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Abstract

Industrial maintenance has become an essential strategic factor for profit and productivity in industrial systems. In the

modern industrial context, condition-based maintenance guides the interventions and repairs according to the machine’s
health status, calculated from monitoring variables and using statistical and computational techniques. Although several

literature reviews address condition-based maintenance, no study discusses the application of these techniques in the

hydroelectric sector, a fundamental source of renewable energy. We conducted a systematic literature review of articles
published in the area of condition-based maintenance in the last 10 years. This was followed by quantitative and thematic

analyses of the most relevant categories that compose the phases of condition-based maintenance. We identified a

research trend in the application of machine learning techniques, both in the diagnosis and the prognosis of the generat-
ing unit’s assets, being vibration the most frequently discussed monitoring variable. Finally, there is a vast field to be

explored regarding the application of statistical models to estimate the useful life, and hybrid models based on physical

models and specialists’ knowledge, of turbine-generators.
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Introduction

From time to time, new technologies emerge and revo-

lutionize entire industries, as we know them. Just as the

steam engine and weaving loom transformed produc-

tion in the 18th century, bringing significant productiv-

ity gains to the mass industry sectors, today we witness

the fourth wave of this revolution with the digitization

of processes. New buzz-words such as the internet of

things (IoT), cyber-physical systems, cloud solutions,

and augmented reality have been gaining popularity in

academic and business environments. The industrial

maintenance, which is a key strategic factor and profit

contributor, have been benefiting from these new tech-

nologies as a means of guaranteeing the productivity of

industrial systems.1

Maintenance 4.0 includes a set of advanced data

analysis techniques for processing the enormous

amount of data produced by shop floor processes. It

seeks to detect the occurrence of disturbances in the

behavior of assets. As a result, maintenance managers

can develop more effective action plans, maximizing

the availability of assets at a lower operating cost.2 In

the context of maintenance 4.0, a particular trend topic

is the condition-based maintenance (CBM). In this

paper, we adopted the definition of CBM as ‘‘a mainte-

nance program that recommends actions based on the

information collected through condition monitoring,’’

as defined by Jardine et al.3 and used by Bousdekis

et al.4

There is a range of reviews in the literature in this

area that deal with CBM techniques and their applica-

tions in the industry. One of the pioneer reviews to

address the topic divided the CBM techniques into
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three main groups: data acquisition, data processing,

and maintenance decision making.3 More recently,

another review presented a full view of prognosis,5

which is the data processing phase related to estimating

remaining useful life. Also, a more recent review has

restricted analysis to statistical approaches for prog-

nosis.6 An update review that includes all stages of a

CBM system, from data acquisition to estimating

remaining useful life, has been presented recently.7

Yet another review relates the CBM process to

maintenance and company management, supporting

decision-makers’ actions.4 Finally, a review focused on

deep-learning methods applied to monitoring machine

health is presented.8 However, to date, no review has

been found specifically addressing the application of

these methods in the hydroelectric sector, which has

specific characteristics and complexities. Thus, the pres-

ent article provides a systematic review in an area not

yet comprehensively reviewed.

The remainder of the present article is organized as

follows. Section 2 describes the study methodology and

the systematic literature review process, and presents a

qualitative summary of the articles sampled. Section 3

presents the failure modes found most frequently in

hydroelectric systems (HS). Section 4 summarizes the

monitored variables in CBM applications, associating

them with the recurrent failure modes. Sections 5 and 6

discuss the models proposed so far for dealing with the

diagnosis and prognosis of HS and their components.

Finally, Section 7 presents the conclusions and recom-

mendations for future work.

Materials and methods

Review methodology

A systematic literature review (SLR) is a technique that

identifies current studies, collects and analyses facts,

analyzes and synthesizes contributions, and reports the

data in such a way that it is possible to draw fairly clear

conclusions about what is and is not known on a spe-

cific topic.9,10 The present study aims to answer the fol-

lowing question: ‘‘What are the advances in the CBM

area for hydroelectric systems reported in the literature

in the last decade?.’’ The research question comprises

three sub-questions:

� Sub-Question 1: What are the main input variables

of the reported CBM systems and what failure

modes/failure mechanisms are associated with

each?
� Sub-Question 2: Which attribute extraction tools

have been used to enhance CBM systems?
� Sub-Question 3: What statistical and computational

methods have been applied to the diagnosis and

prognosis of HS?

The methodology adopted for conducting the SLR

consists of a three-step procedure.11,12 The first step is

to define the list of relevant keywords that will be used

to search peer-reviewed journals in online literature

databases. Table 1 summarizes the keywords adopted

in the present paper. The first set of keywords relates

to the context of CBM; the second set refers to hydro-

electric plants and components. The keyword list has

been iteratively expanded to include synonyms and fre-

quently used terms. We searched the scholarly data-

bases Scopus and Web of Science for peer-reviewed

articles featuring these keywords, either in their titles,

abstracts, or lists of keywords. Only articles published

in the English language during the period between 2010

and 2019 were considered. After removing duplicates,

the total number of articles is 118.

The second step is to check the articles’ relevance by

screening their abstracts. If the abstract indicates that

the paper might be relevant for this review, a detailed

analysis of the entire article is carried out. Articles that

do not deal effectively with the topic are removed from

the sample at this stage. The third step is to conduct a

backward and forward snowball search, examining rel-

evant articles cited in our sample. At this stage, we have

exceptionally included two articles published in early

2020 for presenting essential contributions in the dis-

cussion of the topics of structural health13 and multi-

source monitoring.14

This review is strictly limited to scientific publica-

tions. However, we note that there is an extensive

development of services and solutions commercially

offered by service providers and equipment manufac-

turers. Because these knowledge is disseminated in

non-scientific ways (i.e. technical reports, documenta-

tion) and mainly privately owned techniques, they were

left out of the scope of the work.

Quantitative analysis

Table 2 presents the review protocol adopted, with the

number of articles at each stage of the SLR process. In

Table 1. List of relevant keywords adopted in searching journal databases.

Keywords

Condition-based maintenance keywords: condition-based maintenance OR predictive maintenance OR fault detection OR diagnosis OR
remaining useful life OR health monitoring
AND
Hydroelectric keywords: hydroelectric OR hydropower OR hydro generator OR hydro turbine
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the end, the study sample consists of 80 articles. Figure

1 shows how the number of publications has been

developing over time. There is a significant increase in

the number of publications in the sector during the last

decade, increasing from fewer than 5–20 published arti-

cles per year in 2019.

Figure 2 presents the total number of publications

per journal, grouped by categories.15 The categories

were grouped into three major clusters, according to

their area: the first cluster related to computer science

and engineering journals; the second to energy; the

third to materials science, mathematics, and physics. In

general, the publications are scattered among several

journals, with no single journal publishing more than

three articles on the subject.

Due to the large number of articles in our literature

sample, the present review adopted a strategy of asso-

ciating the articles with categories belonging to a con-

ceptual framework. This framework was adapted from

other literature reviews focused on CBM,3–5,16 in which

the categories are consolidated according to the stage of

the maintenance process, from data acquisition to use-

ful life estimation. The sampled articles were assigned

to the categories of the phases of the condition-based

maintenance.

Figure 3 presents a temporal word cloud generated

from the titles and abstracts of all articles sampled

using the VOSviewer 1.6.15 software.17 We considered

the top 60% of the most relevant terms present in the

articles. The circle sizes represent the frequency of

occurrence of the terms, the arcs denote the strength of

the associations between them, and the color shows the

average year of occurrence of the terms. This represen-

tation presents a general idea of the categories

addressed in the next sections, providing a global view

of the study sample. Note that the average year of

occurrence of the selected terms is higher than 2016, as

the number of publications are concentrated at the last

years of the sampled period.

It is noticed that vibration signal monitoring, applied

to feature extraction techniques and computational

intelligence models, has been appearing with increasing

frequency in the latest publications in the area. On the

other hand, mathematical formulation and the finite

element method call attention to an additional cluster

of publications. In the thematic analysis, we seek to

illustrate all these categories in an organized and sys-

tematic way.

Common failure modes and failure

mechanisms in hydroelectric plants

Failure modes differ from plant to plant, related to

environmental and design factors, plant requirements,

type of turbine, and operation. However, in general,

some types of failure are more commonly subject to

condition monitoring in all hydroelectric plants. Below,

Figure 1. Number of articles published annually.

Table 2. Review protocol and sample sizes by stages.

Phase Description Total

Identification Records identified through database searching 176
Screening Records after duplicates removed 118
Eligibility Full-text articles assessed for eligibility 88
Included Studies included in quantitative analysis 80

Studies included in qualitative synthesis 71
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Figure 2. Journals with more publications on the topic, grouped into categories defined by SCImago.15 Journals with only one

publication have been omitted.

Figure 3. Temporal word cloud created from the titles and abstracts of the sampled articles. The color scales shows the terms

average year of occurrence.
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we present the types discussed most frequently in the

sampled literature.

Cavitation

Cavitation is a complex and harmful phenomenon for

hydraulic machinery such as turbines, pumps, and

valves. Sudden changes in the local pressure of the

liquid form bubbles that collapse, radiating acoustic

energy waves, and causing the erosion of nearby sur-

faces.18 Sand erosion increases the likelihood of cavita-

tion, since eroded surfaces increase wall turbulence

and, consequently, reduce the local pressure.19

Cavitation is more likely in Francis turbines and

reversible pump turbines than in Kaplan turbines.20

There are several types of cavitation such as leading-

edge, traveling bubbles, draft tube swirl, inter-blade

vortex, Karman vortex, and tip vortex (only Kaplan

turbines).20

Loss of excitation

Loss of excitation is widespread in synchronous

machines and, alone, accounts for 70% of all generator

failures.21–23 The loss of excitation is caused by short

circuits of the field winding, unexpected field breakers,

or relay failures. It can increase rotor speed, causing

excessive vibration and bearing overheating.

Additionally, as the generator operates as an induction

machine, the loss of excitation of one generating unit

can impact the whole power system, decreasing active

power and increasing reactive power output, which

may even result in the collapse of the entire intercon-

nected system.21

Loss of excitation is usually enhanced by short-

circuit faults of the rotor winding of the synchronous

generator, which can also lead to the rotor grounding

and shaft magnetization. While short-circuit failures

are frequent and occur in most hydro-generators, in the

long run, this type of failure causes an increase of the

excitation current and, consequently, of the rotor tem-

perature. These effects cause an unbalanced thermal

distribution of the rotor magnetic poles that increase

the incidence of short-circuit failures and compromise

the reliable operation of the generator.24

Partial discharge

Partial discharge is the name given to electrical micro-

discharges generated in the insulating structure when

subjected to high-intensity electric fields. The diagnosis

of partial discharge allows accurate assessment of the

degree of insulation degradation of the generating sys-

tem.25 These discharges can partially or entirely break

down the insulation between conductors. The partial

discharges produce physical indicators such as light

flashes, acoustic noise, temperature gradients, chemical

reactions, and electromagnetic pulses.26

The partial discharges originate from aging dete-

rioration, moisture pollution, or inadequate design. In

generators, partial discharges can occur due to gaps in

the ground-wall insulation or to degradation of the cor-

ona shielding. The identification and source separation

of the partial discharges are complex tasks, and require

intense adoption of pulse shape analysis and statistical/

artificial intelligence techniques.27

Shaft, bearing, and other components’ failure modes

Shaft misalignment is a significant problem in hydro-

power systems as it may lead to a series of vibration

patterns that are adverse to steady and safe operation,

contributing to accelerated wear of the components,

shaft deformation, and deflection of the shaft cou-

pling.28 Misalignment is not an exclusive fault of the

shaft; it can also be present in guide vanes, runner

blades, or rotors.29

Each turbine-generator auxiliary system presents

specific failure modes and specific monitoring variables

such as the cooling and lubrication system,30 turbine

governor,31 power converter,32 servo-valve,33 and pres-

sure tubes.34 All these failures detrimentally impact the

hydroelectric operation.

Some studies model failure modes by sub-systems,

and present them in an organized and interconnected

way through hierarchical models.35–37 While we high-

light the phenomena recurring the most frequently in

the literature, we recommend consulting these studies

to comprehend the failure modes by sub-systems and

their interactions.

Data acquisition

Data acquisition is the capturing and storing of moni-

toring data from several sensors installed in the moni-

tored asset. Below, we list the sensors and variables

monitored in the hydroelectric sector, associating them

with the types of failure modes.

Table 3 presents a detailed overview of CBM sys-

tems. The publications were grouped by monitored

objects and variables, listing the failure modes that the

systems can identify. The systems were assigned to one

of the following contexts, depending on the nature of

the monitored variables: air gap eccentricity, electrical

signature analysis, multi-source, structural health, or

vibration monitoring. The following subsections detail

the main ways of monitoring and acquiring data in

CBM systems in the hydroelectric sector.

Vibration signal

Vibration monitoring was the most frequent technique

in the literature, representing 15 (39.5%) of the 38

CBM models identified in the hydroelectric context –

see Table 3. It is estimated that more than 80% of fail-

ures and accidents in generating units are detected

through vibration monitoring, making the vibration an

de Santis et al. 635



essential variable of interest for identifying errors and

damage to equipment.62,73

Vibration monitoring has a broad range of applica-

tions in the generator system, since it can detect

anomalies associated with mechanical, hydraulic, and

electrical failures.62,69 Examples of failure modes usu-

ally detected using this technique are cavitation,20 rotor

unbalance,51,62,70 rotor misalignment,69 vortex draft

tube,69 and Karman vortices.74 Nevertheless, the broad

range of vibration monitoring applications can be a

notable drawback, as it does not clearly inform what

type of problem is occurring. For this reason, it is com-

mon for other forms of monitoring to be used in con-

junction with vibration monitoring, as seen in magnetic

flux density,41 bearing voltage,75 and multiple sources

monitoring35 systems.

To measure vibration, accelerometers and acoustic

emission sensors are placed in different parts of the

machine such as the guide vanes, turbine bearings,

draft tubes, or shafts. Each location presents advan-

tages and drawbacks in detecting different types of

cavitation: (1) accelerometers in the guide vanes are

useful for monitoring entrance cavitation, however

accelerometers are not helpful for discriminating ero-

sive from non-erosive cavitation; (2) sensors installed

in the turbine bearing can detect erosive cavitation,

but filters out transmission characteristics from the

runner to the bearing; (3) sensors placed in the draft

tube can only detect draft tube swirl cavitation; and

(4) sensors positioned on the shaft are able to record

the runner’s path, but they can still be affected by the

excitation of the generator.20

Another form of imbalance analysis is shaft orbit

monitoring, in which two sensors are placed 90� apart.

This arrangement allows description of the movement

of the shaft center, extracting geometric, time-domain,

frequency-domain, moment, and angle characteristics.

This type of vibration monitoring is usually adopted to

identify shaft misalignment, mass imbalance, and

degradation, as found in several studies.28,64,65

When a unit runs under part-load conditions, the

turbine cannot achieve optimum flow of the runner

inlet and outlet, thus creating a vertex rope in the shaft

system. During these unstable operating conditions, the

vibration signals are very complex, and damage is more

likely to occur to the runner and draft tube system.70

From laboratory testing, it was estimated that each

start and stop procedure causes fatigue damage equal

to 15–20h of stationary operation.76–78 To better

understand the vibration behavior during different

operating states, operating conditions are often

adopted, using linear models. Operating conditions are

key factors that affect the dynamic response of the gen-

erating system.79 Examples of these conditions are

active and reactive power, distributor opening, and

bearing temperature.80 An example of an operating

condition in vibration analysis is the rotation speed for

diagnosing different failure modes.81

Air gap eccentricity

Air gap eccentricity is another object of interest in

hydro-power generation. It allows the identification of

several causes of failures like unbalanced inner forces,

stator core shifts, rotor ovality, defects of stator lami-

nation. This variable measures the space between the

spinning rotor and the stationary stator in a generator

unit, through the application of contacting probes or

proximity sensors.39

The air gap monitoring system assesses rotor eccen-

tricity and can identify shorted turns on the rotor pole

winding. Static eccentricity is associated with the wrong

positioning of the rotor or stator during operation or

assembly. In contrast, dynamic eccentricity is associated

with thermal expansion, bearings wear, shaft line bend,

and rotor displacement by higher magnetic forces.

Before air gap analysis, the standard way to determine

the existence of shorted turns was the pole drop test.

This test required stopping and partially disassembling

the generator unit, and measuring the voltage drop

across each pole.40 With the recent developments of

measuring systems, air gap online monitoring is now

possible through the introduction of flux sensors on the

stator core teeth.

The main types of measuring systems use: (1) con-

tacting probes in no-load mode which, although pre-

cise, is not suitable for continuous monitoring since it

requires stopping the generator and running the tests

manually; (2) non-contacting capacitive proximity sen-

sors, widely adopted and commercially available; and,

(3) non-invasive measuring systems, which present

enormous potential but are still in development. Recent

experiments with slow-speed generators indicate that

the non-contacting capacity proximity sensors provide

measurements almost as precise as the ones measured

by invasive contacting probe sensors.39

Air gap monitoring is not proposed as a stand-alone

application, but as a complementary source of informa-

tion in integrated, multi-parameter CBM systems. The

similarities in the spectra of the variables evidence the

connection between the air gap and vibration vari-

ables.39 The study has shown that the results for air

gap and vibration spectra should be analyzed together

for more accurate evaluation of hydropower generator

condition. However, further investigation in future

studies and the definition of reliable evaluation criteria

of the air gap spectrum is required.

Electrical signature analysis

Electrical signature analysis evaluates the current and

voltage profiles of a generator in the frequency domain.

It is a non-invasive technique that has been applied

increasingly to CBM in hydro-electrics, to detect inter-

turn short-circuit, air gap eccentricity and rotating

diode failures. As it depends only on electrical measure-

ments, the method has high technical and economic

feasibility.48
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Table 3. Summary of CBM models applied to the hydroelectric context, including monitored object, variables, and type of application – (D) Diagnosis, (P) Prognosis.

Reference Context Object Failure mode/failure mechanism Monitored variables T

Valavi et al.38 Air gap Rotor winding Inter-turn short circuit Air gap flux density, phase voltage D
Griscenko and Elmanis-Helmanis39,
Babić et al.,40 and Dirani et al.41

Air gap Stator winding Magnetic unbalance Magnetic flux and vibration
spectrum

D

Ramı́rez-Niño et al.42 Electrical Generator Impendence asymmetry between
phases, mechanical defects

Neutral current D

Abdel Aziz et al.21 and Joseph et al.32 Electrical Generator Loss of excitation, power converter
failure

Terminal voltage and stator current D

Blanquez et al.43,44 and Pardo et al.45 Electrical Rotor winding Ground fault Field-winding voltage and grounding
voltage

D

Oliveira et al.26, Dallas et al.46,
Carvalho et al.,47 and Salomon et al.48

Electrical Stator winding Partial discharge Voltage from different phases and
points of measurement

D

Guo et al.31 Electrical Turbine governor Defective components Current, frequency, gate
displacement

D

Xu49 Multi-source Generator Winding, electromagnetic,
structure, oil cooling failures

Current, voltage, power (active,
reactive), insulation resistance,
temperature, temperature oil,
vibration, sound

D

Blancke et al.50 Multi-source Generator stator Partial discharge, erosion, insulation
degradation, etc.

Expert knowledge and diagnostic
data

P

Wu et al.29 Multi-source Turbine Cavitation, mass unbalance of the
rotor, oil whirl, vortex in draft
tube, rotor misalignment, guide
vane uneven, and runner blade
uneven

Governor, excitation, vibration,
ground current, pressure, voltage

D

Cheng et al.35 and Xu et al.51 Multi-source Turbine Several Several D
Selak et al.30 Multi-source Thrust bearing Overheating, lubrification

consumption, cooling system
failure, degradation

Output power, rotation frequency,
temperature, oil level, oil
temperature, velocity

D

Mateja et al.13 and Klun et al.52 Structural Dam and bearing structure Hydraulic faults, fatigue Vibration signal D
Mazzocchi et al.34 Structural Pressure tunnels and shafts Wall stiffness drop Pressure wave reflections D
Milic et al.53 Temperature Rotor poles Overheating Temperature by infrared radiation D
Kanegami et al.25 Temperature Stator winding Partial discharge Resistance-temperature sensor

readings
D

Lu et al.54 and Wang et al.55 Vibration Draft tube Vortex strip Upper/lower guide bearing
vibration, turbine guide vibration

D

Peng et al.56, Cheng et al.57,
Zhu et al.58, Xia et al.59,
Xia and Ni60, Xia et al.61,
Cheng et al.,62 and Fu et al.63

Vibration Generator Rotor unbalance, rotor
misalignment, rubbing, movement
collision, and vortex draft tube,
Karman vortice

Vibration spectrum D

Xu et al.28 and Luo et al.64 Vibration Generator Shaft misalignment, mass unbalance Displacement (orbit), water head,
turbine flow, guide vane opening,
rotation speed, generator rotor

D
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Partial discharge was one of the first failure modes

associated with electrical monitoring. The voltage spec-

trum of different phases undergoes cross talk interfer-

ence, that can be overcome by clustering the partial

discharge pulses according to shape similarity.27 Using

signal decomposition techniques, partial discharge

pulses can be automatically decomposed and the

denoising can be evaluated from the time shift differ-

ence and noise threshold levels.47 These approaches can

better filter out wide-band noise and significantly

reduce background interference with the partial dis-

charge measurement of hydro-generators.

The inter-turn short-circuit diagnosis also benefits

from the development of systems based on the electrical

signature. The spectral analysis of stator voltage and

current can be applied to detect early stage, rotor inter-

turn faults.38 This is possible since some of the signal

harmonics amplitudes increase only when this kind of

fault develops.

Several factors such as over speeding, vibration,

excessive field currents, reduced cooling, and tempera-

ture rise expose the field winding to abnormal mechani-

cal and thermal stresses. These stresses lead to

breakdown of the insulation of the field winding and

the rotor iron at points where stress is maximum,

thereby generating a ground fault. While a single

ground fault does not represent any immediate danger,

high currents and mechanical imbalances can severely

harm or even melt the rotor if a second fault arises.44

Temperature

Temperature sensors, such as the resistance tempera-

ture detectors, are commonly found in power genera-

tion systems, presenting significant advantages such as

stability, repeatability, and accuracy.82 Temperature

variations are excellent indicators of impending failure

conditions. In generator systems, temperature monitor-

ing is usually associated with bearing monitoring: the

bearing being the machine component that supports

shaft rotation. In the event of failure of the lubrication

system or defect in the shaft (i.e. misalignment, vibra-

tion overload, or speed), the bearings absorb the ther-

mal overload and prevent damage to vital components

of the system.

In the design of a generating unit, the maximum

operating temperatures are defined from technical test

simulations. Generation is stopped as soon as the limit

is reached. However, temperature monitoring has low

latency, which makes it reactive. Frequently, once the

temperature trip alarm is triggered, the fault (or set of

faults) has already occurred. A recent solution adopted

contactless infrared detector measurements for online

monitoring of the surfaces of water-cooled rotors

poles.53 From the time-frequency analysis of the

resistance-temperature sensor, the stator winding dis-

charge detection can be improved, as the phase angle

can aid in distinguishing signals from noise.25T
a
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Temperature is also adopted as a condition

parameter for estimating other variables. A three-

dimensional mathematical model relates the tempera-

ture, thermal deformation, and thermal stress of mag-

netic poles fields, in the rotor winding inter-turn short

circuits. The shorted turns decrease the temperature of

magnetic poles, indicating that diagnosis can be

obtained by monitoring the temperature change of the

rotor.24

Structural health monitoring

Structural health monitoring assesses the health of the

structures that constitute a hydroelectric generation

system, such as the powerhouse or the dam. This is

vital for preventing structural damage that could col-

lapse the entire system. The effects of dam failure, for

instance, have substantial social and environmental

costs, which makes structural monitoring so critical

and necessary.

Vibration monitoring is commonly associated with

structural assessment. In hydroelectric structures, vibra-

tion is also applied to diagnose critical structural com-

ponents. A two-step model can identify the modal

order and the characteristic of dams under operation,

with the dynamic response of the hydraulic structure

excited by fluctuations in flow load.83 Through

modeling the interaction between the unit shaft system

and the powerhouse structure during transient, sudden

load increasing process, it is concluded that the genera-

tor floor structure is more susceptible to the transient

process and to excessive vertical vibration.84

The laser Doppler vibrometer (LDV) is a non-

contact sensor. It was developed to measure the ampli-

tude and frequency of surface vibration by analyzing

the reflected laser beam frequency applied to the sur-

face of interest. The use of LDV, under transient condi-

tions within the concrete dam monitoring context, can

contribute to the elimination of pseudo-vibrations and

noise from measures inherent in the non-stationary

process.52 A low-level reading of instrument noise is

obtained by placing the sensor inside the powerhouse,

as regular accelerometers are sensitive to magnetic field

excitation. Some solutions such as the use of reflective

tapes, adoption of standing points that are more rigid

than the observation point, and instrument visor shad-

ing are proposed to minimize ambient noise.13

Multi-source

While most of the work in the CBM area is related to

monitoring a specific type of variable, there is a ten-

dency to develop models that simultaneously monitor

variables of different natures. This monitoring process,

Figure 4 Dendrogram with the most used techniques in CBM models for HS. The size of the nodes represents the number of

articles associated with each term.
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taking input from multi-modal sensors, is known as

sensor fusion. It seeks to develop collaborative distribu-

ted systems.85

Some studies have been successful in applying multi-

variate monitoring systems in the context of hydroelec-

tric maintenance. An example is the control system

based on the combine input of 12 different types of sen-

sors, such as accelerometers, inductive displacement

sensors, inductive switches, pressure sensors. In total,

108 attributes were extracted and used to create a clas-

sification model of approximately 97% accuracy.30

Other applications have applied nineteen variables such

as tank level, rotor and bearing temperature and vibra-

tion, excitation current and voltage, runner speed,

among others. The model diagnoses 17 failure modes,

hierarchically grouped in the bearing, rotor, and stator

sub-systems, and sequentially grouped in two root

nodes: dynamo system and hydro turbine.35

In the context of structural health monitoring, sev-

eral factors can influence the behavior of the system.

Hydro-power dam dislodging, for instance, is affected

by different elements such as dam maturing, store water

level, air, water, and stable temperature, which cause

complicated, nonlinear behavior that is hard to foresee.

Additionally, natural external factors such as earth-

quakes and ice pressure interfere with the structural

monitoring models and reduce their accuracy. A multi-

variate approach considered a set of these external vari-

ables: air temperature, water temperature, concrete

temperature, displacements between dam blocks, incli-

nation of dam blocks, uplift water pressure, and under-

ground water pressure.14 The model presented accuracy

in the short term; however, the biggest limiter for the

long term was the climatic forecast, especially concern-

ing precipitation and air temperature, which directly

influence the water level and the concrete temperature.

Feature extraction

Among the feature extraction techniques found in the

sampled literature, the fast Fourier transformation

(FFT) and the wavelet transform (WT) were the most

used for feature extraction. They are useful for trans-

forming signals from the time domain to the time-

frequency domain. The magnitude and phase signal

decomposition of each frequency component can con-

tribute to a set of fault patterns for machine diagnosis:

a detection system can promptly identify faults by

monitoring the increase of the values of certain higher

harmonics in the signal spectrum. Examples of applica-

tions that have adopted FFT for feature extraction can

be found in the literature.40,52,59,60,86 Figure 4 presents

a dendrogram with the most used techniques in CBM

models for HS.

The vibration signals produced by hydro-power

plants in unstable operation situations are extremely

complicated.70 The FFT signal analysis method is inef-

fective for dealing with the non-stationary signals

nature of these signals. WT offers a better time-

frequency analysis function.70 However, since WT is

also based on the FFT with an adjustable window,

there will be energy leakage inevitably.70

For overcoming this limitation, other feature extrac-

tion techniques have been proposed and applied in the

hydroelectric CBM context. Intrinsic time-scale decom-

position (ITD), empirical mode decomposition (EMD),

and the ensemble of empirical mode decomposition

(EEMD) are all self-adaptive signal decomposition

methods proposed for analysing nonlinear signals. The

application of ITD with a classification algorithm has

shown better results than the application of the classifi-

cation algorithm.66 The analysis results indicate that

this method has good performance in eliminating the

residue noise and reducing the costing time, which also

provides more accurate decomposition results than the

original ensemble empirical mode decomposition.

Several versions of EEMD, such as the noise-assisted

method complementary ensemble empirical mode

decomposition (CEEMD) and the over-sampling

ensemble empirical mode decomposition (OSEEMD),

have been proposed for feature extraction in hydroelec-

tric generator, to obtain more accurate decomposition

sets while keeping computational costs at a minimum.67

The adaptive local iterative filtering (ALIF) method

uses an iterative filtering strategy with an adaptive,

data-driven filter length selection to decompose the sig-

nal, inhibiting the mixing mode inherent in EMD.70

More recently, empirical wavelet transform (EWT) was

adopted to decompose the signal in multiple compo-

nents. EWT presents higher accuracy mode estimation

at significantly reduced computation time, compared to

EEMD and EMD.87

Finally, variational mode decomposition71 (VMD) and

adaptive variational mode decomposition63 (AVMD) are

pre-processing methods used to decompose the signal into

a set of intrinsic mode components with limited band-

width. The AVMD automatically determines the mode

number, based on the characteristic of intrinsic functions,

using a set of indexes: entropy, extreme value, kurtosis cri-

terion, and energy loss coefficient.

Diagnosis

Data-driven

In fault diagnosis applications using supervised learning

algorithms, the data is labeled by specialists as either

healthy or faulty. The labels can also be obtained using

technical tests in which specialists design specific failure

situations that seek to differentiate the algorithms. The

algorithms can adopt a multi-class approach, seeking

to determine not only if there is a failure, but also what

type of failure it is such as misalignment, vortex with

eccentricity, or shaft imbalance.

The learning algorithm most frequently found in our

literature sample is the artificial neural network

(ANN). This is a nonlinear model, widely used in the
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area of machine learning, that is capable of mapping

fault symptoms to a set of source failures. A more

elaborate architecture, that considers temporal depen-

dency between observations, the application of

one-dimension convolutional neural networks (CNN),

has been proposed.88

However, there are some limitations to the applica-

tion of ANN: the low speed of convergence and the

high sensitivity to initial parameters. To circumvent

these, some authors propose applying heuristic optimi-

zation algorithms such as the ant colony optimization74

(ACO) and the cuckoo search62,89,90 (CS). The aim is to

decrease the training instability and increase the gener-

alizability and convergence speed of the model. Other

data-driven methods found in the literature are the sup-

port vector machine60,81 (SVM) and the principal com-

ponent analysis18 (PCA).

Failure diagnosis in hydroelectric plants can also be

seen as a nonlinear, multivariate process. Conditions

are monitored and faults are detected online if the pro-

cess deviates from normal operating conditions. The

kernel independent component analysis and principal

component analysis (KICA-PCA) method is used for

this, to extract and reduce the dimensionality of inde-

pendent components. These are combined with the con-

fidence limits of the Hotelling’s T2 and SPE statistics to

evaluate the normal condition.58

Among the stability models of hydroelectric units,

the application of computational intelligence methods

for regression of the vibration and pressure variables,

such as ANN and the least square support vector

machine68 (LS-SVM), is becoming more commonplace.

The main advantage of these models is their ability to

generate nonlinear mapping of the stabilization para-

meters, providing more accurate models for predicting

the output parameters.

Knowledge-driven

Knowledge-based models are built from the input of

experts and technicians, and seek to consolidate tacit

knowledge in intelligent decision-making systems.

Spectral signal analysis (SSA) is one of the tech-

niques most frequently applied by specialists to detect

anomalies. This technique consists of analyzing the har-

monics that make up the signal. From their observa-

tions, the experts formulate basic operating conditions

to be met. The latest developments in the area seek pre-

cisely to enable intelligent algorithms to learn to define

them, with or without human intervention. The spec-

tral analysis is applicable to vibration signals,70,71 neu-

tral current,42 air gap,39 and partial discharge.26

Fuzzy inference (FI) systems are capable of assign-

ing a set of reference rules to represent the relationship

between the fault phenomenon and the fault reason, in

a concise and interpretable way. They can be applied

either alone49 or together with machine learning models

like, for instance, SVM69,81 or ANN.21 Fuzzy theory is

widely applied in the industrial sector, adding artificial

intelligence agents to the regulation and control of

resource activities with the adoption of the fuzzy recur-

sive decision feedback extension91 (FRDFE) models.

Another knowledge-based approach to multi-fault

diagnosis is the construction of system fault trees (FT)

and their components. Failure probabilities are interre-

lated using logical AND and logical OR conditions in a

tree hierarchy. The FT starts with the failure mechanism

and is grouped into components, sub-systems, and,

finally, the whole system. Subsequently, the calculated

probabilities feed a Bayesian network (BN) in which the

model receives input from maintenance experts.36 In this

framework, current advances seek to construct the BN

model from the perspective of machine learning and the

experience of specialists, into a model capable of expand-

ing or reducing according to the size of the hydroelectric

station and the requirements of maintenance personnel.35

Physics-based

Physics-based approaches are generally mathematical

models built from the premise that there are underlying,

deterministic phenomena that influence the generation

system. The modeling is focused on a specific compo-

nent (or group of components). The adoption of simpli-

fied models, such as the influence of bearing stiffness92

and hydraulic dynamics84 on the monitored vibration,

can generate satisfactory results when the operating

condition is appropriately determined.

The stability modeling of a generator system is

obtained from the vibration of the unit and conversion

efficiency. It seeks to establish bases for the safe and sta-

ble operation of hydroelectric stations during the transi-

ent processes. A unified mathematical model for the

sensitive analysis of turbines is approached from three

aspects: hydraulic, mechanical, and electrical. The confi-

dence interval of the variable is estimated from computa-

tional simulations. The new observations are monitored

using the mathematical model and, if the confidence limit

is exceeded, it is considered an anomaly.28,93,94

The Kutta-Zhoukowski conditions (KZC) can be

applied to the input and output velocity vectors and

unbalanced forces to estimate the normality curves of

the vibration and efficiency variables.95 In this type of

model, a challenge arises from the sensitivity influence

of the initial conditions on its performance. The

Hamiltonian dynamic (HD) can also be used to

describe the dynamic evolution of the energy produced,

dissipated, and supplied in an operating, multi-

generator system.96 Finally, a three-dimensional mathe-

matical formulation of the temperature and thermal

stress fields of the magnetic poles of the rotor can be

used for stability estimation. The model is based on the

theory of heat transfer and its resolution is obtained

using the finite element method (FEM). Unlike previ-

ous models that acted generically, this one is specific to

the type of rotor winding inter-turn short circuit

failure.24
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Prognosis

Prognosis seeks to estimate the useful life of an asset

and establish a confidence interval for that estimate. In

the hydroelectric context, prognosis consists of fore-

casting a given variable of interest, such as vibration,

pressure, or the calculated health index, within a time-

frame feasible for interventions in the system. An exam-

ple of a prognosis system is based on the application of

Shepard’s interpolation of three variables, bearing

vibration, apparent power, and working head, to con-

struct the health index of the generator unit. Applying

ITD, the signal is decomposed into a finite number of

rotating components. An ANN is trained for each of

the temporal components intrinsic to the signal, while

the first order gray model predicts the trend of the

series. Finally, the individual forecasts of each temporal

component are summed together into a single forecast

for the original series.66

Later models present a similar framework, with var-

ied individual methods. Signal decomposition can be

obtained through the VMD, optimizing the meta-

parameters using the least-square error index. The LS-

SVM regression model can substitute for the ANN,

and the model is fine-tuned using either the chaotic sine

cosine algorithm (CSCA) or the adaptive sine cosine

algorithm (ASCA).63,97 The signal pre-processing, fea-

ture selection, and prediction steps can also be con-

densed into a single, multi-objective optimization

framework. The EWT to decompose the signal into sev-

eral modes, along with an entropy-based sample recon-

struction strategy, refactor the modes. Variables are

selected using the Gram-Schmidt orthogonal (GSO)

process, and each series is extrapolated using the kernel

extreme learning machine (KELM) method. A multi-

objective salp swarm algorithm (MOSSA) adjusts the

hyper-parameters of both the GSO and KELM models

from the bias-variance indices.72

Other forms of prognosis can be developed from

hybrid models involving knowledge- and data-driven

methods. An example is the application of failure

mechanism and symptoms analysis (FMSA) and Petri

nets (PN) to predict the occurrence of degenerative

states. This approach predicts the applicable time inter-

val for maintenance tasks, based on the occurrence and

propagation of known failure modes.50

Discussion and conclusions

The present paper has provided a systematic overview

of the state-of-art of CBM models for the hydroelectric

sector. The discussion is summarized according to five

categories: common failure modes, data acquisition,

feature extraction, diagnosis, and prognosis. Machine

learning algorithms associated with time-frequency

decomposition have been playing an important part in

publications in this area in the last decade. The advan-

tage of these models is that they do not require exten-

sive human work or specialist knowledge, since the

end-to-end structure is capable of mapping raw data

with the associated failure classes. In addition, some

research trends and potential future directions are

given, as follows:

� Multi-source data acquisition: Vibration monitoring

clearly predominates in the models proposed in

recent years. Nevertheless, combining other vari-

ables such as temperature, electrical signature, pres-

sure, and acoustic emission in multi-source systems

is a trend in the research, given the capacity of these

other variables not only to identify other failure

modes that vibration does not capture, but also to

help in classifying the type of failure. Studies asso-

ciating the feature importance of monitored vari-

ables with the types of failure, like cavitation18 and

partial discharge,98 can guide the design of new

hydroelectric CBM systems.
� Hybrid models: The explainability of data-driven

models, or machine explainability, offers the poten-

tial to provide insights into model behavior using

various methods such as visualization, feature

importance scores, counterfactual explanation, or

influential data.99 This type of approach requires

continuous interaction with specialists who have

expertise in the knowledge domain, from the dis-

crimination of attributes to the continuous feed-

back of the system, to articulate new anomalies as

they arise. From the adoption of simple mathemati-

cal models and expert judgment, the model shows

great improvement in its accuracy.36,92

� Deep learning techniques: Machine learning models

currently predominate in the hydroelectric CBM

models. In the next decade, it is expected that the

application of deep learning techniques will become

more common in the area.8 These techniques may

include auto-encoders, restricted Boltzmann

machines, convolutional neural networks, and

recurrent neural networks. In recent years, due to

their high accuracy in large-scale machinery data-

sets,6 these techniques have been widely applied in

the context of asset health management.
� Health management and prognosis: Reports on the

prognosis of hydroelectric generating units are still

scarce in the literature. Most studies present a very

restricted framework for estimating the useful life

of the generating unit. For example, there is a range

of statistical methods such as the Wiener and

Gamma process, also the stochastic filtering-based,

hidden Markov models, that are used in prognosis

and could be applied to this specific problem.

Another important challenge in the area is to pro-

pose approaches that consider the interaction

among faults between different generating units

and auxiliary systems interconnected in the same

generation system.

In conclusion, development of CBM technical appli-

cations in the energy sector is a trend that has been
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evident in recent years. It is gradually transforming the

entire sector in the Industry 4.0 context. With the

maturing of the different monitoring types, that is, elec-

trical signature and structural monitoring, it is natural

for diagnostic systems to take the next step toward

prognosis. The next step in the development of mainte-

nance systems does not depend on the adoption of a

single technology but on the interactions between intel-

ligent systems and human specialists, complementing

each other’s strengths in striving toward a common

goal.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publi-

cation of this article.

Funding

The author(s) disclosed receipt of the following finan-

cial support for the research, authorship, and/or publi-

cation of this article: This research was funded by Brasil

Energia Inteligente (BEI), Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico (CNPq)

Grant No. 141777/2019-2, and Pro-Reitoria de

Pesquisa da Universidade Federal de Minas Gerais

(PRPq).

ORCID iD

Rodrigo Barbosa de Santis https://orcid.org/0000-

0001-8454-4512

References

1. Cachada A, Barbosa J, Leitño P, et al. Maintenance 4.0:

Intelligent and predictive maintenance system architec-

ture. In: 2018 IEEE 23rd international conference on

emerging technologies and factory automation (ETFA). 4

September 2018, vol. 1. pp.139–146. New York: IEEE.

2. Sahal R, Breslin JG and Ali MI. Big data and stream

processing platforms for industry 4.0 requirements map-

ping for a predictive maintenance use case. J Manuf Syst

2020; 54: 138–151.

3. Jardine AKS, Lin D and Banjevic D. A review on

machinery diagnostics and prognostics implementing

condition-based maintenance. Mech Syst Signal Process

2006; 20(7): 1483–1510.

4. Bousdekis A, Magoutas B, Apostolou D, et al. Review,

analysis and synthesis of prognostic-based decision sup-

port methods for condition based maintenance. J Intell

Manuf 2018; 29(6): 1303–1316.

5. Peng Y, Dong M and Zuo MJ. Current status of

machine prognostics in condition-based maintenance: a

review. Int J Adv Manuf Technol 2010; 50(1-4): 297–313.

6. Si XS, Wang W, Hu CH, et al. Remaining useful life esti-

mation – aa review on the statistical data driven aproa-

ches. Eur J Oper Res 2011; 213(1): 1–14.

7. Lei Y, Li N, Guo L, et al. Machinery health prognostics:

a systematic review from data acquisition to RUL pre-

diction. Mech Syst Signal Process 2018; 104: 799–834.

8. Zhao R, Yan R, Chen Z, et al. Deep learning and its

applications to machine health monitoring. Mech Syst

Signal Process 2019; 115: 213.
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Appendix

Abbreviations

The following abbreviations are used in this

manuscript:

ACO ant colony optimization

ANN artificial Neural Network

ASCA adaptive sine cosine algorithm

AVMD adaptive VMD

BN Bayesian network

CBM condition-based maintenance

CEEMD complementary EEMD

CNN convolutional neural network

CS cuckoo search

CSCA chaotic sine cosine algorithm

EEMD ensemble of EMD

EMD empirical mode decomposition

EWT empirical WT

FFT fast Fourier transform

FI fuzzy inference

FMSA failure mechanism symptoms analysis

FRDFE fuzzy recursive decision feedback

extension

FT fault tree

GSO Gram-Schmidt orthogonal

HD Hamiltonian dynamic

HS hydroelectric systems

IoT internet of things

ITD intrinsic time-scale decomposition

KELM kernel extreme learning machine

KICA-PCA kernel independent component PCA

KZC Kutta-Zhoukowski conditions

LDV laser Doppler vibrometer

LS-SVM least square SVM

MOSSA multi-objective salp swarm algorithm

OSEEMD over-sampling EEMD

PN Petri net

PCA principal component analysis

SLR systematic literature review

SSA spectral signal analysis

SVM support vector machine

VMD variational mode decomposition

WT wavelet transform
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