the insights from this analysis are special to the linear case, most will generalize

in a straightforward manner to general smooth demand and cost systems.

3.1 Linear demand and marginal cost

Suppose for now that the n products have linear inverse demands

p(x) = a�Bx (2)

where a is a vector of positive constants and B is a (symmetric) positive-de�nite matrix.12

Thus the �rm�s revenue function is

r(x) = aTx� xTBx :

Suppose the �rm�s cost function is

c(x) = cTx+ xTDx ;

where c is a vector of non-negative constants ci, one per product, and D is symmetric

(though not necessarily positive de�nite). Note that increasing c1, say, corresponds to

introducing a tax t1 on the sale of product 1. Let M � 2(B +D) so that the �rm�s pro�t
is

� = (a� c)Tx� 1

2
xTMx : (3)

To ensure that pro�t is strictly concave in quantities, suppose that M is positive de�nite,

which requires that the cost function not be too concave relative to revenue. Assuming

12We adopt the standard convention that a positive-de�nite matrix is symmetric.
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an interior solution in which the �rm supplies a positive quantity of each product, the

�rst-order condition for pro�t-maximizing quantities is

Mx = a� c) x =M�1(a� c) ; (4)

so that the matrix derivative dx=dc is equal to (minus) the positive-de�nite matrix M�1.

In particular, there is symmetry in the cross-cost e¤ects on quantities in the sense that

@xi=@cj = @xj=@ci. Since the only constraint on M
�1 is that it is positive de�nite, expres-

sion (4) fully characterizes the feasible ways that quantities can vary with cost changes:

the matrix derivative dx=dc is negative de�nite.

From (2), expression (4) implies optimal prices are given by

p = (I � �)a+ �c ; (5)

where I is the identity matrix and

� � BM�1 : (6)

Thus, � is the matrix derivative dp=dc, and expression (6) is just an instance of the chain

rule: the matrix M�1 describes how quantities x vary with costs c, and B describes how

those quantity changes translate into price changes. While quantity responses to cost rises

depend only on the pro�t function, price responses depend jointly on pro�t and demand

functions. Even though the matrices B and M�1 are symmetric, their product � need not

be and cross-cost e¤ects on prices can be asymmetric. The Edgeworth paradox occurs for

product i�that is, an increase in ci (e.g., due to a new tax ti on that product) will reduce

all prices�if the ith column of � consists of negative entries.

If the cost function is linear (i.e., if D = 0), then � = 1

2
I and (5) simpli�es to

p = 1

2
(a+ c) ; (7)

in which case optimal prices do not depend on the demand matrix B at all, there are no

cross-cost e¤ects on prices, and the paradox cannot occur.13

Turn next to the case with a quadratic cost function, and suppose for simplicity that

there are two products, where we write b = b12 = b21 and m = m12 = m21. From (6), we

13In the numerical example from footnote 11, if the uniform pricing constraint was removed then from
(7) the �rm would choose p1 =

17

7
+ 1

2
c1 and p2 =

9

7
, which are both higher than the �rm�s optimal uniform

price P = 1� 1

8
c1.

9



have

� =
2

detM

0

@

b11m22 � bm bm11 � b11m

bm22 � b22m b22m11 � bm

1

A (8)

where detM > 0 is the determinant of M . Thus an increase in c1 will reduce both prices

if

b11m22 � bm < 0 (9)

and

bm22 � b22m < 0 : (10)

We know from section 2 that this pair of conditions can occur only if products are substi-

tutes, i.e., if b > 0. Indeed, when b > 0 then condition (9) implies that (10) holds as well.14

To see this, note that

b22[b11m22 � bm]� b[bm22 � b22m] = (b11b22 � b2)m22 > 0 ;

where the inequality follows since both b11b22 > b
2 and m22 > 0. Since b22 > 0 it follows

that when (9) holds then b[bm22� b22m] < 0, as claimed. We summarise this discussion as
follows:

Proposition 1 Suppose there are two products and marginal cost and demand is linear.

Then the Edgeworth paradox holds for an increase in the cost of product 1 if and only if

products are substitutes and (9) is satis�ed.

To illustrate, consider the demand and pro�t matrices

B =

�

7=2 3
3 8=3

�

, M =

�

10 8
8 20=3

�

;

both of which are positive de�nite and which satisfy (9).15 These induce the passthrough

matrix

� = BM�1 =
1

4

�

�1 3
�2 4

�

; (11)

which exhibits the Edgeworth paradox for c1.

14Actually, when b < 0 then (9) implies that bm11� b11m < 0, in which case (8) shows that p1 decreases
with both costs c1 and c2.
15For instance, these matrices arise when inverse demand and cost are given by p1 = 18 � 7

2
x1 � 3x2,

p2 =
44

3
� 8

3
x2 � 3x1, and c(x) = 1

6
(3x1 + 2x2)

2
, in which case the �rm chooses quantities x1 = x2 = 1.
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Now consider the Ramsey problem rather than pure pro�t maximization. With a weight

� on consumer surplus, which is s(x) = 1

2
xTBx with linear demand (2), the objective

function becomes

� + �s = (a� c)Tx� 1

2
xTMx+ 1

2
�xTBx ;

and so the preceding analysis carries over if the pro�t matrix M is replaced by (M ��B).
Therefore, the cost-passthrough matrix for the Ramsey problem, denoted ��, is �� =

B(M � �B)�1. As with (6), it follows that

��1� = (B(M � �B)�1)�1 = (M � �B)B�1 = ��1 � �I ; (12)

and the diagonal elements of the inverse passthrough matrix are shifted down as more

weight is put on consumer surplus, while o¤-diagonal terms are unchanged. In the two-

product case, expression (12) implies that �� is proportional to � � det(�)�I. Here,

increasing � does not a¤ect the sign of the cross-cost e¤ects, but can make the own-cost

e¤ects more negative. Thus, with linear demand and marginal cost the paradox becomes

less di¢cult to achieve when more weight is placed on consumer surplus. In particular, if

the paradox occurs under pro�t-maximization it occurs for all Ramsey weights as well.16

Before we turn to more general analysis, it is useful to derive one further result in the

linear framework that will be useful as an ingredient for the general analysis. We know

from section 2 that the �rm must reduce its supply of product 1 if the cost of that product

rises. The following result shows that this is the only restriction on the �rm�s pattern of

quantity responses to a cost increase.

Lemma 1 Let x� > 0 be a vector of quantities and let k = (k1; :::; kn) be a vector such that

k1 < 0. Then there exists a concave pro�t function �(x) of the form (3) such that (i) �

is maximized at x = x� and (ii) the �rm�s optimal response to an increase of the cost (or

tax) of product 1 is given by @xi=@c1 = ki for each 1 � i � n.

Proof. Consider the quadratic pro�t function

�(x) = (x�)TMx� 1

2
xTMx ; (13)

16Hotelling (1932, pp. 602-3) presents a linear example in which the Edgeworth paradox arises with the
Ramsey objective � = � + �s for all � 2 (0; 1]. But with pure pro�t maximization (� = 0) the price of
product 1 does not vary with its unit cost in his example.
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where M is a positive-de�nite matrix. Then we have for x 6= x�

2[�(x�)� �(x)] = (x�)TMx� + xTMx� 2(x�)TMx

= (x�)TMx� + xTMx� (x�)TMx� xTMx�

= (x� � x)TM(x� � x) > 0 :

Here, the second equality arises since (x�)TMx is a scalar and so equal to its transpose,

while the inequality follows since M is positive de�nite. Therefore, � in (13) is maximized

at x = x� for any positive-de�nite matrix M .

If we introduce a vector of small taxes t to the pro�t function (13), the optimal quantities

satisfy r�(x) = t, so that
x� � x =M�1t

(where x� are the optimal quantities with t = 0). Thus, as in (4), the matrix M�1 is

(minus) the derivative dx=dt evaluated at t = 0. In particular, considering only a cost

increase to product 1 we see that the vector of quantity responses (@x1=@c1; :::; @xn=@c1)

is equal to the �rst row or column of M�1. Therefore, part (ii) is proved provided that

we can construct a negative-de�nite matrix �M�1 with �rst row or column equal to the

vector (k1; :::; kn).

Consider the symmetric matrix

�M�1 =

0

B

B

B

B

B

@

k1 k2 k3 � � � kn
k2 a2 0 � � � 0
k3 0 a3 � � � 0
...

...
...

. . .
...

kn 0 0 � � � an

1

C

C

C

C

C

A

with ai < 0, which we wish to be negative de�nite. Intuitively, if the diagonal terms ai

are large enough and negative then this matrix is negative de�nite. In more detail, for any

vector z we have

zT (�M�1)z = k1z
2

1 +

n
X

i=2

zi (2kiz1 + aizi)

= k1z
2

1 +

n
X

i=2

1

ai

�

(kiz1 + aizi)
2 � k2i z21

�

� k1z
2

1 �
n
X

i=2

k2i
ai
z21

=

 

k1 �
n
X

i=2

k2i
ai

!

z21 :
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If each ai is large and negative enough, e.g., if ai � a where a < 1

k1

Pn

i=2 k
2
i , then the above

term (�) is negative, i.e., zT (�M�1)z < 0 if z 6= 0, so M�1 is positive de�nite.

3.2 More general analysis

The linear analysis in the previous section carries over to more general situations. For

suppose inverse demand is not necessarily linear, but is given by the smooth function

p(x), and that pro�t with a vector of cost-shifters (or tax rates) t is �(x) � tTx. Then
provided the pro�t function �(x) is smooth and there is a unique pro�t-maximizing vector

of quantities for each t (which is the case if � is strictly concave), the most pro�table

quantity vector x, if interior, satis�es r�(x) = t, and this x varies smoothly with t. The
matrix of quantity cost-passthrough terms is again given by dx=dt = �M�1, where now

M is (minus) the matrix of second derivatives of �, which is positive de�nite from the

second-order condition for (and uniqueness of) the optimal x. Thus, a pattern of quantity

responses to cost shocks is feasible provided that the matrix dx=dt is negative de�nite. The

matrix of price cost-passthrough terms, evaluated at t = 0, is again given by (6), where B

is (minus) the matrix of derivatives of inverse demand p(x), which is positive de�nite from

the assumption that utility is concave. Proposition 1 therefore extends to general demand

and cost conditions as well, and with two products that are substitutes the Edgeworth

paradox holds for product 1 if and only if expression (9) holds.

Not every insight from the linear case generalizes. One feature of the linear demand as-

sumption was that the Edgeworth paradox is not possible when marginal costs are constant

(see expression (7)). However, with other demand speci�cations it is perfectly possible to

observe the paradox even with a constant unit cost per product. (Such an example was

presented above in section 2, and others were provided in the early papers by Edgeworth

and Hotelling.)

We showed in section 2 that to obtain the Edgeworth paradox it is necessary that

product 1 has at least one substitute product, in the sense that direct demand for product

1 rises with another price. We now show that this condition is also su¢cient for the paradox

to be possible. That is, for any demand system where one product has a substitute we can

�nd a well-behaved cost function which implements the paradox.

Proposition 2 Consider a smooth demand system with revenue r(x), and let x� be a

vector of positive quantities such that rr(x�) � 0. Suppose direct demand for product 1 is

13



increasing in the price of another product. Then there exists a cost function c(x), where

rc(x�) � 0 and c(x�) � 0, such that x = x� maximizes pro�t r(x) � c(x) and all prices
fall when a small tax on product 1 is introduced.

Proof. Given r(x) one can induce any desired pro�t function �(x) by means of the cost

function c(x) = r(x) � �(x), and rather than choosing a cost function we work directly
with the pro�t function. (We check at the end that the corresponding cost function is well

behaved.) Speci�cally, consider a quadratic pro�t function �(x) given by expression (13)

in the proof of Lemma 1, where x� is the quantity vector with rr(x�) � 0, and where the
matrix M can be chosen to induce any pattern of quantity responses @xi=@t1 so long as

@x1=@t1 < 0. Since the change in quantity xi in response to the tax t1 can be expressed in

terms of the direct demand functions xi(p) as

@xi
@t1

=
@xi
@p1

@p1
@t1

+ :::+
@xi
@pn

@pn
@t1

;

and since the only constraint on the vector @x=@t1 is that @x1=@t1 < 0, we deduce that a

vector of price responses @p=@t1 can be implemented with a suitable cost function if and

only if (1) holds, so that the combined price responses to the tax cause demand x1 to fall.

Since by assumption direct demand x1(p) increases with some pj, it is clear that one

can �nd a feasible vector of price responses, @p=@t1, that satis�es (1) and for which each

@pi=@t1 < 0, and so the Edgeworth paradox holds. Speci�cally, since @x1=@pj > 0, if one

makes @pj=@t1 large and negative and all other @pi=@t1 small and negative, this vector

will satisfy the condition (1). With this demand system and the pro�t function �(x),

introducing a small tax t1 will induce the �rm to reduce all prices. Note that if the pro�t

function � works for this argument, then so does any pro�t function of form ��(x) where �

is a positive constant. (The introduction of the scaling factor � does not a¤ect the choice

of optimal quantities x�, and it scales down all the quantity responses @xi=@t1 by �, which

does not a¤ect the feasibility constraint (1).) Therefore, without loss of generality we can

choose a pro�t function such that �(x�) � r(x�).
Finally, consider the associated cost function c(x) = r(x) � �(x). Since �(x) is max-

imized at x = x�, it follows that rc(x�) = rr(x�) � 0 and so marginal costs at x� are

non-negative. Moreover, we have chosen a pro�t function such that �(x�) � r(x�), and so
c(x�) � 0 as required.
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The cost function in the statement of the result is �well behaved� in the sense that

it is positive and increasing at the relevant point x = x�. The result shows that a very

wide range of demand systems are compatible with the Edgeworth paradox. Indeed, the

only demand systems incompatible with the paradox are those where all product pairs are

complements. This validates Edgeworth�s remark, quoted above, that a �exible choice of

cost functions expands the scope for examples of the paradox.

Moving beyond the focus on the Edgeworth paradox, an important question is what

patterns of price-cost passthrough are feasible in general. We have seen that a pattern of

quantity responses to taxes is feasible provided that the matrix dx=dt is negative de�nite.

Expression (6) shows that the matrix of price-cost passthrough terms under pro�t maxi-

mization is dp=dt = � = BM�1. Since the only constraint on B and M�1 is that they are

positive de�nite, the only constraint on � is that it be the product of two positive-de�nite

matrices. It is not obvious from simply looking at a matrix to know whether it can be

factored into positive-de�nite matrices. However, Ballantine (1968, Theorem 2) shows that

a matrix � is the product of two positive-de�nite matrices if and only if it is similar to

a positive-de�nite matrix.17 As a positive-de�nite matrix is similar to a diagonal matrix

with positive entries, � is the product of two positive-de�nite matrices if and only it is

similar to a diagonal matrix with positive entries, i.e., if � is diagonalizable with positive

eigenvalues. Thus, we have the following result:

Proposition 3 � is a feasible price cost-passthrough matrix if and only if it is diagonal-

izable with positive eigenvalues.

The condition that � be diagonalizable with positive eigenvalues is almost the same

as requiring that all eigenvalues of � are real and positive. If � has distinct positive

eigenvalues then it is diagonalizable. However, if � has some repeated eigenvalues, then it

is not necessarily diagonalizable.

If � happens to be symmetric, then the condition for it to be a feasible cost-passthrough

matrix is simply that it be positive de�nite. In particular, its diagonal entries are positive

and a new tax on product i must induce the �rm to raise its price pi. Thus the Edgeworth

paradox can only occur when there are asymmetries in price-cost passthrough.

17Two matrices A and B are said to be similar if they are related as A = Z�1BZ for some invertible
matrix Z. Similar matrices have the same determinant, trace, and eigenvalues. If a matrix A is similar
to a diagonal matrix, it is said to be �diagonalizable�, and the entries in the diagonal matrix are the
eigenvalues of A.
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Proposition 3 implies that the determinant of � is positive and that the trace of � is

positive, where the latter observation says that on average the own-cost passthrough terms

are positive. For instance, when there are two products the trace condition means that

at most one of the own-cost terms can be negative. Therefore, if the Edgeworth paradox

holds for product 1 (i.e., if 11 and 21 are negative) we have 11 < 0 < 22, in which case

the requirement that the determinant of � is positive requires that 1221 be negative, so

that 21 is positive and an increase in product 2�s cost must cause both prices to rise. More

generally, if 12 and 21 have the same sign, then the determinant condition implies that

11 and 22 have the same sign and hence both are positive.

4 The surplus paradox and a Ramsey connection

For Edgeworth�s paradox to occur, all prices must fall when the cost of one product rises.

Consider instead the surplus paradox that he mentioned, where consumer surplus increases

when the cost of one product rises. Clearly the surplus paradox occurs whenever Edge-

worth�s paradox does, but it can occur more generally and with less in the way of �manip-

ulation� needed.

The next result modi�es Proposition 2 to focus on surplus rather than individual prices,

and shows that the surplus paradox can occur for essentially any demand system, if one

chooses a suitable cost function. The result also demonstrates that a stronger �welfare

paradox� can occur under the same demand conditions, so that the sum of pro�t and

consumer surplus can rise when a tax is imposed.

Proposition 4 Consider a smooth demand system with revenue r(x), and let x� be a

vector of positive quantities such that rr(x�) � 0. Unless s(x) depends only on quantity

x1, there exists a cost function c(x), where rc(x�) � 0 and c(x�) � 0, such that x = x�

maximizes pro�t r(x)� c(x) and consumer surplus s(x) rises when a small tax on product
1 is introduced. Under the same conditions, there exists a cost function such that total

welfare s(x) + �(x) rises when a small tax of product 1 is introduced.

Proof. The proof follows similar lines to that for Proposition 2. Consider a quadratic

pro�t function �(x) given by (13) in the proof of Lemma 1, where x� is the quantity vector

with rr(x�) � 0, and where the matrixM can be chosen to induce any pattern of quantity

responses @xi=@t1 so long as @x1=@t1 < 0. The change in consumer surplus in response to
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the tax t1 can be expressed in terms of the quantity responses as

@s

@t1
=
@s(x�)

@x1

@x1
@t1

+ :::+
@s(x�)

@xn

@xn
@t1

: (14)

As discussed in AV the function s(x) might increase or decrease with xi, although it cannot

decrease with all xi. (It increases with all xi if all products are substitutes in the sense

that each pi(x) decreases with each xj.) But regardless of the signs of @s=@xi it is clear

we can choose a feasible pattern of quantity responses to make (14) positive. For instance,

if @s=@x1 is positive, then we can set @x1=@t1 (which is necessarily negative) to be small

in magnitude, and any or all of the other @xi=@t1 to be large and with the same sign

as their corresponding @s=@xi. The only situation in which this cannot be done is when

@s=@xi = 0 for all i > 1, which we rule out by assumption. (AV provide an example of a

demand system where s(x) depends only on x1.)

As in the proof of Proposition 2, if �(x) is a pro�t function maximized at x = x� and

which makes (14) positive, then so is ��(x) for � > 0. For smaller enough � one can

ensure that the corresponding cost function c(x) is positive at x = x�. (The associated

cost function is necessarily increasing at x = x� given rr(x�) � 0.)
A similar argument shows that we can �nd a cost function such that total welfare

s(x) + �(x) rises when a tax t1 is introduced. When a small tax dt1 is introduced, an

envelope argument shows that the �rm�s maximum post-tax pro�t falls by x�1dt1, where x
�

is the �rm�s optimal quantity vector without the tax. Therefore, from (14) the impact on

total welfare is
@(s+ �)

@t1
=
@s(x�)

@x1

@x1
@t1

+ :::+
@s(x�)

@xn

@xn
@t1

� x�1 : (15)

But if �(x) is a pro�t function maximized at x = x� and which makes (14) positive, then

so does ��(x) for � > 0. More precisely, the scaling factor � multiplies (14) by 1=�, and

so for small enough � the expression (15) is positive too. For small � we are also sure to

have the corresponding cost function being increasing and positive.

Thus, unlike the full Edgeworth paradox, the surplus paradox, and even a welfare paradox,

can occur when the �rm serves markets which are separate and independent in terms of

consumer demand.18

18Chen and Schwartz (2015) analyze the e¤ect on consumer surplus and welfare of mean-preserving
spreads of unit cost in a setting with separate single-product markets that have the same demand condi-
tions.
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The surplus paradox has a simple connection with Ramsey pricing. Recall that the

monopolist is assumed to maximize �(x) = �(x)+�s(x), where � is the weight on consumer

surplus relative to pro�t. A natural question is how the optimal quantity xi of product

i varies with �. As the next result records, the answer is that the rate that consumer

surplus varies with the cost of product i is equal to minus the rate that xi varies with �.

Therefore, if xi decreases with � then the surplus paradox occurs and consumer surplus

increases with the introduction of a tax ti.

Proposition 5 Suppose that a small per-unit tax ti is imposed on product i. Then

@s

@ti
= �@xi

@�
: (16)

Proof. De�ne

�̂(ti; �) � max
x�0

: �(x)� tixi + �s(x)

as maximum weighted welfare with Ramsey parameter � and tax ti. By the envelope

theorem
@�̂

@ti
= �xi ;

@�̂

@�
= s

and the symmetry of cross derivatives of �̂ entails (16).

A revealed preference argument shows that s necessarily increases with �, and so Propo-

sition 5 can be interpreted as saying that the surplus paradox arises for a cost increase for

product i if the most pro�table quantity of product i needed to achieve a target consumer

surplus s decreases with s.

For instance, suppose consumers view the products as perfect substitutes, so that they

care only about total quantity X. Given the �rm�s cost function c(x), suppose that the

least-cost way to supply total quantity X involves quantity x1(X) of product 1. Then

if x1(X) decreases with X, so that product 1 is akin to an inferior input, Proposition 5

implies that a tax on product 1 will increase consumer surplus. (The optimal choice of X

in the Ramsey problem increases with �, and so the optimal choice of x1 decreases with �

if x1(X) falls with X.)

Using Proposition 5 we can apply Ramsey pricing results to understand better when the

surplus paradox might arise beyond monopoly settings. For instance, AV connects Ramsey
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pricing to Cournot competition. In particular, Section IIC in AV implies that Cournot

competition between m symmetric multiproduct �rms with cost function satisfying

c(x) is convex and homogeneous degree 1 (17)

has the same outcome as the monopoly Ramsey problem with weight � = (m � 1)=m.
Proposition 5 then implies that, if entry into the Cournot market would have caused

equilibrium supply of product i to fall, then an industry-wide tax on that product will

cause consumer surplus to rise.

Another theme of AV is that under certain conditions optimal quantities move equipro-

portionately as the Ramsey weight � on consumer surplus varies, in which case the surplus

paradox cannot occur. It is well known that the equiproportional property holds if � is

close to 1 when (17) holds (see section IIB in AV). Thus when � � 1 the only way to obtain
either paradox is to have cost functions outside the class (17). For instance, as already

noted, Hotelling (1932, section 7) gives an example with linear demand and a quadratic

cost function in which Edgeworth�s paradox arises with � = 1. Section III in AV considers

the situation where the cost function satis�es (17) and consumer surplus s is homothetic

in x, i.e., s is an increasing function of the scalar �composite quantity� q(x) where q(�) is
homogenous degree 1 in outputs x. (Consumer surplus is homothetic in x when utility u

is homothetic, and also when demands are linear or take a Logit form. More generally,

Proposition 2 in AV shows that s is homothetic in x if the utility function u takes the

form u(x) = h(x) + g(q(x)), where h and q are homogeneous degree 1 functions.) Propo-

sition 3 in AV shows in this case that Ramsey quantities increase equiproportionately as

� increases, so that neither paradox can occur. The reason is that the cost of producing

composite quantity q increases if the cost of any component product rises, and this induces

the �rm to reduce q and so reduce consumer surplus.

An implication of Proposition 5 is that the surplus paradox can be found wherever the

pro�t-maximizing quantity of some product i exceeds its e¢cient level, for in that case

there must be a range of � over which xi falls with � and hence a range of � for which

consumer surplus increases with ti. This phenomenon of excessive monopoly supply of one

product can be viewed as the quantity analogue to a monopoly price being below marginal

cost. A natural situation in which this occurs is when total quantity X does not vary as �

varies, so (unless the pro�t-maximizing and e¢cient allocation of that quantity happened

to coincide) one product must be in greater supply with pro�t-maximization than with

19



marginal cost pricing. We have seen one such example already in section 2 when one

product has a known valuation. Another example is the following:

Hotelling preferences: In the spirit of Hotelling (1929), consider a �rm with two products

located at each end of the unit interval [0; 1] supplied by a single �rm with unit costs c1 and

c2 respectively. Consumers of mass 1 are uniformly distributed along the line and wish to

buy or other product (or neither). Their willingness to pay for a product is 1� �z, where
z is their distance travelled and � is the transport cost. Assume 0 � c1 � c2 < � , which
ensures an interior solution with both pro�t maximization and with marginal-cost pricing.

Assume also that 1
2
(c1 + c2) < 1� � , which ensures that the �rm will optimally choose to

serve all consumers, and so total output does not depend on costs over this range. With

marginal cost pricing the quantity of the high-cost product is

~x1 =
1

2

�

1� c1 � c2
�

�

;

whereas with pro�t-maximization it is

x̂1 =
1

2

�

1� c1 � c2
2�

�

> ~x1 :

So there is more asymmetry between x1 and x2 with marginal cost pricing than with

pro�t-maximizing monopoly. In the latter case, increasing c1 has the e¤ect of increasing

asymmetry, which is good for consumers and so we have the surplus paradox. The reason is

that the consumer indi¤erent between products gets zero surplus, and the surplus of others

is � times their distance from the indi¤erent consumer. The average distance increases with

asymmetry. In this example total quantity is at the e¢cient level with pro�t-maximization

but is ine¢ciently allocated between products whenever cost levels di¤er. Thus increasing

the cost of the more costly product 1 will bene�t consumers in aggregate, and the surplus

paradox always exists.

These discrete choice examples shared the feature that the �rm�s choice of total output

X was una¤ected by cost changes over the relevant range of costs. In e¤ect, the �rm�s choice

of quantities was taken from the constrained set X = fx j X =
P

k xk = 1g. Likewise, in
the situation with uniform pricing in section 2, we saw that the uniform price decreases

with the cost of a product when the constrained set X took the form of a downward-sloping

curve in R2+. Indeed, it is generally the case that if the �rm chooses its quantities from a
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constrained set X that has the property that an increase in one quantity necessarily causes

another quantity to fall, then the surplus paradox will hold. Proposition 5 continues to

hold when quantities are chosen from a (suitably smooth) constrained set X rather than

R
n
+, and as long as increasing the Ramsey weight � above zero has any impact on its choice

of x it must then cause one quantity to fall. For instance, if the �rm operates under some

form of average price regulatory constraint, that will usually entail this form of quantity

constraint X, and so an increase in some product�s cost will cause consumer surplus to rise.

In general, however, the fact that the �rm supplies a greater quantity of product i than

is e¢cient does not imply that the pro�t-maximizing �rm will o¤er consumers greater

surplus when the cost of product i rises. Proposition 5 implies that there is a range of

� for which a rise in the cost of this product rises implies that consumers obtain more

surplus, but this range need not include the pro�t-maximizing case � = 0. An instance of

this situation is described next.

Damaged goods: Deneckere and McAfee (1996) and a rich subsequent literature show how

a �rm sometimes has an incentive to introduce a �damaged� good (which no consumer

prefers to the existing product, and which costs more to supply) in order to facilitate price

discrimination. Such a product would not be supplied when the objective is to maximize

welfare (� = 1), and so trivially the �rm supplies too much of the damaged good relative

to e¢cient supply. Deneckere and McAfee (1996) show nevertheless that the introduction

of the damaged good can boost both consumer surplus and pro�t, in which case raising the

cost of the damaged good su¢ciently will induce the pro�t-maximizing �rm to o¤er less

consumer surplus. However, the discussion in this section shows that there will a range of

� (which then does not include � = 0) for which an increase in the cost of the damaged

good will boost consumer surplus.19

19To illustrate, suppose there are two groups of consumers of equal size: high types who value the main
product at 7 and the damaged variant at 3, and low types who value the main product at 3 and the
damaged variant at 2. When the unit cost of the main product is zero and that of the damaged variant is
su¢ciently small, the pro�t-maximizing �rm will supply low types with the damaged good and the high
types with the main product, leaving the high types with positive surplus, while if c2 rises su¢ciently
the �rm will only supply the high types with the main product, and no consumer obtains any surplus.
However, in the Ramsey problem with larger �, one can show that raising the cost of the damaged good
will induce the �rm to switch from supplying the damaged good to low types and the main product to
high types to o¤ering the main product to all consumers, which will indeed boost consumer surplus.
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5 Conclusion

Edgeworth�s paradox highlights that comparative statics in multi-product settings can be

very di¤erent from what happens in the single-product case. They can also contrast with

those familiar examples of multiproduct pricing often studied (such as with linear demand

and constant unit cost). We described various simple examples in which all prices fell as a

cost level increased, and have shown that this possibility always exists for some cost func-

tion provided at least one pair of products are substitutes. We then explored the milder

consumer surplus paradox, and related it to Ramsey pricing. A common theme was that

the paradox in either form involves the most pro�table output of product i decreasing with

consumer surplus. This is akin to product i being an inferior good in consumer theory�i.e.,

one for which demand decreases as income rises. Although Edgeworth�s pricing paradox is

rarer than the surplus paradox, examples of either kind are not hard to �nd once one con-

siders situations outside the most familiar speci�cations for multiproduct cost and demand

systems.

The paradox is but one aspect of the much wider question of what cost passthrough

possibilities exist in the multi-product case. We established that with pro�t maximization a

matrix is a possible cost-passthrough matrix if and only if it is similar to a positive-de�nite

matrix. This result de�nes the range of multiproduct cost passthrough possibilities that

are consistent with the basic economics of supply and demand.
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