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Abstract 

Previous studies provide strong evidence that energy demand elasticities vary across regions and 

states, arguing in favor of conducting energy demand studies at the smallest unit of observation 

for which good quality data are readily available, that is the utility level. We use monthly data 

from the residential sector of Xcel Energy’s service territory in Colorado for the period January 

1994 to September 2006. Based on a very general Autoregressive Distributed Lag model this 

paper uses a new approach to simulate the dynamic behavior of natural gas demand and obtain 

dynamic elasticities.   Knowing consumers’ response on a unit time basis enables one to answer 

a number of questions, such as, the length of time needed to reach demand stability. Responses 

to price and income were found to be much lower—even in the long run—than what has been 

commonly suggested in the literature. Interestingly, we find that the long run equilibrium is 

reached relatively quickly, around 18 months after a change in price or income has occurred, 

while the literature implies a much longer period for complete adjustments to take place. 

Keywords: dynamic elasticities; ADL; natural gas demand; Colorado 

JEL codes: C22; C51; Q41 

 

1. Introduction 

There has been a long-standing interest in modeling energy demand to estimate price and 

income elasticities. However, the vast majority of existing studies have focused on electricity, 

while natural gas has received much less attention. Table 1 presents a breakdown of the studies 
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by product and by decade,1 where the studies are categorized in a decade according to the most 

recent observation in the sample period studied. Clearly, there is a clustering of studies in the late 

1970s and early 1980s probably as a result of the two oil price shocks. The table also shows how 

this research has been distributed with electricity receiving more than twice the attention of 

natural gas. Although the current decade has seen a decline in natural gas consumption per 

customer,   new natural gas field discoveries are likely to lead to a much more important role for 

gas. In this paper, we analyze  residential natural gas demand at the utility level in Colorado 

using monthly data spanning the period January 1994 to September 2006.   

[insert table 1] 

Previous studies have used a variety of models to estimate short-run, long-run or both 

types of elasticities However, we know of no study that explicitly quantifies the length of time 

needed for long-run adjustments to be completed or uses stochastic simulation to illustrate the 

adjustment process that takes place to reach the long run. While the dynamic adjustment path 

often can be computed manually using the estimated coefficients,   such computations become 

very cumbersome as the number of lags increases. We aim to fill this  gap in the natural gas 

demand literature by using dynamic elasticities,2 which are elasticities at each point in time 

obtained by applying a permanent price (or income) shock to the model. The   stochastic 

simulation shows how demand changes over time in response to this price change. Ultimately, 

the estimated monthly elasticities improve on earlier studies that consider at most two points to 

characterize the dynamic price-demand relationship, by allowing a time path of response of 

demand to a price change that is more flexible than the exponential path implied by a Koyck lag.  

The significant body of research in this area has unfortunately provided a wide range of  

elasticity estimates. This has, in turn, created major difficulties for end users  wishing to use 

elasticity estimates in energy models, whether at the national or at more disaggregated levels. 

This problem is further exacerbated by the fact that many studies fail to report the standard errors 

of their estimates, especially in the long-run (LR) case. This omission is most likely because, 

unlike their short-run counterparts, calculating the long-run estimates’ standard errors is non 

 
1  It should be noted that included studies are limited to studies published in the English language. Also, the total 

number of studies is effectively less than what is reflected in Table 1 because some studies involve both products; 

electricity and natural gas. These studies typically apply the same model and methodology to both products. 
2 For a discussion of dynamic elasticities see Pindyck and Rubinfeld (1998). 
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trivial.3 However,  standard errors are essential for comparing the precision of   estimates across 

studies. For example, Espey and Espey (2004) were not able to include the variance of the 

elasticity estimates in their meta-analysis on residential electricity price and income elasticities, 

because the standard errors were rarely reported in the 36 studies reviewed.  The present work 

addresses this problem by reporting the standard error for each corresponding dynamic elasticity 

estimate along with the 95% confidence interval. This will make definitive conclusions about the 

precision of estimates possible and facilitate cross-study comparisons. 

 Another problem is that most of the abundant demand elasticity estimates in the 

literature,   pertain to studies done in the 1970s and 1980s (see Table 1). However, a number of 

factors, including changes and shifts in energy use, more efficient appliances, and increased 

access to natural gas in rural areas (Bernstein and Griffin, 2006) could have changed the 

relationship between demand and its determinants.  On one hand, some researchers suggest that 

there is evidence that demand may be becoming more elastic (Bernstein and Griffin, 2006), 

while on the other hand, some researchers such as Dahl (1993) and Espey and Espey (2004) 

found statistical evidence that demand has become more inelastic since the 1970s. Moreover, the 

supply constraints that previously existed for natural gas suggest that historical elasticities may 

not have much relevance in evaluating current and future natural gas demand (Dahl, 1993). 

Consequently, it is preferable to use a present-day set of elasticity estimates, rather than an 

adjusted set of dated estimates, especially given that the direction of such adjustment is 

ambiguous. 

In particular, since very few studies have used data beyond  2000,   the effect on demand 

of the change in price trends observed since 2000 has not been carefully analyzed. Only Joutz 

and Trost (2007) test for a change in residential natural gas price elasticity post 2000 using 

monthly data and find no evidence of a statistically significant change.  

Previous studies provide strong evidence that the level of analysis has important 

implications for the accuracy of any demand elasticity estimates. The overwhelming majority of 

studies that have tested for geographical-based differences in elasticities have found that 

consumers in different regions respond differently to changes in the determinants of demand. 

This problem has to a large extent been ignored in the literature  since there are just a few studies 

 
3 Although their application is quite involved, several methods for calculating the standard errors have been 

implemented, including  bootstrapping, the delta, and the jackknife methods. For a discussion of these and other 

methods, see Efron (1981). 
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at the utility level compared to hundreds at the state or national level. Further, there is convincing 

evidence that demand models perform better when applied to data at a finer level of aggregation 

(Bohi, 1981). All of this argues in favor of conducting energy demand studies at the smallest unit 

of observation for which good quality time series data are readily available, that is the utility 

level. Therefore, the present study will focus on analyzing residential natural gas demand in Xcel 

Energy’s service area in Colorado.4   

The remainder of this paper is structured as follows. Section 2 reviews and compares 

existing residential natural gas elasticity estimates. The demand model employed is presented in 

section 3. In section 4 we introduce the data set followed by a description of the methodology 

used in section 5. Section 6 presents and discusses the results. Finally, section 7 contains 

concluding remarks and suggestions for future research in this field. 

 

2. An overview of the existing elasticity estimates 

More than a hundred studies on natural gas demand have been conducted since the 1940s, 

the majority of which are aimed at estimating demand elasticities. Unfortunately, these studies 

have produced such widely divergent estimates that the various surveys conducted to date have 

reported no firm consensus on price and income elasticities  . For example, in a comprehensive 

review of energy demand studies, Bohi (1981) finds that the estimated demand elasticities vary 

considerably from one study to the next; some suggest that price is very important but others do 

not; some imply that income is the controlling factor while others imply that price is dominant; 

some indicate that interfuel substitution is important and others suggest it is not. Consequently, 

Bohi (1981) concludes that the many serious estimation problems produce divergent estimates 

making it very difficult for the researcher as well as the end-user to evaluate the reliability of, 

and compare between, the estimates.  

In spite of the wide range of elasticity estimates, some surveys do report consensus 

values. However, without taking into consideration the individual standard errors one must be 

very careful with these values, which sometimes are calculated by taking the simple average of 

the available estimates. In his survey of 18 studies, Taylor (1977) concludes that the natural gas 

 
4 Xcel Energy  is an electric and natural gas utility serving customers in eight different states. In the state of 

Colorado it serves 1.35 million electricity customers and 1.29 million natural gas customers. A list of the 

communities served can be found at the following link: 

http://www.xcelenergy.com/SiteCollectionDocuments/docs/5.26.2010FINALCO-CommunityServed.pdf  

http://www.xcelenergy.com/SiteCollectionDocuments/docs/5.26.2010FINALCO-CommunityServed.pdf
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price elasticities are around -0.15 in the SR and more elastic than -1 in the LR. In general, LR 

estimates show a much wider variation than SR estimates. Bohi (1981) reviews 25 studies and 

concludes that consensus values for residential natural gas price elasticities are -0.1 (SR; range -

0.03 to -0.4) and -0.5 (LR; range -0.17 to -1.0). Bohi and Zimmerman (1984) conclude a SR 

estimate of -0.2 and a LR estimate of -0.3 for the residential natural gas sector. In a recent meta-

analysis on natural gas elasticities conducted by Dahl and Pechatnikov (2007) including a data 

set of around 400 observations on all consumer sectors, SR price elasticities were found to vary 

between 1.07 and -2.62, and the LR price elasticities were found to be even more disparate 

ranging between 53.73 and -115.  

In comparing the own-price elasticities of household demand for electricity and natural 

gas, there is evidence that the short-run estimates in the natural gas market are lower than the 

electricity market (Bohi, 1981; Dahl, 1993; Labandeira et al., 2005). As Bohi (1981) explains 

this result is expected because gas is used primarily for space heating which is regarded as less of 

a luxury compared with many applications of electricity. Also, the estimated elasticities for 

natural gas are more uncertain than those for electricity possibly due to a combination of poor 

data and the confusing effects of disequilibrium markets that existed during the 1970s.   

Research examining the cross-price elasticities between electricity and natural gas has 

generally found the cross-price elasticities to be small in magnitude and frequently not 

statistically significant. Typically, substitution between electricity and natural gas in the 

residential sector is  limited to the following end uses: space heating, water heating, cooking, and 

clothes drying . For example, Garcia-Cerrutti (2000) in his study on residential energy demand in 

California counties notes that weak cross-price effects suggest that electricity and natural gas 

have largely independent uses and there is limited switching between them. Moreover, in some 

cases the estimated elasticities have negative signs which could be an indication that electricity 

and natural gas are treated as complements rather than substitutes. In his survey of electricity 

demand studies, Westley (1992) finds the means of the estimated cross-price elasticities with 

natural gas to be: 0.06 (SR) and 0.22 (LR) for the residential sector. Dahl (1993) finds that 

substitutability between natural gas and electricity increased with the more recent surveys with 

their average cross elasticities ranging between 0.53 and 0.65, whereas earlier they ranged 

between 0.10 and 0.20. 
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In looking at natural gas income elasticities, the studies surveyed by Bohi (1981) 

indicated that income is not important to gas demand. Similarly, Bohi and Zimmerman (1984) 

found that the income elasticities were largely insignificant especially in the residential and 

commercial sectors. In contrast, Joutz and Trost (2007) found significant but negative (usually 

associated with inferior goods) income elasticities. They argued that technology has improved 

over time as income has increased reducing the consumption of natural gas. They decided to 

exclude income from their final model and instead included a time trend to model the combined 

effect of income and technical change. For more on natural gas income elasticities see Dahl 

(1993) and Dahl and Pechatnikov (2007).  

Although results in general have not been uniform, one can conclude that the majority of 

previous research finds natural gas demand to be negatively related to price—consistent with 

economic theory—but relatively inelastic to price changes. Furthermore, due to the more limited 

opportunities for substitution, the short-run price elasticity usually tends to be more inelastic than 

the long run with a few exceptions (see Choi, 2002; Yokohama et al., 2000; Danielsen, 1977). 

The latter are in violation of Le Châtelier’s principle (for a formal proof, see Varian, 1992) and 

are usually dismissed by economists as being unreasonable. For example, the short-run response 

to higher prices is limited to decreasing the intensity of use of existing equipment. Alternatively, 

in the long run, consumers have the opportunity to respond to higher energy prices by purchasing 

equipment that is more efficient or even uses different (cheaper) energy sources. Even so, 

substitution between energy products in the residential sector is very limited and most often 

cross-price elasticities have been found to be statistically insignificant, as are income elasticities. 

Although a few economists have suggested some consensus values based on the limited number 

of studies they surveyed, it is clear that there is no general agreement on the magnitude of 

demand elasticities. Furthermore, these consensus values may not be reliable when the individual 

standard errors are not taken into consideration in determining the consensus elasticity values.  

The role of technological change and its effect on energy demand has been investigated 

in several studies. Due to the unavailability of a time series reflecting technological change, most 

of these studies have used the time trend as a proxy. However,   the time trend   might  capture 

any unobserved factors that change over time. Thus, one should be cautious when interpreting 

the estimated coefficient. Many of these studies have found the time trend to be insignificant and 

hence excluded it from their final specification (see for example Rushdi, 1986), while a few 
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others such as Nan and Murry (1992) found that coefficient to be significant.  

Previous studies5  provide strong evidence that the level of analysis has important 

implications for the accuracy of  elasticity estimates. The majority of studies that have 

investigated geographical-based differences in elasticities (e.g. Murray et al., 1978; Uri, 1975; 

Maddigan et al., 1983) did indeed find that elasticities vary between different areas. These 

differences are likely the result of   variation in (1) the relative costs of substitutes and (2) the 

value of energy uses from one region to another. Prices of electricity and natural gas and hence 

the cost of substitutes vary throughout the country (Bernstein and Griffin, 2006). This could be 

the result of the availability of specific fuels or due to local energy policies. Many states, 

including Colorado for example, have programs to subsidize adoption of energy-efficient 

technologies, which also create geographic differences in the cost of a substitute to electricity 

and natural gas.    

The second factor that gives rise to a significant degree of inter-regional heterogeneity is 

weather which affects space conditioning requirements (Uri, 1983). Locations where particular 

energy uses are very valuable, such as air conditioning in southern states or winter heating in 

northern states could have lower price elasticities than states with moderate weather, ceteris 

paribus. This is because air conditioning and heating are so valuable during periods of extreme 

weather that consumers are somewhat limited in their options to respond to price changes; the 

most evident option in the case of an own-price variation being an adjustment in the thermostat 

setting. Again, both of these driving factors, the cost of substitutes and value of energy uses, vary 

geographically, which suggests price elasticities probably differ across the country (Bernstein 

and Griffin, 2006).  

One of the earliest studies to investigate regional differences in demand behavior was 

Fisher and Kaysen (1962) who conclude that “there are substantial differences in behavior in 

different regions of the country which must be taken into account in any explanation of demand.” 

Houthakker et al. (1974) estimated price elasticities for residential electricity and found that 

elasticities varied across states. They go on to say that an analysis based on nationwide time 

series, which had become the standard approach to demand analysis, cannot do justice to the 

regional variation and is unsatisfactory to that extent. Likewise, Maddala et al. (1997) estimated 

price elasticities in 49 U.S. states (excluding Hawaii) and found variation across states. Bernstein 

 
5 Studies surveyed in this section include   electricity  demand studies. 
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and Griffin (2006) examine the effects of different levels of data aggregation (national, regional, 

state, and utility) on the relationship between demand and price. They conclude that there are 

significant differences in the price-demand relationship between different regions and states 

especially in the residential sector. These results are in line with those of Chern and Just (1980) 

who also estimate demand at the national, regional, and state level, and conclude that price 

elasticities vary significantly among regions. Hence, they conclude that forecasts at the national 

level should not be used as the basis for making energy policies at the regional or state level. 

Furthermore, in his study of 27 investor-owned utilities, Smith (1980) concludes that 

state-wide aggregates of elasticity may often be inapplicable to individual utilities. Also, Shin 

(1983) using data from seven Ohio utilities concludes, based on statistical testing, that there exist 

regional differences among consumers of each utility. Evidently, results from studies based on 

local data better reflect the particular characteristics of the localities under study (Snyder, 1979). 

In spite of these conclusions, most studies do not examine energy demand at the utility level (for 

exceptions see Murray et al., 1978; Smith, 1980; Shin, 1983; Joutz and Trost, 2007).  

Of more immediate relevance to this paper, only two published studies estimate time-

varying residential natural gas demand elasticities for Colorado (see Table 2).6 Bernstein and 

Griffin’s estimates are not significantly different from zero in the short run or in the long run. 

Maddala et al. (1997) obtain two different significant estimates for the SR, -0.101 and -0.312, 

using two different estimation methods. For the LR they do not report their standard errors, so 

we cannot evaluate the estimates or compare them to others. The divergence of results in the SR 

and the lack of reliable estimates in the LR (due to the omission of standard errors) suggest that 

additional work needs to be done in an effort to obtain more accurate elasticity estimates for 

Colorado. 

[insert table 2] 

 

3. Demand Model 

The use of a static specification to model demand is not recommended because it is 

unclear whether such a model produces short-run elasticities, long-run elasticities, or something 

in between. In any case, only one set of elasticities can be estimated from such a model unlike 

the dynamic model. The latter model is based on the idea that the response of consumers to a 

 
6 Elasticity estimates from static models have not been included in Table 2.   
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change in income or prices is generally spread out over time in such a way that complete 

adjustment often takes years, and it is therefore useful to distinguish between short-run and long-

run elasticities (Houthakker et al., 1974). 

Typically, the short-run elasticity is less than the long-run elasticity (in absolute value) 

because of the time needed for complete adjustment (see Varian, 1992). Consequently, the short-

run demand study is an examination of the factors that influence the levels of use of an existing 

stock of durable equipment, and the long-run demand study is an examination of the same factors 

in addition to the factors that influence the rate of change of that stock of equipment (Fisher and 

Kaysen, 1962). The use of energy in a given period depends on the use of a stock of energy-

using equipment owned in that period, which is a function of economic and other conditions 

prevailing not only in the current year but also in preceding years (Westley, 1992). Further, 

consumers are limited in their ability to respond immediately to a change in one of the 

determinants of demand, and hence there exists a time dimension to consumption behavior 

(Bohi, 1981).  

To capture these two different response types prior research distinguishes between SR 

and LR price elasticities. SR elasticities are estimated as the response to a price adjustment in the 

time period in which the adjustment occurs. LR elasticities are estimated as the total response to 

a price adjustment, i.e., the long run being defined in general as the time needed to achieve 

stability after a system shock has occurred (Donnelly, 1987). While estimating the SR response 

is relatively straightforward, estimating the LR response is more complicated and requires a 

more sophisticated model.   

The most commonly used dynamic models are the partial adjustment and the distributed 

lag models. A major limitation of prior modeling approaches is they only consider at most two 

points (SR and LR) to characterize the dynamic price-demand relationship. In other words, only 

the SR and LR elasticities are estimated; other elasticities can be computed (although very few 

studies actually do that) but they are based on the specific adjustment path imposed by the 

model. This, unfortunately, ignores the intertemporal nature of the relationship and masks a 

number of important attributes, such as, how long does it take to reach demand stability after a 

price adjustment has occurred. Explicating the full temporal response represented by the 

dynamic elasticities requires generating the consumption response function to a permanent price 

change based on the estimated model. 
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Another limitation of these modeling approaches is that they impose restrictions on the 

relationship between demand and its determinants. For example, in the partial adjustment model 

all short-run to long-run elasticity ratios (that includes price, income, and other demand 

elasticities) are forced to be equal (Cuddington and Dagher, 2008). To avoid these restrictions, 

recent research (e.g. Fatai et al., 2003; Bentzen and Engsted, 2001) uses a more general model: 

the Auto Regressive Distributed Lag (ADL) model—which allows a full set of current and 

lagged variables to enter the equation—to model the dynamics of energy demand. The ADL 

(m,n,p1,p2,…)7 presented in Equation 1 is a very general and flexible dynamic model that is not 

subject to many of the restrictions on the dynamic relationship between demand and its 

determinants inherent in other models. It is easy to show that the ADL nests two of the most 

commonly used theory-based models, the Partial Adjustment Model  and the Distributed Lag 

Model, as well as the newer Error Correction (EC) Model. See Baltagi (2008), Charemza and 

Deadman (1997), or Cuddington and Dagher (2008) for a complete derivation. This study builds 

on the ADL model and using a stochastic simulation approach we are able to obtain estimates of 

the dynamic elasticities.  

t

p

l

ltqlq

r

q

n

k

ktk

m

j

jtjt

q

VPQQ  ++++= 
=

−
==

−
=

−
0

,,

20

,1

1

,0     Equation 1 

 

where Q is the logarithm of the quantity of energy consumed, P is the logarithm of the real price 

of fuel studied, V is a vector of explanatory variables that includes the logarithm of real income, 

logarithms of real prices of related fuels and goods, and other relevant variables.8 j, k, and l 

represent time lags and m, n, and p represent the number of lags for each of the corresponding 

variables. 

Although there is no universal agreement as to what the determinants of natural gas 

demand are, the most commonly used ones in the literature include: own price, price of related 

products, as well as measures of income, demographics, weather, seasonal effects, and 

technological change . Based on both theoretical and empirical considerations, the demand for 

natural gas in the present study is posited to be a function of the following variables: real price of 

 
7 In the notation ADL (m,n,p,…) m refers to the number of lags of the first variable, n refers to the number of lags of 

the second variable and so on. 
8 The vector V includes price and non-price variables that have been theoretically and empirically found to be 

important determinants of the quantity of energy consumed. r-1 represents the number of variables in vector V.  
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natural gas (Pg), real price of electricity (Pe), real Colorado personal income (Y), heating degree 

days (HDD), and monthly dummies (M(i)).9,10  
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Nearly all studies so far have used the contemporaneous price variable in their demand 

equation. Although this raises concerns regarding the endogeneity of such a variable and whether 

single equation estimation by OLS would still be valid, these researchers have argued that in the 

case of gas, independent estimation of the single demand equation is justified. See Berndt and 

Watkins (1977) for a discussion of such arguments. In practice, however, the vast majority of 

energy users only learn of any price increase or decrease in any given month during the 

following month, when they receive their bill. Very few households invest the time and effort 

needed to track price changes as they are approved by the public utilities commission. It follows 

that, when using monthly data, the correct explanatory price variable to use would be the one-

period lagged price variable (Joutz and Trost, 2007; Munley et al., 1990). In that case, the 

endogeneity issue becomes irrelevant. 

 

4. Data 

The ADL model of Equation 2 will be fitted to time-series monthly data at the utility 

level (Xcel Energy service area in Colorado), which provide more resolution than other more 

aggregated levels of data. A higher  frequency of  observations  should allow greater resolution 

in determining the time response of the model in particular. Data for the period January 1994 to 

September 2006 (156 observations) were provided by Xcel Energy . If we had available similar 

data sets for the other states, we could have pooled the cross-sectional and time-series 

dimensions together and performed the analysis.11  

 
9 A saturation/efficiency index developed by Itron for Xcel Energy was used in preliminary testing as a proxy for 

technological change but was not found to be helpful in explaining natural gas demand.  
10 The April dummy was randomly chosen to be omitted from the equation to avoid perfect multicollinearity.  

11  Data sets that have both cross-sectional and time series dimensions are being used more frequently in 

empirical research (Wooldridge, 2009). Such an analysis has several advantages and disadvantages that are worth 
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Following is a more detailed explanation of each of the variables that will be used in the 

regression. Figure 1 plots the complete time series  data. Note that the variables that have been 

used in the following regressions have all been logged with the exception of heating degree days 

(HDD), due to the existence of several zero observations in the HDD time series. Also, the 

quantity and income variables have been normalized by the number of customers. All price and 

income series were deflated by the Colorado CPI. 

Quantity 

The dependent variable for natural gas use is the per household number of therms  consumed 

during a month.   

Price of Natural Gas  

All Xcel Energy residential customers in Colorado face a single flat rate (R), and hence 

marginal and average prices are equal. As noted in the previous section, the price variable used is 

the one-period lagged price of natural gas. To be consistent with economic theory, the coefficient 

on the own price should be negative; as price rises demand for natural gas is expected to fall. 

Price of Electricity  

About three-fourths of Colorado households use natural gas as their primary energy 

source for home heating, one of the highest shares in the nation. Most of the remaining 

households—about one-fifth of Colorado households—rely on electricity for heating (EIA, 

2007). Hence, electricity could be considered the single most important substitute for natural gas. 

Similarly to the above variable, the price variable used is the one-period lagged price of 

electricity. As can be seen from Figure 1, the electricity price series is unique in that it captures 

two price regimes; an increasing price regime in the first half of the study period and a 

decreasing price regime in the latter half of the study period. A priori, the coefficient on the price 

of a substitute is expected to be positive, and the coefficient on the price of a complement is 

expected to be negative. For example as the price of electricity rises, ceteris paribus, some 

 

mentioning here. Essentially, it would benefit from a richer data set with an increased variation across variables of 

interest such as price and income (Baltagi and Griffin, 2006). Moreover, more efficient estimates can be obtained 

due to reduced multicollinearity among variables and more degrees of freedom (Hsiao and Yanan, 2006). However, 

the major limitation is data collection or data availability which is the case in the present study. Another limitation is 

that the estimates will be less location specific. For example, some states will have different determinants of demand 

such as the use of a humidity index in states that suffer from high humidity. 

 



13 

 

consumers will switch away from electricity towards natural gas. Thus, the consumption of 

natural gas also rises. 

Income 

Colorado personal income, deemed an appropriate measure of income for a residential study, 

was converted from a quarterly to a monthly frequency using the quadratic match average 

conversion tool. Although, state and utility service area boundaries in Colorado do not exactly 

coincide, state variables are still appropriate in this analysis because the service area is spread 

across the whole state. Because energy is a normal good, increased consumption is closely linked 

to rising income (Uri, 1983), and thus the coefficient on income is expected to be positive. The 

two series, income and the number of consumers, are frequently found to be very highly 

correlated (in our case 0.98) such that the standard errors become enormous if they were both 

included as explanatory variables. This finding has been documented by various researchers 

including Uri (1975). To avoid this complication, we excluded the number of consumers as a 

regressor, but  used it to transform the income and quantity variables into per-customer values.     

Weather 

Variations in weather effects are represented by regional heating degree days (HDD). One 

HDD is recorded for each degree that the mean daily temperature—the average of the day’s 

minimum and maximum temperatures—is below the base level of 65  F. Weather is included 

because it directly affects the use of heating during the winter. A priori, the coefficient on the 

weather variable is expected to be positive; as it gets colder more energy is consumed.  

Seasonality 

In the present study, monthly binary variables will be used to account for the month-to-

month variations in natural gas consumption that are not picked up by HDD, such as variations 

that are due to the influx of tourists during the skiing season.  

 [insert figure 1] 

 

5. Methodology 

Unit root testing on all variables was performed using the Augmented Dickey Fuller 

(ADF) test following the Dolado et al. (1990) approach. For more details on this procedure see 

Dolado et al. (1990) or Enders (1995). With the exception of natural gas per-customer 

consumption (Qg), for which we could not reject the null hypothesis of a unit root, all other series 
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were found to be stationary or I(0). However, further testing based on Dolado et al. (1990) and 

Dickey at al. (1986) showed that the source of the non-stationarity of the Qg variable was the 

seasonality and not the existence of a unit root. Hence, the inclusion of the seasonal monthly 

dummies in the regression should be enough to address the existing non-stationarity.  

To determine the best ADL model specification a grid search program,12 implemented in 

Eviews and capable of handling hundreds of thousands of different lag specifications, was used. 

We consider up to 12 lags for Qg, 6 lags for Pe, Pg, and Y, and 2 lags for HDD, which is expected 

to have a short-run influence only, and consequently not to affect demand several periods away. 

The best specification (most appropriate number of lags for each variable) is chosen based on the 

Schwarz Criterion (SC), which is known to be consistent so that as the sample size grows, SC 

tends to pick the true model if this model is among the choices (Kennedy, 2003). After selecting 

the regression specification with the optimal SC, we then perform residual diagnostics to make 

sure that we have spherical, normal residuals, rendering hypothesis testing valid.13 The temporal 

stability of the model was investigated by checking for model as well as individual parameter 

stability using the recursive coefficient estimates and by examining the CUSUM plot. Given the 

low power of the CUSUM test (Kramer et al., 1988; Andrews, 1993), the Quandt Likelihood 

Ratio (QLR) test, also known as the Quandt-Andrews (QA) test, was also used. Since only 

lagged prices appear in the model due to the nature of the billing system, endogeneity does not 

pose a problem in our case. The sensitivity of all estimates to several key assumptions was 

assessed and the results were found to be robust. This analysis investigated the extent of the 

impact on the results due to changes in the frequency of the data, the sample period, and the lag 

selection methodology. 

Based on the final selected ADL specification, the coefficient estimates from the ADL 

can be used to calculate the dynamic elasticities by applying a permanent 1% increase to the 

price (or income). Next, a stochastic simulation is carried out that compares consumption in both 

models (before and after the shock) and illustrates the dynamic effects of a permanent price (or 

income) increase on consumption. The output function provides information on how quantity 

changes over time in response to this change. In addition, confidence intervals are constructed 

 
12 See Cuddington and Dagher (2008) for the program code. 
13 It is important to recognize here that specifications with a large number of estimated parameters, reduce the 

degrees of freedom raising questions about the validity of theorems on the asymptotic distributions of test statistics. 



15 

 

around each of the dynamic elasticity estimates so that definitive conclusions about the precision 

of estimates of how consumers respond over the long run are possible. 

 

6. Empirical Results and Discussion 

The OLS estimates of the final preferred specification ADL(2,1,1,0,1) for the residential 

natural gas sector are presented in Table 3 ( 2 0.99R = ). Consistent with economic theory, the 

coefficient on the own price variable is negative and significant; as real price rises by 1%, 

quantity demanded in the following month will fall by 0.09%. The electricity cross-price 

elasticity is positive and significant indicating that consumers treat electricity and natural gas as 

substitutes; as the real price of electricity rises by 1%, the quantity of natural gas demanded will 

rise by 0.15%. Interestingly, quantity demanded appears to be more sensitive to changes in the 

price of electricity than to changes in the price of natural gas. However, further investigation 

reveals that the two coefficients are not statistically different from each other based on a Wald 

test. The estimated income elasticity is positive yet not significantly different from zero, 

reflecting the insensitivity of natural gas consumption at the residential level to changes in 

income. This result is consistent with natural gas being a necessity given that its predominant 

end-use is space heating (Berndt and Watkins, 1977). However, it could also be that the 

frequency conversion applied to this variable has made it difficult to accurately estimate its 

coefficient. The coefficient of HDD cannot be interpreted as an elasticity, rather it is the 

percentage change in consumption for one additional degree day. Thus, in the short-run an 

additional degree-day in a given month would raise consumption by 0.0013%. Looking at the 

standard error, one can see that this coefficient has been estimated with very high precision. The 

monthly dummies’ coefficients suggest that consumption in October, November, December, and 

January is significantly higher than consumption in April, our base month, while consumption in 

May, June, and July is significantly lower than consumption in April. For the remaining months 

it is not statistically different from that of April. The percentage change in consumption due to a 

specific month, say January ( j ), can be calculated as 1−je


 (Halvorsen and Palmquist, 1980). 

[insert table 3] 

Prior to this study, there exist only two sets of estimates for the residential natural gas 

price elasticity in Colorado (see Table 2); Bernstein and Griffin’s (2006) estimates were 

insignificant both in the short and long run, while Maddala et al. (1997) obtain a range of  two 
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estimates, -0.101 and -0.312, in the SR. Our estimate is more inelastic in the SR, but cannot be 

compared to their LR values since their standard errors are missing. Although natural gas price 

elasticities are expected to be fairly inelastic because natural gas is consumed for basic services 

such as space and water heating, the present results provide clear evidence that the residential 

sector demand is much more inelastic than has been found in the literature at the national level. 

Some of the potential reasons behind the high inelasticity are detailed next. 

Given the low energy expenditures per capita (rank 5 in lowest energy expenditures as of 

2007 according to EIA) and the above average income per capita (rank 15 in personal income as 

of 2007 according to the BEA) relative to the rest of the states, one would expect Colorado 

consumers to be less responsive to price changes than consumers in most other states. Consistent 

with this hypothesis, Snyder (1979) found his own-price elasticity of electricity demand in 

Colorado to be relatively lower than his national estimates. 

More recently, Kim (2004) examined whether combined-billed residential households of 

electricity and natural gas utilities (such as in this case) face information costs associated with 

determining the portion of their monthly energy bill attributed to natural gas consumption and 

the portion attributed to electricity consumption. He found electricity and natural gas demand to 

be more inelastic in such markets compared to separate-billed markets, an indication of the 

presence of information costs. This finding has important implications for both combined-bill 

utilities and their customers. Empirically, only one study (Snyder, 1979) compares Colorado 

price elasticity estimates to the national estimates using exactly the same model and estimation 

approach and finds them to be consistent with these expectations. 

There is evidence from the electricity sector that monthly data produce more elastic 

estimates compared to annual (Espey and Espey, 2004), probably because the model would be 

able to pick up more subtle changes with monthly data than would be possible with annual data. 

The same reasoning should apply to the natural gas sector because the argument on which it rests 

is not sector specific, and hence the price inelasticity cannot be attributed to the use of monthly 

data. For the income elasticity the differences between annual and monthly data were not 

statistically different for either the SR or the LR cases (Espey and Espey, 2004). 

Also consistent with our results, Bohi (1981) found that the price elasticities for 

electricity derived from disaggregate level data are smaller in absolute value than those derived 

from aggregate level data. Similarly, McClung (1988) concludes that elasticities estimated using 
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microdata are uniformly and significantly smaller than those from the aggregate studies when 

using static models. Also, Espey and Espey (2004) in their meta-analysis of residential electricity 

studies conclude that the use of regional as opposed to aggregate U.S. data tends to produce less 

elastic SR price and LR income estimates.14 

Moreover, a few researchers have pointed out the importance of the time period under 

study regarding its impact on the estimated elasticities. For example Dahl (1993) in her survey of 

energy demand studies notes that elasticities in recent studies after 1980 tend to be smaller in 

absolute value than those from earlier studies. Espey and Espey’s (2004) meta-analysis results on 

residential electricity studies find that residential demand has grown more inelastic since the 

energy crises. They suggest that with time consumers are becoming less price elastic as 

electricity is becoming more of a necessity for both urban and rural customers. In addition, more 

and more electrical appliances such as air conditioners have become a part of daily life and 

consumers are increasingly relying on them. Similarly, as income rises and electricity becomes a 

smaller portion of total expenses, income elasticities are expected to decrease. Other factors 

contributing to the decreasing income elasticity are: (1) electrical appliances have saturated the 

residential market, (2) very few new appliances are being introduced to the market, and (3) 

replacement appliances are likely to be more energy efficient (Espey, 1998). All three noted 

factors, to a certain extent, apply to natural gas space and water heating equipment. 

It is important to note here that the third point listed above has further implications than 

those related to the income elasticity. An energy-efficient improvement lowers the marginal cost 

of the end-use service leading to an increase in consumption, which in some cases can outweigh 

the initial reduction in consumption due to the efficiency improvement (EIA, 2003). This effect 

is known as the rebound effect. Khazzoom (1980) suggests that the price elasticity of energy 

demand be used as a proxy for the rebound effect. The above-reported price elasticities include 

the direct rebound effect during the time period considered since they are based on actual data. 

For a survey of studies on the rebound effect, see Greening et al. (2000) who conclude that the 

range of estimates for the size of the rebound effect is very low to moderate. 

Figures 2a, 2b, and 2c trace the temporal path of the dynamic price and income 

elasticities obtained by shocking the system with a permanent price or income increase, where 

 
14 The cited analysis controls for the specification of electricity demand, the nature of the data, time and location of 

the study, and the estimation technique.  
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the two dashed lines represent the 95% confidence bands. One of the advantages of the dynamic 

elasticities graphs is that one can easily detect the complete estimated dynamics of the system in 

each and every period. From the generated graphs one can easily follow the elasticity path and 

determine how long it takes to get to the long run. The own-price elasticity, depicted in Figure 

2a, starts at -0.091 (SE=0.026) and reaches -0.237 (SE=0.063) at the end of the period. 

Interestingly, the figure indicates that the system completely stabilizes around 18 months15 after 

it has been shocked by a price change. The short run and long-run elasticities are identical to the 

ones reported in table 3 where the long-run price elasticity has been calculated in the traditional 

way. The cross-price elasticity, depicted in Figure 2b, starts at 0.153 (SE=0.056) and reaches 

0.398 (SE=0.142) at the end of the period. Again, the long-run equilibrium is reached around 18 

months after the price change is applied. As can be seen from Figure 2c, the income elasticity is 

not significantly different from zero. 

[insert figures 2a, 2b, and 2c] 

 

The results of the simulation imply a much shorter time period than expected for the 

long-run adjustments to complete. This is probably due to the limited month-to-month price 

variations in the data set during the period being studied. Changes of less than 1% might not be 

perceived by the consumer, and even if they are there is relatively little incentive to change the 

use or stock of energy-using equipment (Westley, 1992). Furthermore, consumers may have 

already adjusted their equipment stock to previous price shocks.  

Analysts and policy-makers are always faced with the question of how to define the short 

run and the long run and consequently which set of elasticities to use. The use of dynamic 

elasticities eliminates this confusion by providing a clear picture of the adjustment path over 

time, and hence utilities and regulatory agencies will not have to restrict themselves to  short-run 

or long-run changes. Knowing consumers’ response over time  enables one to answer a number 

of questions, such as, how long does it take to reach demand stability. In reviewing existing 

dynamic models, Bohi (1981) notes that dynamics cannot be adequately reflected in any model 

that strictly separates single-period from infinite-period adjustments especially when decisions 

are made continuously through all periods, and that it would be preferable to have a model that is 

 
15 Note that this observation is based on the examination of the third decimal number. The time to reach equilibrium 

is 12 months if one looks at the second decimal number instead. 
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capable of describing the path that adjustments might take over time. The dynamic elasticity 

approach is unique in that it fully captures the temporal nature of energy demand.   

 

7. Conclusions and Implications 

Based on the very general Autoregressive Distributed Lag model we estimate the 

residential natural gas demand elasticities at the utility level in Colorado using monthly data 

spanning the period January 1994 to September 2006. Price and income were found to be much 

more inelastic—even in the long run—than what has been commonly suggested in the literature, 

although most of the existing estimates are at the national level. Driving factors behind this 

demand insensitivity to changes in price and income include the following.  

Natural gas demand in Colorado is expected to be less price elastic compared to other 

states due to the combination of low energy expenditures per capita and higher income per capita 

relative to the rest of the states. Also, there is evidence in the literature that data disaggregation 

produces lower (in absolute value) price elasticities (Bohi, 1981; McClung, 1988; Espey and 

Espey, 2004). Kim (2004) found that electricity and natural gas demand are more price inelastic 

in combined-billed markets, which is the case for Xcel Energy in Colorado. Hence, it is expected 

that price elasticity estimates for Xcel Energy in Colorado will be lower relatively to other states 

and to national estimates.  

The present findings seem to be in agreement with the hypothesis that combined-billed 

markets are more price inelastic than individually-billed markets (Kim, 2004). Such a result has 

important policy implications for dual-product utilities, which have been on the rise driven by a 

growing preference among customers for energy suppliers that can provide more diversified 

energy services (Kim, 2004). First, this means that such utilities must be very careful when using 

“borrowed” price elasticity estimates and adjust the available estimates in accordance with the 

above findings. Second, it is clearly implied that for such utilities it will be harder to control 

consumption via price changes or by adding surcharges relative to single-product utilities.   

Interestingly, we find that the long run equilibrium is reached relatively quickly around 

18 months after the change, while the literature implies a minimum period of ten years for the 

long-run or complete adjustments to take place (Bohi, 1981). These results indicate that most of 

the adjustment to any price change takes place in the short run (changing the usage of existing 

equipment) rather than the long run where changes in the stock of equipment usually happen. 
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This could be because the vast majority of price changes in the data set during the period being 

studied are less than 1% from month to month. It has been suggested that such small changes 

might not be perceived by the consumer, and even if they are there is relatively little incentive to 

change the use or stock of energy-using equipment (Westley, 1992). Bigger price changes could 

be expected to induce more changes in the stock of durable equipment, which naturally take 

longer to accomplish. With more severe price changes, the consumers might react differently 

especially as electricity and natural gas expenditures become a more substantive portion of the 

consumer’s budget. 

Analysts and policy-makers are always faced with the question of how to define the short 

run and the long run and consequently which set of elasticities to use. The use of dynamic 

elasticities eliminates this confusion by providing a clear picture of the adjustment path over 

time, and hence utilities, regulatory agencies, and policymakers will not have to restrict 

themselves to the mere examination of short-run versus long-run changes. In practice, the 

proposed dynamic elasticity approach presented is expected to be a useful means of capturing 

adjustments over time and greatly simplifies the choice of elasticity to be employed in a 

particular analysis. In such a case, the end-user is no more restricted to a short-run versus a long-

run analysis, as was the case previously. 

 

Acknowledgments 

The author wishes to thank Carol Dahl, John Cuddington, Michael Heeley, and two 

anonymous referees for their useful comments and suggestions, as well as Talar Yacoubian for 

her research assistance. Financial support from Xcel Energy is gratefully acknowledged. Also, 

special thanks to Tim Sheesley and Scott Brockett of Xcel Energy for providing the data and for 

helpful discussions. Most of the writing was done while the author was a fellow with Harvard’s 

Environment and Natural Resources Program. 

 

References 

  

Andrews, D. W. K., 1993. Tests for parameter instability and structural change with unknown 

change point. Econometrica, 61(4), 821-856. 

Baltagi, B. H., 2008. Econometrics. 4th edition. Heidelberg: Springer-Verlag. 



21 

 

Baltagi, B. H., Griffin, J.M., 2006. Swedish Liquor Consumption: New Evidence on Taste 

Change. Contributions to Economic Analysis, Panel Data Econometrics. Edited by Badi 

Baltagi, Elsevier, Netherlands. 

Bentzen, J., Engsted, T., 2001. A revival of the autoregressive distributed lag model in 

estimating energy demand relationships. Energy, 26, 45-55. 

Berndt, E. R., Watkins, G.C., 1977. Demand for natural gas: residential and commercial markets 

in Ontario and British Columbia. Canadian Journal of Economics,1, 97-111. 

Bernstein, M. A., Griffin, J., 2006. Regional Differences in the Price-Elasticity of Demand for 

Energy.  National Renewable Energy Laboratory. Technical Report, Santa Monica, CA: 

Rand Corporation.    

Bohi, D. R., 1981. Analyzing Demand Behavior. Baltimore, MD: Johns Hopkins University. 

Published for Resources for the Future. 

Bohi, D., Zimmerman, M. B., 1984. An update on econometric studies of energy demand 

behavior. Annual Review of Energy, 9, 105-154. 

Charemza, W., Deadman, D., 1997. New Directions in Econometric Practice. 2nd Edition. UK: 

Edward Elgar Publishing. 

Chern, W. S., Just, R.E., 1980. Regional analysis of electricity demand growth. Energy, 5, 35-46. 

Choi, J., 2002. Short-run and long-run elasticities of electricity demand in the public sector: a 

case study of the U.S. navy bases. Ph D. Thesis, Department of Economics, George 

Washington University.  

Cuddington, J. C., Dagher, L., 2008. Dynamic demand functions: estimating short-run and long-

run elasticities and associated standard errors. Colorado School of Mines manuscript. 

Dahl, C. A., 1993. A Survey of Energy Demand Elasticities in Support of the Development of 

the NEMS. (Prepared for the US Department of Energy under contract De-Ap01-

93EI23499). Colorado School of Mines. 

Dahl, C. A., Pechatnikov, A. 2007. Meta-Analysis for Natural Gas Demand: Notes and 

Regressions. Colorado School of Mines manuscript. 

Danielsen, A. L., 1977. A specification analysis of the demand for petroleum products, coal, and 

natural gas. Review of Business and Economic Research, XIII(2), 1-20.  

Dickey, D. A., Bell R. W., Miller, B. R., Feb., 1986, Unit roots in time series models: tests and 

implications. The American Statistician, Vol. 40, No. 1, pp. 12-26. 

Dolado, J., Jenkinson, T.,  Sosvilla-Rivero, S., 1990. Cointegration and unit roots. Journal of 

Economic Surveys, 4, 249-273. 

Donnelly, W. A., 1987. The Econometrics of Energy Demand. New York: Praeger Publishers. 

Efron, B., 1981. Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap, and 

Other Methods. Biometrika, 68(3), 589-599. 

Enders, W., 1995. Applied Econometric Time Series. New York: Wiley. 

Energy Information Administration, State Energy Profiles, Colorado, 

http://tonto.eia.doe.gov/state/state_energy_profiles.cfm?sid=CO, 11/12/2007. 

Energy Information Administration (EIA), 2007. State Electricity Profiles 2006, DOE/EIA-

0348(01)/2.. 

Energy Information Administration (EIA), 2003. Price Responsiveness in the AEO2003 NEMS 

Residential and Commercial Buildings Sector Model by Steven Wade. 

Espey, J. A., 1998. Explaining the Variation in Price and Income Elasticities of the Demand for 

Residential Electricity: A Meta-Analysis. Masters Dissertation. University of Nevada, 

Reno. 

http://tonto.eia.doe.gov/state/state_energy_profiles.cfm?sid=CO


22 

 

Espey, J. A., Espey, M., 2004. Turning on the lights: a meta_analysis of residential electricity 

demand elasticities. Journal of Agricultural and Applied Economics, 36(1), 65-81. 

Fatai, K., Oxley, L., Scrimgeour, F. G., 2003. Modeling and forecasting the demand for 

electricity in New Zealand: a comparison of alternative approaches. The Energy Journal, 

24(1), 75-102. 

Fisher, F. M., Kaysen, G.S., 1962. The Demand for Electricity in the United States. Amsterdam: 

North-Holland. 

Garcia-Cerutti, L. M., 2000. Estimating elasticities of residential energy demand from panel 

county data using dynamic random variables models with heteroskedastic and correlated 

error terms. Resource and Energy Economics, 22, 355-366.  

Greening, L. A., Greene, D. L., Difiglio, C., 2000. Energy efficiency and consumption-the 

rebound effect-a survey. Energy Policy, 28, 389-401. 

Halvorsen, R.,  Palmquist, P., 1980. The interpretation of dummy variables in semilogarithmic 

equations. American Economic Review, 70, 474-475. 

Houthakker, H. S., Verleger, P. K. Jr., Sheehan, D. P., 1974. Dynamic demand analyses for 

gasoline and residential electricity. American Journal of Agricultural Economics, 56(2), 

412-418. 

Hsiao, C., Yanan, W., 2006. Panel Data Analysis – Advantages and Challenges. Wise working 

paper series, WISEWP0602. 

Joutz, F., Trost, R. P., 2007. An Economic Analysis of Consumer Response to Natural Gas 

Prices. Prepared for the American Gas Association. 

Kennedy P., 2003. A Guide to Econometrics, 5th Edition. Cambridge, MA: MIT Press. 

Khazzoom, J. D., 1980. Economic implications of mandated efficiency in standards for 

household appliances. Energy Journal, 1(4), 21-40. 

Kim, D. W., 2004. Three essays in energy economics. PhD Dissertation, University of 

California, Davis. 

Kramer, W., Ploberger, W., Alt, R., 1988. Testing for structural change in dynamic models. 

Econometrica, 56, 1355-1369. 

Labandeira, X., Labeaga, J. M., Rodriguez, M., 2005. A residential energy demand system for 

Spain. Center for Energy and Environmental Policy Research, 05-001 WP. 

Maddala, G. S., Trost, R., Joutz, F., Li, H., 1997. Estimation of short run and long run elasticities 

of energy demand from panel data using shrinkage estimators. Journal of Business & 

Economic Statistics, 15(1),  90-101. 

McClung, B., 1988. Estimation and interpretation of competing models of electricity demand 

using the residential energy consumption survey microdata sets. PhD dissertation, Texas 

A&M University.  

Munley, V. G., Taylor, L. W., Formby, J. P., 1990. Electricity demand in multi-family, renter-

occupied residences. Southern Economic Journal, 57(1), 178-194. 

Murray, M. P., Spann, R., Pulley, L., Beauvais, E., 1978. The demand for electricity in Virginia. 

Review of Economics and Statistics, 60(4), 585-601. 

Pindyck, R., Rubinfeld, D., 1998. Econometric Models and Economic Forecasts, 4th Edition. 

McGraw-Hill Companies. 

Rushdi, A. A., 1986. Interfuel substitution in the residential sector of South Australia. Energy 

Economics,177-185. 

Shin, J., 1983. Perception of price when price information is costly: evidence from electricity 

demand. PhD Dissertation Ohio State University. 



23 

 

Smith, K., 1980. Estimating the price elasticity of US electricity demand. Energy Economics, 

2(2), 81-85. 

Snyder, J. J., 1979. Residential electricity demand in Colorado municipalities: a time-series 

cross-section study. PhD Dissertation. University of Colorado, Boulder, CO. 

Taylor, L. D., 1977. The demand for energy: a survey of price and income elasticities, in William 

D. Nordhaus, ed., International Studies of the Demand for Energy. Amsterdam: North-

Holland. 

Uri, N. D., 1975. Towards an Efficient Allocation of Electrical Energy. Lexington, MA.: Heath, 

pp. 11-26. 

Uri, N. D., 1983. The regional demand for energy by the residential sector in the United States. 

Applied Energy, 13, 23-44.  

Varian, H. R., 1992. Microeconomic Analysis. New York, NY: W. W. Norton and Company. 

Westley, G. D., 1992. New Directions in Econometric Modeling of Energy Demand. Inter-

American Development Bank, Washington D. C. 

Wooldridge, J. M., 2009. Introductory Econometrics- A Modern Approach, Fourth Edition. 

South-Western Cengage Learning, Canada. 

Yokohama, A., Ueta, K., Fujikawa, K., 2000. Green tax reform: converting implicit carbon taxes 

to a pure carbon tax. Environmental Economics & Policy Studies, 3(1), 1-20. 

 

 

 


