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Abstract

Obfuscation is ubiquitous and often intentional. We consider an uninformed Principal

who chooses how costly it will be for the Agent to obtain and process new information.

Thus, obfuscation and transparency are endogenous to the problem at hand. Using

a rational inattention framework, we study the Principal’s optimal induced cost of

processing information and examine necessary and sufficient conditions for obfuscation.

We characterize the Principal’s optimal obfuscation for the class of state independent

preferences. We apply our model to examples such as stealth startups, companies with

unnecessarily complicated contracts, and firms whose products have varying features

that disguise add-ons.
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1 Introduction

A well-known phenomenon in the venture capital community is that of stealth startups.

These are companies that, before launching, operate in stealth mode, a temporary state of

secrecy. Companies may wish to keep their ideas or products secret and attract investment

before they know their ŕagship product’s full potential. An example is CNEX Lab, a private

semiconductor company founded in 2013 that raised over $38 million in under őve years while

in stealth mode.1 Their website had a single line: łLeading the evolution in big data storage.ž

The most common justiőcation for operating in stealth mode is that founders believe their

new technology to be disruptive. The downside is that operating in secrecy conceals valuable

information about the product and its potential proőtability.2 Should a founder still unsure

about her company’s proőtability keep her company in stealth mode? Should she reveal

partial information, or, perhaps, as much information as possible?

Indeed, obfuscation, by which we mean the conscious effort to hinder the collection and

processing of information, is ubiquitous. When required to disclose evidence, lawyers may

send excess material not directly linked to the case, making it harder for other parties to

discern what is relevant and what is not. Firms often disguise add-ons: for example, printers

can be sold at a loss to attract consumers while hiding ink sales at high margins.

Empirically, there is abundant evidence of obfuscation efforts. For example, competing

őrms regularly charge different prices for similar products, as obfuscation can artiőcially create

perceived product-differentiation in the eyes of the consumer. The mechanisms are numerous:

by offering various product sizes and ŕavors (Richards et al., 2019), by making it more

difficult to compare prices online (Ellison and Ellinson, 2009), or, as previously mentioned,

by hiding the price of add-ons (Ellison, 2005). Other studies lay out how obfuscation may

be sustained in a more competitive market: Gabaix and Laibson (2006) illustrate cases in

1https://www.cbinsights.com/research/well-funded-stealth-tech-startups/
2Indeed, many stealth startups do not live up to expectations; Segway Transporter is perhaps the most

well-known example. See https://www.economist.com/technology-quarterly/2010/06/12/mr-segways-difficult-
path
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which őrms do not have an incentive to educate consumers about their competitors, confusing

pricing can make comparing difficult for consumers (Piccione and Spiegler, 2012), and Jin

et al. (2018) show that even companies with high-quality products and services may try to

confuse consumers as this induces systematic mistakes that they may exploit.

In our model, a Principal wishing to persuade an Agent chooses how costly it will be for

the Agent to process information. We model this cost of processing information as in the

Rational Inattention literature, detailed in the seminal paper by Sims (2003). The idea of

Rational Inattention is that the Agent is rational and information is available, but obtaining

or processing it comes at a cost. So, when choosing how much to learn, the Agent will weigh

the costs and beneőts of őnding out the true state of the world. To capture costly information

processing, we use the expected reduction of Shannon Entropy (Shannon, 1948).

The Principal wishes to induce the Agent to take a particular action. Before choosing an

action, the Agent will perform their investigations to try and acquire further information in

the form of a signal whose realization is conditioned on the state of the world. The caveat is

that the Agent is rationally inattentive and has to spend time and effort to obtain and process

information. We assume that the Principal can facilitate or hinder these efforts by choosing

the information processing cost level. Given the costs, the Agent will choose an optimal

experiment and take action based on her induced beliefs. More formally, the Principal can

choose the value of a parameter k ∈ R that linearly affects how much uncertainty (measured

by Shannon Entropy) is reduced by the acquired information.3 Thus, by setting k = 0, the

Principal is effectively choosing to let the Agent correctly identify the state of the world. By

setting a large k, think of k → ∞, the Principal is making any new information processing

impossibly costly so that the Agent will base her decisions on the common prior.

The Principal’s efforts to raise costs, or increase the value of k, can be interpreted in

different ways: restricting access to information, decreasing the time available to make a

decision, or simply dumping irrelevant data. Unlike other obfuscation papers, we do not focus

3This parameter is standard in the Rational Inattention literature that uses Shannon Entropy: k(H(µ0)−
Eτ [H(µa)]).
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on a single mechanism (for instance, the time to make a decision). Instead, we generalize

how this behavior can appear if the Agent displays rational inattention.

We consider that the value of k is chosen before the Principal őnds out the state of the

world (thus, the chosen k is not a signal in itself). We comment further on this assumption and

why we consider it reasonable when presenting the model and describing practical examples.4

Consider the following example of investment in startups. An investor is deciding whether

or not to invest in a startup. The startup’s founder wishes to persuade the investor to invest

in her company. The product may be a disruptive technology, implying that the startup will

generate very high proőts, or it may be a neutral technology, not worth investing in. The

founder and the investor share a common prior ε ∈ (0, 1) that the technology is disruptive.

The payoffs may be visualized below.

Table 1: Payoffs table for Startup Investment game.

Investor
not invest invest

Startup Disruptive 0, 0 X, B
Neutral 0, 0 X,−C

In which X > 0 and B > C > 0. Given these payoffs, there is a belief threshold εind =
C

B+C

above which the investor’s choice is to invest. If this is the case, i.e., if the common belief that

the product is disruptive is sufficiently high (ε ⩾ εind), the startup will operate in complete

stealth mode. If the belief is lower than the threshold, the startup must release information

about her product to investors, or it will not receive investment. How much information will

be optimal to release will depend on the payoffs under the different scenarios. For example,

choosing to be completely transparent means that the investor will fully learn the underlying

true state of the world, and there will only be investment if the product is disruptive. Since

the prior is small, this will happen with a small probability. A more proőtable policy for the

startup might be to release information, but with high processing costs. By doing this, it will

4Martin (2017) and Clippel and Rozen (2020) present models in which there is a strategic component to
the fact that an agent is choosing to obfuscate.
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be too costly for the investor to learn the state of the world, and she will instead only gather

partial information. After observing the outcome of the experiment in which only partial

information is learned, the investor may have become more convinced that it is not worth

investing, or it may have tilted her belief in a way that makes her sufficiently convinced that

the investment is worthy. On average, this partial information, which leads to a small belief

change, might be more proőtable to the startup than a full-learning policy (and also more

proőtable than a policy of complete secrecy). With the techniques that we will present in our

paper, we will be able to (i) compute exactly how costly the founder will choose information

processing to be; (ii) understand how the investor chooses how much to learn given the

chosen information processing costs; and (iii) perform some comparative statics given policies

motivated at improving welfare, such as policies on consumer transparency. We discuss this

example in detail in Section 5.

It is natural to compare our model with the Bayesian Persuasion framework.5 There, a

Sender commits to an information disclosure policy, while here, the Principal (essentially)

chooses how the Agent will learn, within the rational inattention framework. A contribution

of our paper is that it advances the idea that persuasion might be about selecting which

information might be learned rather than about commitment in the information transmission

stage.6 As such, we have a story about a Principal trying to persuade an Agent without

needing a strong commitment assumption.

In general, we provide a new framework in which, contrary to most of Bayesian Persuasion

and the Rational Inattention literature, we endogenize how costly it will be for the Agent to

obtain new information.

To better őx the idea behind the model, we provide applications that illustrate how the

mechanism of obfuscation works, and through them, we also obtain some interesting insights.

5See Kamenica and Gentzkow (2011). See also Kamenica (2019) and Bergemann and Morris (2019) for
comprehensive surveys.

6Indeed, Kamenica and Gentzkow (2011) use commitment in the information acquisition stage instead of
commitment in the information transmission stage as a possible motivation for the commitment assumption
in Bayesian Persuasion. Barros (2021) develops a model in which the Principal has commitment in the
acquisition stage, but not in the transmission stage.
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One is that there are two main factors that affect the optimal level of obfuscation: the

preferences (if they are symmetric, or how aligned the agents are) and the prior.

Another interesting discussion is that obfuscation has clear welfare implications. When

the Principal tries to obfuscate in order to increase expected payoffs, it may come at a high

cost for the Agent. Therefore, understanding the reasons why an obfuscation behavior arises

provides insights for policies that seek to increase the Agent’s (who can be representing

the consumers, for instance) welfare and provides valuable input for regulatory policies on

mandated disclosure. Ben-Shahar and Schneider (2014), for example, detail how ineffective

policies of mandated disclosure can be. While at őrst they look appealing from an economic

perspective, (they tend not to distort the market as much as other policies) they do not bring

about much change as őrms engage in other types of obfuscation; it is common for customers

to get lost with the excess of clauses in a contract, for instance. In one of our examples, we

see that an effective policy - that at őrst glance seems to harm consumers -can induce őrms

to simplify disclosure as difficulty in processing information might push customers to not

purchase their products.

We organize this paper as follows: Section 2 provides a brief review of the literature;

Section 3 describes the theoretical model; Section 4 details our efforts to classify the problems

by the level of obfuscation chosen; Section 5 provides practical applications of the model;

Section 6 concludes.

2 Related Literature

Information Design and the commitment assumption - Our paper is related to the large

literature in Bayesian Persuasion and information design (Kamenica and Gentzkow (2011),

Bergemann and Morris (2019), for example). More directly related to our paper are the

papers that relax the commitment assumption in information transmission in the Bayesian

Persuasion models. For example, Lin and Liu (2022), Barros (2021), Lipnowski et al. (2022),

5



Min (2021), Fréchette et al. (2022), Nguyen and Tan (2021), Perez-Richet and Skreta (2022)

and Alonso and Camara (2022). Also related are Edmond and Lu (2017) who add confusion

to the communication model by making the Sender capable of confusing the Agent at a cost

and Bizzotto et al. (2020) who study the case of persuasion when dealing with certiőcations

and add a cost for obtaining information.

Rational Inattention - This literature started with the seminal paper of Sims (2003),

who used Shannon Entropy (Shannon, 1948) as it relates to a channel’s capacity to send

information. A branch of the literature developed mathematical foundations for the solutions

of an agent that presents Rational Inattention: Matějka and McKay (2015) use Rational

Inattention as a theoretic foundation for the use of the logit function to model discrete

choices; in the same direction, there is a set of papers (Caplin and Dean, 2013, 2015; Caplin

et al., 2022, 2019) that detail not only the solutions of the rational inattentive agent but also

discuss some properties of using different cost functions. de Oliveira et al. (2017) characterizes

an axiomatic foundation for the preferences of an agent that presents rational inattention,

providing a way to generalize this class of problems. Ellis (2018) shows an axiomatic model

of choice behavior for an agent with limited attention and gives the conditions in which the

behavior can be considered the result of a choice of an optimal level of inattention. Martin

(2017) uses Rational Inattention to explain how increasing attention costs can inŕuence price

strategies for companies trying to induce consumers to buy a product they do not know the

intrinsic quality. These papers provide some of the mathematical foundations for the results

we present.

Information Design + Rational Inattention - A few authors have recently combined the

study of persuasion with Rational Inattention. Gentzkow and Kamenica (2014) is a direct

extension of the classic Bayesian Persuasion model in which the sender has to buy the signal

at a cost given by Shannon Entropy. Matyskova and Montes (2021) develop a model in which

the Sender sends information at no cost. However, upon seeing a signal realization the Agent

can decide if she wants to buy further information at a cost (given by the usual Shannon
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Entropy). They derive how the sender will choose the optimal signal and a few properties that

simplify the Sender’s problem. Bloedel and Segal (2020) detail how to optimally persuade a

rationally inattentive Agent. Knowing that a fully informative signal will not be processed

and thus the concavication results from Kamenica and Gentzkow (2011) are not attainable,

the paper details the best strategy used by the Sender. Similarly, Wei (2020) identiőes how a

Sender optimizes the signal for a Rational Inattention Agent. Interestingly, this paper shows

that a little Rational Inattention is good for the Agent as it serves as a commitment that

they will not pay attention if the Sender does not send more information than in the usual

concavication case. Lipnowski et al. (2020) show where a benevolent Sender may choose how

to restrict the information that a Rational Inattention Agent sees. Le Treust and Tomala

(2019) have the Sender persuading the Agent by sending a message. However, in this case,

the channel has limited capacity given by an upper bound to the reduction in the expected

Shannon entropy. While similar, our approach differs from all these papers in two main

ways: we remove the sending of a message (or signal) as a mean of persuasion, and we make

endogenous the cost of obtaining information.

Strategic Obfuscation - A set of papers studying obfuscation motivated the economic

problem that we detail here. When put together, the theoretical and empirical outcomes of

this literature show that shrouding the truth can be a valid strategy. On a more theoretical

note, Gabaix and Laibson (2006) develop a model in which companies can beneőt from

hiding the costs of add-ons (such as ink when selling printers) from myopic customers; Ellison

and Ellinson (2009) analyze the use of obfuscation by Internet retailers as a way of dealing

with how search engines reduce the cost of information. They test different mechanisms

of obfuscation and detail the effects it has on the market. Ellison and Wolitzky (2012)

give a theoretical model in which oligopolistic őrms engage in price obfuscation to alter the

equilibrium price of a homogeneous good. Richards et al. (2019) provide empirical evidence of

obfuscation by őrms trying to hinder price comparison on consumer goods by selling products

with different sizes or attributes than their competitors. Kalayci and Potters (2011) and Jin
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et al. (2018) obtain outcomes of agents actively engaging in obfuscation, but in a laboratory

environment. Ben-Shahar and Schneider (2014) extensively describe the possible problems

with disclosure policies. More recently, Clippel and Rozen (2020) create and empirically test

a model of communication in which obfuscation may appear in settings with mandatory

disclosure. Obfuscation intensity is endogenous. They add strategic inference from the Agent,

i.e., the Agent sees obfuscating behavior as a signal and draws inference from that.

3 The Model

There are two individuals, the Principal (he) and the Agent (she). The Agent must choose an

action a from the set A = {aH , aL}. The set of payoff relevant states of nature is Ω = {ωH , ωL}

and the realization of a state ω ∈ Ω is drawn from a distribution µ0 ∈ int(△(Ω)), the prior,

known by both individuals.7 The Agent and Principal have material utility functions u(a, ω)

and v(a, ω) respectively that depend on the chosen action.

Let a∗Ag(µ) = argmaxa∈AEµ[u(a, ω)] represent the action that the Agent will take given a

belief µ ∈ △(Ω), and we assume that no action is ever optimal for both states. For ease of

exposition, we consider without loss of generality that aH(aL) as the optimum action for the

Agent when the state is ωH(ωL). We can then deduce the existence of a µind ∈ int(△(Ω))

that represents the belief that makes the Agent indifferent between both actions. We will

denote by µ ∈ [0, 1] the belief that the state is ωH . Further, we assume that at the belief of

indifference the Agent takes the action preferred by the Principal at that belief (Kamenica

and Gentzkow, 2011).

To improve her odds of making the best decision, the Agent purchases a signal structure π

that consists of signal realization set A that serves as a recommended action,8 and a family of

distributions {π(·|ω)}ω∈Ω over A. To purchase a signal, the Agent incurs in a cost which has

7We denote by △(X) the set of all probability distributions on a set X.
8In a rational inattention environment, it is without loss of generality to consider the signal realization

set to be A and treat the signal realization as a recommended action. For more information, see Matějka and
McKay (2015).
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a magnitude chosen by the Principal. Here, we turn to one of the most ubiquitous ways of

modeling the cost of information, as detailed in Sims (2003). Based on the expected reduction

of Shannon Entropy (Shannon, 1948), the cost of a signal structure π is given by:

c(π;µ0, k) := k(H(µ0)− Eτ [H(µa)]) (1)

Where µa represents the posterior for a given signal realization a ∈ A; τ ∈ △(△(Ω)) is

the distribution of posteriors induced by π; k ∈ R+ is the cost parameter. We assume that

the Principal chooses the value of k: it is the only parameter the Principal has control over

and it is the only way he can persuade the Agent to take a certain action. When there is an

increase in k, gathering new information by purchasing an informative signal becomes more

expensive. Lastly, H is Shannon Entropy. The Shannon Entropy function H : △(Ω) → R+

for a given distribution µ is given by:

H(µ) = −
∑

ω∈Ω

µ(ω)ln(µ(ω))

Where for the extreme points we assume that the function takes the value of 0 as

limx→0+x · lnx = 0, which is also in line with the literature (Matyskova and Montes, 2021;

Caplin and Dean, 2013)). The intuitive idea of Shannon Entropy is that it can be interpreted

as a measure of uncertainty and so the cost function is charging for how much uncertainty

the signal reduces considering how much is known at the prior. Shannon Entropy holds many

desirable properties: it induces economically interesting behaviors (for instance, knowing the

state of the world for sure is prohibitively costly), it’s mathematically simple, and it allows

us to compare our results with others in the rational inattention literature that use the same

function.

Upon choosing a signal structure, there will be a signal realization a. Since the Agent

knows the conditional probability of seeing the signal realization in each of the possible states

of the world, she updates her beliefs to µa according to Bayes’ rule. She then takes action
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a∗Ag(µa), and utilities u(a∗Ag(µa), ω)− c(π;µ0, k) and v(a∗Ag(µa), ω) are realized.

Thus, the choice of k has an impact on the probability of the Agent taking a certain

action and the Principal will then choose the value of k that maximizes his expected payoff.

There are two ways a signal might not be costly: if the Principal sets k = 0 or if the Agent

chooses an uninformative signal, and as a result µa = µ0 and there is no change in entropy,

i.e., the uncertainty is not reduced.

Here, we highlight a fundamental assumption in our model: the Principal chooses k before

knowing the true state of the world. The idea behind this assumption is that, if the Principal

knew with certainty the state, the choice of k itself would serve as a signal for the Agent.

For instance, if the choice of k is too high, the Agent would understand that the Principal

is seeking to confuse, which would imply the state of the world is not favourable for the

Principal. The Agent would then take that into consideration as well before taking any action.

To abstract from such discussions, we adopt the above mentioned assumption. Ultimately, it

simply implies that there are uncertainties for both the Agent and the Principal, as neither

have all the information.9 In Section 5, we illustrate how this assumption works in more

concrete examples.

3.1 The Agent’s Problem

The Agent’s problem consists in choosing an information structure based on the cost őxed

by the Principal and a resulting action following the realization of the chosen information

structure. Effectively, this boils down to a single problem to the Agent: she must choose

which signal structure maximizes her expected utility (considering the costs). This is because

after the signal structure is chosen, when the signal is realized she will simply perform the

recommended action. There are two opposing forces in play at once: Agent wants to know

the real state of nature so that she can choose the best possible action; Agent wants to learn

9In a similar fashion, Li and Shi (2017) provides a model in which a seller can allow the buyer to obtain
more information about the valuation of a good. Neither the seller or the buyer have previous perfect
information about the valuation about this information.
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as little as possible to incur in less informational cost. From the interaction of these two

forces, and in a similar fashion as in Caplin and Dean (2013), we have the following problem

for the Agent.

Definition 1. The Agent’s Rational Inattention Problem is given by:

maxτ∈△(△(Ω))Eτ [U(µa)]− k(H(µ0)− Eτ [H(µa)]) (2)

s.t. Eτ [µa] = µ0

Where U(µa) := Eµa
[u(a∗Ag(µ), ω)], and we have the usual restriction of Bayes Plausibility.

Here it’s important to highlight that we always assume that µ0 ≠ µind, as then the Principal’s

Problem would not necessarily have a solution (this is an event of measure zero, but we

explain in more detail why this is the case in Lemma 1 in the Appendix A).

Now, let τk denote the solution to (2) for a given k parameter.10 Since we must obey

Bayes’ Plausibility - the restriction that the expected value of the posteriors must equal the

prior - the solution τk also identiőes the posteriors the Agent will reach given all possible

signal realizations.

To identify these possible posteriors and characterize the solution, we call upon insights

from Caplin and Dean (2013) and Matyskova and Montes (2021). Equation 3 comes from the

Likelihood Ratio Inequalities for Unchosen Acts,11 as described in Caplin and Dean (2013) or

similarly in Lemma 3 of Matyskova and Montes (2021), that deőnes the regions in which a

certain action a ∈ A is always chosen:

I(a) =

{

µ ∈ △Ω :
∑

ω∈Ω

µ(ω)

(

e
u(a′,ω)

k

e
u(a,ω)

k

)

⩽ 1, ∀a′ ̸= a

}

(3)

Recall that since in our environment we are dealing with two actions and two states, we

identify a belief µ ∈ △(Ω) by a number in the interval [0, 1] that represents the probability

10The solution is unique for two states and two actions. For more details see Caplin and Dean (2013)
11To give an intuition from where this solution comes from, it can be understood as a result of a őrst order

condition on the Agent’s problem. Matějka and McKay (2015) provides an analogous derivation.
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that the state is ωH .12

Equation 3 identiőes two threshold beliefs that divide the interval [0, 1] of beliefs in three

parts. Using the notation in our model, we can rewrite Equation 3 and deőne, for k > 0, the

threshold beliefs that identify the regions in which an action is taken with probability 1:

µ(k) :=
1− exp(u(aH ,ωL)−u(aL,ωL)

k
)

exp(u(aH ,ωH)−u(aL,ωH)
k

)− exp(u(aH ,ωL)−u(aL,ωL)
k

) (4)

µ(k) :=
1− exp(u(aL,ωL)−u(aH ,ωL)

k
)

exp(u(aL,ωH)−u(aH ,ωH)
k

)− exp(u(aL,ωL)−u(aH ,ωL)
k

) (5)

Furthermore, we take the following to ensure continuity:13

µ(0) := lim
k→0+

µ(k) = 0

µ(0) := lim
k→0+

µ(k) = 1

And, by calculating the limit when k → ∞, we get:

lim
k→∞

µ(k) = lim
k→∞

µ(k) =
u(aL, ωL)− u(aH , ωL)

u(aH , ωH)− u(aH , ωL) + u(aL, ωL)− u(aL, ωH)
= µind (6)

So when k = 0 the thresholds are in the extremities, and as k increases, they move

toward µind at the interior. The two functions (µ / µ) are strictly increasing/decreasing

respectively14 and they are continuous. As a consequence of these properties, we also have

that µind ∈
[

µ(k), µ(k)
]

for all k ∈ [0,∞).

These two new functions and beliefs characterize the solution for the Agent. To put it

simply, they divide the [0, 1] interval in three, as illustrated in Figure 1 for an arbitrary

12If µ0 < µind and no new information is acquired, the Agent will choose action aL as it maximizes the
expected payoff at that belief. Analogously, if µ0 > µind and no new information is acquired, the Agent will
choose action aH .

13To understand why we get these limits, note that u(ai, ωj)− u(aj , ωj) < 0 and u(ai, ωi)− u(aj , ωi) > 0
for i ̸= j by assumption.

14For more details, see Matyskova and Montes (2021). It is also possible to verify that the őrst derivative
is always positive/negative.
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value of k. It then all depends in which of the three sections the prior lies. If µ0 ∈ [0, µ(k)),

then the cost of obtaining more information outweighs the beneőts and the Agent prefers

to purchase a non-informative signal (which costs 0), and learns nothing new. This implies

that the Agent will always choose action aL. Analogously, if µ0 ∈ (µ(k), 1], the Agent buys

a non-informative signal and always chooses aH . If, however, µ0 ∈ [µ(k), µ(k)], then there

is gain in acquiring more information. The Agent will purchase a signal structure such

that: if the signal realization (recommended action) is aL the posterior will be µ(k) and she

chooses aL; if the realization is aH the posterior will be µ(k), and she chooses aH . In this

last case, both actions are chosen with a positive probability. A direct consequence of this

process is that as k grows and new information becomes more expensive, the interval in which

purchasing new information is beneőcial diminishes.

Figure 1: How the solution in Equation 3 divides the [0, 1] interval. A belief indicates the
probability that the state is ωH .

To give a geometric intuition, these thresholds µ(k) and µ(k) identify the points where

the indirect utility function minus the information cost detaches from its concavication. In

Section 5 this is shown in more detail in the examples.

3.2 The Principal’s Problem

Now that we know how the Agent will react, we are better equipped to understand how the

Principal’s utility changes with k. Again, the process is: Principal chooses k; Agent will

choose an optimal distribution of posteriors τk (with support on µ(k) and µ(k) if information
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is purchased); this in turn implies an expected utility for the Principal.

To help us, we deőne the indirect expected utility given a belief for the Principal:

V (µ) := Eµ[v(a
∗

Ag(µ), ω)]

And, anticipating the optimal choice by the Agent, we can deőne the expected utility for

the Principal given k ∈ R:

Ṽµ0(k) := Eτk [V (µa)] (7)

Where we use the prior as an index to highlight that the function changes with the prior.

At this point, it is crucial to understand how this indirect utility works and, to this end,

we will look at its geometric intuition. Take an illustrative case in which the prior is 75%,

the payoff for the Principal is 0 if the Agent chooses aL, 1 if the Agent chooses aH , and

µind = 50%. With this, we can graph the function V for the Principal as in Figure 2.

Figure 2: Expected indirect utility for the Principal given the belief. The horizontal axis
denotes the probability that the state is ωH .

With this, we are ready to try understand what happens when the Agent purchases a

fully informative signal (when k = 0) and when the Agent purchases a non-informative signal

(it happens when k is too high). Given that the Agent is subject to Bayes’ Plausibility, - and

this is very important - we can geometrically őnd the expected utility for the Principal at the

intersection of the vertical line at the prior and the line connecting the indirect utility V (µ)
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evaluated at the posteriors.15 This is more easily seen in Figure 3 on the left side, where

we show the split of posteriors under full information. When a non-informative signal is

acquired, the posterior will equal the prior and, similarly, we can őnd the expected utility for

k → ∞ by looking at the intersection between the vertical line at the prior and the function

V , as shown on the right side of Figure 3.

Figure 3: Left: the expected payoff of full information is at the intersection of the steep line
with the vertical line of the prior. Right: the posterior is equal to the prior as k is too high.
The Agent purchases a non-informative signal.

To illustrate the dynamics of how Ṽµ0 changes with k, consider Figure 4. As we’ve already

seen, an increase in k moves the beliefs µ(k) and µ(k) closer to µind. The value of Ṽµ0 then

changes as the intersection of the vertical prior line with the line segment connecting V

evaluated at the posteriors goes up or down. In the speciőc situation illustrated in the őgure,

the value of Ṽµ0 is increasing as the point of intersection is going up, but that is not always

the case; this behavior depends on a number of factors including the preferences and the

prior.

We can now deduce that there exists a value k̂ high enough that can be deőned by:















µ(k̂) = µ0, if µ0 < µind

µ(k̂) = µ0, if µ0 > µind

(8)

To see this, őrst assume that µ0 > µind. Then, limk→∞ µ(k) = µind < µ0 < 1 = µ(0).

15This geometric intuition is analogous to the concavication results in Kamenica and Gentzkow (2011).
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Figure 4: Dynamics of an increase in k. In this example, k1 < k2 < k3.

Since µ is strictly decreasing and continuous, as we increase k, by the Intermediate Value

Theorem, there must be a unique value such that µ(k) = µ0. The logic is analogous if instead

µ0 < µind. Economically, for k ⩾ k̂, the Agent will only acquire non-informative signals and,

as a result, will always choose action a∗Ag(µ0), as seen before. We then get that for all k ⩾ k̂,

Ṽµ0(k) = V (µ0). Figure 5 illustrates a geometric interpretation for this fact.

Figure 5: For k > k̂, even if we increase k the intersection does not change, and Ṽµ0(k)
remains constant.

With this in mind, we őnd useful to deőne B := [0, k̂], the interval in which the Agent still

acquires new information16. As we assume that µ0 ∈ (0, 1), k̂ > 0 and B is not a degenerate

interval. We can now describe a functional form for Ṽµ0 . First, let us deőne an auxiliary

function to help us with the notation:

m(k) :=

(

V (µ(k))− V (µ(k))

µ(k)− µ(k)

)

16At k̂ the Agent is in fact indifferent between purchasing information or not.
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Then, the functional form is given by:

Ṽµ0(k) =















m(k)(µ0 − µ(k)) + V (µ(k)), if k ∈ B

V (µ0), otherwise

(9)

In other words, if k is too high (k > k̂), the Agent plays according to the prior and

Ṽµ0(k) = V (µ0). If not, the value of Ṽµ0(k) is given by the intersection of the line segment

connecting the value of V at the posteriors in the support of τk evaluated at the prior.

Intuitively, by seeing the geometric interpretation, we can see that Ṽµ0 must be continuous

as there can not be any jumps in the intersection as you increase k. But for a formal

proof, it suffices to check the following cases. If k /∈ B, then the function is constant; if

k ∈ B it is a composite function of linear combinations and divisions of continuous functions

and it is therefore continuous.17 We then need only to check for k = k̂ as it is at this

point that µ(k̂) = µ0 or µ(k̂) = µ0. If µ(k̂) = µ0, simple substitution in Equation 9 yields

Ṽµ0(k̂) = V (µ(k̂)) = V (µ0), and Ṽµ0(k) is continuous at this point. The idea is analogous if

µ(k̂) = µ0.

Now that we have a better grasp on the workings of Ṽµ0 , we have our Principal’s Problem.

Definition 2. The Principal’s Obfuscation Problem is:

max
k∈B

Ṽµ0(k) := Eτk [V (µa)] (10)

Note that if k̂ is a solution to the Principal’s Problem, then any k > k̂ is also a solution,

and so here we simpliőed things by assuming that in this case the Principal chooses k = k̂.

Finding k̂, and therefore B, is just a matter of discovering k that satisőes:

m(k) ∗ (µ0 − µ(k)) + V (µ(k)) = V (µ0)

17V may appear to not be continuous at µind, but to reach this value we must be at k > k̂, and at this
value we will necessarily have Ṽµ0

(k) = V (µ0), which is constant and therefore continuous.
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We discuss the solution to the Principal’s problem in more depth in Sections 4 and 5.

4 Classifying The Principal’s Problem

In this section we delve into the Principal’s problem and detail the results we have found. In

many situations, the optimal level of obfuscation is neither full disclosure nor full obfuscation,

but rather, partial obfuscation.18 We identify when partial obfuscation appears and discuss

its possible implications.

Definition 3. A Partial Obfuscation Principal’s Problem is one in which neither k = 0 nor

k = k̂ are solutions for Equation 10. Otherwise it is called a Boundary Obfuscation Problem.

We begin by looking at the shape of the Principal’s indirect utility V . The proof of the

next result can be found in Appendix A.

Proposition 1. Given a Principal’s Problem, we have:

(i) If V is concave, then Ṽµ0 is increasing in k.

(ii) If V is convex, then Ṽµ0 is decreasing in k.

Proposition 1 serves as a tool for easily identifying that we always have a boundary

problem if V is concave or convex. The indirect utility also provides a necessary condition for

the problem to be of partial obfuscation by building on the fact that Ṽµ0 is twice differentiable

in int(B). Since this is the case, the őrst and second order condition apply, and we have

that the problem is of partial obfuscation only if ∃k∗ ∈ int(B) such that
∂Ṽµ0 (k

∗)

∂k
= 0 and

∂2Ṽµ0

∂k2
(k∗) < 0.

We now try to see how we can use the alignment between the Principal and the Agent as

an effective way of checking if the problem has a boundary solution or not. It is economically

18Examples abound, such as the costs of add-ons, which are not completely hidden, but may be in őne
print; or a őrm that allows consumers to compare different models of mobile phones, but includes dozens of
features to be checked, and so on.
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intuitive that a higher cost is prejudicial when you want the Agent to know the state of the

world and beneőcial when you want the Agent to err. Let a∗P (µ) = argmaxa∈AEµ[v(a, ω)]

denote the optimal action for the Principal given a belief µ. We then describe the following

cases:

Aligned Principal - Assume that a∗P (µ) = a∗Ag(µ), ∀µ ∈ △(Ω). In this case, the Principal’s

utility is decreasing in k for any prior as any mistakes on the part of the Agent are also

sub-optimal for the Principal. The problem thus has a boundary solution. As a contrapositive

from the Aligned Principal case, it is a necessary condition for the problem not to have

a boundary solution at any given prior that there exists at least one belief µ in which

a∗P (µ) ̸= a∗Ag(µ).

Misaligned Principal - Since we are in a two states / two actions environment, if

a∗P (µ) ̸= a∗Ag(µ), ∀µ ∈ △(Ω), we can already say that the Principal is better off by increasing

k: whenever the Agent makes a mistake, she ends up choosing the optimal action for the

Principal, and the problem has a boundary solution. For more complex environments with

more actions, we would need a stronger assumption: U(µ) + V (µ) = c, ∀µ ∈ △(Ω), where c

is a constant, effectively creating a zero sum game. Since the Agent cannot be better of by

an increase in k, we directly get that the Principal’s utility is increasing in k and we have a

boundary obfuscation problem.

The next subsection focus on a particular kind of preferences that allows us to arrive at a

full characterization of Partial Obfuscation Problems.

4.1 State Independent Preferences

We now turn our attention to the appealing class of problems in which the Principal has state

independent preferences:19 consider, for instance, a seller that does not care if their product

is good or bad, only if the customer chooses to buy it or not. This is in fact a general case

that has been studied in the literature of communication games (see, for example, Lipnowski

19We assume that one action is strictly preferred by the Principal at all states.
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and Ravid (2020); Chakraborty and Harbaugh (2010)). Under this class of problems, we őnd

necessary and sufficient conditions for having partial obfuscation. But őrst we begin with a

simpler case.

Proposition 2. If the Principal has State Independent Preferences and the Agent has

Symmetric Preferences (i.e., µind =
1
2
), then we have a Boundary Obfuscation Problem.

In such scenarios, the Principal chooses a boundary solution for any prior. Appendix A

gives a detailed proof, but the main idea is that, in this environment, any increase in k will

always result in symmetric movements by µ and µ and V is a step function, so that Ṽµ0 is

monotonic.

From this result, we get the motivation for looking into the Agent from the perspective of

the belief that makes her indifferent between the two actions. Indeed, µind is uniquely deőned

by the Agent’s utility function, and so it can be understood as an Agent’s characteristic.

Definition 4. Gullible Agent - We say that we have a Gullible Agent if:

(i) The Principal’s payoff is higher under action aH , the indifference belief is lower than 1
2

and the initial prior is even lower, i.e., v(aH , ·) > v(aL, ·), with µ0 < µind < 1/2; or

(ii) The Principal’s payoff is higher under action aL, the indifference belief is higher than 1
2

and the initial prior is even higher, i.e., v(aH , ·) < v(aL, ·), with µ0 > µind > 1/2

The above deőnition helps us get to the main result for this section.

Theorem 1. With State Independent preferences for the Principal, we have a Partial

Obfuscation Problem if, and only if, we have a Gullible Receiver.

The proof for the theorem can be found in Appendix A. We őrst prove that Gullible

Receiver indeed yields a Partial Obfuscation problem, and then we proceed to show that all

other possible cases result in Boundary Obfuscation problems.

The Gullible Receiver case arises when two situations occur at the same time: the Agent

is in a situation in which choosing the action the Principal wants yields a high beneőt in the
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right state, but not too much damage in the wrong state, so that obfuscation will induce

the Agent to commit more mistakes; if choosing according to the prior, the Agent will take

the least favorite action for the Principal. As an illustration, the Better or Worse Product

example on section 5 falls under this case.

4.2 Comparison to Communication Games

We can compare our model to two canonical models of communication: Bayesian Persuasion

(Kamenica and Gentzkow, 2011) and Cheap Talk (Crawford and Sobel, 1982). We keep the

same environment of binary actions and binary states of the world.

The difference between the three models, namely: Strategic Obfuscation, Bayesian

Persuasion and Cheap Talk can be framed in terms of how the Principal (Sender) can induce

a posterior belief in the decision maker. In the Bayesian Persuasion environment, the Principal

is able to commit to a signal structure while under Cheap Talk, the Sender is not. Under

Strategic Obfuscation, the Principal decides how costly it is for the Agent to acquire new

information.

Definition 5. For a Communication Game with binary actions and binary states of the

world, let sP be the optimal payoff for the Sender under Bayesian Persuasion; let sC be an

equilibrium payoff for the Sender under Cheap Talk; and let sO be the optimum payoff for the

Principal under Strategic Obfuscation.

With these in hand we have the following result.

Proposition 3. Given a Communication Game, we have:

(i) sO ⩽ sP . Moreover, if we have an Aligned Principal, sO = sP .

(ii) Under State Independent Preferences for the Principal, sC ⩽ sO.

The highest outcome that the Sender gets under Bayesian Persuasion is an upper bound

to what can be achieved by the Principal under Strategic Obfuscation. On the other hand,
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for the class of state independent preferences, any equilibrium payoff for the Sender under

Cheap Talk is weakly lower than the Principal’s optimal payoff under Strategic Obfuscation.

The proof is in Appendix A.

An intuition for this result is that in our model, the Principal can only control the intensity

of the cost of information, so we are essentially restricting the ability of the Principal to

induce signal structures. The only signals the Principal is able to induce for the Agent are

the ones whose posteriors end up as µ(k) and µ(k) for some k, as deőned in Equations 4 and

5. In Bayesian Persuasion, however, the Sender is free to choose any signal structure as long

as it satisőes Bayes plausibility. Under Cheap Talk, the analysis is less straightforward and

the result in Proposition 3 relies on the binary model and is restricted to the class of state

independent preferences.

Our model is related to the one in Lipnowski et al. (2020): if we restrict our attention

to consider a paternalistic Principal (in which v = u, for instance) we get that the best

choice is full disclosure, or setting k = 0. In one of their results, Lipnowski et al. (2020)

show that full disclosure is optimal if, and only if, there are two possible states of nature.

Our model, however, could yield full disclosure as optimal even in environments with more

states of nature. This happens because of a fundamental difference in the model: while in

Lipnowski et al. (2020) they study how a Principal can choose the best information policy

for a rationally inattentive agent to help them focus on the correct issues, our Principal

can effectively always set the agent’s cost of processing information to zero, so no mistakes

happen even with more states.

5 Practical Examples

In this section we apply our model to practical economic contexts. Through this exercise, we

provide interesting insights for agents and policy makers, specially regarding welfare. Note

that many other economically relevant contexts - political, military, etc. - can be inserted in
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the model’s framework.

5.1 Better or Worse Product

Producer, Inc. wants to sell their product to the Customer, who may choose between two

actions: buy or not buy. The quality of the product can be Worse or Better than another

similar product on the market (made by a different őrm) that the Customer is already

familiarized with. The common prior that the product is Worse is given by µ0 ∈ (0, 1). In

accordance with our assumption, the prior is interior for both players because the Customer

is not acquainted with all the features of the product and the Producer does not have all

information on the Customer’s preferences. The case of stealth startups can be applied here,

as they are offering a new service/product that they are unsure if it will satisfy the market’s

needs. One can also think of the case of a re-seller, like Amazon, who was not present in the

production process and so is unsure of the product’s quality.

The Customer may realize a private investigation to obtain more information on the

quality of the product: cost-beneőt analysis, price comparison, search for online reviews, etc.

The Producer may facilitate or hinder the quest for information by: selling the product in

different sizes or batches than competitors, putting the speciőcations in őne print or not

including the price for add-ons.20

If the Customer chooses not buy we assume that the payoff is zero for both players. If the

Customer chooses buy, the Customer’s payoff will be based on how much better the Product is

compared to the competitors’. If it is Better, the beneőt is given by b > 0, and if it is Worse,

payoff is given by −c, where c > 0. The Producer gets a beneőt of d > 0 independently of

the state of the world if the Customer chooses buy. The payoffs are presented in Table 2,

where rows denote the state of the world, not actions.

For a more concrete illustration, we set µ0 = 0.75, d = b = 2 and c = 1, which gives us

20Kalayci and Potters (2011) describes the ordeal of buying a mobile phone. With more than 30 listed
technical attributes (such as weight, memory size and battery capacity), comparing options becomes an
arduous task.
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Table 2: Payoffs table for the Better or Worse Product game.

Customer
not buy buy

Producer Better 0, 0 d, b
Worse 0, 0 d,−c

that µind ≈ 0.667. We then get the payoffs in Table 3. Note that we have a certain asymmetry

considering the payoffs for when the Customer chooses buy. This can be interpreted as either

the Customer not getting very angry when buying a worse product, or as there being in place

a recycling policy that returns some beneőt for the Customer if they choose to recycle the

bad product.

Table 3: Payoffs table with numerical values.

Customer
not buy buy

Producer Better 0, 0 2, 2
Worse 0, 0 2,−1

Now, to solve the problem, we őrst plot U , the indirect utility for the Customer as a

function of the beliefs, as seen on Figure 6. The horizontal axis denotes the probability that

the state is Worse. On the right of Figure 6, it is shown the split of posteriors when k = 0.

At this value of k the Customer will acquire a fully informative signal, and thus the posterior

will be either 1 or 0. If, on the other hand, the cost is too high, the Customer will purchase a

non informative signal, and will act according to the prior.

Since the beliefs are restricted by Bayes’ Plausibility, we can obtain the expected utilities

looking at where the vertical line of the prior intersects with the posteriors induced by the

signal. When k = 0, we look at the intersection of the line that connect the points of the

function U valued at the extremes 0 and 1 and the vertical line at the prior. When k is łtoo

highž we look at the intersection of the vertical line at the prior (which equals the posterior

in this case) and the function U . As a result, under full information the expected payoff is

0.5 and under no new information the expected payoff is 0.

Now that we know how the Customer will act at each belief, we can perform a similar
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Figure 6: Payoffs as a function of beliefs for the Customer. Left: Curly brackets indicate the
optimal action at that belief. Right: the diagonal green line indicates the split of posteriors
and pay-offs for k = 0.

Figure 7: Payoffs as a function of k for the Customer. Right: the diagonal green line indicates
the split of posteriors for k = 0.

analysis for the Producer. Figure 7 shows the expected utility V for the Producer. Again,

on the right, we can őnd the expected payoffs for a given signal at the point where the

vertical line of the prior intersects the induced split of posteriors. Under full information, the

expected payoff for the Producer is 0.5; under no new information, the expected payoff is 0.

To look for the optimal Principal’s obfuscation, we őrst illustrate how an intermediary k

affects the Customer’s choice of signal structure to purchase. Figure 8 plots the expected

utility for the Customer on the left and the cost of information at each belief on the right.

We chose for k = 1 to illustrate (keeping µ0 = 0.75). The sum of these two function results

in the őnal function that the Customer will maximize (from 10).

We then can plot the function the Customer will maximize for k = 1 as shown in Figure
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Figure 8: The function the Agent maximizes is given by the sum of these two functions. Left:
indirect utility U . Right: Entropy for k = 1 and µ0 = 0.75.

9. The Consumer őnds µ(1) = 0.335 and µ(1) = 0.91. Since the prior is between these two

values, the Customer will learn by purchasing a signal that, when the realization is buy,

updates his beliefs to µ(1), and when the realization is not buy, updates his beliefs to µ(1),

so his expected payoff is 0.11. Had the prior fallen outside this interval, the Customer would

have chosen a fully uninformative signal and acted according to the prior. Figure 9 also shows

that µ(k) and µ(k) indicate where the concavication detaches from the expected utility U .

Figure 9: The maximizing function and its concavication for the Customer for k = 1 and
µ0 = 0.75.

As an illustration of how an increase in k affects the maximizing function and the solution,

Figure 10 shows on the left the maximizing function for k = 0.5, in which the solution yields

a payoff of 0.243 and on the right the maximizing function for k = 2, which the solution

yields a payoff of 0.02. It is visible that on the right the concavity of the Entropy is having
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a higher impact on the őnal function. We can also see that as k increases, µ(k) and µ(k)

approach µind.

Figure 10: Customer’s maximizing function and solution. Left: Case for k = 0.5. Right:
Case for k = 2.

Now we return to the Producer and try to understand how intermediate values of k affect

her payoffs. Figure 11 plots the expected payoff for the case in which k = 1. The payoff now

is 0.556, higher than both the full information and no new information cases.

Figure 11: Producer’s indirect utility and the chosen split for k = 1.

In fact, since we know the functional form for Ṽµ0 , we can plot it for the different values of

k. We do this in Figure 12. Our numerical solution shows that the optimal level of obfuscation

(k ≈ 0.75) indicates that the Producer should try to engage in just a little obfuscation. This

means that the Producer may not divulge the price of all add-ons, but may clearly indicate

the prices to facilitate comparisons with competitors. Just to note, in equilibrium we then

have that the Customer gets an expected utility of 0.162 while the Producer gets an utility

of 0.556.
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Figure 12: Producer’s indirect utility from k.

Now, let’s see what happens if we tweak the parameters a little bit. The only difference

now is that we set c = 2. The idea is that we have more symmetry regarding the payoffs for

the Customer when buy is chosen, which now makes µind = 0.5. The new payoffs table is

shown in Table 4.

Table 4: Payoffs table with new value of c.

Customer
not buy buy

Producer Better 0, 0 2, 2
Worse 0, 0 2,−2

The steps to the solution in this new case are the same. We already know the behavior

of the Customer as k increases, and we have the more general functional form of Ṽµ0 as

given by Equation 9. Hence, we can plot the indirect utility for the Producer in this new

context. Figure 13 shows the result. Now, the indirect utility is actually decreasing, and

the optimal choice for the Producer is to engage in no obfuscation (k = 0), which has clear

welfare implications.

Indeed, let k∗ denote the equilibrium value of k, and we have the following expected

payoffs in equilibrium: with u(buy,Worse) = −1, k∗ ≈ 0.75, the Producer has a payoff

of 0.556 and the Customer has a payoff of 0.162; with u(buy,Worse) = −2, k∗ = 0, the

Producer has a payoff of 0.50 and the Customer has a payoff of 0.50.

When disregarding the obfuscating behavior, it seems that revoking the recycling policy
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Figure 13: Producer’s indirect utility from k for the new case in which c = 2.

would only make the Customer worse. We are effectively reducing the agent’s utility in a

given state with no apparent trade-off. However, as we’ve seen, this actually induces full

transparency on the part of the Producer and, consequently, the Customer is actually better

off in equilibrium. Another way of interpreting this is that if the Consumer could commit

to łhurtingž themselves if they are in the bad state, they could also induce the Principal to

choose full disclosure. This fact highlights that policy makers and agents can greatly beneőt

from understanding the causes of obfuscating behavior in any economic problem.

In this example, the mechanism behind this phenomenon is the asymmetry in the Cus-

tomer’s payoffs as it affects the dynamics of the problem. It implies that the Customer’s

response to an increase in information costs will not be symmetrical when gathering informa-

tion. When we set c = 1, we are making the Customer less averse to buying. As a result,

the Customer is more inclined to purchase a signal structure that recommends buy more

often, even if it leads to more mistakes. And, while k is still low, the Customer has enough

leeway to choose this sort of signal. The Producer takes advantage of this fact and induces

the Customer to buy more. As k increases however, this kind of signal becomes impracticable

because, to recommend buy more and more frequently, the signal must also recommend not

buy less and less, which requires accuracy, and that’s expensive. At a certain point, the costs

outweigh the beneőts, and the Customer will be inclined to follow the prior, in which not buy

is the better option. By setting c = 2, we are effectively making the Customer more łrisk

aversež and she will not be inclined anymore to choose a signal biased towards recommending
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buy : there is no space for exploiting the Customer.21 The best course of action for the

Producer is then full transparency to at least induce buy when the state is actually Better.

Finally, we also point out that depending on the parameters of the model, the original

problem can be a partial obfuscation or a boundary obfuscation problem. For instance, if the

prior was 0.25 (instead of 0.75), Figure 14 shows that now the best result is total obfuscation,

or k = k̂. What changed? The idea is that at the new prior of 0.25, the default action (i.e. if

the Agent plays according to the prior) is buy. Thus, the Principal (the Producer) does not

want the Agent to learn anything new and the Principal chooses maximum confusion.

Figure 14: The indirect utility for the Principal in the Better or Worse Product example
when the prior is 0.25.

5.2 Monopoly

Company Monopolistic Enterprises (MON - the incumbent) is a monopolist. Realizing the

potential for proőts, Competition Group (COM - the entrant), is deciding on whether they

should make a play to enter this market. As a result, COM has to choose between two

possible actions: compete and not compete. The success of COM’s endeavor hinges on how

strong MON’s hold on the market is. We can interpret this as product quality, customer

loyalty, capacity for further investment, etc. We denote by Stronger the state of the world

21This is an analogous result to the one in Martin (2017), albeit not in a pricing context, in which an
increase in search costs simply induces the buyer to take the outside option, which is bad for the seller.
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in which MON has a good hold on the market and COM’s efforts will be unsuccessful; and

by Weaker the state of the world in which MON does not have a good hold, and COM will

be able to completely kick it off the market. The common prior that the state is Weaker is

0.7. The uncertainty for COM can be interpreted as not knowing for sure MON’s strength.

Similarly, MON is not sure how many resources COM can raise in its efforts to compete.

The payoff of being a monopolist in this market is given by b > 0, and the payoff of losing

or not participating in this market is 0. Furthermore, we assume that COM has to pay a

cost dC > 0 to enter the market(for instance, investing in marketing, stores, hiring employees,

etc.). To deal with the extra competition, MON incurs in a cost 0 < dM < dC if COM decides

to enter.

COM would like to gather information on whether MON is indeed able to resist or not.

Being rationally inattentive, they must bear a cost to do so. In our framework, MON does

not send a signal to COM, i.e., it does not directly send information. Instead, it can set the

parameter k that has an impact on how costly it is for COM to obtain further information.

This can be interpreted as how closely they guard information (quarterly results, consumer

reports, etc.) or if they release information (like rumours that they are about to open new

factories or őnd new investments), etc.

The payoffs are explicitly shown in Table 5, where rows denote the possible states of the

world instead of actions.

Table 5: Payoffs table for the Monopolist game.

Competition Group
Not Compete Compete

Monopolistic Stronger b, 0 b− dM , −dC
Enterprises Weaker b, 0 −dM , b− dC

For a more concrete example, in Table 6 we present the same payoffs table for the case in

which we set b = 1, dC = 0.5 and dM = 0.1. Under these values, µind = 0.5.
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Table 6: Payoffs table for the Monopolist game with values for the given parameters.

Competition Group
Not Compete Compete

Monopolistic Stronger 1, 0 0.9, -0.5
Enterprises Weaker 1, 0 -0.1, 0.5

Figure 15: Payoffs as a function of beliefs for COM. The vertical red lines indicate the prior.
Left: Curly brackets indicate the optimal action at that belief. Right: the diagonal green line
indicates the split of posteriors for k = 0.

For the payoff structure in Table 6, Figure 15 shows the expected payoffs for COM as

a function of the beliefs. The horizontal axis represent the belief that the state is Weaker.

Since the agent chooses the action that maximizes the expected payoff at each belief, we

were able to plot the indirect utility U for COM. On the right side of Figure 15 we also plot

the split of posteriors under full information (k = 0) and it is straightforward that in this

case the posterior will be either at 0 or at 1 (COM will try to know the state of the world

with certainty). Given Bayes’ Plausibility, we can őnd the payoff for full information at the

intersection of the line connecting the value of U at the extremes and the vertical line at the

prior. In the case of no new information, the posterior equals the prior and at the intersection

of U with the vertical line at the prior we get the expected payoff with a non-informative

signal. The payoff under full information is 0.23 and under no new information is 0.2.

Analogously, Figure 16 shows V for MON. Again, the diagonal line indicates the split of

posteriors when COM has free access to a fully informative signal. Given the restriction of

Bayes’ Plausibility we get that he expected utility under full information is 0.23 and with
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Figure 16: Payoffs as a function of beliefs for MON. The vertical red lines indicate the prior.
On the right, the diagonal green line indicates the split of posteriors for k = 0.

no new information the expected payoff is 0.2. At őrst it seems that no obfuscation is the

best option for MON, but it turns out that MON can do better. If the prior laid on the

interval (0, 1/2), the result would be rather simplistic. MON would like COM to get the least

information possible, so that it would play according to the prior and choose not compete.

However, since our prior is 0.7, we have an interesting situation. Indeed, Figure 17 might

help us understand why. We őrst plot the function COM maximizes (as in Equation 10)

when faced with a cost of k = 0.2. Again, we can see in the őgure that the cost ends up

łcurvingž the őnal function as a direct result of the concavity of the Entropy function.

Figure 17: COM maximization function for k = 0.2. The split is at µ(0.2) = 7.6% and at
µ(0.2) = 92.4%.

As we’ve seen in Section 3.3.1, we őrst calculate µ(0.2) = 7.6% and µ(0.2) = 92.4%. Since

the prior is between these two values, COM buys an informative signal, i.e., there is gain in
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information, and the expected payoff for COM is 0.24. The interesting bit, however, appears

when we graph the new split of posteriors at k = 0.2 for MON as in Figure 18. At this new

split of posteriors, the expected payoff for MON is 0.25

Figure 18: MON expected payoffs from the split of posteriors induced by k = 0.2. Expected
utility is 0.25.

We then plot Ṽ0.7. As plotted in Figure 19, our numerical solution for the optimal k is

approximately 0.3. The reason why is that the payoffs for the monopolist when the competitor

decides to compete depend on the state of the world. As such, by increasing the cost just a

little, they may induce the competitor to enter the market when the state is Stronger, which

is better than when they compete only when the state is Weaker. This also implies that the

competitor will choose not compete when the state is Weaker, but that is not a problem for

the monopolist, as in this action the payoff does not depend on the state. But if MON keeps

increasing the value of k, CON will choose compete more and more, as the compete signal

will appear with higher probability. After a certain point, costs will outweigh the beneőts as

the monopolist expects to be at the Weaker state most of the time (the prior is higher than

0.5).

And so, in equilibrium, MON will seek to confuse CON, but łjust a little bitž. This is

an example with State Dependent preferences in which we do have a Partial Obfuscation

problem.

34



Figure 19: Plot of Ṽ0.7.

6 Conclusions

In this paper we develop a model in which a Principal can induce particular actions on a

rationally inattentive Agent by choosing the cost of processing information. We interpret that

one can be persuasive by facilitating or hindering the access and processing of information.

First, we provide a new theoretical justiőcation for why agents may rationally shroud

information. This is in agreement with empirical papers on strategic obfuscation. In many

cases, the optimal induced obfuscation level is neither zero nor łvery highž but łjust a littlež:

the agent partakes in what we called partial obfuscation. We provide examples in which

different mechanisms cause partial obfuscation to appear (for instance, an asymmetry in

the Agent’s preferences). There is a vast array of economic contexts in which the model

can be applied and partial obfuscation problems may arise: competition, military, insurance,

and politics. We have also characterized the partial obfuscation problems under the class of

problems in which the Principal has state independent preferences.

Second, we found that obfuscation behavior has clear welfare implications as it can cause

the Agent to err more. As seen in our Better or Worse Product example, if policy makers

make decisions without fully comprehending the causes of obfuscation, they risk implementing

ineffective or even harmful policies. Our model helps by shedding light into how some of the

mechanisms that induce obfuscation can work.
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Finally, a contribution of our paper is to provide a framework in which a Principal

persuades an Agent only by controlling her access to information. Persuasion might be about

information selection and information processing without having to restore to the strong

commitment assumption in information transmission that is present in the canonical models

of Bayesian Persuasion.

Given the nature of the model, it is open to many extensions, such as generalizing the

results for more comprehensive state and action spaces and the implications of what happens

when other cost structures are used. While we have used the most common cost function,

recently the literature has started to study the implications of using other ways of modeling

rational inattention. Caplin et al. (2022) categorize families of cost functions that may be

applied in this context.
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A Appendix

Lemma 1 If µ0 ≠ µind then the Principal’s Problem has a solution. If not, then there may

not be a solution.

Proof. First we show that if µ0 = µind, there may be no solution. When µ = µind we must

have that k̂ = ∞ by putting together Equation 6 and Equation 8. This in turn implies

that B = [0,∞) which is not compact and thus we cannot invoke Weierstrass to say that

a solution always exists for the Principal’s Problem. We can go further and see that if we

are in a case where the function Ṽµ0 is strictly increasing in B (for instance when we have a

Misaligned Principal), the Principal would want to set k = ∞.22 Figure 20 offers a geometric

interpretation for when such a situation might arise.

Figure 20: Illustration of may happen when µ0 = µind. The split of posteriors is shown for
when k → ∞.

For all priors µ0 ̸= µind however, k̂ ∈ R so that B = [0, k̂] is a compact set, and as Ṽµ0 is

continuous, we can apply Weierstrass and the Principal’s Problem has a solution.

Proof of Proposition 1

Given a Principal’s Problem, we have:

(i) If V is concave, then Ṽµ0 is increasing in k.

22Ṽµ0
is not well deőned as a function for k = ∞ as in that case µ(k) = µ(k).
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(ii) If V is convex, then Ṽµ0 is decreasing in k.

Proof. We know that there exists a k̂ large enough such that, for every k ⩾ k̂, Ṽµ0(k) = V (µ0).

As such, we will restrict our analysis for k ∈ B = [0, k̂]. In this interval, Ṽµ0(k) = m(k) ∗ µ0 +

V (µ(k))−m(k) ∗ µ(k). We shall detailed the proof only for the case in which V is concave

as the proof for V convex is analogous. We then have that:

(i) Ṽµ0 valued at a speciőc k ∈ [0, k̂], is represented by the line segment connecting the

points (µ(k), V (µ(k))) and (µ(k), V (µ(k))) valued at µ0;

(ii) µ and µ are strictly increasing and decreasing respectively. This means that, for

0 ⩽ k1 < k2 ⩽ k̂, we have 0 ⩽ µ(k1) < µ(k2) ⩽ µ0 ⩽ µ(k2) < µ(k1) ⩽ 1, with at most

one equality for µ(k2) ⩽ µ0 ⩽ µ(k2).

Thus, if we prove the general result that, for a < c ⩽ µ0 ⩽ d < b (again, with at least

one strict inequality), and a concave function f : I → R, where [a, b] ⊂ I, the intersection of

the line segment connecting (a, f(a)) and (b, f(b)), when evaluated at µ0, has an equal or

lower value than the line segment connecting (c, f(c)) and (d, f(d)) when evaluated at µ0, we

are done. To put it simply, we are considering that [a, b] represents [µ(k1), µ(k1)] and [c, d]

represents [µ(k2), µ(k2)] for arbitrary k1 < k2.

Figure 21 gives a visual representation. Points A and B represent the intersection of

different line segments. What we wish to prove is that Point B is lies at least as high as Point

A, as Point B is the intersection of the line y = µ0 with the innermost line segment (which

would correspond to Ṽµ0 at a given cost k).

We can write the formulas for each line segment, for x1 ∈ [a, b], x2 ∈ [c, d] as the following

functions:

C1(x1) :

(

f(b)− f(a)

b− a

)

x1 + f(a)−

(

f(b)− f(a)

b− a

)

a

C2(x2) :

(

f(d)− f(c)

d− c

)

x2 + f(c)−

(

f(d)− f(c)

d− c

)

c
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Figure 21: A concave function f and the intersection of the two line segments with the
vertical line at µ0.

Now, evaluating C1 and C2 at c, we get:

C1(c) : (f(b)− f(a))
(c− a)

(b− a)
+ f(a)

C2(c) : f(c)

But since c ∈ (a, b), there exists tc ∈ (0, 1) such that c = tcb+ (1− tc)a. We then get:

(c− a)

(b− a)
=

tcb+ a− tca− a

b− a
= tc

b− a

b− a
= tc

And so:

(f(b)− f(a))
(c− a)

(b− a)
+ f(a) = (f(b)− f(a)) tc + f(a) (11)

But, since f is concave:

C2(c) = f(c) = f(tcb+ (1− tc)a) ⩾ tcf(b) + (1− tc)f(a) = (f(b)− f(a)) tc + f(a) = C1(c)

The same argument can be done for the point d. Since d ∈ (a, b), there exists td ∈ (0, 1)

such that d = tdb+ (1− td)a, and we get that:

C2(d) = f(d) = f(tdb+ (1− td)a) ⩾ tdf(b) + (1− td)f(a) = (f(b)− f(a)) td + f(a) = C1(d)
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And so, C1(c) ⩽ C2(c) and C1(d) ⩽ C2(d). Since the line segments are by deőnition

linear,23 C2 is never below C1 in the interval [c, d]. Finally, as µ0 ∈ [c, d], then C2(µ0) ⩾

C1(µ0). As mentioned before, C2(µ0) represent the value of Ṽµ0 at k2 and C1(µ0) the value

of Ṽµ0 at k1, and we get that Ṽµ0 is increasing in k.

Proof of Proposition 2

If the Principal’s preferences are state independent (i.e. they depend only on the action and

not on the state) and the Agent’s are symmetric (i.e. µind =
1
2
), then we have a Boundary

Obfuscation Problem.

Proof. First, note that since the Agent’s preferences are symmetric, µ(k) = 1 − µ(k) for

all k. This can be checked by noting that µind = 0.5 implies that u(aH , ωH)− u(aL, ωH) =

u(aL, ωL)−u(aH , ωL) and using substitution in Equations 4 and 5. Then, given that Principal’s

preferences are state independent, for any belief µ < µind, V (µ) = V (0) and for any belief

µ > µind, V (µ) = V (1). Assume that V (0) > V (1) (the other case follows a similar argument).

Now, őx k1, k2 ∈ B = [0, k̂] (as outside this interval the function is constant) with k1 < k2,

and let d := µ0 − µ(k1), D := µ(k1)− µ0. These last variables represent the distance between

the each of the induced posteriors and the prior.

By triangle similarity, we have:

d

V (µ(k1))− Ṽµ0(k1)
=

D

Ṽµ0(k1)− V (µ(k1))

But since µ(k1) < µind and µ(k1) > µind, we have V (µ(k1)) = V (0) and V (µ(k1)) = V (1).

We can then write:

d

V (0)− Ṽµ0(k1)
=

D

Ṽµ0(k1)− V (1)

Simplifying:

Ṽµ0(k1) =
D

d+D
V (0) +

d

d+D
V (1) (12)

23This implies that either they are on the same line or they intersect at most once.
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Figure 22: Simple visualization of the d and D variables for an illustrative State Independent
and Symmetric case.

Now, let δ := µ(k2)− µ(k1). Since Agent’s preferences are Symmetric, δ = µ(k1)− µ(k2),

and we can write:

Ṽµ0(k2) =
D − δ

d+D − 2δ
V (0) +

d− δ

d+D − 2δ
V (1) (13)

But note that by construction, δ < d+D
2

, and so the following holds:

D − δ

d+D − 2δ
>

D

d+D
⇐⇒ d < D

We now have two cases:

(i) D > d: This happens when µ0 < µind. This also implies that from Equation 12

to Equation 13 we are increasing the proportion of V (0) and since we assume that

V (0) > V (1), this means that Ṽµ0(k1) < Ṽµ0(k2) and the problem has a boundary

solution as Ṽµ0 is increasing.

(ii) d > D: This happens when µ0 > µind. This also implies that from Equation 12

to Equation 13 we are decreasing the proportion of V (0) and since we assume that

V (0) > V (1), this means that Ṽµ0(k1) > Ṽµ0(k2) and the problem has a boundary

solution as Ṽµ0 is decreasing.
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Proof of Theorem 1

With state independent preferences for the Principal, we have a Partial Obfuscation Problem

if, and only if, we have a Gullible Receiver.

Proof. Let the Principal have state independent preferences, with v(aH , ·) ̸= v(aL, ·). We call

the Agent gullible if:

(i) v(aH , ·) > v(aL, ·), with µ0 < µind < 1/2; or

(ii) v(aH , ·) < v(aL, ·), with µ0 > µind > 1/2

We start by showing sufficiency, i.e., that with a Gullible Receiver the problem is always

of partial obfuscation. Our goal is to őnd a k that yields a higher payoff for the Principal than

either k = 0 or k = k̂. We focus here on the case in which v(aL, ·) > v(aH , ·), or equivalently,

V (0) > V (1), as the other case follows a symmetric argument. Then, if we have a gullible

Agent, µind > 1/2 and µ0 > µind, which implies that the Agent would choose aH if they act

according to their prior. In other words, Ṽµ0(k̂) = V (1).

As usual, B = [0, k̂], and by triangle similarity, Ṽµ0(0) = V (0)(1− µ0) + V (1)µ0. Given

our assumption that V (0) > V (1), for any k ∈ int(B), Ṽµ0(k) > Ṽµ0(k̂). So we must check if

there exists a k in int(B) such that Ṽµ0(k) > Ṽµ0(0). Indeed, by triangle similarity, we have

that for any k ∈ int(B):

Ṽµ0(k) = V (0)
µ(k)− µ0

µ(k)− µ(k)
+ V (1)

µ0 − µ(k)

µ(k)− µ(k)

Thus, if we őnd a k such that

1− µ0 <
µ(k)− µ0

µ(k)− µ(k)
(14)
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We are done. Now, note that both µ and (1 − µ) are positive, continuous and strictly

increasing functions with limk→0+ µ(k) = limk→0+ 1− µ(k) = 0 and deőne λ := µ0

1−µ0
, so that

Equation 14 gives:

1− µ0 <
µ(k)− µ0

µ(k)− µ(k)
⇐⇒ µ(k) > λ(1− µ(k)) ⇐⇒ 1 > λ

(1− µ(k))

µ(k)
(15)

Since µind > 1/2, we have that M := u(aL, ωL)−u(aH , ωL) > m := u(aH , ωH)−u(aL, ωH),

and this together with Equations 4 and 5 gives us that:

lim
k→0+

1− µ(k)

µ(k)
= 0 =⇒ lim

k→0+
λ
1− µ(k)

µ(k)
= 0 (16)

To help us understand the mechanics of this limit, note that using the functional form for

µ(k) and µ(k) the limit becomes:

lim
k→0+

1− µ(k)

µ(k)
= lim

k→0+

1− 1−e
M
K

e
−m
k −e

M
k

1−e
−M
K

e
m
k −e

−M
k

= lim
k→0+

e
−m
k − 1

e
−m
k − e

M
K

e
m
k − e

−M
k

1− e
−M
K

= 0

And the őnal equality is a direct consequence of M > m. Therefore, we deduce the

existence of k ∈ (0, k̂) small enough such that Equation 15 is satisőed, and we have a partial

obfuscation problem.

We now prove necessity by checking all possible cases we can have with state independent

preferences. Let µind >
1
2
. We then have the following possible cases:

1. v(aL, ·) > v(aH , ·):

(i) µ0 > µind: this is a Gullible Agent case and it is therefore a partial obfuscation

problem.

(ii) µ0 < µind: the optimum for the Principal is to choose k = k̂ given that a∗Ag(µ0) = aL.

The problem is thus of boundary obfuscation.
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2. v(aL, ·) < v(aH , ·):

(i) µ0 > µind: the optimum for the Principal is to choose k = k̂ given that a∗Ag(µ0) =

aH . The problem is thus of boundary obfuscation. Note, however, that for

analogous reasons to when we have a Gullible Agent, Ṽµ0 is non-monotonic in this

case. The difference here is that the k that induces the lowest payoff is now interior.

Indeed, confusing łjust a littlež might be the worst decision for the Principal.

(ii) µ0 < µind: the optimum for the Principal is to choose k = 0 as in this case Ṽµ0 is

decreasing in k, and so the problem is of boundary obfuscation. To see this, note

that µ(k) > 1− µ(k). Building on the construction for the symmetric case proof

and using Equation 12, we see that as k rises we are increasing the proportion of

V (0) = v(aL, ·), which in this case we assume is the worst option.

The cases where µind <
1
2

are analogous. Since we’ve already shown that when µind =
1
2

the problem is of boundary obfuscation, the proof is complete.

Proof of Proposition 3

Given a Communication Game, we have:

(i) sO ⩽ sP . Moreover, if we have an Aligned Principal, sO = sP .

(ii) Under State Independent Preferences for the Principal, sC ⩽ sO.

Proof. We start by proving (i). Note that in Bayesian Persuasion the Principal maximizes

his utility by choosing a distribution of posteriors in the set:

BP (µ0) := {τ ∈ △(△(Ω)) :
∑

supp(τ)

µτ(µ) = µ0}

So, given commitment, the Sender is only restricted by Bayes plausibility. Under Strategic
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Obfuscation, the Principal maximizes his utility in the set:

SO(µ0) := {τ ∈ △(△(Ω)) : ∃k ∈ B with supp(τ) ⊆ {µ(k), µ(k)} ∧
∑

supp(τ)

µτ(µ) = µ0}

We can clearly see that SO(µ0) ⊆ BP (µ0), and so the Principal in Strategic Obfuscation

cannot do better then the Sender in Bayesian Persuasion. When we have an Aligned Principal

a∗P (µ) = a∗Ag(µ), ∀µ ∈ △(Ω) and under the Bayesian Persuasion framework, the best the

Principal can do is to choose a signal structure that fully reveals the state. But that can

always be achieved in Strategic Obfuscation by setting k = 0.

For the proof of (ii), we go back to the case of state independent preferences for the

Principal. We repeat the claims in Proposition 2, and for any belief µ < µind, V (µ) = V (0)

and for any belief µ > µind, V (µ) = V (1). Assume that V (0) > V (1) (the other case follows

a similar argument). From Lipnowski and Ravid (2020), we know that an outcome (τ, s)

is an equilibrium outcome if, and only if, τ ∈ △(△(Ω)) satisőes Bayes plausibility and

s ∈ ∩µ∈supp(τ)V (µ). But, given the state independent preferences, we have that ∀F ∈ 2△(Ω),

the following holds:































∩µ∈FV (µ) = {V (0)} if F ⊆ [0, µind]

∩µ∈FV (µ) = {V (1)} if F ⊆ (µind, 1]

∩µ∈FV (µ) = ∅ otherwise

And so the only possible payoffs for the Sender in a Cheap Talk equilibrium are V (0)

or V (1). When adding Bayes Plausibility, we have one of two cases. If µ0 < µind, the only

possible payoff is V (0), and this can be achieved under Strategic Obfuscation by setting k = k̂

(since µ0 < µind, the decision maker will take the optimum action for the Principal if no new

information is acquired); if µ0 > µind, V (1) is the only achievable payoff in equilibrium for

the Sender, i.e., the Receiver chooses the worst action for the Sender with probability 1. But
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in Strategic Obfuscation the Principal can always get a better payoff by setting k = 0. Since

µ0 is interior, by fully revealing the state the optimal action for the Principal is expected to

be chosen with strictly positive probability.
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