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 Many empirical exercises estimating demand and supply functions are concerned with estimating dynamic 

effects of price and income changes over time.1 Researchers are typically interested in estimating both short-run 

(SR) and long-run (LR) elasticities, along with their standard errors. Energy demand analysis offers many 

applications; see Dahl (1993) for a comprehensive survey of energy elasticity estimates. For example, consider a 

public utility requesting a rate increase from the public service commission. The utility and regulators want to know 

how a proposed price hike will impact demand in the SR and the LR.  Searching the literature on energy demand 

elasticity estimates, one finds that authors often fail to provide standard errors for either their short or long-run 

elasticity estimates, or both.2,3 Thus, it is hard to know whether the LR elasticities are statistically different from 

their SR counterparts. Moreover, it is difficult to determine whether elasticity estimates across studies are really 

statistically different from each other. 

  Section I of this paper first reviews a number of commonly used dynamic demand specifications and 

highlights the implausible a priori restrictions that they place on short and long-run elasticities. We emphasize that 

these restrictions are easily avoided, and are indeed testable, when a general-to-specific modeling approach is 

employed. Section II discusses estimation issues, including a simple way to get standard errors as well as point 

estimates for both short and long-run elasticities. Section III provides an empirical application – estimating 

residential demand for electricity in Minnesota. Section IV concludes. 

 

I.  Alternative Dynamic Demand Specifications and Implications for SR and LR Elasticities 

 

Modern time-series econometricians emphasize the merits of beginning with a hypothesized data 

generating process (DGP) for all variables in the data sample being analyzed. In the case of sectoral supply and 

demand analysis, the DGP will typically involve a system of potentially simultaneous equations. As Andrew Harvey 

(1990, p. 2) has stressed: “Econometric models typically consist of sets of equations which incorporate feedback 

 
1 The analysis in this paper is equally relevant for estimating dynamic demand or dynamic supplies elasticities. For specificity, this paper focuses 
on demand estimation.   
2 Examples include Baughman and Joskow (1976, p.315, Table2), Chern and Just (1980, p. 40, Table 1), Chang and Hsing (1991, p.1255, Table 
2), Arsenault et al. (1995, p.167, Table 3), Joutz and Trost (2007, p.5, Table ES2), and Huntington (2007, p. 755, Table 5).  
3 A referee comments that “Quite often these need to be dropped for publication constraints. Authors will mention in the text that they are available 
upon request, posted on a web-site as a working paper, or respond to requests when readers who ask. In fact, I would argue the opposite point. More 
often, firms and government agencies that use the published numbers and or obtain the additional information do two things. First they do not 
acknowledge the work of the researchers and or use the results incorrectly. This occurs frequently in public documents submitted before regulatory 
bodies and even in journals.” 
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effects from one variable to another. Treating the estimation of a single equation from such a system as an exercise 

in multiple regression will, in general, lead to estimators with poor statistical properties.” 

 In many cases, however, a system of equations can be reduced to a single equation. The assumptions 

needed to reduce the empirical analysis to a single-equation exercise (or so-called partial system) with no loss of 

information regarding the parameters of interest are often testable within a systems framework. Even when there is 

some loss of information, a limited information approach may have merits. According to Juselius (2006, p. 198): 

“Note, however, that in order to know whether we can estimate from a partial system we need first to estimate the 

full system and test in that system. But if we need to estimate the full system, why would we bother to discuss 

estimation in a partial system? Two reasons come to mind: (1) by conditioning on weakly exogenous variables, one 

can often achieve a partial system which has more stable parameters than the full system and (2) it is sometimes 

very likely a priori that weak exogeneity holds. In particular when the number of potentially relevant variables to 

include in the VAR model is large it can be useful to impose weak exogeneity restrictions from the outset.”  

 Studies of energy demand elasticities have often used a single-equation DGP by assuming “that the 

particular market conditions of electrical and natural gas energy favor single equation analyses free from any 

endogeneity problem” (Balestra 1967; Uri 1975; Bohi 1981). The most common justification given is that the supply 

of electricity and natural gas may be considered perfectly elastic because supply is rarely, if ever, interrupted, and 

construction of pipeline and transmission and distribution lines are made with the purpose of satisfying not only 

immediate but also future consumption. As a result, most of the time there is excess capacity (Balestra 1967). Most 

studies implicitly assume that all regressors are (weakly) exogenous, so that these estimation approaches yield 

asymptotically valid statistical inference. 

 Suppose the empirical task at hand is to estimate a demand function for residential electricity demand (q) 

using time series data. For expositional simplicity, demand is assumed to depend only on own real price (p), the real 

price of substitutes (ps), and real income (y).4,5     

 0t p t s t y t tq p ps y    = + + + +  (1.1)   

 
4 Other demand drivers include population or number of households and weather variables. The empirical example in Section III includes them. 
5 Juselius (2006, Chapter 19: “Specific-to-General and General-to-Specific”) advocates the use of general-to-specific for model selection, but 
specific-to-general for variable inclusion: “[C]ontrary to the ‘general to specific’ approach of the statistical modeling process (i.e. of imposing 
more and more restrictions on the unrestricted VAR), it appeared more advantageous to follow the principle of ‘specific to general’ in the choice 
of information set.” (p.11) 
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where all variables are in natural logs. Typically, this equation will have serially correlated errors, which is taken as 

prima facie evidence that dynamic considerations are important when modeling demand for many commodities. 

Here, four popular approaches for modeling the dynamics in order to estimate SR and LR price and income 

elasticities are considered. The first three are, in fact, nested as special cases of the general autoregressive distributed 

lag (ADL) model. After discussing these approaches, we emphasize the merits of a general-to-specific methodology. 

Approach 1: Estimate the LR demand function with an AR(1) error process 

 

0

1

t p t s t y t t

t t t

q p ps y

where

u

    

  −

= + + + +

= +
 (1.2) 

 

In this specification, the error term t  can be interpreted as the deviation of quantity demanded from the LR demand 

equation. The speed of adjustment toward the LR equilibrium is given by 1 − . 

To estimate the AR(1) model in (1.2), a generalized least squares (GLS) estimator is typically used. 

Alternatively, the long-run relationship is quasi-differenced to yield the following regression: 

 0 1 1 1 1(1 )t p t s t y t p t s t y t t tq p ps y p ps y q u        − − − −= − + + + − − − + +  (1.3) 

 

This equation is then estimated using non-linear least squares (NLS) regression to obtain estimates of the LR price, 

cross-price, and income elasticities ( , , )p s y    and other structural parameters 0( , )  .6  

Approach 2: Estimate a partial adjustment model (PAM)7 

In the partial adjustment model (PAM), the long-run level of demand q* is: 

 
*

0t p t s t y t tq p ps y    = + + + +  (1.4) 

A partial adjustment mechanism describes how actual quantity qt adjusts gradually towards q* with speed of 

adjustment   where 0 1  : 

 
*

1 1( )t t t t tq q q q u− −= + − +  (1.5) 

 
6 The iterative Cochrane-Orcutt method was used to estimate such equations before the advent of econometric software that can easily carry out 
NLS estimation. 
7 The PAM has also been called the stock adjustment model, the Koyck model, the lagged endogenous variable model, and the flow adjustment 
model. 
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Substituting (1.4) into (1.5) produces an equation that is nonlinear in the five structural parameters 

0( , , , , )p s y     : 

 0 1(1 )t p t s t y t t tq p ps y q     −= + + + + − +  (1.6) 

Again, this specification is easily estimated using NLS regression, yielding both parameter estimates and their 

associated standard errors. With the PAM, however, authors typically just apply OLS regression involving the 

regressors in the (just-identified) equation above, and then reverse engineer the long-run elasticities. Getting their 

associated standard errors is tricky, however, so they are often not calculated or not reported. 

Note that both the AR(1) and PAM specifications include the contemporaneous price pt on the right-hand 

side, suggesting a need to use instrumental variables (IV) estimation to avoid the possibility of endogeneity bias.  

Approach 3: Estimate an error correction model (ECM) 

A single-equation error-correction model (as opposed to a vector error-correction system) is similar to the 

PAM except that the long-run demand q* enters with a one-period lag: 

 1 1

0 1 1 1 1

( )

( )

t t t t

p t s t y t t t

q q q

p ps y q

 
     


− −

− − − −

 = − +
= + + + − +

 (1.7) 

Rewriting (1.7) with the log-level of q rather than the log-difference as the dependent variable for comparability to 

the previous specifications yields:   

 0 1 1 1 1(1 )t p t s t y t t tq p ps y q     − − − −= + + + + − +  (1.8) 

The PAM and the ECM are quite similar: pt, pst, and yt
 
enter the PAM specification, whereas the one-period lags,

   

pt-1, pst-1, and yt-1, are included in the ECM. λ provides information about the speed of adjustment in both models.  

The absence of the contemporaneous price among the regressors in the ECM is a restrictive a priori 

assumption when estimating demand or supply equations for most commodities. Even though we may presume that 

the very-short-run price elasticity is low, forcing it to be zero seems questionable with quarterly or annual frequency 

data, at least. Omitting contemporaneous price from the demand equation might seem to legitimize the use of OLS 

or non-linear LS rather than IV estimation, but it may merely replace the criticism of simultaneity bias with that of 
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omitted variable bias. Moreover, consistency of the OLS estimator in ADLs typically requires the assumption of 

weak exogeneity of the regressors.8    

The “simple” ECM in (1.7) assumes that the error term is serially uncorrelated. After discussing the ADL 

model below, more general ECMs with lagged differences of the regressors will be considered.  

Approach 4: Estimate an autoregressive distributed lag (ADL) model  

 The autoregressive distributed lag or ADL(L,R,V,S) model regresses quantity demanded on L lags of itself, 

R lags of prices, V lags of cross prices, and S lags of income: 

 0

1 0 0 0

L R V S

t ql t l pr t r sv t v ys t s t

l r v s

q q p ps y u    − − − −
= = = =

= + + + + +     (1.9) 

 

Sometimes, ADL models include contemporaneous values of the additional regressors, as shown above. Other 

times, only lagged values are included. We’ll allow contemporaneous (not just lagged) values of the explanatory 

variables to enter the demand equation for reasons just discussed above. To make the lag intervals explicit, we might 

label an ADL model as ADL(1-L,0-R,0-V,0-S), this implies that lags 1 to L, 0 to R, 0 to V, and 0 to S of q, p, ps, and 

y, respectively, enter the equation.  

 Note that the ADL(1-L,0-R,0-V,0-S) model is the most general of the four specifications above. Indeed, 

even the ADL(1,0-1,0-1,0-1) model nests the other three specifications as special cases in the sense that all involve 

some subset of the following regressors: an intercept plus 1 1 1 1( , , , , , , )t t t t t t tq p p ps ps y y− − − − . Table 1 shows the 

(unrestricted) coefficients in the ADL(1,0-1,0-1,0-1) specification in column 1. The cells in the subsequent columns 

show the zero and nonlinear coefficient restrictions that the other models – AR(1), PAM, and ECM – impose on the 

ADL(1,0-1,0-1,0-1) specification. These restrictions may be expressed either in terms of the ADL coefficients or in 

terms of the underlying structural parameters in the respective models. Table 1 shows both.   

 

 

 
8 Strict exogeneity is sufficient for consistent estimation. Since our goal is to conduct valid conditional inference, however, we want to rely on the 
less restrictive condition that our variables are weakly exogenous (Engle et al., 1983).  
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Table 1: Dynamic Demand Specifications:  

Restrictions on Estimated Parameters 

 

 ADL(1,0-1,0-1,0-1) AR1 error PAM Simple ECM 

Intercept     

pt     

pt-1  
 

  

pst     

pst-1  
 

  

yt     

yt-1  
 

  

qt-1     

 

Implausible A Priori Restrictions on Elasticities 

 One might think that the restrictions that the AR(1), PAM and ECM impose on the ADL(1,0-1,0-1,0-1) 

model are innocuous enough, and have the advantage of parsimony, especially when the basic models are extended 

to allow for additional regressors such as weather and seasonal dummies, etc. We show here, however, that all three 

specifications impose very implausible a priori restrictions on the relationships between short and long-run 

elasticities. These restrictions are easily avoided by estimating the general ADL specification using a general lag 

selection criterion such as the Akaike or Schwarz criterion. Given that the first three approaches are nested as special 

cases within the ADL model, we first calculate the elasticities in that model.  

  

 

0 0 0(1 )  = −
0 0 = 0 0 =

0p 0p p = 0p p = 0 0p =

1p 1

1 1 0

p p

p q p

 

  

= −

= −
1 0p = 1p p =

0s 0s s = 0s s = 0 0s =

1s 1

1 1 0

s s

s q s

 
  

= −
= −

1 0s = 1s s =

0y 0y y = 0y y = 0 0y =

1y 1

1 1 0

y y

y q y

 

  

= −

= −
1 0y = 1y y =

1q 1q = 1 1q = − 1 1q = −
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ADL(1-L,0-R,0-V,0-S) Model Elasticity Calculations 

Let ( , , )q p k  equal the cumulative percentage response of q to a permanent percentage point change in p 

after k periods. These are so-called ‘dynamic multipliers’, or ‘dynamic elasticities’ when working with log-log 

specifications. The SR and LR price elasticities implied by the ADL model are easily calculated. The SR elasticity is 

simply the coefficient on the first price term: 

 0( , ,0) t
p

t

dq
q p

dp
  =  (1.10) 

Assuming stability, the LR elasticity can be found by first setting q in all time periods equal to q  and all price terms 

equal to p . Next calculate the total derivative:   

 0

1

( , , )

1

R

pr

r

L

ql

l

dq
q p

dp






=

=

  =

−




 (1.11) 

Note that stability of the demand function requires the denominator is positive:   

 

1

1 0.
L

ql

l


=

−   (1.12) 

The corresponding SR and LR income elasticities are: 

 0( , ,0) t
y

t

dq
q y

dy
  =  (1.13) 

 0

1

( , , )

1

S

ys

s

L

ql

l

dq
q y

dy






=

=

  =

−




 (1.14) 

In general, the SR price elasticity may be bigger than, smaller than, or equal to its LR counterpart. Consider a 

special case, however, where only a single price term enters the ADL. In this case the short-run price elasticity must 

be less than the LR price elasticity (or equal to it, if there are no lags of the dependent variable): 

 
0

0

1

( , ,0) ( , , )

1

p
p L

ql

l

q p q p


  


=

=   =

−
 (1.15) 



 9 

 

Suppose, in addition, that there is just a single income term (and one or more lags of the dependent variable) in the 

ADL. Then the SR income elasticity must be less than the LR income elasticity: 

 
0

0

1

( , ,0) ( , , )

1

y
y L

ql

l

q y q y


  


=

=   =

−
 (1.16) 

 

In general, it is unwise to impose a priori restrictions on the relative magnitudes of short-run vs. long-run price, 

income, or cross-price elasticities. Pindyck and Rubinfeld (2005, Ch. 2.5) have a useful discussion of relative 

magnitudes of short-run and long-run price and income elasticities: “For many goods [e.g. gasoline], demand is 

much more price elastic in the long run than in the short run…On the other hand, for some goods [e.g. automobiles 

and other durable goods] just the opposite is true – demand is more elastic in the short run than in the long run… 

Income elasticities also differ from the short run to the long run. For most goods and services, the income elasticity 

of demand is larger in the long run than in the short run. … For a durable good, the opposite is true.” (pp. 39-40) For 

many mineral and energy products, the short-run income elasticity in the face of business cycle fluctuations, say, is 

presumed to be high, while the long-run income elasticity (reflecting trend growth in income) is generally 

considered to be near unity.   

Note that if the ADL contains one price term and one income term, the ratio of the LR to SR elasticities is 

identical for both demand determinants:  

 

1

( , , ) ( , , ) 1

( , ,0) ( , ,0)
1

L

ql

l

q p q y

q p q y

 
 


=

 
= =

−
 (1.17) 

 

The same ‘ratio restriction’ applies to the cross-price elasticity! This ratio restriction is an extremely implausible one 

to impose a priori when estimating demand functions. How can it be avoided? Here’s our recommendation: Make 

sure that each determinant of demand (e.g. price, cross-price, and income) enters with at least two time subscripts 

and that no non-linear restrictions are placed on their coefficients. Typically lags 0 and 1 or lags 1 and 2 will be 

used. (The number of lags of the dependent variable does not matter.) Note that the ADL(1,0-1,0-1,0-1) 

specification is general enough to accomplish this, whereas the three special cases above are not. The same general 
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rule holds when estimating dynamic supply functions. Each supply determinant (except the lagged dependent 

variable) should enter twice with different time subscripts in the supply equation.  

We now calculate the SR and LR price elasticities implied by the other three specifications: the AR(1) 

model, PAM, and ECM.    

AR(1) Model Elasticity Calculations 

From (1.3), it is easy to compute the short-run and long-run own-price elasticities for the AR(1) error 

model:  

 

( , ,0) 0

(1 )
( , , ) 0

(1 )

t
p

t

p
p

dq
q p

dp

dq
q p

dp

 

 
 



 = 

−
  = = 

−

 (1.18) 

Surprisingly, the AR(1) model imposes the a priori restriction that the SR and LR price elasticity must be equal to 

each other!9  The same feature holds for income (and cross-price elasticities) as well:  

 

( , ,0)

(1 )
( , , )

(1 )

t
y

t

y
y

dq
q y

dy

dq
q y

dy

 

 
 



 =

−
  = =

−

 (1.19) 

These are hardly restrictions that one would want to impose a priori when estimating demand functions to compare 

the SR and LR effects of price or income changes. Indeed, Mizon (1995) argues that AR corrections for the error 

process are almost never appropriate, in part because of the COMFAC (common factor) restrictions that they impose 

on dynamic regression equations. 

This result—the forced equality between SR and LR elasticities—also holds when the error term in (1.2) is a higher-

order AR(p) error process. The resulting price elasticities in this case equal: 

 
9 Intermediate-term elasticities are also equal to the SR=LR elasticities, as one can confirm by simulating dynamic elasticities for this model. 
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1 2 3

1 2 3

( , ,0) 0

(1 ...)
( , , ) 0

(1 ...)

t
p

t

p
p

dq
q p

dp

dq
q p

dp

 

   
 

  

 = 

− − − −
  = = 

− − − −

 (1.20) 

The PAM Elasticity Calculations 

 As Table 1 shows, the partial adjustment model contains only a single price term and a single income term. 

Therefore, it follows immediately from the discussion of the ADL (1,0-1,0-1,0-1) model above that this specification 

also contains the implausible LR/SR ratio restriction: 

 

( , ,0)

( , , )

( , ,0)

( , , )

t
p

t

p

t
y

t

y

dq
q p

dp

dq
q p

dp

dq
q y

dy

dq
q y

dy

 

 

 

 

 =

  =

 =

  =

 (1.21) 

Note that the partial adjustment coefficient should be between zero and one: 0 1  . This being the case, all 

short-run elasticities (price, cross-price, and income) are necessarily less than their LR counterparts. As argued 

above, this is not a reasonable a priori restriction to impose on price, cross-price or income elasticities.  These 

shortcomings of the PAM were highlighted by Fisher, Cootner, and Baily (1972). See also, Pei and Tilton (1999) 

and Chan and Lee (1997). 

The ECM Elasticity Calculations  

Comparing the ECM to PAM yields an interesting conclusion. Because (1.8) contains only lagged (not 

contemporaneous) regressors, the SR elasticities take effect with a one-period lag. Stated differently, the very SR 

elasticities are forced to equal zero by omission of the contemporaneous terms. The instantaneous, SR (i.e., one-

period ahead), and LR price elasticities are: 
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 1
1

1

1

( , ,0) 0

( , ,1)

( , , )
1

t

t

t
p p

t

p
p

q

dq
q p

dp

dq
q p

dp

dq
q p

dp



  


 



−

 =

 = =

  = =
−

 (1.22) 

The instantaneous, one-period, and LR income elasticities are: 

 1
1

1

1

( , ,0) 0

( , ,1)

( , , )
1

t

t

t
y y

t

y
y

q

dq
q y

dy

dq
q y

dy

dq
q y

dy



  


 



−

 =

 = =

  = =
−

 (1.23) 

As there is only a single lag term for both price and income, the undesirable features of the PAM also appear in the 

ECM. Namely, SR elasticities are forced to be less that their LR counterparts for all (own-price, cross-price, and 

income) elasticities. Moreover, the ratio of LR/SR elasticities is equal for all elasticities (e.g. price, cross-price, 

income, etc.). 

How can we estimate SR and LR price and income elasticities of demand in a way that imposes no a priori 

restrictions on their relative magnitudes? The practical implication of the foregoing calculations bears repeating: 

Estimate an ADL model using a standard lag selection criterion (e.g., the Schwarz or Akaike information criterion) 

but be sure to allow for at least two terms involving p, ps, and y; the number of lags of the dependent variable (q) 

does not matter. More generally, in specifying dynamic regression equations, it is essential to adopt a general-to-

specific modeling methodology -- beginning with sufficient lags of each variable to insure that serial correlation has 

been expunged from the error process. Avoid the use of AR (or ARMA) error processes in multivariate regression 

models, per Mizon’s (1995) recommendation. 

More General ECMs with lagged differences 

 Oftentimes the simple ECM specification above is generalized to include a number of lagged differences of 

the various regressors in order to ‘mop up’ serial correlation in the error process. Do the implausible restrictions on 

the ECM elasticities still hold if the ECM contains lagged differences as recommended by general-to-specific 

methodology? The answer is “no.” Adding lagged differences to the ECM is a simple way to eliminate the 
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implausible a priori restrictions! Indeed, every ADL – whether it includes contemporaneous regressors or not – can 

be always rewritten as an equivalent ECM.10 The two are isomorphic, but the ECM parameterization is especially 

useful when cointegrated I(1) variables are involved. Moreover, the ECM variant of the ADL is particularly useful, 

because it allows us to identify the SR and LR elasticities directly. When the SR and LR elasticities in this equation 

are estimated with a consistent estimation approach, the associated standard errors for both are obtained 

automatically – that is to say, without auxiliary ‘hand’ calculations. 

Panel Data Estimation 

Most panel data sets used in energy demand studies are short panel data sets. Hence to be able to estimate 

SR versus LR elasticities most of these studies simply add a lagged dependent variable to the regression. The 

resulting model is thus the PAM, which suffers from the same weaknesses noted above. Alberini et al. (2011) 

provide a thorough exposition of the PAM in a panel framework. See also Bernard et al. (2011) and Garcia-Cerrutti 

(2000).  

Recently, new developments in dynamic panel techniques have allowed some researchers to apply panel 

ADL models. See Baltagi (2008) for a good discussion of the panel ADL. However, to our knowledge no energy 

demand studies have used these techniques. 

A General Functional Form for Estimating SR and LR Demand Elasticities 

The estimated SR price elasticity and its associated standard error can be obtained directly from the point 

estimates on the first price term in the ADL(1-L,0-R) model in (1.24), $ 0p , and its standard error:  

 0

1 0

L R

t ql t l pr t r t

l r

q q p u  − −
= =

= + + +   (1.24) 

 

To simplify the math in what follows (without impacting the generality of the results), we ignore the distributed lags 

on income and the price of substitutes. 

Is there a simple way to estimate both the SR and LR elasticities and their standard errors directly? The 

answer is yes and involves the use of the isomorphic ECM. First, consider the ADL(1-L,0-R) where there is a 

 
10 David Hendry elaborates on this in a number of papers. See, e.g., Hendry (2008, Section 2.3): ADLs as Equilibrium-Correction Models. 
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contemporaneous (unlagged) price term. As Appendix I shows, the ADL can always be written in canonical form as 

an ECM:  

 

1 1

0 1 1 0 , 1 , 1

1 1

( )
R L

t t p t p t p r t r q l t l t

r l

q q p p p q u     
− −

− − + − + −
= =

 = + − +  −  −  +   (1.25) 

where  

 1 2 ... 1 0q q qL    + + + −   (1.26) 

and 

 0 1

1 2

...

1 ...

p p pR
p

q q qL

  


  
+ + +


− − − −

 (1.27) 

 
Note that the total number of lags of the dependent variable drops by one when the ADL in levels is rewritten in 

canonical form. This re-parameterization is particularly useful because the coefficient on tp is the SR price 

elasticity and the coefficient on pt-1 in the error-correction term is the LR elasticity shown in (1.27). The parameters 

in the ECM, along with their associated standard errors, can be estimated directly using NLS.  

 For an ADL(1-L,1-R) that does not contain a contemporaneous price term: 

 0

1 1

,
L R

t ql t l pr t r t

l r

q q p u  − −
= =

= + + +   (1.28) 

 

the canonical form needed to identify the SR and LR price elasticities is slightly different:  

 

1 1

0 2 2 1 1 , 1 1 1 , 1

2 2

( ) ( 1) .
R L

t t p t p t p r t r q t q l t l t

r l

q q p p p q q u      
− −

− − − + − − + −
= =

 = + − +  −  + −  −  +   (1.29) 

 

The coefficient on 1tp −
 
is the SR price elasticity and the coefficient on pt-2

 
in the error-correction term is the LR 

elasticity analogous to (1.27), but with 0 0p = .  

Here’s a summary of the procedure. 

1. Estimate an ADL(1-L,0-R,0-V,0-S) model using a standard lag selection method such as AIC, SC, or 
sequential likelihood ratio tests. Selection of lag lengths (L,R,V,S) can be based on a grid search using 
the Schwarz or Akaike information criterion. Note that there are many, many cases to consider (i.e. the 
product L*R*V*S). Thus many algorithms only consider symmetric cases where L=R=V=S, as in the 
standard VAR approach. This drastically reduces the number of regressions to be considered.  We 
adopt this simplification below. Be wary about lag choices that involve only a single term of a given 
demand determinant, as this will impose the magnitude restriction on SR and LR elasticities: SR < LR.  
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2. Re-estimate the chosen ADL(1-L,0-R,0-V,0-S) model as an equivalent ECM with L-1, R-1, V-1 and S-1 

lagged differences of (q, p, ps, y). The standard error of regression for the ADL and ECM should be 

identical, as the specifications are isomorphic.   
3. The LR elasticities and their standard errors are read directly from the coefficients in the error 

correction term of the ECM, while the SR elasticities and their standard errors are read from the 
coefficients of the first difference terms in the ECM. 

 

 

 

 

 

II.  Estimating SR and LR Elasticities and their Standard Errors  
  
 There are several important factors that determine the appropriate estimation technique for an ADL: (i) the 

presence or absence of contemporaneous terms where simultaneity bias may be an issue, (ii) the stationarity of 

variables, and (iii) the presence or absence of a common stochastic trend (cointegration) among non-stationary 

variables. We briefly examine the different cases below. 

Case 1: Only lags of the independent variables (not contemporaneous values) appear in the ADL and all variables 

are stationary. 

This case is not commonly encountered in energy demand analysis, because non-stationary regressors are 

typically present.11 Nonetheless, we briefly discuss how to proceed when all variables appear to be I(0). The 

omission of contemporaneous prices is quite widespread. It is often justified in analyses of residential demand for 

electricity or natural gas, for example, by arguing that most end-users only learn of a price change when they receive 

their monthly bill, i.e. typically a month after the price change occurs. See, e.g., Munley et al. (1990), Joutz and 

Trost (2007), and Dagher (2011). This becomes less plausible when working with lower frequency data. Moreover, 

one can test this hypothesis, rather than making an a priori assumption that it holds. 

If the ADL contains only stationary and lagged regressors (and the model is correctly specified in the sense 

that there are no omitted variables and the functional form is correct), then it is well known that OLS estimates of 

the dynamic demand coefficients are consistent. If the White robust coefficient covariance matrix is used when 

carrying out hypothesis tests, F and t tests will have their standard asymptotic distributions. See Stock and Watson 

(2007, Ch. 14) for details. 

 
11 Indeed, Hendry and Juselius (2000 part I, p.2) make a more general claim: “It seems clear that stationarity assumptions must be jettisoned for 
most observable economic time series.” 
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Case 2: The ADL contains contemporaneous as well as lagged regressors; all variables are stationary. 

As mentioned above, one rarely encounters an energy demand regression in which all variables are 

stationary. If the ADL contains stationary, contemporaneous as well as lagged regressors, the regressors must be 

weakly exogenous for OLS estimates to be consistent and conditional inference to be valid.12  

While it may be reasonable to assume that this condition holds for the contemporaneous income and cross-

price terms in a dynamic demand specification, it is typically not reasonable for own-price effects. To overcome 

simultaneity bias, one needs to use an instrumental variables estimator such as two stage least squares or generalized 

methods of moments.13  

Case 3: Some variables are nonstationary, but are not cointegrated14 

 This section discusses the validity of OLS estimation of the ADL(L,R,V,S) model and the equivalent 

ECM(L-1, R-1, V-1, S-1) when some but not necessarily all of the variables are I(1), but not cointegrated. Note that, 

if there is no long-run equilibrium relationship among the variables, then any empirical quest to estimate LR 

elasticities is misguided! The researcher might, nonetheless, be interested in SR elasticities. An appropriate approach 

would be to estimate an ADL using first-differenced (i.e., stationary) variables simply by differencing the non-

stationary variables and then estimating the resulting regression equation.   

We have assumed that all independent variables are weakly exogenous. As usual, endogenous regressors 

require that instrumental variables estimation be used. 

Case 4: Variables are non-stationary and cointegrated. 

We now turn to examining the ADL model where the I(1) variables are cointegrated.15 Here the validity of 

OLS is less sensitive to the presence of contemporary (unlagged) first-differences of potentially endogenous 

variables, notably the own-price effects. In case of cointegration, the cointegrating vector can be estimated 

 
12 It is well-known that OLS estimation of the coefficient on an endogenous variable (i.e. one that is correlated with the error term) results in 
biased and inconsistent parameter estimates. 
13 A recent study that uses only stationary variables but allows for contemporaneous effects is Huntington’s (2007) paper on industrial natural gas 
consumption in the USA. He finds all variables (i.e. the price of natural gas, the price of distillate fuel oil, heating degree days, structural output, 
and capacity utilization) are stationary. OLS regressions that allow for contemporaneous effects are used in order to estimate SR and LR demand 
elasticities. Yet there are no tests of the weak exogeneity condition needed to validate parameter estimation and inference using OLS. 
14 If only the regressand and one of the regressors are I(1) while all other regressors are I(0), then all of the estimated coefficients will still have 
their standard asymptotic distributions (West, 1988; Hamilton, 1994, p.555).   
15 Chan and Lee (1997) consider such a case. Using annual data for the years 1953 to 1990, they find that their regression variables are all I(1) 
and cointegrated. They use both an ECM and an ADL model to estimate short-run and long-run demand elasticities for coal in China, but they 
restrict all variables to have the same number of lags and they go up to a maximum of three lags only. Moreover, they do not provide standard 
errors for their long-run estimates. The methodology proposed here provides a simple way to obtain SR and LR elasticity estimates with their 
standard errors in similar cases without imposing the above-mentioned restrictions. 
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consistently16 by running an OLS regression in levels – the first-stage of the Engle-Granger two-step procedure -- 

without the need for IV estimation, even if some or all of the variables are not strictly exogenous (Stock and 

Watson, 1988; Diebold and Nerlove, 1990; Hamilton, 1994 p.588). This property should not be affected with the 

addition of lagged variables in an ADL, since if Xt and Yt are cointegrated, then Xt and Yt-i will also be cointegrated 

because Yt and Yt-i are cointegrated for all i (Cuthbertson et al., 1992 p.133). Hence, when estimating an ADL that 

includes both the contemporaneous terms of the cointegrated variables and their lags, OLS should give consistent 

estimates. Pesaran and Shin (1999) show that OLS estimation of ADL model coefficients yields consistent short-run 

parameter estimates and super-consistent long-run parameter estimates, provided there exists a unique cointegrating 

relationship among these variables in the ADL. Moreover, valid inferences can be made using the standard 

distributions if the variables are weakly exogenous. One might wonder: how can standard asymptotical distributions 

apply for the estimated long-run relationships? Doesn’t superconsistency imply nonstandard sampling distributions, 

even asymptotically? Pesaran and Shin (1999, pp. 381-389) show that when written in ADL form, the coefficients 

have a ‘mixture normal distribution asymptotically and standard inferences are therefore asymptotically valid.’ See 

also Hamilton (1994, p. 602), Sims, Stock and Watson (1990), or Watson (1994). If, however, there is more than one 

long-run relationship among the I(1) variables in the ADL model, then the estimated coefficients might be a linear 

combination of the true underlying parameters. Hence, the desirable properties of the OLS estimator described no 

longer hold. 

Turning now to the equivalent ECM equation, if q, p, ps, and y are I(1) and cointegrated, then all terms in 

the ECM are I(0). That is, the lagged differences are I(0) and the error correction term 

1 0 1 1 1t p t s t y tq p ps y   − − − −− − − −  is I(0) as well. Hence, if q, p, ps, y are I(1) but cointegrated, the error term will 

be stationary and standard OLS is valid, as was the case when all three variables are I(0). If the variables are not 

cointegrated, however, the coefficients of the error correction term will have nonstandard distributions and hence the 

usual methods of statistical inference will be invalid. In an ECM it does not matter if some of the variables are 

endogenous, because no contemporaneous terms appear in the equation.   

 
16 The OLS estimates in the case of cointegration are said to be ‘super consistent’ because their order of convergence is T and not T0.5 (Stock, 
1987; Engle and Granger, 1987). 
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Rather than beginning with a single-equation error-correction model, we estimate a vector-error correction 

model, and then test whether this system can be reduced to a single-equation conditional ECM with no loss of 

information. This null hypothesis is not rejected in our application.  

 

 

III.  Empirical Application 

  

This section illustrates the approach to estimating short-run and long-run price and income elasticities 

discussed in the previous sections. We estimate residential electricity demand over the period 1998:1 to 2006:12 in 

Xcel Energy’s Minnesota service area. Electricity demand, Qe, is posited to be a function of the real price of 

electricity Pe, the real price of natural gas Pg, real income Y, the number of customers N, cooling degree days CDD, 

heating degree days HDD, and monthly dummy variables. All variables, except CDD and HDD and monthly 

dummies, are in logs.  

The order of integration of each series is considered first. The ADF test results presented in Table 2 suggest 

that, at the 5% level of significance, the null hypothesis of (one or more) unit roots is not rejected for any of our 

series Qe, Pe, Pg, Y, N, CDD, and HDD. After first differencing, however, all become stationary. We conclude that 

all of the stochastic series are I(1). The dummies, on the other hand, are I(0). 

Table 2: ADF Tests on (Log) Levels and First Differences 

Series ADF t-Stat P-Value 

AIC Lag 

Choice 

Qe -1.03 0.74 12 

Pe -0.75 0.83 11 

Pg -2.05 0.27 12 

Y -0.94 0.77   2 

N -0.66 0.85   1 

CDD -1.95 0.31 12 

HDD -2.09 0.25 12 

D(Qe) -6.29 0.00 11 

D(Pe) -3.64 0.01 12 

D(Pg) -5.90 0.00  8 

D(Y) -6.51 0.00  1 

D(N) -8.59 0.00  0 
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Are the variables above cointegrated? Using the Johansen trace and maximum eigenvalue tests, the null 

hypothesis of no cointegration is easily rejected.17 Both the trace and maximum eigenvalue tests suggest one 

cointegrating relationship at the 1% level. However, at the 5% level, the trace test implies that there are two 

cointegrating relations, while the maximum eigenvalue test still suggests one cointegrating relationship. See Table 3 

for the test results. Based on economic theory, it seems reasonable to expect a single long-run relationship linking 

consumption, prices, income, and number of customers. Note that the monthly dummies and the weather variables 

have been treated as exogenous variables in the test.18  

 

Table 3: Johansen Cointegration Test Results 

Sample: 1998M01 2006M12    
Included observations: 106    
Series: Qe, Pe, Pg, N, Y    
Exogenous series: S1 S2 S3 S5 S6 S7 S8 S9 S10 S11 S12 CDD HDD  
Lags interval: 1 to 1    
 

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.01  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.77  211.37  77.82  0.00 

At most 1  0.23  53.50  54.68  0.01 
At most 2  0.17  26.22  35.46  0.12 

     
      Trace test indicates 1 cointegrating eqn(s) at the 0.01 level 

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.01  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.77  157.87  39.37  0.00 

At most 1  0.23  27.29  32.72  0.05 
At most 2  0.17  19.91  25.86  0.07 

 
17 Note that throughout this Section, we limit ourselves to cases where all variables have the same number of terms. This dramatically reduces the 
number of cases to consider and matches the standard approach in the literature. 
18 Some variables are very likely to be weakly exogenous to a system, such as the monthly dummies and weather variables in our case. Juselius 
(2006 p.198) suggests that testing might not be necessary in those cases and a partial system can thus be used from the outset. 

D(CDD) -13.59 0.00 10 

D(HDD) -5.94 0.00 11 
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      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.01 level 

 * denotes rejection of the hypothesis at the 0.01 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
 

In the unrestricted VAR setting, the AIC selected a specification with 2 lags, implying a VECM of order 1. 

The estimates are reported in Appendix II. (The arbitrary normalization sets Qe equal to unity). We also carried out 

weak exogeneity tests with respect to the LR coefficients by testing the statistical significance of the loading factors 

or speed-of-adjustment coefficients on deviations from the long-run equilibrium conditions in the VECM. The 

results suggest that Pe, Pg, Y, and N are all weakly exogenous for the long-run elasticities. Thus it is possible to 

estimate a fully-efficient conditional demand function that includes contemporaneous values of the changes in all 

weakly exogenous variables using OLS estimation. If Pe had turned out to be weakly endogenous, any attempt to 

estimate the conditional model with OLS would be plagued by endogeneity bias. The full model would have to be 

estimated in that case. 

Given that all variables except D(Qe) appear to be weakly exogenous in the VECM, we proceed in the text 

by estimating a demand equation that includes contemporaneous variables when estimating the short-run elasticities. 

Both an ECM and its equivalent ADL model were estimated. As discussed in Section II Case 4 (where there is a 

unique cointegrating relationship), the OLS estimates will be consistent and hypothesis testing can be based on 

standard distributions. This is the specification that minimizes the Akaike criterion when the maximum lag length is 

set at six and the minimum lag is zero. Both the SR elasticities and the LR elasticities, along with their respective 

standard errors, can be read directly from the ECM estimation output.  

 

 

Table 4: OLS Estimates of the Equivalent ECM 

    
    Cointegrating Eq. Coefficient Std. Error Prob.   
    
    Qe(-1) 1.000   

Pe(-1) -0.61 1.04 0.56 
Pg(-1) 0.26 0.29 0.37 
Y(-1) -0.35 3.16 0.91 
N(-1) 0.41 5.73 0.94 

    
    Error Correction Coefficient Std. Error Prob.   
    
    Cointegrating Eq. 0.13 0.09 0.19 

C 0.84 6.83 0.90 
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D(Qe(-1)) -0.13 0.08 0.13 
D(Qe(-2)) 0.01 0.08 0.89 
D(Qe(-3)) 0.11 0.06 0.05 

D(Pe) -0.16 0.08 0.05 
D(Pe(-1)) -0.04 0.11 0.70 
D(Pe(-2)) -0.06 0.09 0.52 
D(Pe(-3)) -0.02 0.08 0.85 

D(Pg) 0.01 0.03 0.76 
D(Pg(-1)) 0.02 0.04 0.57 
D(Pg(-2)) -0.07 0.04 0.06 
D(Pg(-3)) -0.07 0.04 0.04 

D(Y) -1.17 1.12 0.29 
D(Y(-1)) 4.50 1.21 0.00 
D(Y(-2)) -1.63 1.25 0.19 
D(Y(-3)) -0.52 1.13 0.19 

D(N) 1.12 1.97 0.57 
D(N(-1)) -3.56 2.06 0.09 
D(N(-2)) -1.23 1.86 0.51 
D(N(-3)) 2.60 1.84 0.16 

    
    Adjusted R-squared 0.98  

S.E. of regression 0.03  
    
     

The results for the isomorphic ADL model are omitted here to save space.   

Table 5 reports the results for the simple AR1 and PAM specifications so that they can be compared to our 

chosen conditional ECM model. The ECM has a higher adjusted R-squared and a lower standard error than the 

AR(1) and PAM. It is also the specification that minimizes the Akaike value. 

 

Table 5: OLS Estimates of the AR(1) and PAM Specifications 

Eq Name: AR(1) PAM 
Dep. Var: Qe Qe 

   
   C -19.33 -2.67 
 (12.39) (5.23) 
   

Pe -0.07 -0.04 
 (0.11) (0.07) 
   

Pg  0.06  0.00 
 (0.04) (0.02) 
   

Y  -0.47  0.04 
 (0.75) (0.32) 
   

N  2.57  0.37 
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 (1.26) (0.56) 
   

D(CDD)  0.00  0.00 
 (0.00) (0.000) 
   

D(HDD)  0.00  0.00 
 (0.00) (0.000) 
   

Qe(-1)  0.77 
  (0.07) 

AR(1) 0.53  
 (0.09)  
   
   Observations 106 107 

Adj. R-squared 0.95 0.97 
S.E. regression 0.04 0.03 

 

Table 6 summarizes the estimated SR and LR elasticities from the AR1, PAM, and ADL/ECM 

specifications. As noted in Section 1, the AR1 specification imposes the restriction that each SR elasticity be equal 

to its LR counterpart, while the PAM specification imposes the implausible ‘ratio restriction.’ We can see from the 

Table that the ratio of the LR elasticity to the SR elasticity for the three determinants of demand is equal to (4.5) in 

all cases. The specification with the minimum Akaike criterion is neither an AR1 nor a PAM, but a more general 

ADL(4,0-4,0-4,0-4,0-4) model.  

 

 

Table 6: Summary of Short-Run and Long-Run Elasticity Estimates  

from the Various Dynamic Demand Specifications   
εpe,sr 

SR own-
price 

elasticity 

εpe,lr 

LR own-
price 

elasticity 

εcp,sr 

SR cross-
price 

elasticity 

εcp,lr 

LR cross-
price 

elasticity 

εy,sr 

SR income 
elasticity 

εy,lr 

LR income 
elasticity 

 
Akaike 

Criterion 

AR1 
-0.07  
(0.11) 

-0.07  
(0.11) 

0.06  
(0.04) 

0.06  
(0.04) 

-0.47 
(0.75) 

-0.47 
(0.75) 

-3.27 

PAM 
-0.04  
(0.06) 

-0.19 
(0.29) 

0.00  
(0.02) 

0.01 (0.09) 
0.04  

(0.32) 
0.18 (1.37) -3.89 

ECM/ 
ADL 

-0.16 
(0.08) 

-0.60 
(1.04) 

0.01 (0.03) 0.26 (0.29) 
-1.18 
(1.12) 

-0.39 
(3.14) 

-3.97 

Standard errors in parentheses 
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IV.  Conclusions 

A review of the literature on energy demand reveals two common deficiencies: (i) the omission of standard 

errors when reporting short-run and especially long-run elasticities and (ii) the use of restricted models without 

testing the relevant restrictions. This paper first reviews a number of commonly used dynamic demand 

specifications and highlights the implausible a priori restrictions that they place on short and long-run elasticities. It 

then shows which specifications do not impose any restrictions. The discussion suggests that the ADL or 

corresponding ECM should be employed in practice, rather than using the AR or PAM specifications. Second, we 

propose a simple way to get standard errors as well as point estimates for both short and long-run elasticities. Our 

approach is illustrated using data on Minnesota residential electricity demand.  

Although our focus is on demand estimation in the energy sector, the issues raised are also relevant when 

estimating dynamic supply equations. Moreover, they apply in a wide variety of contexts beyond the energy sector 

where estimating short and long-run elasticities is a recurring topic of interest.  
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Appendix I: ADL and Equivalent ECM 

Here we prove that for every ADL(L,R) specification19  
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there is an equivalent ECM with lagged differences:   
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The coefficients in the error correction term are equal to the long-run elasticities: 
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and the coefficient on the first difference term, ∆pt, is equal to the SR elasticity. 

 
19 We start with a general specification that includes contemporaneous and lagged regressors and later present the analogous derivation for a 
specification that includes only lagged regressors. 
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0 0p p =  

 

It is interesting to note that an ADL model can always be rewritten as a single-equation ECM that includes 
lagged differences to capture serial correlation that may exist in the no-lag version. This is discussed below.  

 
1. ADL(1,1) case:20 

0 1 1 0 1 1t q t p t p t tq q p p u   − −= + + + +  

Subtract qt-1 from both sides of the equation and add and subtract 0 1p tp − from the right-hand side to get: 

 

0 1 1 0 0 1 1( 1) ( )t q t p t p p t tq q p p u    − − = + − +  + + +  

which can be rearranged as: 
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2. ADL(2,2) case: 

0 1 1 2 2 0 1 1 2 2t q t q t p t p t p t tq q q p p p u     − − − −= + + + + + +
 

 

Subtract qt-1 from both sides of the equation, then add and subtract 0 1p tp − , 2 1p tp − , and 2 1q tq − from the right-

hand side. This yields:  
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which can be rearranged as: 
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3. ADL(L,R) case: 

0 1 1 2 2 0 1 1... ...t q t q t qL t L p t p t pR t R tq q q q p p p u      − − − − −= + + + + + + + + +  

Subtract qt-1 from both sides of the equation and add and subtract 0 1p tp − , 2 1p tp − , … 1pR tp − and, 2 1q tq − , 

3 1q tq − , … 1qL tq −  from the right-hand side, and after rearranging we get the ECM: 

 

 
20 This case is adapted from Baltagi (2008 p. 141) and Charemza and Deadman (1997). 
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which can be re-written as: 
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Note that due to the presence of a contemporaneous p term on the right-hand side of the ADL there is an extra term (

0p tp  ) of first differences of the independent variable in the ECM compared to the dependent variable. 

 
A somewhat different transformation of the ADL (3,3) specification can be used when the ADL contains no 

contemporaneous regressors in order to get an ECM that contains both SR and LR elasticity estimates. Suppose the 
estimated ADL is ADL(1-3, 1-3): 
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Subtract qt-1 from both sides of the equation to get: 
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Next, add and subtract the following terms from the right-hand side of the equation: 1 2( 1)q tq −− , 3 2q tq − , 1 2p tp − , 
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where the coefficient in the error correction term is equal to the long-run elasticity and  the coefficient on the first 

difference term, ∆pt-1, is equal to the SR elasticity. 

For a general ADL(L,R), subtract qt-1 from both sides of the equation and add and subtract 1 2 ,p tp −

3 2p tp − , … 2pR tp − and, 1 2( 1)q tq −− , 3 2q tq − , … 2qL tq − from the right-hand side, to get the equivalent ECM. 
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Appendix II 

Unrestricted and restricted Vector Error Correction Models (VECMs) are reported below for interested 
readers. The conditional ECM reported in the text is fully efficient in our application. All estimated equations also 
include the monthly dummies, but for brevity their estimated coefficients are not reported. By testing whether the 
cointegrating relationships are present in the various equations or not, we can decide whether the variables Pe, Pg, Y, 

and N are weakly exogenous for the long-run elasticities or not. Note that even if the parameters of interest are both 
the short-run and long-run elasticities, this procedure is sufficient to reject weak exogeneity (Urbain, 1992, p.202). 
 

Appendix Table 1: Estimates of the VECM with 1 cointegrating relationship 

 
 Vector Error Correction Estimates   
 Date: 11/09/13   Time: 15:41    
 Sample (adjusted): 1998M03 2006M12   
 Included observations: 106 after adjustments  
 Standard errors in ( ) & t-statistics in [ ]  

      
      Cointegration Restrictions:     

      B(1,1)=1     
Convergence achieved after 1 iteration   
Restrictions identify all cointegrating vectors  
Restrictions are not binding (LR test not available)  

      
      

Cointegrating Eq:  
         

CointEq1     
      
      Qe(-1)  1.00     
      

Pe(-1)  0.14     
  (0.06)     
 [ 2.30]     
      

Pg(-1) -0.03     
  (0.02)     
 [-1.74]     
      

Y(-1) -0.30     
  (0.25)     
 [-1.17]     
      

N(-1) -1.35     
  (0.43)     
 [-3.13]     
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C  8.26     
      

      

Error Correction: 
              
D(Qe)                            D(Qe)  

          
              D(Pg)                D(Y)               D(N) 

      
      CointEq1 -0.97  0.06 -0.14 -0.01  0.00 

  (0.06)  (0.11)  (0.28)  (0.01)  (0.00) 

 [-15.74] [ 0.52] [-0.51] [-0.69] [ 0.57] 

      
D(Qe(-1)) -0.05  0.04  0.43 -0.00  0.00 

  (0.05)  (0.08)  (0.21)  (0.01)  (0.00) 
 [-0.99] [ 0.45] [ 2.05] [-0.50] [ 0.15] 
      

D(Pe(-1))  0.05 -0.29 -0.05  0.01  0.00 
  (0.06)  (0.11)  (0.27)  (0.01)  (0.00) 
 [ 0.90] [-2.75] [-0.18] [ 1.58] [ 0.05] 
      

D(Pg(-1)) -0.01  0.09 -0.17  0.00  0.00 
  (0.02)  (0.04)  (0.10)  (0.00)  (0.00) 
 [-0.42] [ 2.18] [-1.66] [ 0.69] [ 0.48] 
      

D(Y(-1))  1.24 -0.26 -2.02  0.40  0.05 
  (0.77)  (1.40)  (3.51)  (0.10)  (0.06) 
 [ 1.60] [-0.18] [-0.57] [ 3.88] [ 0.88] 
      

D(N(-1)) -2.97 -0.12  0.17  0.16  0.18 
  (1.47)  (2.67)  (6.70)  (0.19)  (0.11) 
 [-2.02] [-0.04] [ 0.02] [ 0.82] [ 1.69] 
      

C -0.14  0.02 -0.19  0.01 -0.00 
  (0.03)  (0.06)  (0.14)  (0.00)  (0.00) 
 [-4.48] [ 0.28] [-1.34] [ 1.29] [-0.08] 
      

CDD  0.00  0.00  0.00 -0.00 -0.00 
  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 
 [ 20.09] [ 0.13] [ 0.54] [-0.98] [-0.44] 
      

HDD  0.00 -0.00  0.00 -0.00  0.00 
  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 
 [ 6.45] [-0.24] [ 1.73] [-0.99] [ 0.70] 
      

      
 R-squared  0.98  0.73  0.34  0.47  0.28 
 Adj. R-squared  0.98  0.67  0.19  0.35  0.12 
 Sum sq. resids  0.06  0.18  1.16  0.00  0.00 
 S.E. equation  0.03  0.05  0.12  0.00  0.00 
 F-statistic  277.24  12.09  2.29  3.97  1.74 
 Log likelihood  249.42  186.44  88.72  464.20  526.41 
 Akaike AIC -4.33 -3.14 -1.30 -8.38 -9.55 
 Schwarz SC -3.83 -2.64 -0.79 -7.88 -9.05 
 Mean dependent  0.00  0.00  0.00  0.00  0.00 
 S.D. dependent  0.18  0.08  0.13  0.00  0.00 
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Appendix Table 2: VECM estimation with weak exogeneity restrictions 

 
 Vector Error Correction Estimates   
 Date: 11/09/13   Time: 16:14    
   
Included observations: 106 after adjustments  
 Standard errors in ( ) & t-statistics in [ ]  

      
      Cointegration Restrictions:     

      B(1,1)=1, A(2,1)=0, A(3,1)=0, A(4,1)=0, A(5,1)=0  
Convergence achieved after 6 iterations.   
Restrictions identify all cointegrating vectors  
LR test for binding restrictions (rank = 1):   
Chi-square(4)  2.54     
Probability  0.64     

      
      Cointegrating Eq:  CointEq1     
      
      Qe(-1)  1.00     
      

Pe(-1)  0.16     
  (0.06)     
 [ 2.49]     
      

Pg(-1) -0.03     
  (0.02)     
 [-1.92]     
      

Y(-1) -0.33     
  (0.26)     
 [-1.30]     
      

N(-1) -1.26     
  (0.44)     
 [-2.89]     
      

C  7.38     
      
      

Error Correction: 
              

D(Qe)               D(Pe)               D(Pg) 
               

D(Y)               D(N) 
      
      CointEq1 -0.97  0.00  0.00  0.00  0.00 
  (0.06)  (0.00)  (0.00)  (0.00)  (0.00) 
 [-17.12] [NA] [NA] [NA] [NA] 
      

D(Qe(-1)) -0.05  0.04  0.43 -0.00  0.00 
  (0.05)  (0.08)  (0.21)  (0.01)  (0.00) 
 [-1.06] [ 0.49] [ 2.05] [-0.52] [ 0.15] 
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D(Pe(-1))  0.06 -0.29 -0.05  0.01  0.00 
  (0.06)  (0.11)  (0.27)  (0.01)  (0.00) 
 [ 0.97] [-2.74] [-0.18] [ 1.58] [ 0.05] 
      

D(Pg(-1)) -0.01  0.09 -0.17  0.00  0.00 
  (0.02)  (0.04)  (0.10)  (0.00)  (0.00) 
 [-0.52] [ 2.18] [-1.67] [ 0.69] [ 0.48] 
      

D(Y(-1))  1.30 -0.28 -2.00  0.40  0.05 
  (0.77)  (1.40)  (3.51)  (0.10)  (0.06) 
 [ 1.68] [-0.20] [-0.57] [ 3.89] [ 0.88] 
      

D(N(-1)) -2.92 -0.11  0.17  0.16  0.18 
  (1.47)  (2.67)  (6.70)  (0.19)  (0.11) 
 [-1.98] [-0.04] [ 0.02] [ 0.82] [ 1.69] 
      

C -0.14  0.02 -0.19  0.01 -0.00 
  (0.03)  (0.06)  (0.14)  (0.00)  (0.00) 
 [-4.44] [ 0.27] [-1.33] [ 1.30] [-0.09] 
      

CDD  0.00  0.00  0.00 -0.00 -0.00 
  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 
 [ 20.08] [ 0.14] [ 0.54] [-0.98] [-0.44] 
      

HDD  0.00 -0.00  0.00 -0.00  0.00 
  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 
 [ 6.38] [-0.23] [ 1.72] [-1.00] [ 0.71] 
      
      
       R-squared  0.98  0.73  0.34  0.47  0.28 

 Adj. R-squared  0.98  0.67  0.19  0.35  0.12 
 Sum sq. resids  0.06  0.18  1.16  0.00  0.00 
 S.E. equation  0.03  0.05  0.12  0.00  0.00 
 F-statistic  276.78  12.08  2.29  3.96  1.74 
 Log likelihood  249.34  186.41  88.71  464.18  526.41 
 Akaike AIC -4.33 -3.14 -1.30 -8.38 -9.55 
 Schwarz SC -3.82 -2.64 -0.79 -7.88 -9.05 
 Mean dependent  0.00  0.00  0.00  0.00  0.00 
 S.D. dependent  0.18  0.08  0.13  0.00  0.00 

      
       

The weak exogeneity restrictions are not rejected here, so the conditional single-equation approach in the text is 
fully efficient. 
 

 


