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Abstract. We propose a method for estimating complex
heterogeneous agent-based models, especially their time-varying
micro data, based on time-varying real-world macro data . We
estimate the model at high frequency without posing simplifying
assumptions on the model or the estimation process. We estimate
daily time series of market participants’ trading strategies, i.e.,
chartists and fundamentalists, at the S&P 500. For this context,
heterogeneous agent-based models which explain macro market
behavior by time-varying usage of strategies on the micro level have
shown superiority to alternative models. Due to complexity, these
agent-based models can hardly be directly estimated. As micro-level
data from real stock markets are largely unobservable, model-free
estimation methods cannot be applied to map macro to micro
variables. Thus, we suggest a combination of both methods in terms
of a model-free estimation of the inverse of an agent-based model,
mapping macro to micro variables, which can then be applied to real-
world macro data. Using an artificial neural network we estimate an
inverse model of the heterogeneous agent-based financial market
model introduced by Lux and Marchesi (1999) and apply it to S&P
500 data. Comparisons with previously estimated yearly time series
and with historic events illustrate validity of the estimation results.
Our results also contribute to the understanding of theoretical models.
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1 The term noise from an economic perspective was coined by Black (1986) and refers to the opposite of
information (actually relevant for valuation of market assets).

1 INTRODUCTION

Financial markets with international investors are the backbone of our global

economy. Understanding the dynamics of these markets is therefore crucial for understanding

this global economy. A first step towards understanding these dynamics is to understand how

prices evolve at financial markets. Research on modeling financial markets has made a

significant shift during the last two decades. Realizing that Fama’s (1970) assumption of

homogeneous rational investors and efficient markets is not sufficient to describe real market

dynamics (Kirman, 1992), researchers started following new paths of modeling market

dynamics (e.g., Kirman, 1993, Brock and Hommes, 1998, and Lux and Marchesi, 1999).

These new models are built on the idea that markets are determined by economic agents

following heterogeneous strategies and that these strategies do not need to be fully rational

(e.g., Shleifer and Summers, 1990, Le Baron, 2006). It was shown that boundedly rational

behavior could survive in financial markets in the long run (compare Hommes, 2002). A

typology of such strategies used by market participants, which is widely accepted among

researchers and which has found theoretical (Aoki, 2002) and empirical support (Shiller,

1984, Menkhoff, 1998, Keim and Madhaven, 1995), is based on the distinction between

fundamentalists and chartists respectively noise traders (Shleifer and Summers, 1990).

Fundamentalists base their actions on fully rational estimates of true fundamental value of a

financial instrument, while noise traders and chartists are less rational, because their actions

are based on non-fundamental, imperfect, possibly inaccurate information, i.e., noise1. Since

noise information can also include extrapolated historic price series (used for trend following)

or charts (of e.g., stock price time series) the concept of noise traders also captures chartists

(see also Brock and Hommes, 1998) and trend followers. The latter are therefore used as

synonyms throughout this paper. By modeling the chartist and fundamentalist strategies as

agent behaviors within heterogeneous agent-based market models, this kind of models has

been very successful in replicating stylized facts related to real financial markets (compare

for example Pagan, 1996, Cont, 2005).

Despite the success of heterogeneous agent-based models these models can hardly be

used to directly estimate the micro behavior, e.g., the strategies of participants at real

markets, based on observable macro data, e.g., price time series. This is due to complexity
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reasons. Estimating micro variables for real markets would allow traders and investors to gain

a more complete picture of the current market behavior and as a consequence to improve

their decision making. Researchers using such heterogeneous agent-based models for

estimating real market participants’ behaviors – even if not a single participant’s behavior but

only fractions of participants using a certain type of strategy – need to balance a model’s

ability to realistically replicate stylized facts with its ability to be estimated (compare Amilon,

2006). Therefore, estimations are typically based on simplifying the model such that the

parameters can be directly estimated with standard statistical methods. Estimates are

therefore based on clearly defined but nevertheless substantially simplified versions of agent-

based models (compare for instance Boswijk et al., 2007).

If identification of a small subset of model parameters is of interest but not the

identification of all relevant model parameters, then simplifying the model to be able to

completely estimate its set of parameters might go unnecessarily far in balancing complexity

with tractability. Relaxing the requirement of a model-based estimation opens the way for

using parameter-free estimation models, such as artificial neural networks (Haykin, 1999).

These methods are better described as learning methods, because a system, e.g., a neural

network, is trained (learns) to replicate a specific mapping behavior. A pre-requisite for such

methods is the existence of sets of input-output pairs, which allows learning the inter-relation

between known and unknown variables. Applied to our context, this requires data containing

actual fractions of chartists and fundamentalists, i.e., micro characteristics, and the resulting

market behavior, i.e., the macro behavior. After training the neural network appropriately,

one would be able to estimate micro strategies based on market behavior. For our application,

however, requiring such training data is a major limitation. We do not know of representative

datasets containing such information. Thus, we propose a new method, which combines (1)

heterogeneous agent-based models replicating typical behavior of real markets to generate the

micro and macro level training data, and (2) a model-free estimation method to estimate

fractions of chartists and fundamentalists in real markets based on an inverse model, mapping

macro back to micro level data and trained on the training data from step 1. We call this an

indirect agent-based estimation method and from our point of view this method can be

applied to many other scenarios and research questions than the one addressed in this paper.

We suggest using complex heterogeneous agent-based models, e.g., the model by Lux and

Marchesi (1999), to feed a model-free estimation approach, specifically an artificial neural

network, with as realistic pairs of micro and macro data as possible, while the trained neural

network is then applied to real macro data in order to estimate the micro data. Note, that
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adding the agent-based model to supplement the model-free estimation approach makes the

method depending on a model and we therefore have a model-based estimation method.

However, the complexity of the model is not restricted except by the ability of the model-free

estimation approach to be able to capture the dynamics of the agent-based model.

The main contribution of this work is an indirect agent-based estimation approach. It

allows estimating micro-parameter time series at high frequency based on an underlying

agent-based model of high complexity. Less simplifying assumptions concerning the model

or the estimation process have to be applied for this procedure than for other procedure

estimating heterogeneous agent-based models. Our work contributes to understanding what

kind of micro-level behaviors drive stock markets. Analyzing dependencies between our

estimation results and historic market events, we find the fraction of chartists being large at

times of crises, crashes, and bubbles. Besides offering a new method for estimating empirical

data, this study also contributes to the understanding of theoretical models. By investigating

fundamental dependencies in the Lux and Marchesi model by means of sensitivity analysis of

the resulting neural network inverse model, price volatility is found to be the key driver. This

provides additional support to findings in Lux and Marchesi (2000). Some face validity for

final real-world daily estimation results obtained from the S&P 500 is shown by comparing

to results of Boswijk et al. (2007). This is the work which comes closest to our approach,

albeit their model is simpler and estimation frequency is yearly. We find support for Boswijk

et al.’s (2007) key findings of a large fraction of chartists during the end of the 1990s price

bubble in technology stocks.

The remainder of this paper is organized as follows. Section 2 reviews related work

and discusses the gaps that we are going to close. In Section 3 we propose a general model-

free indirect estimation method. Section 4 applies the proposed method to estimate daily time

series of fractions of chartist and fundamentalist strategies at the S&P 500. Section 5

discusses the results and addresses strengths and weakness of the proposed method. Section 6

concludes and points out avenues of further research.

2 RELATED WORK

In this work, we propose an indirect model-free estimation of time-varying

endogenous daily time series parameters of fractions of chartist and fundamentalist strategies

used by market participants. We specifically focus on estimating time series of strategy

fractions in stock markets. The estimation is based on heterogeneous agent-based market

models according to the behavioral, agent-based approach (Hommes 2006). As



Page 5 of 53

heterogeneous agent-based models have a rather complex mapping of to-estimate micro

parameters to macro parameters, few attempts have been published. We will discuss a few

attempts to estimate chartist-fundamentalist models.

2.1 Estimating agent-based models of financial markets

Vigfusson (1997) parametrically estimates a Markov-switching model version of the

statistical chartist-fundamentalist foreign exchange model of Frankel and Froot (1988). Also,

Westerhoff and Reitz (2003) directly estimate chartist and fundamentalist coefficients of a

statistical exchange rate model of the Smooth Transition Autoregressive family. The model is

simple as it does not simulate herding, simulates deterministic traders, uses linear trading

rules and the impact of chartists is fixed, only the one of fundamentalists varies. Both,

Vigfusson (1997) and Westerhoff and Reitz (2003) do not explicitly use models with distinct

individual behavior within a regime. Alfarano et al. (2005) and Alfarano et al. (2006) go

beyond this by trying to estimate some parameters of a multi-agent scenario with distinct

individual behavior in a modified version of the stochastic chartist-fundamentalist model

proposed by (Kirman 1993). However, their version of the model is very simple and also

simplifying assumptions are posed during the estimation process.

Our focus on estimating time series is in contrast to Alfarano et al. (2005), who

estimate some non time-varying parameters which quantify the overall prevalence of chartists

and fundamentalists. Our focus on a stock index is in contrast to Vigfusson (1997) and

Westerhoff and Reitz (2003), who estimate foreign exchange models. Boswijk et al.’s (2007)

approach comes closest to our aims regarding estimating chartist and fundamentalist time

series in the S&P 500 stock index. Boswijk et al. (2007) estimate a two regime version of the

Brock and Hommes (1997, 1998) model (B&H model). Due to a simple noise term, they are

able to apply a direct nonlinear least squares regression to the also not too complex single

equation time series model. Based on a yearly time series of the S&P 500 and an estimate of

fundamental value, derived from quarterly reported dividends, Boswijk et al. (2007) estimate

yearly time series of coefficients of fractions of chartists and fundamentalists in the stock

market. Based on these quantitative estimation results, the paper comes close to our approach

and we will validate our results against theirs. However, in qualitative terms, like the model

of Westerhoff and Reitz (2003), the model of Brock and Hommes (1998) is also rather simply

structured as it also does not simulate herding, simulates deterministic traders and uses linear

trading rules. Also concerning realism, the version of the model used, exhibits several deficits

in resembling real market dynamics. Specifically, it primarily lacks in generating realistic
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autocorrelation structures of price time series, returns, and squared returns at daily frequency.

One of the key findings of Boswijk et al. (2007) is the estimate of a huge fraction of chartists

in the late 1990s. The authors claim that this is due to widely adopted trend following

behavior, mainly in technology stocks, which led to huge price bubbles. Boswijk et al. (2007)

leave it to future research to explore whether their approach would yield similar results at

higher frequency, e.g., daily, data.

Due to computational burdens, which are due to complex mappings from to-estimate

micro to macro parameters, the direct estimation approach, which is employed by all studies

presented above, is limited to be applied to rather simple models with rather good tractability.

The indirect calibration approach (see Fagiolo et al., 2006) is an alternative to overcome this

problem. This approach allows for estimating parameters of more complex and presumably

more realistic structural models, of which the statistical models are approximations, if they

can be derived. This should result in econometric improvements. The term indirect, in this

case, relates to the fact that parameters of the model are not estimated in the context of its

own model, but are picked from unrelated empirical micro-econometric investigations, and/or

chosen to guarantee that a simulated model matches some particular, unrelated features of

historical macroeconomic data (Fagiolo et al. 2006). Examples of applications to

heterogeneous agent-based chartist-fundamentalist models and either foreign exchange or

stock market data are given by De Grauwe and Grimaldi (2006), Gilli and Winker (2003),

and Amilon (2006). In these approaches, typically, non-time-varying model parameters are

calibrated in an optimization process, such that some moments of the simulated model’s

macro-level parameters match the ones of empirical data. The optimization process is

typically driven by a variant of the method of moments, e.g., efficient method of moments

(Gallant and Tauchen, 1996). Concerning our aim of estimating time-varying endogenous

chartist-fundamentalist time series, this approach is to our knowledge unsuitable, since only

non-time-varying parameters can be estimated.

Summarizing and concluding the brief review, both the presented estimation

approaches are insufficient for our aim of estimating time-varying endogenous chartist-

fundamentalist time series parameters at daily frequency of rather complex and thus

presumably pretty realistic models without introducing simplifications which potentially lead

to econometric deteriorations. The approaches lack in at least one of the following points,

mainly due to the complex micro-macro mapping of heterogeneous agent-based models:

(1) models estimated are simple in their structure (e.g., no herding, deterministic

traders, no true multi-agent scenarios with distinct agent individuals within
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each trading strategy regime)

(2) substantial simplifications and approximations are applied to the model and

the estimation process,

(3) models lack in resembling realistic properties on the macro-level, i.e., stylized

facts (such as excess kurtosis, volatility clustering, and price return

autocorrelation structures),

(4) estimation frequency of time-varying parameters might be limited due to the

availability of fundamental data, and

(5) only non-time-varying parameters are estimated.

To close the outlined gaps and to allow for an improved estimation of endogenous

micro-level time series parameters of more complex, more computationally oriented multi-

agent models at high frequency, we present the indirect agent-based estimation approach.

2.2 Agent-based models of chartists and fundamentalists in financial markets

Within our application context we have decided to use the agent-based model

introduced by Lux and Marchesi (1999, 2000), which is introduced below in section 4.1.1.

However, alternative models are available in the literature. We focus on pointing out chartist-

fundamentalist, behavioral-oriented, dynamic, heterogeneous, agent-based market models.

An overview of this category of market models is given by Hommes (2006). The models we

discuss have in common that they simulate trading in one risk bearing asset in one market.

Furthermore, heterogeneity is limited to a set of different strategies, from which agents

should be able to choose in order to maximize profit or utility. Fundamental value is an

uniformly (to all traders), exogenously given variable, generated by a preferably non-

stationary process. This process is supposed to help in replicating non-stationary price time

series of real markets, see for example Hommes (2002). Despite being quite simply

structured, the market models reviewed generate quite realistic market dynamics.

Kirman (1993) describes an early simple agent-based regime switching model,

involving stochastic mutation and conviction, inspired by ant behavior. The model can be

interpreted as a chartist-fundamentalist framework with seminal herding in a true multi-agent

scenario, i.e., distinct agents in each regime. Presumably, due to its simplicity, several authors

have published on estimating some parameters of variants of the model, e.g., Gilli and

Winker (2003) and Alfarano et al. (2005).

The model by Brock and Hommes (1997, 1998) is a simple adaptive belief system, in

which agents can choose from a set of different beliefs or predictors of the future price of a
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risky asset. These beliefs, which reflect the ones held by chartists and fundamentalists, are

revised in each period in a boundedly rational way. In contrast to the Kirman model, this

model does not model distinct individual agents, but only one representative agent per class

of agents. Some variants of this model have been estimated, e.g., Boswijk et al. (2007), De

Grauwe and Grimaldi (2006), and Amilon (2006). An extended, more realistic version of the

model has been formulated by Hommes (2002). It uses a non-stationary dividend process and

a real market maker. Despite this extension, the model lacks in reproducing autocorrelation

structures in prices, returns, absolute and squared returns, as well as other statistical

properties.

Farmer and Joshi (2000) describe a simple behavioral model with deterministic

chartist and fundamentalist strategies. Strategies are not switched according to profit or utility

but become active at different points in time. The model has some deficiencies in replicating

the statistical market properties of real markets. Also, the authors explore only conformance

with some of the stylized facts. Carvalho (2001) extends the model with stochastic

(concerning their activity) traders. However, the volatility autocorrelation function is not

realistic, as it decays exponentially. To our knowledge, the model has not been estimated yet.

The model that to our knowledge well replicates realistic market behavior and is also

in this context better than the other models mentioned above, is the one by Lux and Marchesi

(1999, 2000). We base our further work on this model and will describe it in Section 4.

3 AN INDIRECT AGENT-BASED MODEL ESTIMATION APPROACH

In this section we propose a general, not application specific approach for estimating

(aggregated) micro-level parameter time series of a realistic, highly complex agent-based

model at high frequency. In the agent-based model, agents model some micro behavior and

on the macro level the model aims on replicating real world behavior of which the micro part

is not (completely) observable and thus subject to be estimated. Our general approach will be

illustrated in our application context of estimating micro parameters of stock markets. The

concrete application with a specific agent-based model to this context will be layed out in the

next section. With this respect we are to our best knowledge one of the first to utilize the

approach in the described context.

3.1 Rationale

First of all, we do not assume a very specific, i.e., simple to specify structural

dependency between the (to be estimated) micro level parameters on one hand and the macro
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level behavior (that can be observed in the real world) on the other hand which could be

captured directly by a parametric regression. Actually, we are not interested in the structure

or functional form of the dependency. Rather, we are only interested in capturing it most

accurately. This opens the door for utilizing one of the most flexible estimation methods, i.e.,

a model-free estimation. We thus propose an indirect agent-based estimation perspective

using a model-free estimation of an inverse model at its heart.

The inverse model represents the dependency, i.e., it represents a generic mapping

from the macro level behavior to the (aggregated) micro level (such as snapshots of the

distribution of strategies used by agents on the micro level). By inverse we mean that the

inverse model maps from macro to micro parameters instead of mapping from micro to

macro parameters (in the underlying agent-based model). For our approach, macro-level

parameters are assumed to be observable in the real world. Thus, the inverse model can, once

estimated, be used to estimate (aggregated) micro parameters based on empirical real world

macro level data as it represents a generic mapping from macro to micro parameters. As we

employ an inverse model estimation as an intermediate step, the agent-based model is

estimated only indirectly to achieve real world micro parameter estimations.

We propose to estimate the inverse model based on data generated in a preceding step

by a simulation process which implements an underlying agent-based model. The agent-

based model aims at replicating real world macro behavior by interacting micro level

individual agents. This underlying model thus provides corresponding pairs of micro-level

and macro-level data, which cannot be gathered empirically in the real world as at least the

micro level is usally (not completely) observable. Further, we assume that the macro-level

behavior of the model is realistic. This assumption is supported by comparing the model’s

macro-level behavior with empirical observations.

To realize the model-free estimation of the inverse model, we propose to employ a

neural network approach. In terms of statistics, the neural network represents the inverse

model of the agent-based model. In mathematical terms, the neural network represents a

complex generic non-linear mapping from macro-level parameters to micro-level parameters.

The specific mapping is obtained based on very few a-priori assumptions by a supervised

iterated learning (i.e., training) process during which the structure of the network (i.e., the

model) is adapted. This adaptation is guided by comparison of the mapping which the

network represents and the desired mapping, represented by the simulated data which

provides pairs of desired input (macro-level parameters) and output (aggregated micro-level)

parameters.
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3.2 Step by step description of the approach

The proposed indirect estimation approach consists of three major steps that are

detailed below in a general, i.e., not application-specific, and pre-formal manner. As with

respect to many steps no real theory is available, heuristics have to be applied.

(1) Simulation-based generation of corresponding micro and macro level data using an

agent-based model that maps from the micro to the macro level.

a. Choose an agent-based model A based on two requirements: (1) micro level

parameters to be estimated in the real world are being modeled, and (2) macro

behavior has been empirically found to be realistic.

b. Implement and simulate the agent-based model over a pre-defined time span ts

with fixed simulation parameters SP to generate corresponding artificial (1)

macro level time series matsa, and (2) micro level time series mitsb.

c. Optionally. Aggregate individual agent behavior to aggregated micro level

behavior time series amitsb(e.g., snapshots of the distribution of agents

pursuing different strategies at discrete time intervals).

d. Optionally. Verify statistical properties of the simulated macro-level time

series matsa against properties of real world time series.

e. Specify the set DO of desired (aggregated) micro level output parameters doj

for the neural network from the simulation’s time series amitsb or mitsb.

f. Determine the set PI of potential macro level input parameters ik for the neural

network by heuristically choosing macro parameters matsa from the

simulation.

(2) Estimation of the inverse model that maps from the macro level (input) to

(aggregated) micro level (output) via a neural network approach. Essentially, this step

describes neural network training. For more details, see e.g., Haykin (1999) or

Masters (1993).

a. Perform pre-processing of potential input parameter time series ik(t) according

Bishop 1995 and Masters 1993: standardize (use only relative changes, cf.

Sarle 2002), smooth (using a method SM, e.g., a moving average; we default

to the Hodrick and Prescott filter (Hodrick and Prescott 1997)), and normalize

(subtract the mean value from each element of the time series and divide by

the standard deviation, cf. Masters 1993).
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b. Heuristically determine network building parameters NBP as there typically is

no theory (e.g., number of hidden neurons, cf. Swingler, 1996). Further

parameters are (our default in brackets): number of hidden layers (one),

number of neurons per hidden layer (5 for up to 4 input variables), activation

function (hyperblic tangent, cf. Kalman and Kwasny, 1992), and training

algorithm (bayesian regularization, cf. MacKay, 1992)) for the network

training (see section 4 for details).

c. Divide each of the time series doj(t) and ik(t) of desired output and potential

input parameter time series into three distinct continuous time series of length

l1,l2,l3,l4 and associate the three parts respectively with the following sets (cf.

Sarle 2002): (1) Training set: used to train the network, i.e., alter its weights

while minimizing the error (difference between network output and desired

output). (2) Validation set: used for early stopping of the training, i.e., if the

performance metric on this set has worsened more than a threshold number of

times since the last time it has improved, training is stopped. (3) Test set: used

to adapt the set of input parameters of the network to train by verifying the

generalization ability (i.e., robustness) on data not used in the training. (4)

Robustness test set: For a final test of robustness of the best overall trained

network, a separate second independent test set is used.

d. Determine the set IÍPI of macro level input parameters ik for the inverse

model.

i. Heuristically or randomly choose a subset IÍPI of input parameters

from the set PI of pre-processed potential input parameter time series.

ii. Perform training of a neural network (cf. Haykin 1999) using the

chosen macro level input parameter time series ik(t) with ikÎI and the

specified desired (aggregated) micro level output parameter time series

doj(t). Applying the resulting network to the input parameter time

series ik(t) delivers the actual output parameter time series om(t).

iii. Evaluate the pre-determined set of stopping criteria SC on the training

set and validation set. In bayesian regularization (used in this work for

training), a weighted sum of squared network weights and sum of

squared error (cf. Foresee and Hagan 1997) of the (estimated) actual

output time series om(t) vs. the desired (aggregated) micro level time
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series doj(t) is used as objective function. For stopping, typically, the

objective function has to be below a pre-determined threshold goal on

the training set, or the objective function’s value has increased more

than maxvf times since the last time it decreased on the validation set,

or the maximum number of training iterations maxiter has to be

reached. If none of the stopping criteria (see Table 1 for a full account)

has been met, the training algorithm adjusts weights of the neural

network based on the objective function’s value on the training set.

Else go to iv).

iv. Evalute the fitness of the trained neural network on the test set by

determining the pearson correlation coefficient (pc) between

(estimated) actual output time series om(t) vs. the desired (aggregated)

micro level time series doj(t). If pc is above a pre-determined threshold

(we default to pc>0.9), go to i), else go to e).

e. Evaluate robustness of the latest trained neural network inverse model by

determining the objective function’s value on the robustness test set.

(3) Application of the inverse neural network model to real macro data to estimate real

(aggregated) micro level time series.

a. Acquire real macro level time series corresponding to the final set I of the

neural network inverse model’s input parameters ik(t).

b. Perform pre-processing on the input parameter time series ik(t): standardize,

smooth, and normalize as in step 2.

c. Apply the neural netwok mapping to the set of pre-processed input parameter

time series ik(t). The output of the neural network is the estimated (aggregated)

micro level time series om(t) for the real word.

All parameters of the step-by-step approach and the allocation of the parameters in

our application context of estimating micro parameters of financial markets are listed in

Table 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 1

----------------------------------------------
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Subsequently, Figure 1 illustrates our three-step approach within our application

context that will be detailed in section 4 of this work.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 1

----------------------------------------------

3.3 Advantages

The major advantage of the proposed method is that the estimation of the inverse

model is decoupled from the simulation of the underlying agent-based model. Therefore, the

agent-based model can be of high complexity. The “effective” complexity is the complexity

that refers to estimating the micro parameters for real data. It is only restricted by the degree

to which the model-free estimation approach can capture the complexity of the agent-based

model. Utilizing a model-free approach, we, however, do our best in realizing wide instead of

narrow limits in terms of complexity. To realize the model-free estimation we propose to

employ a neural network approach.

The neural network approach has several advantages compared to other means of

estimation. Theoretically, neural networks are able to approximate arbitrary non-linear

mappings to arbitrary accuracy (Haykin 1999). As a neural network poses only very little

constraints on the structure of the model it represents, it is better in learning (also partly

discontinuous) mappings with multiple input parameters, when little is known about the

relationship between input and output parameters (Sarle, 2002). Once the network has been

trained, the network can be applied to new data very fast, in order to estimate current micro

parameters in the real world. In contrast, direct estimation approaches would require costly

re-estimating a model on the whole historic data set including the newest part.

Besides estimating characteristics of realistic data, we will illustrate that the neural

network can be used to assess the underlying agent-based model itself. For instance, by

analyzing the resulting neural network we are able to determine those parameters from the set

of input parameters of the neural network that are most relevant within the agent-based

model.

Summarizing, we propose a method of indirect estimation of an agent-based model by

means of a neural network approach. Our approach allows for estimating time series of

agent-based models of high complexity at high frequency without simplifying the model
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itself or posing constraints on the estimation process.

4 APPLYING THE INDIRECT AGENT-BASED ESTIMATION APPROACH TO
THE ESTIMATION OF FRACTIONS OF CHARTISTS

In this section we apply the general approach outlined in the previous section to

estimating fractions of chartists and fundamentalists in the S&P 500 index following the three

steps. At the heart of our approach, we assume that an agent-based market model closely

resembles real market behavior. Therefore, we have to carefully select and verify the agent-

based model with respect to its ability to realistically resemble macro features of real market

behavior.

Next, we describe the estimation of an inverse model of the agent-based financial

market model based on a neural network. Since there are many different ways an artificial

neural network can be structured, e.g., the number of neurons and the way these neurons are

linked, and trained, e.g., the different training algorithms, we heuristically optimize the

corresponding parameters. Furthermore, there are many possible macro variables that could

be used as input for mapping to the micro-level variables, e.g., the price volatility, historic

price intervals of different lengths, or price trends. We present just one out of many possible

models. While we selected this model based on heuristically optimizing the mapping quality

(as is explained below) and are therefore sure to have selected a reasonable one, further

research might focus on the heuristic optimization and model selection step more thoroughly.

In this study we focus on presenting the basic idea and providing of proof of concept of our

estimation apprach.

Finally, we apply the neural network to real macro data in order to estimate

corresponding micro level characteristics. These characteristics are then related to historic

market events, which provide some face validity for the estimated strategy data.

4.1 Simulation-based generation of corresponding micro and macro level data using
an agent-based model

4.1.1 The Lux and Marchesi agent-based financial market model

From the set of agent-based models describing financial markets, the model

introduced by Lux and Marchesi (1999, 2000) is among those that get closest in resembling

the statistical properties of time series of real markets. These specific statistical properties are

the so-called stylized facts of real markets – concerning details we refer to Pagan (1996),



Page 15 of 53

Cont (2005), and Hommes (2002). Lux and Marchesi (L&M) focused their work on

demonstrating agreement of their chartist-fundamentalist model with realistic price series (see

Lux and Marchesi, 1999, 2000, and Chen et al., 2000). To our best knowledge, there are no

published deficiencies in this context. However, Lux and Marchesi have not published on all

possible aspects, e.g., autocorrelation functions. But considering the information available,

this model is more realistic in contrast to other models considered. Comparing to Brock and

Hommes (1997, 1998), L&M additionally implement stochastic traders (concerning

switching of strategies) and model herd behavior of chartists. The herding aspect can be seen

in line with Kirman’s model (Kirman 1993). Nevertheless, L&M has a bit more detailed

structures, as it for instance differentiates optimistic and pessimistic chartists. It also focuses

more on replicating the stylized facts of real markets. Comparing to Farmer and Joshi (2000),

the L&M model seems to be more realistic as it allows for varying fractions of used strategies

due to dynamic alterations of beliefs and also models herd behavior. To our knowledge,

L&M has not been estimated yet, which might be because of it being a bit more

computationally oriented and more complex than the other models pointed out and thus being

less tractable.

The L&M model will be subsequently described based on Lux and Marchesi (1999,

2000). The model basically has two groups of traders: the fixed number of traders in the

market (N) is split into groups of fundamentalists (f) and chartists (c) with nc(t) and nf(t)

denoting the numbers of agents in each group and N=nc+nf. The fundamentalist group expects

the price to follow the fundamental value of the asset and thus buys (sells) when the actual

market price is believed to be below (above) the fundamental value. Chartists follow price

trends as a proxy for chartist practices, and also consider the behavior of other traders as a

source of information, which results in a tendency towards herding behavior. Furthermore,

the model distinguishes between optimistic (+) and pessimistic (-) chartists (who respectively

believe in rising or declining markets) and the time-varying number of agents in their groups

are denoted by n+(t) and n-(t) with nc(t)=n+(t)+n-(t). Optimists will buy additional units of the

asset, whereas the pessimists will sell part of their actual holdings of the asset (Lux and

Marchesi 1999, 2000).

The main building blocks of the L&M model according to Lux and Marchesi (1999,

2000) are movements of individuals from one group to another together with the (exogenous)

changes of the fundamental value and the (endogenous) price changes resulting from the

agents' market operations. Switching between groups, i.e, in all six directions between

optimistic chartists, pessimistic chartists, and fundamentalists, occur with a certain
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endogenous and time-varying probability.

Switching between optimistic and pessimistic chartists is governed by the prevailing

price trend (dp/dt)/p and the majority opinion (determined by relating the sizes of each of the

groups by x=(n+-n-)/nc). The switching probabilities from the optimistic to the pessimistic

group and vice versa within a small time increment Δt are given by π+-Δt and π-+Δt with𝜋+− = 𝑣1 𝑛𝑐𝑁 𝑒𝑈1,        𝜋−+ = 𝑣1 𝑛𝑐𝑁 𝑒−𝑈1 and with      𝑈1 = 𝛼1𝑥 + 𝛼2𝑣1  𝑑𝑝/𝑑𝑡𝑝
Parameters v1, 1,and 2 are measures of frequency of revaluation of opinion and the

importance of majority opinion and trend respectively. Switching between chartists and

fundamentalists are driven by the difference between momentary profits g of individuals of

each of the groups: 𝑔+ = 𝑎+ 1𝑣2 (𝑑𝑝𝑑𝑡)𝑝 − 𝑅, 𝑔− = 𝑅 − 𝑎+ 1𝑣2 (𝑑𝑝𝑑𝑡)𝑝 , 𝑔𝑓 = 𝑠 𝑝𝑓−𝑝𝑝 with a being

nominal dividends, R being average real risk-adjusted return available from other

investments, pf being fundamental value, and s is a discount factor for fundamentalists’

profits with s<1. The switching probabilities are determined with:𝜋+𝑓 = 𝑣2 𝑛+𝑁 𝑒𝑈2,1, 𝜋𝑓+ = 𝑣2 𝑛+𝑁 𝑒−𝑈2,1,   𝜋−𝑓 = 𝑣2 𝑛−𝑁 𝑒𝑈2,2, 𝜋𝑓− = 𝑣2 𝑛−𝑁 𝑒𝑈2,2
with 𝑈2,1 =  𝛼3 𝑔+ − 𝑔𝑓 and 𝑈2,2 =  𝛼3 𝑔− − 𝑔𝑓 with parameters 3 and v2 being

measures of sensitivity regarding profit differences between chartists and fundamentalists and

frequency of revaluation of opinion (Lux and Marchesi 1999, 2000).

Changes of the fundamental value are given exogenously. The log of the fundamental

value is determined as 𝑙𝑛 𝑝𝑓,𝑡 = 𝑙𝑛 𝑝𝑓,𝑡−∆𝑡 + 𝜀𝑡Δ𝑡 with 𝜀𝑡 being identically and

independently distributed according to a Normal distribution with mean zero and (time-

invariant) variance. Finally, price changes are determined by a virtual Walrasian market

maker, which clears excess demand (or supply) ED=EDf+EDc with excess demand for

chartists EDc=(n+-n-)tn and fundamentalists EDf=nf(pf-p)/p with tn being the constant average

trading volume per transaction and  being a parameter for the strength of reaction on

differences between p and pf. Probabilities for the price to increase (decrease) by a small

percentage Δ𝑝 = ± 0.001𝑝 during a time increment ∆𝑡 are given by 𝜋↑𝑝 = 𝑚𝑎𝑥 0,𝛽(𝐸𝐷 + 𝜇)
and 𝜋↑𝑝 = − 𝑚𝑖𝑛 𝛽 𝐸𝐷 + 𝜇 ,0 with  being a parameter for the price adjustment speed and

 is a small random component (Lux and Marchesi 1999, 2000).

4.1.2 Implementing and verifying the properties of the model

We re-implemented the L&M model in the Java-based agent-based simulation
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2 http://repast.sourceforge.net/

environment RePast2. We verify the model and its implementation by comparing the

statistical properties of our implementation of the model with published properties and with

properties of real markets as for instance reported by Pagan (1996) and Cont (2001). Table 2

lists all selected properties for the L&M model’s original implementation, as published in

Lux and Marchesi (1999, 2000) and in Chen et al. (2000), as well as for our re-

implementation, and for real markets. Clearly, we re-produce the results of L&M at large.

Concerning realism, we additionally investigated two properties (see Table 2), which L&M

have to our knowledge not published for their implementation. Again, our results are in good

agreement with empirically investigated properties of real markets.

----------------------------------------------
Table 2

----------------------------------------------

Figure 2 plots the time series of the price and of the total chartist population in our

market simulation. Prices are almost unpredictable, as the time series of price returns exhibits

almost no self similarity (see Table 2). Price fluctuations alternate from tranquil to turbulent

(i.e., highly volatile) in an intermittently fashion. As price fluctuates much more than

fundamental value (which is normally distributed) as indicated by excessive kurtosis (see

Table 2), price volatility is considered excessive. Also, the property of price volatility

clustering can be observed, as big price changes occur in timely clusters (see Figure 2). This

finding is supported by the time series’ of volatility (i.e., absolute price returns) exhibiting

significant self similarity (see Table 2). Also, the distribution of price returns exhibits heavy

tails (see Table 2). All these properties can also be observed in real markets (Cont, 2005).

----------------------------------------------
Figure 2

----------------------------------------------

We further investigated autocorrelation functions of (raw, absolute, squared) price

returns (see Figure 3), which L&M to our knowledge have not published. For absolute and

squared price returns the function begins at significantly positive levels (up to 0.4) for small

lags and then decreases slowly for larger lags. This is in agreement with the properties of real

markets (Cont 2001). We observe one shortcoming though, concerning realism of the

properties of the generated time series, which also has not been published by L&M: the

autocorrelation function of raw price returns starts slightly negative for lags of 1-4 days (see

Figure 3) and then approaches zero. Realistically, the autocorrelation function of raw returns
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would start slightly positive (at about the same quantity) for small lags and then would

approach zero (for an autocorrelation function of raw S&P 500 index returns compare with

Hommes, 2002).

----------------------------------------------
Figure 3

----------------------------------------------

4.1.3 Generating corresponding artificial micro and macro level data for training the

neural network

Using Lux and Marchesi’s (1999) simulation parameters, we generated time series

sampled on a daily basis from the market simulation (with ts=9950 days in total length).

These time series were used in all further work.

Since we aim in identifying current aggregate fractions of strategies used by market

participants, these parameters of our market simulation comprise the set of potential output

parameters for the network to train. Therefore, either the daily percentage of fundamentalists

fund(t) or of all chartists chart(t) active in the market were in question. Both parameters are

being computed based on all samples of the numbers of agents in the chartist (nc) and

fundamentalist (nf) group within each day t during the simulation. Because of fund(t)=1-

chart(t), we choose chart(t) to be our sole output parameter. Further differentiating chartists

into optimists and pessimists was ruled out, because we would not gain much information as

the time series of these two parameters are strongly positively correlated with a correlation

coefficient of 0.91.

As the potential input to the neural network we considered a set of different variables:

price p(t), historical price intervals of various lengths : p(t)-p(t-), price returns r(t)=ln(p(t))

- ln(p(t-1)), price volatility as the square of the price returns: r(t)², relative price trends rpt()

= 𝑝 𝑡 −𝑝 𝑡−𝜏𝜏∙𝑝 𝑡 of length  and differences in relative price trends of different lengths, e.g.,

rpt()-rpt().

According the general approach outlined in section 3.2, we divided all time series

(length lof continuous days in brackets) into (1) training set (l1=5000), (2) validation set

(l2=500), (3) test set (l3=946), and (4) robustness second test set (l4=946).

4.2 Estimation of the inverse model that maps from the macro to aggregated micro
level via a neural network approach

We now proceed to estimating the inverse model of the agent-based model via a
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3 the normalized mean squared error (NMSE) between actual outputs o and desired outputs d, summed up for
every neuron j (with N being the number of output neurons) and every pattern i in the data set, which
comprises K tuples in total:

neural network approach. A neural network is represented by a set of neurons which can be

activated at different levels and that are linked with one another. Input neurons become

activated at a specific level that depends on the input to the neural network; their activation is

transferred to other neurons, which themselves become activated. These neurons then link to

other neurons or output neurons. The activation of output neurons represents the output of the

neural network. A neural network training algorithm adjusts the weights describing how

much of a neuron’s activation is transferred to another neuron in order to make the network

linking desired outputs to pre-specified inputs. The complex weighted network is an implicit

representation of the relation between input and output. For more detailed information on

neural networks we refer to Haykin (1999).

To create a neural network which well represents the mapping from input to output

parameters, structural parameters of the network, training algorithm parameters, and input

parameters have to be selected and resulting networks’ quality has to be compared based on

the selections. This comparison is based on two criteria: (1) a normalized mean squared error

(NMSE)3 and (2) the Pearson correlation (pc) between network output and desired values (we

aim at values of pc > 0.9 on test data that is not part of data used to train the network). As

there is no theory, we heuristically optimized the structure of the network including the

number of neurons, the training algorithm, but also the selection of macro variables used to

map to the fraction of chartists based on the mentioned measures.

4.2.1 Network and training algorithm

As the basis for our neural network estimation procedure we use a three layer

perceptron with a feed-forward network topology. Choosing the right number of neurons on

the hidden layer is critical in obtaining good training results (Masters 1993). Choosing too

less, the network might not be able to capture the inter-relationships properly. Choosing too

much, training times increase and the net might be prone to overfitting, i.e., greatly reduced

generalization ability. As there is no theory but only rules of thumb for choosing the number

of hidden neurons (cf. Swingler, 1996), we used 5 neurons in the default case and in the case
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4 The GNBR algorithm can be adjusted by choosing a set of training parameters. We set the maximum

number of training iterations to maxiter=500, the performance goal for the objective function on the training set

as goal=0.001, the Marquardt adjustment parameter µ to 0.005, the decrease factor for µ as µdec=0.1, the

increase factor for µ as µinc=10, and the maximum value for µ as µmax=1010, the maximum number of validation

failures to maxvf=5, and the minimum performance gradient equal to mingrad=10-10.

of more than 4 input variables (equivalent to four input neurons) we used the number of input

neurons plus one as the number of neurons on the hidden layer. We chose the hyperbolic

tangent as the activation function for neurons. It is from a class of frequently used functions

(Masters, 1993) and Kalman and Kwasny (1992) argue that it is even the ideal function. With

this setup, we should be able to meet the requirements of a multi-layer-perceptron with

continuous non-linear activation functions in the neurons of one hidden layer – with a

sufficiently high number of neurons – which enables us to approximate arbitrary non-linear

continuous inter-relationships to arbitrary accuracy (Haykin, 1999). According to Masters

(1993) even discontinuities can be tolerated.

The training of a network alters the weights such that the objective function is

optimized. The initial weights are randomly determined and subsequently adapted by a

training algorithm. Back-propagation can be considered as the standard algorithm (Reed and

Marks, 1999). Because this algorithm converges very slowly, we selected the Gauss-Newton

approximation to Bayesian regularization (GNBR) – an algorithm for neural network training

proposed by Foresee and Hagan (1997), which combines Bayesian regularization (MacKay,

1992) with the Levenberg-Marquardt training algorithm (Hagan and Menhaj, 1994). By

utilizing numerical optimization techniques, the Levenberg-Marquardt algorithm provides for

much faster convergence on networks with no more than a few hundred weights, which

applies to our case4. Additionally, Bayesian regularization improves generalization of the

trained networks by constraining the size of the network weights. For this, according to

Foresee and Hagan (1997), the objective function becomes F = ED + EW, where EW is the

sum of squares of the network weights and ED is the sum of squared errors. The parameters α

and  are determined automatically by the GNBR algorithm, such that generalization of the

trained network is optimized. This forces the network response to be smoother and less

susceptible to problems related to overfitting.

4.2.2 Input and output data

The potential set of input parameters has been defined in section 4.1.3 for the given
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output parameter of the fraction of chartists. To obtain good results in training the neural

network according to the metrics, input and output data first needs to be pre-processed

appropriately (Bishop 1995, Masters 1993). Following (Sarle 2002), we standardize all input

parameters by using only relative changes.

Taskaya-Temizel and Ahmad (2005) point out that neural networks have difficulties

modeling non-stationary processes. This is the case, for instance, if the time series of an input

parameter contains trends. Thus, trends usually are removed from these time series. As

Taskaya-Temizel and Ahmad (2005) point out, differencing is a method to remove trends

from time series. A further, more advanced method to remove trends is the Hodrick and

Prescott (HP) filter (Hodrick and Prescott 1997). The HP filter is a standard tool used for

smoothing macro-economic time series which are published quarterly. By adjusting the filter-

specific smoothing constant, we are able to apply it to our data of daily frequency. The

smoothing due to this filter, i.e., having training data not containing large extreme values or

discontinuities, further improves the training quality of the network (Sarle 2002; Reed and

Marks 1999). Best results were achieved using the HP filter with a smoothing constant of

l=100000, having tested several values in the range between 5000 – 500 million.

By further normalizing all time series of input and output parameters by subtracting

the mean value from each element of the time series and dividing by the standard deviation,

we can eliminate negative effects which result from differing offsets and scaling (Masters

1993).

On heuristically optimizing the set of input parameters for the given output parameter

(fraction of chartists) of the neural network to train with respect to the defined metrics, only

small sets of input parameters yielded good results on smoothed input data. In fact, price

volatility (r(t)2) as sole input parameter produced the best result, see Figure 4 (NMSE=0.08,

pc=0.96 on the out of sample test data set), with additional input parameters such as relative

price trends even worsening results. This result is most likely due to the fact that the

underlying market model reproduces excessive and clustered volatility as features of real

markets as a central feature of the model (Chen et al. 2000).

----------------------------------------------
Figure 4

----------------------------------------------

We verified robustness of the results of the best trained network by applying it to

another separate data set that has not been used for training nor for evaluating training results.

While absolute values of the performance metrics (NMSE=0.2; pc=0.91) differ from the first
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data set, results are still good, see Figure 5.

----------------------------------------------
Figure 5

----------------------------------------------

4.3 Application of the inverse neural network model to real macro data to estimate
real aggregated micro level time series

After training the neural network and thus generating a model free estimation of the

inverse model of the agent-based financial market model introduced by Lux and Marchesi

(1999), we now apply the neural network to real stock market data in order to estimate the

daily fraction of active market participants that are chartists. Like Boswijk et al. (2007) we

chose the S&P 500 as a reasonable proxy for a real market. As the neural network does not

require the fundamental value as input parameter, applying it to real market data is

straightforward and does not require additional estimations. We compute the daily price

volatility on a daily S&P 500 price time series (averaging daily open, high, low, and close

prices) and apply the same normalizing and smoothing methods, i.e., the HP filter, as we did

on the training data. Figure 6 shows the resulting estimated daily time series of the fraction of

chartists in the S&P 500 stock market index.

----------------------------------------------
Figure 6

----------------------------------------------

According to our estimation results, the fraction of chartists in a market is high at

times of crises, crashes, and price bubbles. The case of a bubble has been exemplarily

illustrated above with the tech bubble, of which in Figure 7 the culmination is marked by

point (3) and the final burst by (5). Examples of crises are points (1), which marks the East

Asian financial crisis (Radelet, 1998), and (2) which marks the Russian financial crisis

(Kharas et al., 2001). An example for a small crash is September 11 in 2001 (4) and a big one

in October 1987 (not depicted) with more than 80% of chartists.

----------------------------------------------
Figure 7

----------------------------------------------

Firstly, a market strategy founded explanation for the not-obvious relationship

between fundamental market events like a currency crisis, we have pointed out, and a large

fraction of chartists is that first fundamentalists react on news, thus inducing price changes.

Chartists by definition then identify these price changes, perceive them as trends, and follow
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them by opening positions in the market, thus reinforcing the trend. Due to further trend-

following and herd-behavior, the fraction of chartists increases as chartists create a self-

fulfilling prophecy and a self-reinforcing process. As chartists do not consider the

fundamental value in their trading decisions, this kind of process also is the driving force of

deviations of the market price from the fundamental value, for which we used the term

bubble, above.

Secondly, the relationship between a large fraction of chartists and the market events

we point out: crises, crashs, and price bubbles can be explained model intrinsically by the

predominance of high price volatility which accompanies this kind of events (for example for

the case of the 1987 crash, compare Schwert 1990). Price volatility is also a central feature of

the market model of Lux and Marchesi (1999) and is also the central parameter we use for

estimating fraction of strategies used in a market. As Lux and Marchesi (1999) point out that

a large fraction of chartists is active at periods of high volatility in their model, it therefore is

reasonable that we identify a large fraction of chartists during the market events mentioned.

However, a small fraction of chartists arises after the burst of a bubble, i.e., deviations

of the price from the value are reduced by a growing fundamentalist regime. Also, the

fraction of chartists shrinks when there are no clearly identifiable trends and low volatility.

5 DISCUSSION

In the last section, we applied and empirically validated our method of indirect

estimation of agent-based models at daily frequency. We generated micro- and macro-level

market data using a simulation based on our re-implementation of the L&M model which has

been verified to closely resemble properties of real markets. Using the HP filter for pre-

processing this data and the GNBR training algorithm, we made the neural network

accurately and robustly learn an inverse model which maps macro-level parameters back to

micro-level aggregated strategy parameters. We applied the inverse model to S&P 500 data to

estimate daily time series of fractions of strategies used by market participants. Finally, we

validated our results based on empirical background information on the events that have

affected the usage of strategies in the stock market. In this section we discuss our estimation

results and will provide additional analyses for the estimated agent-based model.

5.1 Comparison with previous estimations of yearly time series

Boswijk et al. (2007) is one of the more recent publications which by estimating

yearly fractions of chartists and fundamentalists in the S&P 500 comes close to our
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estimation objectives for stock market strategies. Boswijk et al. use a statistical direct

estimation approach and therefore had to stick to a relatively simple model. In contrast, we

use an inverse model indirect estimation approach which makes very few assumptions on the

model to be estimated and allows for using a more complex and more realistic model at

higher frequency. Figure 8 compares estimation results of both approaches.

----------------------------------------------
Figure 8

----------------------------------------------

We reproduce the high percentage of chartists at times of the technology bubble

(Western, 2004) at the end of the 1990s, which Boswijk et al. point out as a central finding in

their paper. Despite not reproducing absolute values, we roughly reproduce relative changes,

which is more important. In this context, Boswijk et al. (2007) leave it to future work whether

they would find similar results using their approach at higher data frequencies. As we

estimate at daily frequency in contrast to Boswijk et al. who estimate at yearly frequency, our

curve of the estimated fraction of chartists is more detailed and naturally shows more

diffentiated patterns. At large our curve supports the findings of Boswijk et al. of large

fractions of chartists starting from 1996/1997. In contrast to Boswijk et al., our chartist curve

is more volatile with some periods of low estimated chartists’ activity in between. Also, our

curve starts to decrease 1.5 years later, marking the end of the technology bubble. This is due

to different market models we apply. The B&H model which Boswijk et al. use, defines

chartists to believe in continuation of the increase in the deviation of the market price vs. the

fundamental value. As the fraction of fundamentalists in the B&H model increases, they

drive prices more to the fundamental value, thus bursting the bubble. In contrast, the model of

L&M, which we use, seems more accurate by differentiating optimistic and pessimistic

chartists, which are defined to consider upward and downward trends respectively and also

model herd behavior. In this case, pessimistic chartists collectively strengthen downward

trends, by selling themselves, in addition to fundamentalists, which initially started to sell.

Thus, the total fraction of chartists stays large, until the selling-off has come to an end in

2003.

Considering the pre-technology bubble time period during 1992-1995, we estimate the

fraction of chartists to be very low (<10%) while Boswijk et al. estimate considerable

fractions (40-80%) to be active. When considering the price chart of the S&P 500 it becomes

clear that during this time period the price development was rather sideways in comparison to

more erruptive, up- and downtrending, and breakout-like price developments after 1996
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which are accompanied by higher volatility. Considering the L&M model’s definition of

chartists which is based on trend following and herding, it seems fair that during the 1992-

1995 time period the fraction of chartists was estimated comparatively low.

Concluding, we believe that the model of L&M seems more appropriate, also by

being more realistic, as we point out in section 4. Additionally, our method of estimation

provides for significantly more information value due to much higher data frequency. Also,

once trained, the neural network can be applied to arbitrary markets with little effort.

Boswijk et al. (2007) claim that more work is needed to investigate robustness of their

empirical finding that behavioral heterogeneity of market participants explains financial

market data. Behavioral heterogeneity manifests in time-varying fractions of different

strategies used by market participants. In this sense, our work also contributes to this research

by investigating higher frequency data than Boswijk et al do. As we estimate strongly time-

varying fractions of chartist and fundamentalist strategies at daily frequency, our work gives

additional support to their claim.

5.2 Limitations

While we believe that this study provides an innovative method for estimating agent-

based models, we are aware that the method as well as the specific way in which we apply

the method in our example, has weaknesses arising from various decisions made during the

study. We hope that this discussion can help other researchers in further developing and

applying the method.

5.2.1 Global versus local smoothing

To interpret the estimated chartist time series correctly, one has to bear in mind the

global HP filter used for data pre-processing. This filter was chosen because of yielding much

better training results than a local filter (e.g., a moving average) which uses only historic

data. However, the global filter considers always the whole time series on determining a

single processed value of a time series, thus enriching every element of the time series before

the end with future information. Considering the current point in time, i.e., the end of the time

series, networks using input data which has been smoothed using a global and a local filter

respectively, yield almost identical results. But as new elements of the input time series

become available, older elements of the estimated chartist time series (using globally filtered

input data) are subject to adaptations. To illustrate this effect and thus be better able to

interpret estimated chartist time series, we subsequently show the difference between chartist
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time series based on globally smoothed inputs vs. locally smoothed inputs in four different

sections: flat, ascending, descending, up-and-down.

Figure 9 shows the overall picture with all four sections over a total time period of

231 days. The chartist time series have been obtained with the best neural network, trained on

globally smoothed data, given (1) the same globally smoothed input time series using the HP

filter and (2) locally smoothed input time series. For local smoothing of a time series x1..xt..xn,

we utilized the weighted moving average 𝑀𝐴𝑡 = ∑20𝑖=1 𝑤𝑖∙𝑥𝑡−𝑖+1∑20𝑖=1 𝑤𝑖 calculated over a window of 20

time steps. The weights are calculated as parabolic weights wi=a(1-i2) with a=0.7 and i Î{-1,

-1+1/19, -1+2/19, ..., 0}.

----------------------------------------------
Figure 9

----------------------------------------------

The following four figures show in detail for each of the four sections how the chartist

time series based on globally smoothed inputs changes in already available historical sections

of the time series when new information becomes available, i.e., time progresses and new

data becomes available for the time series. This is in contrast to the time series with locally

smoothed inputs which does not change.

For the flat section, displayed by the following figure, there is almost no difference

between the two time series, compare Figure 10.

----------------------------------------------
Figure 10

----------------------------------------------

The ascending section in Figure 11 shows that the ends of both time series are located

almost at the same point. As the time series expand (sub-figures on the right hand side), the

time series with globally smoothed input was determined with more future input, if we take

point 71 as reference point. This new ascending information on the time series subject to

global smoothing (in right hand side sub-figures) leads to an earlier ascend in comparison to

the left hand sub-figures which do not yet contain the ascent. That is, the ascent on the time

series with globally smoothed inputs is “moved” into the past, i.e., it starts earlier, as at the

end of the time series more ascending points are added.

----------------------------------------------
Figure 11

----------------------------------------------

The descending section in the Figure 12 shows that on the time series with global



Page 27 of 53

inputs, the descent is “moved” a bit into the future as the time series is getting longer (from

left to right hand side sub-figures) considering a certain reference point in comparison to the

locally smoothed time series.

----------------------------------------------
Figure 12

----------------------------------------------

Figure 13 shows an up-and-down-movement of the time series based on locally

smoothed inputs. The difference to the time series with globally smoothed input is that the

latter does not take the first small hike as quickly. Also, the third sub-figure shows that small

intermediate hikes in the middle of the time series are smoothed out by the curve with

globally smoothed inputs, as globally there has become enough information available that the

hike has been intermediate. This is only known when considering the whole time series

which the global filter does. When only incomplete information is available (sub-figure 2),

the global filter would like the local filter anticipate an ascent.

----------------------------------------------
Figure 13

----------------------------------------------

Concluding, when interpreting the chartist time series based on globally smoothed

inputs to the neural network, one has to bear in mind that compared to the one based on

locally smoothed inputs,

 it is almost identical in flat sections.

 it “moves” ascends into the earlier parts of the time series, when the ascend

increases as new information becomes available at the end of the time series.

 it “moves” descends into the latter parts of the time series, when the descend

increases as new information becomes available at the end of the time series.

 it smoothes out small intermediate hikes.

 it has almost the same ending points, which implies, that it “reacts” (almost) as

quickly to newly developing ascends at the end of the time series in the same way.

5.2.2 Systematic exploration of the inverse model, i.e., the neural network

A weakness of neural networks as a method to estimate the dependency between

variables is the fact that the estimation result is implicit in the network’s weights. For

instance, in regression analysis one can conclude, for instance, from an insignificant

coefficient of an independent variable that the dependency between this and the dependent



Page 28 of 53

5 If one had more input variables, one could keep all variables except one constant and plot the resulting out put
(we did this for some networks, but do not report the results here). Similarly one could generate plots of
potential interaction effects.

variable is not likely to be linear. In contrast, for neural networks one can (in most cases) not

derive such direct conclusions about how the dependency looks like. However, we suggest

that the network can be used to systematically explore the estimated dependency.

In the case of the best neural network trained on smoothed data, price volatility is the

only input parameter, which makes it easy to explore the estimated model. Figure 14 plots

how the fraction of chartists depends on the price volatility. To generate this figure we

systematically vary the input to the network and plot the corresponding output.5 Basically

the figure shows that the fraction of chartists increases with an increase in price volatility –

the dependency is, however, non-linear.

----------------------------------------------
Figure 14

----------------------------------------------

Applying the mapping that the neural network represents to real market data, i.e.,

price volatility time series provides hints to the non-linear dependency between price

volatility in real markets and the estimated fraction of chartists in this market (see Figure 15).

----------------------------------------------
Figure 15

----------------------------------------------

5.2.3 Limitations of agent-based model plus model-free estimation method

As discussed in the introduction, direct estimations of agent-based models frequently

need to employ a set of substantially simplifying assumptions. Our combination of a model-

free estimation with an agent-based model does not require such strict assumptions. The

quality of our estimation approach is however also limited by various factors.

If the agent-based model does not well represent reality, then the estimation procedure

will not be able to estimate realistic output values for the real-world data. As such, our

estimation method is model-based and more specifically it is based on the agent-based model.

Concerning the L&M model which we utilize, we observed a shortcoming concerning

autocorrelations of price returns. For small lags, the autocorrelation curve of raw price returns

starts at a slightly negative level, as opposed to a slightly positive one, which would be

realistic (Hommes 2002). We leave it to future research to employ other, more realistic, and
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also more complex models.

Despite neural networks are considered to be able to represent complex dependencies,

we have already mentioned limitations such as difficulties to represent non-stationary

processes. The estimation method is therefore also restricted by the limitations of the neural

network approach. Note however, that these limitations are far less restricting than the

assumptions usually made for directly estimating agent-based models.

Furthermore, the application of the neural network approach and especially the

network training process is a heuristic optimization process – estimation results usually

satisfy a specific minimum threshold with respect to the quality they reflect the dependency,

but they are likely to be sub-optimal. Despite having achieved pretty good results concerning

accuracy and robustness, better results are still possible. In this context, we leave it to future

research to explore other training algorithms, other, more elaborate optimization metrics, and

other data pre-processing methods. One could even go further and apply other model-free

estimation procedures in combination with an agent-based model.

5.2.4 Simple neural network

Note that the best neural network that we have found is a very simple one, which

utilizes only one input variable, which is price volatility. There are two points to be discussed

with respect to this observation.

First, the fact that we have not restricted our model to one variable but that this model

emerged out of a larger set of models including many different variables indicates that the

dependency is indeed as simple as we found. Identifying price volatility to be the most

important parameter of the model with regard to the fractions of strategies used is in

agreement with Lux & Marchesi (1999) who also point out volatility, i.e., clustering and

persistence of volatility, to be a central feature of the model. In this sense, we give additional

support for this claim. Following up on this insight, future research might even be able to

analytically derive a closed form solution between the price volatility and the fraction of

chartists in the L&M model.

Second, the selection of the best neural network is based on practices that despite

being based on previous research remain heuristics that may or may not converge to the best

solution. Thus, further research is needed to independently run and replicate these analyses to

gain a better understanding of the robustness of these results.
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5.2.5 More than two strategies and other variables of interest

The final neural network that we employed in this study is simplistic in terms of (1)

the number of input (macro) variables, and (2) the number of output, i.e., target variables to

which the input parameters are being mapped to. We use a single input variable, price

volatility, to map to a single output variable, the fraction of chartists. Neural networks can

also be used to map to more than a single output variable. Such analyses would exploit the

capabilities of neural networks to a larger extent. We believe that the simple example

discussed in this paper is able to trigger interest in expanding the complexity.

In the context of financial markets, for instance, potential avenues of future research

are to estimate a more diverse set of strategies or to further increase the frequency of the

estimation data, e.g., using intra-daily data. Finally, other types of strategies in other types of

markets, e.g., the fraction of carry traders in foreign exchange markets could be estimated.

6 CONCLUSION

We have proposed a general method for estimating micro-parameter time series of

complex agent-based models using an inverse model that is being estimated based on a

model-free estimation method. We utilize a neural network approach to estimate the inverse

model based on data generated by a simulation of an agent-based model. The inverse model

maps macro behavior back to aggregated individual micro-level behavior, which in our study

are fractions of strategies used by market participants. The main advantage of the approach is

the model-free non-parametric regression of the neural network which poses only little

assumptions on the mapping. By applying the neural network to real world data, we are able

to indirectly estimate micro-parameter time series parameters of the underlying agent-based

model of high complexity at high frequency without having to apply any simplifying

assumptions concerning the model or the estimation process.

We have applied the proposed estimation method to the L&M model of a financial

market to estimate fractions of strategies used by market participants in the S&P 500 at daily

frequency. We empirically validated our estimated daily time series of the fraction of

chartists by comparing it with previous results by Boswijk et al. (2007) and by interpreting

the results based on past distinct events such as booms and crashes at financial markets. We

find that the fraction of chartists is large at times of crises, crashes, and price bubbles. The

fraction is low at times of sideways markets with no distinct price trends and low volatility.

Future research might exploit the estimated information about fractions of strategies

employed in the markets in predicting prices and giving indications for market inefficiencies.
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For instance, as trend following chartists might induce and sustain trends in prices, at these

times price time series should be persistent, i.e., exhibit self similarity, which can be

estimated for instance by the Hurst parameter (Rose, 1996; Clegg, 2006). Thus, in case of an

increasing fraction of chartists, (1) a continuation of price trends can be expected, and (2)

predictability of prices should increase. This is due to the self-enforcing, positive feedback

process induced by trend followers. During these times, trend following becomes a self-

fulfilling prophecy and it is rational to adopt a trend following strategy in trying to earn

excess returns (DeLong et al. 1990), (Shleifer & Summers 1990). Investor George Soros

(1987) for example has apparently successfully applied this strategy in real markets by

betting on future crowd behavior. Thus, as the estimated fraction of chartists starts to increase

rapidly from a low level, one could utilize a trend following strategy in anticipation of future

trend following. Thus, a proof of concept trading system, by earning above buy-and-hold or

random strategies returns, could provide indications for market inefficiencies on empirical

market data.

More generally, we believe that our method of indirect estimation of an agent-based

model could be used in other domains as well to estimate micro-level parameters, provided

that an appropriate, realistic agent-based model is available or can be constructed. The

combination of a model-free estimation method with simulations of complex agent-based

models provides a method that comes closer to what one would call an “estimation of an

agent-based model” than any previous suggestions. If researchers follow up on this path, the

robustness of the approach could be validated on a broader scale.
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Table 1: Parameters (and their symbols) of our indirect neural network-based
estimation approach and the allocation of the parameters in our application of the
approach to estimating micro parameters of the Lux and Marchesi (1999, 2000)
financial market model.

Parameter Symbol Allocation
Agent based model A Lux-marchesi financial market model (Lux and

Marchesi, 1999, 2000)

Simulation time span ts ts = 9950 days

Set of simulation parameters SP According to Lux and Marchesi (1999, 2000),

see also section 4.1.

Micro time series mitsa Not applicable, as Lux and Marchesi, (1999,

2000) only model groups of agents, not

individuals.

Macro time series matsb Price p, and fundamental value pf (see Lux and

Marchesi, 1999, 2000)

Aggregated micro time series amitsb Daily fraction of chartists chart(t), daily

fractions of pessimistic chartists pess(t) and

optimistic chartists opt(t), and daily fraction of

fundamentalsists fund(t)

Desired (aggregated) micro

level output parameters doj

dojÎDO Daily fraction of chartists chart(t)

Potential macro level input

parameters
ikÎPI price p(t), historical price intervals of various

lengths : p(t)-p(t-), price returns r(t)=ln(p(t)) -

ln(p(t-1)), price volatility as the square of the

price returns: r(t)², relative price trends rpt() =𝑝 𝑡 −𝑝 𝑡−𝜏𝜏∙𝑝 𝑡 of length  and differences in relative

price trends of different lengths, e.g., rpt()-

rpt().

Smoothing method for pre-

processing of input parameter

time series ik(t)

SM Hodrick and Prescott filter (Hodrick and

Prescott 1997)

Set of neural network

building parameters

NBP Number of hidden layers = 1; Number of

hidden neurons = 5; activation function =
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hyperbolic tangent; training algorithm = Gauss-

newton approximation to bayesian learning

(Foresee and Hagan, 1997); Objective function

F = ED + EW, where EW is the sum of squares

of the network weights and ED is the sum of

squared errors (Foresee and Hagan, 1997);

Marquardt adjustment parameter µ = 0.005;

decrease factor for µ as µdec = 0.1; the increase

factor for µ as µinc = 10

Length of the time series in

the training set (l1),

validation set (l2), test set (l3),

and robustness test set (l4)

l1, l2, l3, l4 l1=5000; l2=500; l3=946; and l4=946

Set I of (actual) macro level

input parameters i
ikÎIÍPI Price volatility r(t)²

Actual micro level output

parameter time series

om(t) Estimated daily fraction of chartists chartest(t)

Set of stopping criteria for

the training algorithm

SC Maximum number of training iterations to

maxiter = 500; performance goal for the objective

function on the training set goal = 0.001;

maximum value for µ is µmax = 1010; maximum

number of validation failures maxvf = 5;

minimum performance gradient mingrad = 10-10

Fitness criterion on the test

set: pearson correlation

coefficient with respect to

actual om(t) vs. desired output

doj(t) time series.

pc pc>0.9
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Table 2: Statistical properties of real markets, published properties of the L&M market
model, and properties of our re-implementation of the L&M model.

Statistical property Real markets L&M model Our results
Self-similarity Hurst parameter of raw price
returns 0.5 1) 0.48 0.42

Hurst parameter of absolute price returns >0.6 1) 0.85 0.89
Hurst parameter of raw returns of
fundamental value 0.5 2) 0.51 0.52

Hurst parameter of absolute returns of
fundamental value 0.5 2) 0.49 0.5

Exponent  for the tail of the unconditional
pareto distribution of absolute price returns
(covering 30% of the largest observations of
the time series)

2-5 3)

~3 4) 2.64 2.42

Exponent  for the tail of the unconditional
pareto distribution of absolute price returns
(covering 10% of the largest observations of
the time series)

2-5 3)

~3 4) - 5) 2.83

Kurtosis of the distribution of price returns >3 6) - 5) 9.65
Notes. 1) Westerhoff (2005:10)

2) Fundamental value is assumed to be randomly distributed, thus exhibiting no self-similarity, thus H=0.5.
3) Cont (2001:224)
4) Gopikrishnan et al. (1998:139)
5) Not published by L&M to our knowledge.
6) According to Cont (2001) kurtosis is positive and excessive, i.e., >3, as the normalized kurtosis of the

normal distribution is 3. E.g., they determine kurtosis for 5 minute price increments for S&P 500 futures
to be 18.95.
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Figure 1: The proposed three-step indirect model-free estimation approach for micro
parameters of complex heterogeneous agent-based models, illustrated by the case of an
agent-based financial market model.
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Figure 2: Time series (9950 days) of price vs. total fraction of chartists (optimists +
pessimists) in percent.
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Figure 3: Autocorrelation function of (raw, absolute, and squared) price log returns.
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Figure 4: Time series of the actual (network output) vs. desired (target) fraction of
chartists on the test data set, determined by the best neural network, trained on HP
filter smoothed input data.
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Figure 5: Verification of robustness: Time series of actual (network output) vs. desired
(target) fraction of chartists, obtained on a second separate test data set.
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Figure 6: S&P 500 vs. estimated daily fractions of chartists.
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Figure 7: S&P 500 vs. estimated fraction of chartists.
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Figure 8: S&P 500 (daily time series) vs. fraction of chartists: our curve vs. Boswijk et
al's estimation.
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Figure 9: Overview of all four sections comparing neural network chartist fraction
output based on (1) locally smoothed input time series parameters vs. (2) globally
smoothed input tine series parameters (dashed line).
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Figure 10: Section I (Flat): network output based on (1) locally smoothed input vs. (2)
globally smoothed input (dashed line)
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Figure 11: Section II (Ascent): network output based on (1) locally smoothed input vs.
(2) globally smoothed input (dashed line)
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Figure 12: Section III (Descent): network output based on (1) locally smoothed input vs.
(2) globally smoothed input (dashed line)
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Figure 13: Section IV (Up and down): network output based on (1) locally smoothed
input vs. (2) globally smoothed input (dashed line)
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Figure 14: Dependency of the chartist fraction of the best neural network trained on
smoothed input data from the sole input parameter, price volatility r(t)²
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Figure 15: Dependency of the chartist fraction on daily price volatility for the S&P 500


