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Defensible Space, Housing Density, and Diablo-North Wind Events: Impacts on Loss Rates for 

Homes in Northern California Wildfires 

Abstract: If a house is exposed to a wildfire, what is the probability that it will be destroyed?  How is the risk of loss 

affected by vegetation cover near the home (i.e., defensible space), the proximity to other homes, and wind 

levels?  This study addresses these questions with an analysis of 36,777 single-family homes involved in ten recent 

Northern California wildfires. Two logistic regression models are constructed, one for Diablo-North Wind (DNW) 

fires and another for fires with more moderate winds. Vegetation cover within 50 meters and housing density 

within 100 meters of each house are identified as statistically significant variables.  But the models including those 

two variables alone are relatively weak predictors of structure loss. The addition of an autocovariate derived from 

the outcomes for nearby houses substantially improves prediction accuracy. The autocovariate partially accounts 

for events during fires, such as wind changes or structure-to-structure fire spread, which influence the fate of 

multiple homes in close proximity. The effect on classification accuracy is illustrated for the Coffee Park 

neighborhood in the 2017 Tubbs Fire.  

Increases in housing density appear to have little effect on loss rates in moderate wind fires, but can raise loss 

rates by 35% in DNW fires.  A 10% reduction in vegetation cover near homes is estimated to reduce loss probability 

by 4-6% in most situations, but by only 1-2% when high winds are combined with high housing density.  Loss rates 

are 20-60% higher in DNW fires compared to moderate wind fires for the same levels of vegetation cover and 

housing density. Previous studies and Red Flag Warning data indicate that the San Francisco Bay Area is most at 

risk for Diablo-North winds, followed by the Northern Sierras. The higher elevations found in the Sierras south of 

Lake Tahoe tend to reduce the chances for DNW-type events. 

1.Introduction 

In the decade from 2012 through 2021, wildfires burned over 10.8 million acres in Northern California, compared 

to 2.8 million acres in the previous decade. 48,000 structures were destroyed and more than 125 lives were lost.  

As exposure to wildfire rises, the factors that contribute to structure loss are of growing concern to homeowners, 

insurers, fire fighters and regulatory agencies.  This study examines the influence of several variables on loss rates 

for single-family homes in wildfires: vegetation near structures, structure density, and wind levels. The ten fires 

included in the analysis account for 82% of the single-family residences destroyed by wildfires in Northern 

California during the 2012-2021 decade. Table 1 lists the fires included in the study along with selected statistics. 

Figure 1 displays the fire locations. 

Table 1. Statistics by Fire
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Figure 1: Northern California Wildfires Included in Study

 

2. Previous Studies 

Empirical studies attempting to assess the effect of vegetation near structures on wildfire losses have had mixed 

results. Several studies using high-resolution aerial imagery or LIDAR to measure vegetation (Gibbons et al., 2012; 

Syphard et al., 2014; Schmidt, 2020; Schmidt, 2022; Knapp et al., 2021) have found that vegetation cover within 25 

to 100 meters of a structure has a significant effect on structure loss. Studies relying on ground-based estimates of 

defensive space compiled by the California State Department of Forestry and Fire Protection (Syphard et al., 2017;  

Troy et al., 2022) have identified only a weak relationship between vegetation near homes and structure loss. 

Syphard et al. (2021) found that vegetation near homes derived from 30-meter resolution LANDSAT satellite 

imagery was a poor predictor of structure loss in Northern California. 

Studies examining the effects of structure density have also had mixed results. Proximity to neighboring structures 

was found to be positively related to structure loss rates in Gibbons et al. (2012) and Schmidt (2022). In Knapp et 

al. (2021) distance to the nearest burned structure was identified as the strongest predictor of structure loss for 
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the Camp fire. Syphard et al. (2014) and Alexandre et al. (2016) found that structure density was negatively related 

to structure loss in Northern California.  Kramer et al. (2019) and Syphard et al. (2021), however, noted that 

Wildland-Urban Interface (WUI) categories with higher structure density had a higher relative risk of loss. 

Gibbons et al. (2012) indirectly analyzed the effect of wind speeds on structure loss rates. In that study a Forest 

Fire Danger Index value, which included wind speed, was the second most significant predictor of loss rates for 499 

houses sampled after the 2009 Black Saturday fires in Australia. Schmidt (2022) found that maximum wind speed 

recorded on the day of greatest structure loss was a significant predictor of loss rates in nine Northern California 

wildfires. 

3. Materials and Methods 

3.1 Structure Loss and Structure Density 

The Damage Inspection database (DINS) compiled by Cal Fire is the primary source for structure locations and 

damage. The DINS database records the coordinates of a point representing each structure inspected after a 

wildfire, an assessment of the damage to the structure, and selected structure characteristics. In the current study 

all structures identified as single-family residences in the DINS data are included, except for motor homes. 

Structures with more than 10% recorded damage are counted as a loss.  

Undamaged houses not included in the DINS database are added using pre-fire aerial imagery from the National 

Agricultural Imagery Program (NAIP) (https://gdg.sc.egov.usda.gov/) and building footprint data from Microsoft 

(https://www.microsoft.com/en-us/maps/building-footprints). Of the 36,777 houses in the study dataset, 33,002 

(90%) are derived from the DINS database and 3,775 (10%) from other sources. The locations of DINS structure 

points were adjusted, when necessary, to match the structure locations in the NAIP imagery and the Microsoft 

data.  40% of the DINS structure points were re-positioned by at 5 meters or more. Only houses located within 

mapped fire boundaries are included in the dataset. Fire boundaries are taken from the 2021 Cal Fire dataset 

found at: https://frap.fire.ca.gov/mapping/gis-data/. Structure densities are calculated from the number of 

neighboring house points counted within 100 meters of each house point. The 100-meter zone encompasses the 

300 ft. distance that embers are known to travel from burning residential structures and to ignite other structures 

(Maranghides et al., 2022). 

 

3.2 Vegetation Cover 

High resolution (0.6-1.0 meter pixel size) pre-fire infrared NAIP imagery is used to estimate live vegetation cover 

within 50 meters of each structure point.  The 50-meter zone approximates the 100 ft. defensible space distance 

defined by California state law. A Normalized Difference Vegetation Index (NDVI) is calculated for each pixel in the 

NAIP images. Pixels with an NDVI value of 0.25 or less are classified as non-vegetation and pixels with an NDVI 

greater than 0.25 are classified as vegetation. Vegetation cover is estimated from the percent of pixels classified as 

vegetation within the 50-meter circle around each structure point.  Figure 2 illustrates the procedure: 

 

 

 

https://gdg.sc.egov.usda.gov/
https://www.microsoft.com/en-us/maps/building-footprints
https://frap.fire.ca.gov/mapping/gis-data/
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Figure 2: Example Vegetation Cover Calculation 

 

The image on the left is the original infrared NAIP image with a 50-meter circle drawn around a point representing 

the structure.  The image on the right shows the area classified as live vegetation in green. In this example, the 

green area within the 50-meter circle amounts to 49% of the area within the circle.  

3.3 Wind Classification 

Strong, dry, gusty downslope winds from the north or northeast that originate from the Great Basin deserts are 

associated with some of the most destructive and deadliest fires in California history (Keeley and Syphard, 2019). 

These winds are labelled “Santa Ana Winds” in Southern California, “Diablo Winds” when they occur in the San 
Francisco Bay Area, “North Winds” in the Northern Sierras and “Mono Winds” in Central and Southern Sierras. 

According to Smith et al. (2018) and Nausler et al. (2018), the 2017 Tubbs Fire in Santa Rosa occurred during a 

Diablo Wind event. The 2018 Camp Fire in Paradise was associated with a North Wind event (Brewer and 

Clements, 2019; McClung and Mass, 2020). The structure losses in the North Complex fire occurred during a North 

Wind event on Sept. 8, 2020, according to data recorded by the Remote Automated Weather Station (RAWS) at 

Jarbo Gap (RAWS USA Climate Archive, 2023). Figure 3 displays the maximum wind speeds and loss rates for each 

fire in this study as displayed in Table 1. Maximum wind speeds are taken from nearby RAWS data. The three DNW 

fires have both the highest recorded maximum winds and the highest loss rates. Loss rates averaged 82% for the 

DNW fires compared to 46% for the fires with more moderate winds.  
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Figure 3: Loss Rates by Fire vs. Maximum Recorded Winds 

 

 

4. Analysis 

4.1 Housing Density and Loss Rates 

Burning structures can pose a hazard to other structures in wildfires, igniting nearby homes through direct flame, 

radiant heat, or ember transport (Cohen, 1995). Those effects are magnified by strong winds which increase both 

fire intensity and the size and distance travelled by embers (Maranghides et al., 2022).  

Table 2 and Figure 4 display loss rate statistics for homes grouped by Housing Density Class and Wind Category. 

Housing Density Class 0 includes those homes having no other houses within 100 meters (i.e., a density of one 

house per 7.8 acres). Density Class 1 includes those homes having 1 to 5 neighboring homes within 100 meters; 

Density Class 2 includes homes with 6-10 neighbors, etc. Density Class 10 includes all homes with a density of more 

than 45 homes in the 100-meter zone. Due to low numbers, Housing Density Classes 6-10 for moderate wind fires 

are combined in Figure 4. Wind Categories include Moderate Wind and DNW. 

In the Moderate Wind Category, loss rates average 45% when there are no other houses within 100 meters 

(Housing Density Class 0). Loss rates remain at that level through Density Class 2 (6-10 neighboring houses or 0.9-

1.4 houses per acre). At higher housing density levels, loss rates increase slightly, but not in a consistent pattern.  

In contrast, loss rates for DNW fires start out at 65% for Density Class 0 and rise rapidly, reaching 89% for Housing 

Density Class 3 (11-15 neighboring houses or 1.5-2.0 houses per acre) and remaining near 90% for all higher 

housing densities. 
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Table 2: Loss Rates by Housing Density Class and Wind Category 

 

 

Figure 4: Loss Rates by Housing Density Class and Wind Category 

 

 

MODERATE WINDS DIABLO-NORTH WINDS

CLASS   COUNT HOUSES*

VEG. 

COVER**

LOSS 

RATE COUNT HOUSES*

VEG. 

COVER**

LOSS 

RATE

0 3168 1.0 50.5 0.45 1840 1.0 55.3 0.65

1 5858 3.5 56.5 0.45 4336 3.6 58.3 0.70

2 2124 8.7 54.1 0.45 3925 9.2 60.3 0.81

3 1242 13.9 47.0 0.48 4935 13.9 60.9 0.89

4 645 18.7 45.4 0.56 3514 18.7 58.0 0.89

5 250 23.6 38.1 0.52 1731 23.6 55.2 0.87

6 86 28.6 33.1 0.44 864 28.9 41.1 0.89

7 46 34.2 25.0 0.59 689 33.8 36.6 0.92

8 15 39.2 29.8 0.33 517 38.8 33.1 0.92

9 5 42.4 28.1 0.00 401 44.0 26.4 0.92

10 4 49.3 35.6 0.00 582 54.6 20.1 0.95

Classes 6-10 156 32.3 30.3 0.45

Total 13443 3.8 52.6 0.46 23334 14.9 55.3 0.82

* Average number of houses within 100 meters

** Average percent vegetation cover within 50 meters
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4.2 Vegetation Cover and Loss Rates by Density-Wind Categories 

Table 3 and Figure 5 display loss rates by Vegetation Cover Class and Housing Density-Wind Category. Vegetation 

Cover Class 1 includes houses with 0-10% vegetation cover in the 50-meter zone. Vegetation Cover Class 2 includes 

houses with vegetation cover from 10 to 20%, etc.  Two housing density categories are combined with two wind 

categories. The Low Housing Density Category includes those houses with a density of up to 15 houses in the 100-

meter zone (2 houses per acre or less). The High Housing Density Category includes houses with more than 15 

houses in the 100-meter zone (> 2 houses per acre).  Wind categories are: Moderate Wind and DNW. 

For homes in the Moderate Wind – Low Housing Density Category (Curve A in Figure 5) loss rates rise relatively 

slowly as vegetation cover increases and never exceed 55%.  For homes in the DNW-Low Housing Density Category 

(Curve B in Figure 5) losses rise rapidly as vegetation cover increases, reaching 80% with 55% vegetation cover. 

Curve C in Figure 5 displays loss rates for the DNW - High Housing Density Category. Loss rates are 84% or higher, 

even for homes with very low vegetation cover.  

(Note: There are relatively few homes in the Moderate Wind - High Housing Density Category (1,051). Loss rates by vegetation 

class for that category do not follow a consistent pattern and are not graphed in Figure 5). 

Table 3. Loss Rates by Vegetation Class and Wind-Housing Density Categories 

 

 

MODERATE WIND-LOW HOUSING DENSITY (CURVE A) MODERATE WIND-HIGH HOUSING DENSITY (NOT GRAPHED)

VEG. CLASS COUNT DENSITY* VEG. COVER** LOSS RATE COUNT DENSITY* VEG. COVER** LOSS RATE

1 497 4.1 6.2 0.28 50 22.5 6.9 0.34

2 948 5.2 15.3 0.39 99 21.8 16.1 0.62

3 1,213 5.8 25.0 0.40 249 22.7 25.1 0.51

4 1,185 5.0 35.1 0.44 228 24.5 34.8 0.54

5 1,369 4.2 45.2 0.46 93 20.2 44.0 0.71

6 1,523 4.4 55.2 0.46 63 20.1 54.9 0.75

7 1,821 4.7 65.1 0.48 98 20.0 65.4 0.42

8 1,901 5.0 75.0 0.49 111 20.0 74.7 0.46

9 1,474 4.9 84.5 0.55 44 19.0 84.4 0.50

10 461 3.8 93.0 0.55 16 18.8 92.3 0.31

TOTALS 12,392 4.8 53.6 0.46 1,051 21.9 41.4 0.53

DNW-LOW HOUSING DENSITY (CURVE B) DNW-HIGH HOUSING DENSITY (CURVE C)

VEG. CLASS COUNT DENSITY* VEG. COVER** LOSS RATE COUNT DENSITY* VEG. COVER** LOSS RATE

1 165 2.5 5.8 0.28 189 60.3 6.2 0.85

2 394 4.3 15.6 0.36 625 38.4 16.4 0.84

3 754 6.3 25.3 0.58 1,491 33.8 24.8 0.88

4 1,284 7.7 35.4 0.65 893 27.2 34.6 0.89

5 1,957 8.5 45.2 0.75 853 23.8 45.3 0.94

6 2,441 8.7 55.2 0.80 1,245 23.0 55.4 0.92

7 3,025 9.2 65.1 0.85 1,498 22.2 65.1 0.90

8 2,884 8.8 74.8 0.87 1,170 21.5 74.4 0.88

9 1,638 7.4 84.3 0.86 306 20.8 83.0 0.91

10 494 5.1 93.5 0.84 28 19.6 94.7 0.93

TOTALS 15,036 8.1 59.3 0.78 8,298 27.0 48.2 0.89

* Average number of houses within 100 meters.

** Average percent vegetation cover within 50 meters.
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Figure 5. Loss Rates by Wind - Housing Density Categories and Vegetation Cover Class 

 

 

4.3 Logistic Modelling 

Two logistic regression models are estimated to evaluate the combined effects of vegetation cover and housing 

density on loss rates: one model for moderate wind fires and one for DNW fires.  In both models, the dependent 

variable is set to 1 for a structure loss and to 0 for a structure survival. Independent variables are: HOUSE100 - the 

number of houses within 100 meters of each single-family residence, including the residence itself; and 

VEG50_PCT - the percentage of vegetation cover within 50 meters.  The models are estimated for 13,443 homes in 

moderate wind fires and 23,334 homes in DNW fires.  

Tables 4 and 5 display initial results for the two models. The VEG50_PCT and HOUSE100 variables are significant 

for both models at the 99% confidence level. The model coefficient for VEG50_PCT is about three times higher in 

DNW fires compared to moderate wind fires. The coefficient for HOUSE100 is more than 4 times higher in the 

DNW model.   

The Area Under the Receiver Curve (AUC) is only 0.569 for the moderate wind logistic model, indicating that the 

model is a poor predictor of structure loss. That compares to an AUC of 0.702 for the DNW model, just over the 

limit of what qualifies as acceptable (Hosmer, et al., 2013). For moderate wind fires only 34% of houses that 

burned were correctly classified (predicted loss probability > 0.50). Of those houses that survived, 73.2% were 

correctly classified (predicted loss probability < 0.50). Those results yield an average classification accuracy of 

55.1%. For DNW fires, the classification accuracy for burned structures is an excellent 98.8%. But the accuracy for 

surviving houses is only 10%, for an average classification accuracy of 83%. The Moran’s I statistic for residuals in 
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both the moderate wind fires and the DNW fires shows a moderate level of spatial autocorrelation which gradually 

decreases with distance. 

Table 4. Initial Logistic Model - Moderate Wind Fires 

 

Table 5. Initial Logistic Model - Diablo-North Wind Fires 

 

To address the effects of spatial autocorrelation on predicted outcomes, an autocovariate is added to the logistic 

models. The autocovariate is based the residuals from the initial logistic models described Tables 4 and 5, following 

Crase et al. (2012). Houses that burned will have a negative residual while houses that survived will have a positive 

residual. The autocovariate calculated here is the sum of the inverse distance-weighted residuals for all houses 

within 100 meters, multiplied by 100. For those houses having no neighboring houses within 100 meters, the 

autocovariate is set to zero. The result of adding this variable (AUTOCOV) to the models is displayed in Tables 6 

and 7. 

The autocovariate has a large impact on the AUC for the moderate wind fires, increasing it from 0.569 to 0.870. 

The improvement in AUC for DNW fires is smaller, but still substantial, rising from 0.702 to 0.885. Classification 

accuracy also shows significant improvement. Model coefficients for VEG50_PCT increase slightly. The coefficient 

VARIABLE COEFF S.E. WALD P-VALUE

intercept -0.7682 0.0479 256.8 0.0000

VEG50_PCT 0.0098 0.0007 182.1 0.0000

HOUSE100 0.0148 0.0028 27.3 0.0000

AUC 0.569

Classification Accuracy

Lost Survived Total

Houses 6,192 7,251 13,443

Correct Classification 34.0% 73.2% 55.1%

Moran's I Statistic

100m 200m 1000m

0.611 0.523 0.337

VARIABLE COEFF S.E. WALD P-VALUE

intercept -0.8783 0.0588 223.0 0.0000

VEG50_PCT 0.0288 0.0009 1007.9 0.0000

HOUSE100 0.0682 0.0020 1200.6 0.0000

AUC 0.702

Classification Accuracy

Lost Survived Total

Houses 19,202 4,132 23,334

Correct Classification 98.8% 10.0% 83.0%

Moran's I Statistic

100m 200m 1000m

0.391 0.287 0.145
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for HOUSE100 almost doubles for the DNW model but switches to a small negative number for the moderate wind 

model.  The Moran’s I statistic drops to very low levels indicating little remaining spatial autocorrelation in either 

model. 

Table 6. Logistic Model with Autocovariate - Moderate Wind Fires 

 

Table 7. Logistic Model with Autocovariate - Diablo-North Wind Fires 

 

 

 

 

 

 

VARIABLE COEFF S.E. WALD P-VALUE

intercept -1.0634 0.0589 325.8 0.0000

VEG50_PCT 0.0175 0.0009 359.3 0.0000

HOUSE100 -0.0244 0.0067 13.3 0.0003

AUTOCOV -0.4977 0.0113 1938.4 0.0000

AUC 0.870

Classification Accuracy

Lost Survived Total

Houses 6,192 7,251 13,443

Correct Classification 72.7% 83.4% 78.5%

Moran's I Statistic

100m 200m 1000m

0.022 0.172 0.128

VARIABLE COEFF S.E. WALD P-VALUE

intercept -1.1601 0.0661 308.4 0.0000

VEG50_PCT 0.0270 0.0010 675.3 0.0000

HOUSE100 0.1451 0.0034 1798.9 0.0000

AUTOCOV -0.2952 0.0059 2521.3 0.0000

AUC 0.885

Classification Accuracy

Lost Survived Total

Houses 19,202 4,132 23,334

Correct Classification 97.1% 45.4% 87.9%

Moran's I Statistic

100m 200m 1000m

0.062 0.113 0.086
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4.4 Coffee Park Example 

The autocovariate incorporates the fate of neighboring houses in predicting structure survival. When nearby 

houses have burned, the autocovariate will tend to increase the predicted loss rate.  When nearby houses have not 

burned, the autocovariate will tend to decrease the predicted loss probability. In effect, the autocovariate 

represents the that portion of structure loss or survival which can be attributable to local spatial patterns that are 

not explained by vegetation cover near homes and housing density.   

A map of predicted vs. actual losses for the Coffee Park neighborhood in the Tubbs Fire (Figure 7) illustrates the 

spatial clustering that exists in classification results from the initial DNW model in Table 5.  The red squares 

represent houses that were predicted to be losses but which survived. The pattern of structure loss and survival 

suggests that the fire initially started in the interior of the development from ember ignition, and then spread 

outward from house-to-house. The outward spread most likely came to a stop either because wind levels subsided 

or wind direction changed or because of defensive efforts by fire fighters (or perhaps some combination of these 

factors). The clustering exhibited in the location of surviving structures does not point to structure hardening as 

the primary reason for structure survival in this instance. 

Figure 7: Predicted vs. Actual Losses, No Autocovariate, Coffee Park, Tubbs Fire 
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The map in Figure 8 displays the predicted loss results for the Coffee Park neighborhood when the autocovariate is 

added to the DNW model (Table 7). Most of the red squares that appeared in Figure 7 have changed to green, 

indicating that those houses are now correctly predicted to survive due to their proximity to other surviving 

houses. (There are also a few red crosses identifying houses that are now incorrectly predicted to survive).  

Figure 8: Predicted vs. Actual Losses with Autocovariate, Coffee Park, Tubbs Fire 

 

 

4.5 Sensitivity Analysis 

Table 8 displays the predicted loss rates using the enhanced logistic models in Tables 6 and 7 for selected 

combinations of housing density and vegetation cover and with the AUTOCOV variable set to 0.  The housing 

densities listed are 3.9, 7.8 and 15.6 houses within the 100-meter zone, representing 0.5, 1, and 2 houses per acre, 

respectively. Predicted loss rates range from 31% when housing density and vegetation cover are low and winds 

are moderate to 96% when housing density, vegetation cover, and winds are high.  Most housing density – 

vegetation cover combinations have an expected loss rate below 50% in the moderate wind fires, except when 

vegetation cover exceeds 80%. For DNW fires, only houses with 20% vegetation cover and a density of 0.5 houses 

per acre have less than a 50% predicted loss rate.  
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Housing density appears to have little effect on loss rates in moderate wind fires, but for DNW fires, loss rates at 

high densities exceed those at low densities from 13-35%. Compared to moderate wind fires, DNW fires have loss 

rates that are about 20-25% higher than moderate wind fires for the same vegetation cover classes. At housing 

densities of 2 houses per acre, loss rates for DNW fires are 45-60% higher. 

Table 8: Predicted Loss Rates 

 

 

Table 9 displays the rate of change in predicted loss rate for each 10% change in vegetation cover near homes 

based on the data in Table 8. There is little variation in moderate wind fires. A 10% change in vegetation cover 

produces a change in loss rates of about 4% for each housing density – vegetation cover change category.  When 

housing density is one house per acre or less and vegetation cover is less than 50%, loss rates in DNW fires show a 

larger response to vegetation cover change (5.5-6.5%). But with housing density at 2 houses per acre, a 10% 

vegetation cover change produces only a 1.4-2.8% change in loss rates in DNW fires. 

Table 9: Per Cent Change in Predicted Loss Rate for Each 10% Change in Vegetation Cover

 

4.6 Location and Frequency of Diablo-North Wind Events 

 

In the 2012-2021 decade, there were four large Diablo Wind fires, the so-called Wine Country fires of 2017:   

Tubbs, Atlas, Redwood, and Nuns (San Jose State Fire Weather Research Laboratory, 

https://www.fireweather.org/diablo-winds).  Two large North Wind fires occurred in the same period: the Camp 

Fire in 2018 (Brewer and Clements, 2018) and the North Complex Fire in 2020. In total, these six DNW fires 

Moderate Wind Fires

HOUSE100 HOUSES PER ACRE 20% VEG COVER 50% VEG COVER 80% VEG COVER

3.9 0.5 0.31 0.43 0.56

7.8 1 0.29 0.41 0.54

15.6 2 0.25 0.36 0.49

Diablo-North Wind Fires

HOUSE100 HOUSES PER ACRE 20% VEG COVER 50% VEG COVER 80% VEG COVER

3.9 0.5 0.49 0.68 0.83

7.8 1 0.63 0.79 0.89

15.6 2 0.84 0.92 0.96

Moderate Wind Fires

HOUSE100 HOUSES PER ACRE VEG COVER CHANGE VEG COVER CHANGE

20% TO 50% 50% TO 80% 

3.9 0.5 4.0% 4.3%

7.8 1 3.9% 4.3%

15.6 2 3.7% 4.2%

Diablo-North Wind Fires

HOUSE100 HOUSES PER ACRE VEG COVER CHANGE VEG COVER CHANGE

20% TO 50% 50% TO 80% 

3.9 0.5 6.5% 4.9%

7.8 1 5.5% 3.5%

15.6 2 2.8% 1.4%

https://www.fireweather.org/diablo-winds
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accounted for only 7% of the acres burned in Northern California in the last decade but two-thirds of the single-

family residences destroyed. As seen in Table 8, the predicted loss rates in DNW fires are 20 to 60 percentage 

points higher compared to moderate wind fires. A comprehensive evaluation of risk of structure loss in wildfires 

should take into account the frequency and location of a DNW events and the likelihood that a fire would result 

from those events. 

 

Using weather station data for 11 RAWS for the 2001-2018 time period, Smith et al. (2018) found that DNW events 

averaged 2.5 times a year during the late summer and fall in the San Francisco Bay Area and the western slopes of 

the Northern Sierras. Employing a larger number of weather stations (47) and slightly different criteria, McClung 

and Mass (2020) counted almost twice as many Diablo wind events in the Bay Area (8.0 per year) compared to 

North wind events in the Sierras (4.5 per year). McClung defined a DNW event as a 3-hour period with a relative 

humidity less than 20%, an average wind speed greater than 13 ms-1 (29 mph), a surface wind direction of 320°-70° 

for the Bay Area weather stations and a surface wind direction of 10°-100° for Sierra Nevada weather stations.  

 

The frequency of Diablo-North type winds in the Central and Southern Sierras (aka “Mono Winds”) has received 

less study. Ruscha (1976) suggests that east winds are less frequent in the High Sierras south of Lake Tahoe 

compared to the lower elevations found in the Northern Sierras and in the very southern part of the range. He 

estimates that Mono Winds occur once or twice a year, starting in September, but most often in December or 

January.  

 

Red Flag Warnings (RFWs) are issued by the National Weather Service when it forecasts that warm temperatures, 

low fuel moisture, low humidity, and strong winds will increase fire danger. RFWs are not equivalent to DNW or 

Mono Wind events. Table 10 shows that RFWs can be issued for winds as low as 6 mph, if relative humidity is less 

than 9%. But the average annual number of RFWs in the late summer and fall gives a general indication of how 

frequently dry and windy conditions develop during the time of year when DNW fires have happened. 

 

Table 10: Criteria for Red Flag Warnings, Northern California, West of the Cascade-Sierra Crest 

Relative Humidity  Sustained Wind 
6-11 mph  

Sustained Wind 
12-20 mph  

Sustained Wind 
21-29 mph  

Sustained Wind 
30+ mph  

Daytime Minimum RH 29-42% and/or 
Nighttime Maximum RH 60-80%  

      
W  

Daytime Minimum RH 19-28% and/or 
Nighttime Maximum RH 46-60%  

    
W  W  

Daytime Minimum RH 9-18% and/or 
Nighttime Maximum RH 31-45%  

  
W  W  W  

Daytime Minimum RH < 9% and/or 
Nighttime Maximum RH < 31%  W  W  W  W  

Source: National Interagency Fire Center: 

https://gacc.nifc.gov/oscc/predictive/weather/myfiles/Watches_and_Warnings_for_California.htm 

 

Figure 9 displays a map showing the number of DNW events per year by weather station location in the McClung 

and Mass (2020) study as well as the stations where Smith et al. (2018) found no recorded events. Also shown are 

the number of RFWs issued for each county in the months of September through November by the National 

Weather Service. The RFWs for a county are counted only when the warning area intersects a Wildland Urban 

Interface (WUI) area within the county. DNW events mapped by McClung and Mass (2020) tend to occur in 

counties with higher incidence of Red Flag Warnings. Only one North Wind event was recorded by McClung in the 

Central Sierra counties south of Lake Tahoe. RFWs also decline in number in the Sierras to the south of Lake Tahoe.  

 

McClung and Mass (2020) found no evidence that DNW events are increasing over time.  Mass et al. (2019) 

suggested that the pressure gradient that produces these winds may actually decrease in the future as interior 

regions warm. A decrease in the number of wind events, however, could be offset by the lengthening of the dry 

https://gacc.nifc.gov/oscc/predictive/weather/myfiles/Watches_and_Warnings_for_California.htm
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season as climate warms. That could result in an increasing number of the fall wind events that coincide with dry 

conditions conducive to fire spread. (Williams et al., 2019). 

 

The institution of power shutoffs by utilities when wind events are forecast during the fire season, a practice that 

began in 2019, has the potential to reduce the number of fires that occur during high winds. Five of the six wind-

dominated fires described in Keeley et al. (2018) were caused by powerline failures, including the Tubbs Fire and 

the Camp Fire. Pacific Gas & Electric estimates that its five planned power shutoffs in 2021 reduced acres burned 

in wildfires by as much as 700,000 acres, based on the wind damage to equipment that occurred during those 

shutoffs (PG&E, 2022). 

 

Figure 9: Diablo-North Wind Events and Red Flag Warnings 

 

 
(Sources: *McClung and Mass, 2020; **Smith, 2018; Red Flag Warnings: Iowa State University Environmental Mesonet; WUI: Silvis Lab, 2022). 
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5. Discussion  

If only estimates of vegetation cover near homes and housing density are included, the logistic model for 

moderate wind fires is a poor predictor of structure loss, with an AUC of 0.569. The initial model for DNW fires is a 

more accurate, with an AUC of 0.702, but that still barely qualifies as acceptable.  Adding an autocovariate that 

reflects the fate of neighboring houses substantially improves the prediction accuracy of both models while 

addressing the issue of spatial autocorrelation. The AUC increases to 0.870 for the moderate wind model and to 

0.885 for the DNW model. Those improvements demonstrate that the outcomes for neighboring houses during a 

fire have a large impact on structure loss rates, as noted by Knapp et al. (2021) for the Camp Fire.  

The autocovariate helps to account for situations where, based on pre-fire conditions, groups of homes 

unexpectedly survive (as in the Coffee Park example) and when they do not. If winds die down or change direction, 

groups of houses that have high levels of vegetation cover or housing density may avoid destruction. Successful 

defensive efforts could also lead to survival of housing clusters that would otherwise be lost.  Conversely, 

temporary increases in fire intensity and ember showers due to gusting winds could raise loss rates for groups of 

homes that are exposed at that moment, despite having lower levels of vegetation cover or housing density. The 

ignition of a nearby house can also increase the risk of loss. The housing density variable captures some of the risk 

of house-to-house fire spread, but the autocovariate provides additional information - whether or not nearby 

houses have burned.  

The autocovariate has a larger impact on classification accuracy for moderate wind fires compared to DNW fires. 

That could be a product of the greater variability in fire behavior during moderate wind fires. In the three DNW 

fires, almost all structure losses took place within a single 12-hour period, characterized by sustained high winds. 

In moderate wind fires, which can take place over days or weeks, wind speeds may vary greatly from hour to hour 

and from day to day. The outcome for neighboring houses, as measured by the autocovariate, captures some of 

that variability. 

Housing density does not seem to have a strong influence on loss rates in moderate wind fires. Predicted loss rates 

are similar across all housing density classes for a given vegetation cover level. (Table 8).  Lack of structure-to-

structure spread in lower winds could be one explanation. Effective defensive efforts could be another reason.  

The lower rate of fire spread in moderate wind fires allows more time for fire-fighting resources to be deployed 

and for those resources to be concentrated on fewer houses at any one time. Fire fighters may also target higher 

density neighborhoods for protection because that is where the risk of loss is greatest.   

In DNW fires housing density has a much greater impact on losses. Estimated loss rates for DNW fires at high 

housing densities are 25-35% above loss rates for low housing densities with equivalent vegetation cover. At 

housing densities of 2.0 per acre, predicted loss rates top 84% even at low levels of vegetation cover (Figure 5 and 

Table 8). According to Maranghides et al. (2022) structure-to-structure spread predominates and parcel-level 

vegetation management is largely ineffective when housing densities exceed 2.0 per acre. The speed of spread in 

DNW fires likely contributes to the high loss rates in dense communities. The simultaneous ignition of many homes 

means that fire fighters are unable to respond to most structure ignitions and have limited effect on losses (Calkin 

et al., 2014).   

Changes in vegetation cover have a modest effect on loss rates in both moderate wind and DNW fires. In moderate 

wind fires, a 10% change in vegetation cover within 50 meters results in about a 4% change in loss rates (Table 9). 

For DNW fires, a 10% change in vegetation cover yields a 6.5% change in loss rates when housing density and 

vegetation cover are low, but only a 1.4% change when housing density and vegetation cover are high. Excluding 
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areas of high housing density, these impacts are similar to the 5% average response found by Gibbons et al. (2012) 

for a 10% change in vegetation cover within 40 meters. 

A low level of vegetation cover near homes reduces but does not eliminate the risk of loss. A 20% vegetation cover 

still results in an estimated loss rate of 30% in moderate wind fires and 50% or higher in DNW fires. Additional 

measures such as removing ignitable materials within 1.5 meters of a structure and structure hardening to prevent 

ember ignition are required to achieve lower loss rates (Cohen, 2019). When high winds combine with high 

structure density, community-wide structure hardening is needed to prevent extensive losses from structure-to-

structure fire spread (Maranghides et al., 2022). 

High wind levels have a large impact on loss rates. Estimated loss rates for DNW fires are 20% to 60% higher than 

for moderate wind fires with the same level of vegetation cover and housing density (Table 8). Based on McClung 

and Mass (2020), homes in the San Francisco Bay Area appear to be at the highest risk for DNW events while 

homes in the Northern Sierras have about half the risk of those in the Bay Area. Red Flag Warning data support the 

suggestion by Ruscha (1976) that Mono Winds south of Lake Tahoe are less frequent than North Winds due to the 

blocking effect of the High Sierras. When DNW events do occur, pro-active power shutdowns have the potential to 

significantly reduce the risk of fire starts, helping to counteract the effects of a fire season that is stretching farther 

into the windy fall months. 

Corresponding author: James S. Schmidt, email: jschmidt.p38@gmail.com 
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