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Abstract

Coordination games admit two types of equilibria: coordinated pure equilibria in

which everyone plays the same action, and inefficient mixed equilibria with mis-

coordination. The existing literature shows that populations will converge to one

of the pure coordinated equilibria from almost any initial state. By contrast, we

show that plausible learning dynamics, in which agents sample the aggregate be-

havior of the opponent’s population and best reply to their samples, can induce

stable miscoordination if there is heterogeneity in the sample sizes: some agents

base their choices on noisy small samples (anecdotal evidence), while others rely on

large samples.

Keywords: sampling best Response dynamics, action-sampling dynamics, coordi-

nation games, hawk-dove games, evolutionary stability, logit dyanmics. JEL

Classification: C72, C73.

1 Introduction

Many real-life situations can be modeled as (two-player) coordination games, in which

the best reply against each opponent’s action is to play the same action (possibly, after
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Table 1: Standard Representation of Two-Action Coordination Game
a2 b2

a1 u1
u2

0
0

b1 0
0

1
1

relabeling the actions). Two-action coordination games admit two types of equilibria: two

coordinated pure equilibria in which everyone plays the same action, and an inefficient

mixed equilibrium with miscoordination. A key result in evolutionary game theory is that

under a broad set of learning dynamics the mixed equilibrium is unstable, and populations

in which players are randomly matched to play coordination games must converge to

everyone playing one of the pure coordinated equilibria (as surveyed in Section 2). By

contrast, in this paper we show that the mixed equilibrium with miscoordination can be

stable if the populations are heterogeneous in the sense that some (but not all) of the

agents rely on anecdotal evidence induced by small samples.

Highlights of the model Consider a setup in which pairs of agents from two infinite

populations are repeatedly randomly matched to play a (one-shot) coordination game.

Agents occasionally die and are replaced by new agents (or, alternatively, agents occasion-

ally receive opportunities to revise their actions). The new agents do not have precise

information about the aggregate behavior in the opponent’s population, and estimate

this from sampling the opponent’s population. Specifically, each population i is charac-

terized by a distribution of sample sizes θi, such that θi (k) is the frequency of agents

with sample size k. Each such agent observes the behavior of k random opponents, and

then adopts the action that is a best reply to her sample (with an arbitrary tie-breaking

rule). This learning dynamics, which seems plausible in various setups, is called sampling

best-response dynamics (Sandholm, 2001; Osborne and Rubinstein, 2003; Oyama et al.,

2015, henceforth abbreviated as sampling dynamics).

As explained in Section 3, any two-action coordination game can be represented

WLOG by the payoff matrix presented in Table 1 that has two positive parameters

(u1, u2) that represent the players’ payoffs when both playing the first action; the pay-

offs when coordinating on the second action are normalized to 1, and the payoffs for

miscooridnating are normalized to 0.
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The following definitions will be helpful for the presentation of our results. An action

is q-dominant (Morris et al., 1995) to player i if it is the player’s best reply against any

opponent’s mixed action that assigns mass of at-least q to the opponent playing the same

action. An action is risk dominant for player i if it is q-dominant for q = 1
2
. Observe

that action ai (resp., b1) is risk dominant for player i iff ui > 1 (resp., ui < 1). A

pure equilibrium is risk dominant if each equilibrium action is risk dominant for each

population (e.g., (a1, a2) is risk-dominant equilibrium iff u1, u2 > 1).

Global Convergence to Miscoordination Our first main result (Theorem 1) presents

a full characterization for environments in which the populations converge to states with

miscoordination from almost all initial states. This happens if (and essentially only if):

(1) each population has a different risk dominant action (i.e., u2 < 1 < u1), (2) the prod-

uct of the mass of agents with sample size 1 times the expected sample size is larger than

one (i.e., ∀i, θi (1) · E (θ−i) > 1 ), and (3) the risk-dominant action of each population is

q-dominant for a sufficiently low q (which is satisfied iff each ui is sufficiently far from 1).

The proof idea is as follows. Global convergence to miscoordination occurs iff both

pure equilibria are unstable. Assume that u2 < 1 < u1. Consider a slightly perturbed

state near the equilibrium (a1, a2), in which ϵi << 1 of the agents in population i plays

bi. Events in which a new agent observes multiple occurrences of the rare opponent

action b−i in her sample are negligible (O
(

ϵ2
−i



). Neglecting these very rare events imply

that new agents of population 1 will adopt the risk-dominated action b1 only when they

have sample size 1, and they have observed the rare action b2 (the probability of this is

θ1 (1) · ϵ2). By contrast, if u2 < 1 is sufficiently small, then a single occurrence of the

rare action b1 in a sample of size k (which occurs with probability of k · ϵ1) is sufficient

to induce a new agent of population 2 to play her risk-dominant action b2. This implies

that the total share of new agents of population 2 who plays action b2 is E (θ2) · ϵ2. This,

in turn, implies that the product of the number of agents playing the rare action in each

population increases iff θ1 (1) · E (θ2) > 1.

Heterogeneity and Stability of Miscoordination Our second result shows that

heterogeneity of the sample sizes is necessary for stable miscoordination. Specifically, we

show that if all agents in each population i have the same sample size ki ≥ 2, then all

states with miscoordination are unstable (the case in which everyone has sample size 1

3



is discussed in Remark 1). Our final result (Theorem 3) shows that many heterogeneous

distributions of sample sizes in which some agents have relatively small samples, while

others have sufficiently large samples induce locally-stable states with miscoordination in

coordination games in which u1and u2 are sufficiently far from 1 (both for games with or

without risk-dominant equilibria).

The intuition why heterogeneity of sample sizes in important for the stability of states

with miscoordination is as follows. Consider homogeneous populations with a fixed sam-

ple size k in a stationary state with miscoordination. In such a state the random sample

of size k frequently yields both outcomes for which action ai is a best reply and outcomes

for which bi is a best reply. We show that in such situations the probability of each

action being a best reply is sensitive to small perturbations in the opponent’s distribu-

tion of actions. That is, if ϵ more of the opponent’s population play a−i, it increases the

probability for which ai is the best reply to the random sample by more than ϵ.

Next consider a heterogeneous population in which some agents have relatively small

samples, while other agent have large samples. The stationary interior state with mis-

coordination does not coincide with the Nash equilibrium, which implies that almost all

agents with large samples play the same action (the unqiue best reply to the the true

distribution of the opponents’ actions), and that their play is insensitive to small per-

turbations of the opponents’ behavior. This allows the overall sensitivity of the entire

population to small perturbations to be sufficiently small to allow stable miscoordination.

Theorem 2’s proof relies on deriving a property of binomial distributions (Proposition

2), which may be of independent interest. This new property states that a composition

of two binomial cumulative distributions have a unique interior fixed point.

Main Insights Heterogeneous populations in which some agents base their decisions

on noisy anecdotal evidence, while others have more accurate data are plausible in various

applications. For example, bargaining situations between buyers and sellers in the housing

market can be modeled as hawk-dove coordination-games, in which each agent chooses

either a soft or a tough bargaining approach (see Example 2). Such markets often involve

professional real-estate investors (who can rely on large samples) and agents who only

buy or sell houses once or twice in their lives, and often rely on anecdotal evidence.

In Section 7 we demonstrate that our main insight of heterogeneity inducing sta-

4



ble miscoordination does not depend on the specific details of the sampling dynamics.

Specifically, we numerically study the commonly-used logit dynamics, in which agents

play noisy best reply to the opponent’s aggregate behavior, with ηi describing the noise

level in population i. We first demonstrate that if the noise level in each population is ho-

mogeneous, then one can induce stable miscoordination only with implausibly high levels

of noise. By contrast, when we introduce an extension of logit dynamics that allows het-

erogeneity in the level of noise in each population, we show that stable miscoordination

can be supported by moderate heterogeneous levels of noise.

Taken together, our results show that the conventional wisdom that miscoordination

is unstable in learning dynamics is not accurate. Miscoordination can be stable in het-

erogeneous populations in which some agents rely on anecdotal evidence or noisy data,

while other agents have access to more accurate data. This might explain why in var-

ious real-life situations, such as bargaining in the housing market (Example 2), states

with miscoordination and frequent bargaining failures might persist. The experimentally

testable implications of our results are discussed in Section 2.

Structure Section 2 presents the related literature. Our model is described in Section

3. Section 4 presents an “complete” characterization for global convergence to states with

miscoordination. In Section 5 we show that homogeneous populations always converge to

one of the pure coordinated states. Section 6 shows that many heterogeneous distributions

of sample sizes can lead to locally stable states with miscoordination. In Section 7 we

numerically analyze the logit dynamics, and demonstrate that our main insights hold in

this setup as well. We conclude in Section 8. Formal proofs are presented in the appendix.

Appendix 4.1 describes the proof an interesting general result on binomial distributions.

2 Related Literature

Instability of Miscoordination It is well-known that the pure coordinated equilibria

satisfy strong stability refinements, while mixed equilibria with miscoordination do not

satisfy even weak stability refinements. In particular, coordinated pure strict equilibria

are evolutionary stable (Maynard Smith and Price, 1973), while the mixed equilibrium

with miscoordination does not satisfy neutral stability (Maynard-Smith, 1982), or even

the mild refinement of weak stability (Heller, 2017). Moreover, it is well known that
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interior stationary states in multiple-population games cannot be asymptotically stable

under the commonly-used replicator dynamics (see, e.g., Sandholm, 2010, Theorem 9.1.6),

and this is true for all underlying games. Instability of interior states is further shown

for various classes of learning dynamics in Crawford (1989).

Moreover, various papers in the literature have proven results for various dynamics

that populations playing coordination games would converge to pure coordinated states

from almost all initial states. Kaniovski and Young (1995) has proven global convergence

to one of the pure coordinated equilibria for sampling dynamics with sufficiently large

samples. Oprea et al. (2011) has proven global stability to one of the pure coordinated

equilibria monotone dynamics in which an action becomes more frequent iff it yields a

higher payoff than the alternative action.1 Recently, Oyama et al. (2015) has proven

global stability to the risk-dominant pure coordinated equilibrium in symmetric coor-

dination games for distributions of sample sizes in which sufficiently many agents have

sufficiently small samples. The stochastic evolutionary literature (pioneered in Kandori

et al., 1993; Young, 1993; see also the recent application to hawk-dove coordination games

in Bilancini et al., 2022) shows that only pure coordinated equilibria can be stochastically

stable in dynamics in large finite populations in which agents most of the time best reply

to a large sample, but occasionally they mistakenly play the other action.

Thus, taken together, the various existing literature suggest that states with miscoor-

dination are unstable. Our contribution is showing that is not true in plausible learning

dynamics in which agents base their behavior on sampling the opponent’s population,

and there is substantial heterogeneity in the sample sizes in each population.

Sampling (Best-Response) Dynamics The sampling (best-response) dynamics were

pioneered by Sandholm (2001) and Osborne and Rubinstein (2003). As argued by Oyama

et al. (2015), the deterministic nature of the sampling dynamics implies that when there

is convergence to a stable state the convergence is fast.2 As we show in Proposition 1

that the populations always converge to stable states in our setup. Recently, Heller and

Mohlin (2018) studied the conditions on the expected sample size that implies global

1Oprea et al. (2011) has shown it to hawk-dove coordination games, but the proof can be extended
to all coordination games.

2Conditions in which also stochastic dynamics induce fast convergence are studies in Kreindler and
Young (2013); Arieli et al. (2020).
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convergence for all payoff functions and all sampling dynamics.3

Salant and Cherry (2020) (see also Sawa and Wu, 2021) generalized the sampling

dynamics by allowing new agents to use various procedures to infer from their samples

the aggregate behavior of the opponents (in addition to allowing for payoff heterogene-

ity in the population). Salant and Cherry pay special attention to unbiased inference

procedures in which the agent’s expected belief about the share of opponents who play

hawk coincides with the sample mean. Examples of unbiased procedures are maximum

likelihood estimation, beta estimation with a prior representing complete ignorance, and

a truncated normal posterior around the sample mean. In our setup, the payoffs are

linear in the share of agents who play hawk, which implies that the agent’s perceived

best reply depends only on the expectation of her posterior belief. This implies that our

results hold for any unbiased inference procedure.

Experimental Literature and Testable Predictions Our model yields a novel

testable prediction: miscoordination can persist when there is heterogeneity in the amount

of information that the agents have about the opponents’ behavior, and if for each pop-

ulation one of the actions is q-dominant for a sufficiently low q.

Selten and Chmura (2008) applied an experimental design that can help in testing

our prediction. In their design: (1) agents are randomly and repeatedly matched to

anonymous pairs within a relatively large matching groups, (2) each agent gets explicit

feedback only about her most recent opponent’s play (and can rely on her memory of

her previous feedback abut past opponents). Selten and Chmura applied this design for

two-action, two-player games with a unique completely mixed Nash equilibrium. They

showed that sampling dynamics explain well the aggregate experimental behavior (much

better than the predictions of quantal response equilibria and Nash equilibria).

Assuming that all agents use the same sample size, Selten and Chmura (2008) showed

that a sample size of 7 fitted the data best (which is roughly in line with the typical

estimates of people short-run memory captivity). The prediction of global convergence

to miscoordination (Theorem 1) requires that a substantial part of the population to have

a much smaller sample size of 1. Possibly, the this can be induced by having the subjects

3Hauert and Miekisz (2018) use the term “sampling dynamics” to refer to a variant of the replicator
dynamics, in which when an agent samples another agent and mimics the other agent’s behavior, it is
more likely that these two agents will be matched with each other. This is less related to our use of the
notion of “Sampling dynamics”, which is in line with the literature cited in the main text.
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playing in different rounds different underlying games. For example, in each round, one

out of several underlying games will be played. Each subject will be informed about

the payoff matrix of the current game, and will be reminded about her past opponent’s

behavior in the previous time in which the same game was played. It seems plausible that

many subjects will rely only on this feedback when deciding how to play (i.e., essentially

have a sample of size 1), while only few subjects will exert efforts to remember relevant

past feedback from less recent times in which the same game was played.

Recently, Lyu et al. (2022) has applied a more elaborate experimental setup that aims

to implement sampling dynamics. In their implementation the subjects are endowed with

a specific “default” action to play in the first round. This novel design component allows

to test dynamic predictions with respect to specific initial states. At the end of each

round each player observes the k most recent actions (k = 2 and k = 7 were applied in

their treatments) of random opponents among the 14 players in their matching group.

Their underlying games were symmetric coordination games with Pareto ranked pure

equilibria. Lyu et al. show that action sampling dynamics (with respect to the most

recent k observed actions) fits about 80% of the subjects’ behavior.

A central reason why some subjects deviated from the predictions of sampling dy-

namics (specially in early rounds) was that they played the action that is part of the

Pareto-dominant equilibrium, in order to “teach” the other subjects in the matching

group to move from the Pareto-dominated equilibrium to the Pareto-better equilibrium.

These “teaching” incentives were justified, as they often helped groups starting in the

Pareto-dominated equilibrium to shift to the Pareto-dominant equilibrium. We think

that “teaching”incentives would be substantially reduced, and the fit of sampling dynam-

ics would much improve, if either (1) the strict equilibria of the underlying coordination

games will not be Pareto-ranked, such as the case in hawk-dove games (see Example 1),

or (2) the matching groups would be substantially larger.

The examples demonstrating the predictions of Theorem 3 (local stability of miscoor-

dination) require both an appropriate initial state (which can be implemented à la Lyu

et al., 2022), and that some agents will have accurate information about the opponents’

aggregate behavior. This can be implemented by providing some agents with a full feed-

back about the behavior of all opponents in the previous round (while the remaining

agents will only get feedback about the behavior of their own matched opponents).
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Table 2: Standard Representation of Two-Action Coordination Game
a2 b2

a1 u1
u2

0
0

b1 0
0

1
1

u1 ≥ 1, u2>0

3 Model

3.1 Coordination Games

Standard Representation Let G = ¶A1 × A2, u♢ denote a normal-form two-action

two-player coordination game. Let i ∈ ¶1, 2♢ be an index denoting one of the players

(“she”), and let −i denote her opponent (“he”). For each i ∈ ¶1, 2♢, let Ai = ¶ai, bi♢
denote the two feasible actions of player i. Let ci ∈ Ai denote one of these two actions (and

c−i its counterpart action for the opponent). The standard 2-parameter payoff matrix of

a coordination game is given in Table 2: The players get a low payoff (normalized to zero)

if they miscoordinate (i.e., one player plays ai and the opponent plays b−i), they get a

high payoff (normalized to 1) if they coordinate on both playing on (b1, b2), and they get

a payoff of (u1, u2), where u1 ≥ 1 and u2 > 0 if they coordinate on (a1, a2). We say the

the coordination game is symmetric if u1 = u2. Although, this standard representation

may look as a specific subset of coordination games, as we explain below, this standard

representation does capture all coordination games WLOG.

We extend the game to mixed actions in the standard linear way. We identify each

mixed action with the probability it assigns to the first action (ai), and we denote it by

pi ∈ [0, 1]. We identify the degenerate mixed action 1 with the pure action ai, and the

degenerate mixed action 0 with bi. Observe that the coordination game admits 3 Nash

equilibria: two pure (coordinated) equilibria (a1, a2) and (b1, b2), and one mixed equi-

librium with miscoordination pNE =
(

1
1+u2

, 1
1+u1



with expected payoff of
(

u1

1+u1
, u2

1+u2



.

General Coordination Games We next explain why the above 2-parameter repre-

sentation indeed captures WLOG any 2-action coordination game. The most general

definition of a 2-action coordination game is a game that admits two strict Nash equi-
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Table 3: Normalization of General Two-Action Coordination Games
Original Representation Standard Representation

a2 b2

⇒

a2 b2

a1 u11
v11

u12
v12 a1 u11−u21

u22−u12

v11−v12
v22−v21 0

0

b1 u21
v21

u22
v22 b1 0

0
1

1

u11 > u21, u22 > u12, v11 > v12, v22 > v21

libria. By relabeling the actions of player 1, we can assume WLOG that these two pure

equilibria are (a1, a2) and (b1, b2) (i.e., if the two strict equilibria where (a1, b2) and (b1, a2),

then we switch the labels of player 1’s actions: a1↔b1). This implies that the left panel

of Table 3 shows a 2 · 4-parameter representation of all coordination games.

Sampling dynamics depends only on the differences between the payoffs a player can

get by playing different actions (the same property holds for best-reply dynamics and

logit dynamics, which implies that the sets of Nash equilibria, quantal response equilibria

and evolutionary stable strategies depend only on these differences).4 These differences

are invariant to subtracting a constant payoff from all the payoffs of a player when fixing

the opponent’s action (e.g., subtracting u21 from all of player’s 1 first column payoffs).

Moreover, sampling dynamics (as well as all the other dynamics and solution concepts

mentioned above) are also invariant to dividing all of a player’s payoff by a positive

constant (which preserves the vN-M utility). The left matrix in Table 3 is reduced to the

right matrix by the following steps (each of which does not affect the sampling dynamics):

1. Three changes to player 1’s payoffs: (I) subtracting u21 from player’s 1 payoffs in

her first column, (II) subtracting u12 from player’s 1 payoffs in her second column,

(III) dividing player 1’s payoff by u22−u12; and

2. Three changes to player 2’s payoffs: (I) subtracting v12 from player’s 1 payoffs in her

first row, (II) subtracting v21 from player’s 1 payoffs in her first row, (III) dividing

player 1’s payoff by v22 − v21.

Observe that the assumption that u1 = u11−u21

u22−u12
≥ 1 in the standard representation of

4A notable exception is the best-experienced payoff dynamics (see, e.g., Osborne and Rubinstein,
1998; Cárdenas et al., 2015; Mantilla et al., 2018; Sandholm et al., 2019, 2020; Sethi, 2021), where the
dynamics depend directly on the payoffs, and not only on payoff differences.
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Table 4: Normalization of Hawk-Dove Games (g, l ∈ (0, 1))
Original Representation Standard Representation

h2 d2

⇒

a2 = h2 b2 = d2

h1 0
0

1+g
1−l a1 = d1 1−l

g

g

1−l 0
0

d1 1−l
1+g

1
1

b1 = h1 0
0

1
1

Table 2 is WLOG. If u11−u21

u22−u12
< 1, then we can multiply all of player 1’s payoffs by

u22−u12

u11−u21

and all of player 2’s payoffs by v22−v21

v11−v12
, relabel the actions ai ↔ bi for both players, and

obtain a standard representation as in Table 2 in which u1 ≥ 1.

Example 1 (Motivating Example – Hawk-Dove Games). Consider a hawk-dove (AKA,

Chicken) game (as described in the left panel of Table 4), which can be interpreted as

a bargaining over a price of an asset (e.g., house) between a buyer and a seller. Each

player can either insist on a more favorable price (“hawk”) or agree to a less favorable

price in order to close the deal ( “dove”). A hawkish The left panel of Table 4 shows the

original payoffs of a hawk-dove game. Two doves agree on an equally favorable price. A

hawk obtains a favorable price when being matched with a dove, but has a substantial

probability of bargaining failure against another hawk.

Observe that a hawk-dove game can be transformed to our standard representation of

a coordination game (the right panel of 4) as follows: (1) relabeling the payoffs of player

1 such that a1 = d1 and b1 = h1(while a2 = h2 and b2 = d2), (2) subtract a payoff

of 1 from player 1’s payoffs in her second column and from player 2’s payoffs in her first

column, and (3) divide all the payoffs of player 1 by g, and all payoffs of player 2 by

1 − l. Observe that the induced standard representation has the special property that

u1 = 1−l
g

= 1
u2

. Thus, we say that a coordination game in its standard representation is

hawk-dove game if u1 = 1
u2

.

Risk-Dominance Fix q ∈ [0, 1]. We say that action ci ∈ Ai is q-dominant (Morris

et al., 1995; Oyama et al., 2015) for player i if it is a strict best reply to any opponent’s

mixed action that assigns mass of at-least q to the counterpart action c−i. Observe that

both actions are 1-dominant (which is equivalent to being part of a strict equilibrium).

Further observe that the lower the q, the more demanding the q-dominance requirement

becomes (i.e., if an action is q-dominant, it is also r-dominant for any q ≤ r ≤ 1). Finally,
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observe that action ai is 1
1+ui

-dominant and action bi is ui

1+ui
-dominant.

We say that action ci ∈ Ai is risk dominant for player i if it is 1
2
-dominant. We say

that the pure equilibrium c is risk dominant if each action ci is risk dominant; in this

case we say the remaining equilibrium to be risk dominated. Observe that a coordination

game admits a risk-dominant equilibrium iff u1, u2 > 1. By contrast, if u1 > 1 > u2, then

a1 is risk dominant to player 1 and b2 is risk dominant to player 2.

Observe that q-dominance depends only on the differences between the payoffs a

player can get by playing the different actions. This implies that q-dominance (and

risk-dominance) is invariant to all the transformations described above; i.e., an action is

q-dominant in the standard representation (right panel of Table 3) iff it is q-dominant in

the original representation (left panel). By contrast, payoff dominance is not invariant

to changing all of a player’s payoff when fixing the opponent’s action. For example the

payoff for (d1, d2) = (a1, b2) strictly Pareto dominates the payoff of (h1, h2) = (b1, a2) in

the original representation of hawk-dove games in the left panel of Table 4, but the two

payoff profiles coincide in the standard representation in the right panel.

3.2 Evolutionary Dynamics

We assume that there are two unit-mass continuums of agents and that agents in popu-

lation 1 are randomly matched with agents in population 2. Aggregate behavior at time

t ∈ R
+ is described by a state p (t) = (p1 (t) , p2 (t)) ∈ [0, 1]2, which is equivalent to a

mixed action profile (i.e., pi (t) represents the share of agents playing action ai at time t

in population i). A state p = (p1, p2) is interior (or mixed) if p1, p2 ∈ (0, 1).

Agents die at a constant rate of 1, and are replaced by new agents (or, equivalently,

agents get opportunities to revise their actions). The evolutionary process is represented

by a function w : [0, 1]2 → [0, 1]2, which describes the frequency of new agents in each

population who play action aias a function of the current state. Thus, the instantaneous

change in the share of agents of population i that play ai is given by ṗi = wi (p) − pi.

Sample sizes We allow heterogeneity in the sample sizes used by new agents. Let

θi ∈ ∆ (Z+) denote the distribution of sample sizes of new agents of population i. We

assume that θi has a finite support. A share of θi (k) of the new agents have a sample of

size k. Let supp (θi) denote the support of θi. If there exists some k, for which θi(k) = 1,
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then we use k to denote the degenerate (homogeneous) distribution θi ≡ k.

Remark 1. We assume that some agents have sample sizes larger than 1 (i.e., ∀i

max(supp(θi)) > 1). This rules our the trivial case in which all agents have sample size

1. In this case the entire diagonal ¶(p1, p1) ♣p1 ∈ [0, 1]♢ is Lyapunov stable, and no state

is asymptotically stable (as analyzed in Sethi, 2000, Example 7 in a related setup).

Definition 1. An environment is a tuple E = (u, θ) = ((u1, u2) , (θ1, θ2)) where (u1, u2)

describe the payoffs of the underlying coordination game, and (θ1, θ2) describes the dis-

tributions of sample sizes in each population.

Sampling best-response dynamics The sampling best-response dynamics (Sand-

holm, 2001; Oyama et al., 2015, henceforth abbreviated as sampling dynamics) fit situ-

ations in which agents do not know the exact distribution of actions in the opponent’s

population. New agents estimate this unknown distribution by sampling opponents’ ac-

tions. Specifically, each new agent with sample size k (henceforth, a k-agent) samples k

randomly drawn agents from the opponent’s population and then plays the action that

is the best reply against the sample. To simplify notation, we assume that in case of a

tie, the new agent plays ai. Our results are essentially the same for any tie-breaking rule.

Let X(k, p−i) ∼ Bin (k, p−i) denote a random variable with binomial distribution

with parameters k (number of trials) and p−i (probability of success in each trial), which

is interpreted as the number of a−i-s in the sample. Observe that the sum of payoffs of

playing action ai against the sample is ui · X(k, p−i) and the sum of payoffs of playing

action bi against the sample is k − X(k, p−i).

This implies that action ai is a best reply to a sample of size k iff ui · X(k, p−i) ≥
k − X(k, p−i) ⇔ X(k, p−i) ≥ k

ui+1
. This, in turn, implies that the sampling dynamics in

environment (u, θ) is given by

wi (p−i) ≡ wi (p) =
∑

k∈supp(θi)

θi(k) · Pr

(

X (k, p−i) ≥ k

ui + 1

)

. (3.1)

Observe that Pr
(

X (k, p−i) ≥ k
ui+1



=
∑ki

l=

⌈

k
ui+1

⌉







k

l





 pl
−i (1 − p−i)

k−l , which is a

polynomial of p−i of degree k. This implies that wi (p−i) is a polynomial with a finite

degree of max supp (θi) > 1.
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Remark 2 (Symmetric games played within a single population). Our formal model deals

with coordination games played between two different populations (or, equivalently, by

games played within a single population where an agent can condition her play on the role

she was allocated to in the game: player 1 or player 2). When dealing with symmetric

coordination games (u1 = u2), one can also consider a variant of our dynamics in which

the game is played by agents from a single population, and a player cannot condition

her play on allocated role: player 1 or player 2 (e.g. the setup analyzed in Oyama et al.,

2015).5 It turns out that both types of dynamics (two-population or one-population)

yield exactly the same results regarding the characterization of stationary states and

asymptotically stable states. This has been shown formally in the related setup of best-

experienced payoff-sampling dynamics (Sethi, 2000, Thoerem 3; Arigapudi et al., 2021,

Corollary 2), and these proofs can be adapted to the current setup. Thus all of our results

remain valid for symmetric coordination games played within a single population.

4 Global Convergence to Miscoordination

As discussed in Section 2, various existing papers have shown that populations playing

coordination games will always converge to pure coordinated states under various dy-

namics. In this section, we fully characterize the conditions for which the opposite result

holds under sampling dynamics; i.e., the populations converge from almost any initial

state to one of the interior states with miscoordination.

4.1 Analysis of wi(p) and Preliminary Results

The characteristics of sampling dynamics are closely related to the properties of the

polynomials w1(p2) and w2(p1) and their intersection points, which are analyzed in this

subsection.

Figure 4.1 illustrates the phase plots of the sampling dynamics and the properties of

the polynomials w2(p1) and w1(p2). We refer to the latter polynomial also as w−1
1 (p1).

The left panel illustrates a symmetric coordination game with u1 = u2 = 3, and the right

5In one-population dynamics it is important that the strict equilibria are obtained by both agents
playing the same action (i.e., being on the main diagonal of the payoff matrix), as one cannot relabel
the actions of only one of the roles in the game without break the symmetry. Thus, in one-population
environments, hawk-dove games are no longer considered to be coordination games.
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Figure 4.1: Illustrative Phase Plots (θi ≡ 3 = u1; u2 is either 3 or 1
3

)

The figure illustrates the phase plots of the sampling dynamics for two environments: (1)
∀i θi ≡ 3 = ui (left panel, a symmetric coordination game), and (2) ∀i θi ≡ 3 = u1 = 1

u2
(right

panel, a hawk-dove game). The blue solid (resp., orange dashed) curve shows the states for
which ṗ1 = 0 (resp., ṗ2 = 0 ). The intersection points of these curves are the stationary states.
A solid (resp., hollow) dot represents an asymptotically stable (resp., unstable) stationary state.

panel a hawk-dove game with u1 = 3 and u2 = 1
3
. In both panels all agents have sample

size of 3 (θi ≡ 3). The blue solid curve is the polynomial p2 = w2(p1), which describes

the states in which ṗ2 = 0. In all states above (resp., below) this curve ṗ2 < 0 (resp.,

ṗ2 > 0). The orange dashed curve is the polynomial p1 = w1(p2), which describes the

states in which ṗ1 = 0. In all states to the right (resp., left) of this curve ṗ1 < 0 (resp.,

ṗ1 > 0). Observe that on both panels all non-stationary initial states converge to a pure

state. In the left panel there is global convergence to (1, 1), while in the right panel some

states converge to (1, 1) and others to (0, 0).

The following fact is immediate from basic properties of binomial random variables.

Fact 1. wi(p−i) is a strictly increasing polynomial function that satisfies wi(0) = 0 and

wi(1) = 1. This implies that the inverse function w−1
i : [0, 1] → [0, 1] exists, is continu-

ously differentiable, and that w−1
i (0) = 0 and w−1

i (1) = 1.

Fact 1 implies that the two curves intersect at (0, 0) and (1, 1).

Appendix A.2 presents the standard definitions of stationary states, asymptotically

stable states, and unstable states. Observe that a state is stationary (i.e., it is a fixed

point of the dynamics) iff it is an intersection point of the two curves w1 and w2.

Fact 2. State p is stationary iff p2 = w2 (p1) and p1 = w1 (p2).
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Further observe that p1 ∈ [0, 1] is part of a stationary state iff it is a rest point of the

composition of the two wi-s.

Fact 3. State (p1, w2 (p1)) is stationary iff p1 = w1 (w2 (p1)) = (w1°w2) (p1).

We begin by showing that the dynamics admit a finite number of stationary states.

Claim 1. The curves w2 (p1) and w1 (p2) intersect in a finite number of points.

Proof. As explained in the end of Section 3, wi (p−i) is a polynomial of degree max supp (θi) >

1. This implies that w1 (w2 (p1)) is a polynomial of a finite degree strictly larger than 1.

This, in turn, implies that the equation characterizing intersection points (and stationary

states) w1 (w2 (p1)) = p1 has a finite number of solutions.

Next, we show that the dynamics always takes the populations to a state that is below

one of the curves, and above the other curve.

Claim 2. There exists t < ∞ such that either w−1
1 (p1 (t)) ≤ p2 (t) ≤ w2 (p1 (t)) or

w2 (p1 (t)) ≤ p1 (t) ≤ w−1
1 (p1 (t)).

Sketch of Proof. Observe that ṗ1 > 0 > ṗ2 (resp., ṗ1 < 0 < ṗ2) in any trajectory that

begins above (resp., below) both curves, which implies that the trajectory moves down-

ward and to the right (resp., upward and to the left) until it intersects with one of the

curves. See Appendix A.3 for the formal proof.

Our next result shows that if a trajectory reaches a state between the two curves,

then it must converge to one of the neighboring stationary states: the stationary state in

the right side if the curve w2 (p1) is above the curve w1 (p2) , and the stationary state in

the left side otherwise.

Claim 3. Let p (t) be an interior state. Let p, p be the neighboring stationary states, i.e.,:

(1) p
i

< pi (t) < pi and (2) there does not exist any stationary p̂ satisfying p
i

< p̂i < pi.

1. If pi (t) ∈
[

w−1
1 (p1 (t)) , w2 (p1 (t))

]

, then limt→∞ p (t) = p, and

2. If pi (t) ∈
[

w2 (p1 (t)) , w−1
1 (p1 (t))

]

, then limt→∞ p (t) = p.

Sketch of Proof for case (1). The fact that w−1
1 (p1 (t)) < pi (t) < w2 (p1 (t)) implies that

ṗ1 (t) , ṗ2 (t) > 0, and thus the trajectory moves upward and to the right until meeting

one of the curves. This meeting point must be the intersection point p, because if the
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meeting point were only with w2(p1) (resp., w1(p2)), the trajectory there would have

been horizontal to the right (resp., vertical upward), which implies that the trajectory

would come from the left side of the curve (resp., from below the curve), leading to a

contradiction. See Appendix A.4 for a formal proof.

The claims immediately imply that any trajectory converges to a stationary state.6

Corollary 1. limt→∞ p (t) exists for any p(0), and it is a stationary state.

Next we show that if any initial state converges to one of the pure equilibria, then

this equilibrium must be asymptotically stable (as defined in Appendix A.2).

Claim 4. Assume that p(0) ̸= (0, 0) and limt→∞ p (t) = (0, 0); then (0, 0) is asymptotically

stable. The same result holds when replacing (1, 1) with (0, 0).

Sketch of Proof. Due to Claim 1 we can assume WLOG that p(0) is between the two

curves. Claim 2 implies that the trajectory converges to (0, 1) iff w2(p1) is below w1(p2),

and the closest intersection point of the curves to the left of p(0) is (0,0). These conditions

imply that any initial state sufficiently close to (0,0) converges to (0,0), which, in turn,

implies that (0,0) is asymptotically stable. See Appendix A.5 for the formal proof.

4.2 Asymptotic Stability of Pure Equilibria

In order to state our next results, it will be helpful to consider the condition in which a

single appearance of a rare action can change the behavior of a new agent. Specifically,

Consider a new agent in population i with a sample size of k. Observe that:

1. Action ai induces a weakly higher payoff against a sample with a single opponent’s

action a−i (and k − 1 opponent actions b−i) iff ui ≥ k − 1 ⇔ k ≤ ui + 1.

2. Action bi induces a strictly7 higher payoff against a sample with a single opponent’s

action b−i (and k − 1 opponent actions a−i) iff 1 > (k − 1) ui ⇔ k < 1
ui

+ 1.

Next we define m-bounded expectation as the expected value of a probability distribution

when taking into account only values smaller than m. Formally,

6An alternative way to prove Corollary 1 is to rely on the Bendixson–Dulac theorem (see Theorem
9.A.6 of Sandholm, 2010).

7We require strictly higher payoffs for action bi and weakly higher payoffs for action ai due to our
tie-breaking rule in favor of action ai.

17



Definition 2. The m-bounded expectation E≤m (resp., E<m) of distribution θi with sup-

port on integers is8
E≤m (θi) =

∑

1≤k≤m θi (k) · k (resp., E<m (θi) =
∑

1≤k<m θi (k) · k).

Our next result characterizes the asymptotic stability of the pure states. It shows

that the asymptotic stability depends only on whether the product of the bounded ex-

pectations of the distributions of sample sizes is larger or smaller than one, where the

bound of each distribution is the maximal sample size for which a single appearance of

a rare action can change the behavior of a new agent. Formally (where replacing the

ai-favorable tie-breaking rule with a bi-favorable one would replace the “<”-s and the

“≤”-s in the bounded expectations in the statement):

Proposition 1.

1. E< 1
u1

+1 (θ1) · E< 1
u2

+1 (θ2) = θ1 (1) · E< 1
u2

+1 (θ2) > 1 ⇒ a=(a1, a2) is unstable;

2. E< 1
u1

+1 (θ1) · E< 1
u2

+1 (θ2) = θ1 (1) · E< 1
u2

+1 (θ2) < 1 ⇒a is asymptotically stable;

3. E≤u1+1 (θ1) · E≤u2+1 (θ2) > 1 ⇒ b=(b1, b2) is unstable; and

4. E≤u1+1 (θ1) · E≤u2+1 (θ2) < 1 ⇒b= (b1, b2) is asymptotically stable;

Sketch of Proof. Consider a slightly perturbed state (1 − ϵ1, 1 − ϵ2) near a = (1, 1) (the

argument for b is analogous) in which almost all agents play action ai. The event of two

rare actions (bi-s) appearing in a sample of a new agent has a negligible probability of

O(ϵ2
i ). If a new agent has a sample size of k, then the probability of a rare action appearing

in the sample is approximately k · ϵ−i. This rare appearance changes the perceived best

reply of a new agent of population i iff k is smaller than 1
ui

+1. Thus, the total probability

that a new agent of population i adopts the rare action bi is equal to E< 1
ui

+1 (θi) .

This implies that the product of the share of new agents adopting a rare action in each

population is ϵ1 ·E< 1
u1

+1 (θ1) · ϵ2 ·E< 1
u1

+1 (θ2). This shows that the share of agents playing

rare actions gradually increases (resp., decreases) if E< 1
u1

+1 (θ1) · E< 1
u1

+1 (θ2) > 1 (resp.,

E< 1
u1

+1 (θ1) · E< 1
u1

+1 (θ2) < 1), which implies instability (resp., asymptotic stability).

Finally, observe that our assumption that u1 ≥ 1 implies that 1
u1

+ 1 ≤ 2, which, in turn,

implies that θ1 (1) = E< 1
u1

+1 (θ1). See Appendix A.6 for a formal proof.

8Observe that in our notation the parameter k takes only (positive) integer values (although we allow
the upper bound m to be a non-integer).
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An interesting implication of Proposition 1 is the substantial difference in the stability

of a risk dominated equilibrium and a risk-dominant equilibrium (related results fro

symmetric coordination games are derived in Oyama et al., 2015). A risk-dominated

equilibrium (say, b) is unstable as long as sufficiently many agents have not too-large

samples (i.e., samples below ui + 1). The process inducing instability is as follows. A

small perturbation of few players who play ai induces a slightly larger number of new

agents to observe ai at-least one in their samples, which induces them to play ai as

well, which allows the small perturbations to gradually increase, until, in the end of the

process, everyone playing the risk-dominant action ai.

By contrast, risk-dominant equilibria are always asymptotically stable. To see this,

observe that if a is a weakly risk-dominant equilibrium (i.e., if u2 ≥ 1)9 then 1
u2

+ 1 ≤ 2,

which implies that E< 1
u2

+1 (θ2) = θ2 (1) < 1. This implies that E< 1
u1

+1 (θ1) ·E< 1
u2

+1 (θ2) =

θ1 (1) · θ2 (1) < 1, and, thus a is asymptotically stable. This implies that:

Corollary. A risk-dominant equilibrium is always asymptotically stable.

Thus, only in games in which neither equilibrium is risk-dominant (i.e., those in which

u2 < 1 ≤ u1), it might be possible for both pure equilibria to be unstable.

4.3 Global Convergence Result

Combining the previous results yields the main result of this section. It shows that the

population converges from almost any initial state to an interior stationary state if (and

essentially only if) in each population the product of the bounded expectations of the

distribution of sample sizes and the opponent population’s share of agents with sample

size 1 is larger than 1.

Theorem 1. Assume that u2 < 1 ≤ u1 (no risk-dominant equilibrium). Then

1. Global convergence to miscoordination: Assume that

θ1 (1) · E< 1
u2

+1 (θ2) > 1 AND θ2 (1) · E≤u1+1 (θ2) > 1.

If p(0) /∈ ¶(0, 0), (1, 1)♢, then limt→∞ p (t) /∈ ¶(0, 0), (1, 1)♢.

9The result holds also for u2 = 1 due to the tie-breaking rule in favor of ai.
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2. Local convergence to coordination: Assume that

θ1 (1) · E< 1
u2

+1 (θ2) < 1 OR θ2 (1) · E≤u1+1 (θ2) < 1.

Then there exist p(0) /∈ ¶(0, 0), (1, 1)♢ such that limt→∞ p (t) ∈ ¶(0, 0), (1, 1)♢.

Proof.

1. Proposition 1 implies that both pure stationary states are unstable. Combining

Propositions 1–4 implies that from almost any initial state, the population converges

to an interior stationary state.

2. Proposition 1 implies that at-least one of the pure equilibria is asymptotically stable,

which implies that some interior initial states converge to a pure equilibrium.

Theorem 1 shows that global converge to miscoordination requires heterogeneity in

the sample sizes in each population that includes both agents with a small sample of

a single action, and agents with larger samples (but not too large, such that are still

below the bound for which a single observation of a rare action can influence behavior).

Specifically, in each population it is required the product of (1) share of agents with a

sample size of 1 and (2) the bounded expected sample size should be sufficiently large.

Observe that the bound in the expression for the bounded expected value is higher

(and, thus, less restrictive), the farther are the ui-s are from 1. That is, games in which

in each population one of the actions is much riskier than the other (i.e., action a2 is very

risky for population 2, and action a1 is very risky for population 1) are more likely to

have stable miscoordination.

The following example demonstrates global convergence to miscoordination, and the

fact that the stability of pure states is non-monotone in the sample sizes.

Example 2 (Global convergence to miscoordination and non-monotone Impact of Sample

Size). Consider a hawk-dove game in which u1 = 5 and u2 = 0.2 and both populations

have the same distribution of sample sizes. Consider 3 distributions of sample sizes, in

each of which half of the population has sample size 1. In the first distribution (left panel

of Figure 4.2) the remaining half have sample size 3, in the second distribution (middle

panel) they have sample size 5, and in the third distribution (right panel of Figure 4.2)

they have sample size 7. Observe that the second distribution satisfies the condition for
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Figure 4.2: Illustration for Theorem 1 and Example 2

The figure illustrates the phase plots for three environments. In each environment the underlying
game is hawk-dove with u1 = 5 and u2 = 0.2, and 50% of the agents in each population
have sample size 1. In the environment illustrated in the left (resp., middle, right) panel the
remaining half of the population have sample size 2 (resp., 5, 7). The middle panel shows global
convergence to the interior state with miscoordination (0.37, .0.63), while the other two panels
show global convergence to one of of pure coordinated equilibria.

global convergence to miscoordination

θ1 (1) · E< 1
u2

+1 (θ2) = θ1 (1) · E<6 (θ2) = θ1 (1) · E (θ2) = 0.5 · 3 > 1

(and the same holds for population 2). Indeed, the middle phase plot shows that the

populations converge from any interior state to the state (0.37, 0.63) with substantial

miscoordination (specifically, the players miscoordinate and get a payoff of zero in 46%≈
2·0.37·0.63 of the interactions). By contrast, either decreasing the larger sample size from

5 to 2, or increasing it to 7, yields a product θ1 (1) · E< 1
u2

+1 (θ2) that is strictly smaller

than 1 (θ1 (1) ·E (θ2) = 0.5 · 1.5 < 1 in the first case, and θ1 (1) ·E<6 (θ2) = θ1 (1) · θ1 (1) =

0.5 · 0.5 < 1 in the second case). The left and right panels of Figure 4.2 illustrate that in

both cases almost all initial states converge to a pure coordinated state. Thus, changing

sample sizes of agents have non-monotone impact on the stability of miscoordination.

5 Homogeneity and Unstable Miscoordination

In this section, we show that heterogeneity is necessary for stable miscoordination. Specif-

ically, we show that any environment in which all agents in each population have the same

sample size admits at most one interior stationary state, and that this state is unstable.
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Auxiliary Results We begin by showing that that a stationary state p̂ is asymptoti-

cally stable iff the curve w2 is above the curve w−1
1 in a left neighborhood of p̂, and it is

below the curve w−1
1 in a right neighborhood of p̂.

Claim 5. Let p̂ be a stationary state. p̂ is asymptotically stable if both conditions hold:

1. Left neighborhood: If p̂1 > 0,then there exists p
1

∈ (0, p̂1) such that w2 (p1) >

w−1
1 (p1) for any p1 ∈

(

p
1
, p̂1



, and

2. Right neighborhood: If p̂1 < 1, then there exists p1 ∈ (p̂1, 1) such that w2 (p1) <

w−1
1 (p1) for any p1 ∈ (p̂1, p1).

Moreover, if any of the above two conditions is not satisfied, then p̂ is unstable.

Proof. Assume that conditions (1) and (2) hold. Let p ̸= p̂ be any sufficiently close state.

By Claim 2 any trajectory beginning at p will enter one of the two areas between the two

curves in either side of p̂. Due to Claim 3, Condition (1) (resp., (2)) implies convergence

to p̂ if the trajectory has entered the area between the curves to the left (resp., right) of

p̂. This implies that any trajectory that starts sufficiently close to p̂ must converge to p̂,

and, thus, p̂is asymptotically stable.

Next assume that p̂1 > 0 and condition (1) (resp., p̂1 < 1, and condition (2)) is not

satisfied. This implies that w2 (p1) < w−1
1 (p1) (resp., w2 (p1) > w−1

1 (p1) for any p1 that

is sufficiently close from the left (resp., right) to p̂1. Due to Claim 3, this implies that a

trajectory starting at (p1, p2) with p1 sufficiently close to p̂1 from the left (resp., right)

and with p2 ∈
(

w2 (p1) , w−1
1 (p1)



(resp., p2 ∈
(

w−1
1 (p1) , w2 (p1)



) must converge to the

neighboring stationary point from the left (right) of p̂. Thus, p̂ is unstable.

Claim 5 implies that the neighbor of an asymptotically stable state must be unstable.

Corollary 2. Let p ̸= p be two neighboring stationary states (i.e., there does not exist any

stationary state p̂ satisfying either p̂1 ∈
(

p
1
, p1



or p̂1 ∈
(

p1, p
1



). If p is asymptotically

stable, then p is unstable.

Proof. Assume that p
1

< p1 (resp., p1 < p
1
). Due to Claim 5 the fact that p is asymptoti-

cally stable implies that w2 (p1) > w−1
1 (p1) for any p1 ∈

(

p
1
, p1



(resp., w2 (p1) < w−1
1 (p1)

for any p1 ∈
(

p1, p
1



), which, in turn, implies that p is unstable.
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New Property of Binomial Distributions The main result is implied by deriving a

property of binomial distributions (which might be of independent interest). Recall our

notation of X(k, p) ∼ Bin (k, p) denoting a random variable with binomial distribution.

Define F k
m (p) ≡ Pr (X (k, p) ≥ m) as the probability of having at-least m success in

k trials when the probability of success in each trial is p. Observe that F k
m (0) = 0,

F k
m (1) = 1 and

(

F k
m

′

> 0. It is known that F k
m has at most one interior fixed point, i.e.,

Fact 4 (Green, 1983, Theorem 1). Fix arbitrary integers 0 < m ≤ k. Then there is at

most one p ∈ (0, 1) such that F k
m (p) = p ⇔ Pr (X (k, p) ≥ m) = p.

Our new result shows that the same is true also for a composition of any two cumu-

lative binomial distributions, i.e., that F k2
m2

◦ F k1
m1

has at most one fixed point.

Proposition 2. Fix arbitrary integers satisfying 0 < m1 ≤ k1 and 0 < m2 ≤ k2. There

exists at most one probability p ∈ (0, 1) such that
(

F k1
m1

◦ F k2
m2



(p) = p.

The proof, which is detailed in Appendix A.1, shows that F k2
m2

◦ F k1
m1

has at most one

inflection point, and that this implies having at most one interior fixed points.

Main Result Next we show the main result of this section: any environment with

homogeneous sample sizes admits at most one interior stationary state, which is unstable.

This implies that almost all initial states converge to one of the coordinated equilibria.

Theorem 2. Assume that θi ≡ ki > 1 for each i ∈ ¶1, 2♢. There exists at most one

interior stationary state, and this state (if exists) is unstable.

Proof. The fact that θi ≡ ki > 1 implies that wi (p−i) = F ki
mi

(p) for some 1 ≤ mi ≤ ki.

This implies that any stationary state p̂ must satisfy
(

F k1
m1

◦ F k2
m2



(p1) = p1. Proposition

2 implies that this holds for at most one interior state p̂. This implies that the stationary

state p̂ (if exists) is a neighbor of both pure stationary states (0, 0) and (1, 1). Proposition

1 and the fact that no agents have sample size of 1 implies that at-least one of these pure

states is asymptotically stable. Finally, Corollary 2 implies that p̂ is unstable.

6 Heterogeneity and Stable Miscoordination

The conditions presented for global convergence to miscoordination in Section 4 are some-

what narrow (e.g., they require sufficiently many agents with sample size one). In this
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section we show that a much broader set of heterogeneous distributions of sample sizes can

induce asymptotically stable states with miscoordination. Specifically, we show that any

distribution of sample sizes can be combined with a group of agent with sufficiently large

samples to induce locally stable miscoordination if for each population one of the actions

is q-dominant for a sufficiently low q. As demonstrated below, this type of heterogeneity

in the sample sizes is plausible in various setups.

Example (Example 1 revisited). In housing markets (in which the bargaining situations

which can be modeled as hawk-dove coordination games), it is often the case that each

population includes two types of agents: (1) professional traders who buy/sell houses for

investment, and (2) the remaining agents who buy/sell a house only a couple of times

during their life. It seems plausible the the professional traders have reliable information

on the aggregate behavior of the opposing population (captured in our model by having

large samples), while the remaining agents are likely to have limited information about

the aggregate behavior of the opposing population , which is influenced by anecdotal

evidence from friends and relatives (captured in our model by small samples).

Auxiliary Result and Definition Our auxiliary results characterize asymptoti-

cally stable states in terms of the ratio of the slopes of the two curves
w′

2(p̂1)

(w−1
1 )

′

(p̂1)
; we show

that must be at-most 1 in an asymptotically stable state. Formally,

Claim 6. Let p̂ be a stationary state.

1. If p̂ is asymptotically stable, then
w′

2(p̂1)

(w−1
1 )

′

(p̂1)
≤ 1.

2. If
w′

2(p̂1)

(w−1
1 )

′

(p̂1)
< 1, then p̂ is asymptotically stable.

Proof. The Claim is immediately implied by either Claim 5, or by the observation that

the Jacobian of the dynamics is

Jw (p) =







−1 w′
1 (p2)

w′
2 (p1) −1





 ,

which implies that the eigenvalues are −1 ±
√

w′
1 (p2) w′

2 (p1), and that both eigenvalues

are negative (resp., one eigenvalue is positive) if
w′

2(p̂1)

(w−1
1 )

′

(p̂1)
< 1 (resp.,

w′

2(p̂1)

(w−1
1 )

′

(p̂1)
> 1),

which implies asymptotic stability (resp., instability).
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In order to state our result we define a weighted average of two distributions, as a

population in which α of the agents have sample sizes according to the first distribution,

and 1 − α have sample sizes according to the second distribution. Formally, given two

distributions of sample sizes θi, θ̂i and αi ∈ [0, 1], let θiαiθ̂i be the weighted average of

the two distributions: θiαiθ̂i (ki) = αi · θi (ki) + (1 − αi) · θ̂i (ki).

Main Result Our final result shows that any pair of distributions can be combined

with distributions of players having sufficiently large samples, such that the environment

admits a locally-stable interior state with miscoordination, provided that the game admits

a sufficiently risk-dominant action for each population.

Theorem 3 (Asymptotic stability of miscoordination). For any distribution profile θ,

there exists q ∈ (0, 1) such that if the game u admits a q-dominant action for each

population, then there exists k̄ > 1 and an open interval of αi-s, such that the environment
(

u,
(

θ1α1θ1, θ2α2θ2



admits a locally stable interior stationary state for any α in the

interval if min
(

supp
(

θi



> k̄ .

Proof idea (see, Appendix A.7 for a formal proof). Fix a distribution profile θ. We present

two constructive proofs for games with / without a risk-dominated equilibrium. The ar-

guments are illustrated in the two panels of Figure 6.1.

1. The risk-dominated equilibrium b is unstable for the distribution profile θ, if it is

q-dominated for a sufficiently low q. Observe that combining θi with agents with

very large samples decrease the average probability of a new agent playing ai in

state (ϵ1, ϵ2) near b. We choose αi, such that the share of new agents playing action

ai (1) is above ϵ−i in state (ϵ1, ϵ2), and (2) it is below p−i in an interior point p̂ (this

is possible because wi(p−i)
p−i

is decreasing for small p−i-s). This, in turn, implies that

there is a stable interior state between b and p̂.

2. Next consider games with different risk-dominant actions (i.e., u2 < 1 < u1). Ob-

serve that wθ
i (p−i) remains the same for all values of ui that are sufficiently far from

one, while p1
NE (resp., p2

NE) converge to 0 (resp., 1) as u1 converges to infinity (resp.,

u2 converges to zero). Thus, for ui-s sufficiently far from 1, pNE
2 <

w
θ2
2 ( 1

2)
2

. We show

that this implies that there must be an unstable stationary state with p1 < 1
2

and

p2 ≃ pNE
2 < 1

2
. By an analogous argument there is an unstable stationary state
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with p1 ≃ pNE
1 > 1

2
and p2 > 1

2
. This implies that there must be an asymptotically

stable interior state between these two unstable states.

Figure 6.1: Illustrative Phase Plots for Theorem 3 (Locally Stable Miscoordination)

The left panel illustrates the game u1 = u2 = 2.5, where 40% (resp., 60%) of agents in
each population have sample size 3 (resp., 1,000). The pure risk-dominated equilibrium
(0, 0) is unstable, and its neighbor the interior stationary state with miscoordination
(0.17, 0.17) is asymptotically stable. The right panel illustrates the game u1 = 1

u2
= 5,

where 50% (resp., 50%) of the agents have sample size 2 (resp., 1,000). The mixed Nash

equilibrium of this game is
(

5
6
, 1

6



. The environment admits 3 interior stationary states:
2 unstable interior states where one of the coordinates is close to the Nash equilibrium:
(0.6, 0.18) and (0.82, 0.3), and a stable equilibrium at (0.73, 0.27).

7 Comparison with Logit Dynamics

Another candidate to induce stable miscoordination in coordination games is logit dy-

namics. In this section we numerically demonstrate that (1) the standard logit dynamics

with homogeneous level of noise in each population can induce stable miscoordination

only with high levels of noise that seem implausible, (2) a variant of logit dynamics with

heterogeneity in the noise level can induce stable miscoordination with substantially lower

levels of noise. Thus, our main insight of stable miscoordination induced by heterogeneous

plausible levels of noises remains the same with other specifications of noise.

Standard (Homogeneous) Logit dynamics The logit dynamics (see Sandholm,

2010, Section 6.2.3 for a textbook exposition) are characterized by a single parameter for
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each population i - the noise level ηi. If player i plays action ai, she will get payoff of

p−i · u−i. If she plays action bi she will get payoff of (1 − p−i) · 1. The logit dynamics

assume that the probability in which revising agents play action ai is proportional to

e
Payoff of ai

η . Specifically, the logit dynamics is given by:

wi (p−i) ≡ wi (p) =
e

p
−i·u

−i
ηi

e
1−p

−i
ηi

+
e

p
−i·u

−i
ηi

. (7.1)

Trivially, logit dynamics can induce substantial coordination by having high values

of noise. In what follows we demonstrate that this is indeed the case. One can support

stable miscoordination in the examples studied in Section 6, but this requires a high level

of noise. As illustrated in Figure 7.1 the minimal level of η (which are assumed, for

simplicity, to be the same on both populations) that is required to sustain asymptotically

stable equilibrium with miscoordination in which each action is played with a probability

of at-least 10% is η = 1 in both the environments of u1 = u2 = 2.5(left panel) and

u1 = 1
u2

= 5 (right panel).

Figure 7.1: Supporting Stable Coordination with Homogeneous Logit dynamics

The figure revisits the examples presented in Figure 6.1: a game with a risk-dominant
equilibrium with u1 = u2 = 2.5 in the left panel, and a game without risk-dominant

equilibria with u1 = 1
u2

= 5. It turns out that in both cases the minimal homogeneous
level of noise that sustains an asymptotically stable equilibrium with miscoordination in

which each action is played with a probability of at least 10% in each population is
η = 1.

Such high noise levels implies that 27% of the revising agents do the mistake of
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playing ai when facing an opponent population in which almost everyone plays b−i; by

contrast, with sampling dynamics all agents play the payoff-maximizing action whenever

all opponents play the same action. Moreover, the expected payoff obtained by revising

agents who follow the logit dynamics against opponent populations in which the share

of agents playing action ai is distributed uniformly is 85% (resp., 71%) of the maximal

payoff that can be obtained by payoff-maximizing revising agents in the left (resp., right)

panel, while it is 98% (resp., 95%) of the maximal payoff with sampling dynamics. Thus,

stable cooperation can be supported by the standard (homogeneous) logit dynamics, only

when assuming the agents have high levels of noise. Numeric calculations show that this

is true for coordination games in general, and not only to the two examples above.

Heterogeneous Logit dynamics Consider a variant of logit dynamics in which there

is heterogeneity in the level of noise of agent in each population. For example, in a

population in which there are n groups, the size j-th group is µj
i and its members have

noise level of ηj
i the heterogeneous logit dynamics is:

wi (p−i) ≡ wi (p) =
∑

j

µj
i · e

p
−i·u

−i

η
j
i

e

1−p
−i

η
j
i

+

e

p
−i·u

−i

η
j
i

. (7.2)

Figure 7.2 demonstrates numerically that heterogeneity in the noise levels can induce

asymptotically stable miscoordination with levels of noise that are substantially smaller

than in homogeneous populations. Specifically in both panels (corresponding to u1 =

u2 = 2.5 in the left panel, and to u1 = 1
u2

= 5 in the right panel) populations in which

50% of the the agents have moderate level of noise of η = 0.6 and 50% have a negligible

level of η = 0.01 induce asymptotically stable equilibrium with miscoordination8% pl

((0.27, 0.27)in the left panel and (0.11, 0.18) in the right panel). Given these heteroge-

neous levels of noise, only 8% of the agents make the mistake of playing action ai when

facing an opponent population in which everyone plays a−i, and the expected payoff ob-

tained by against opponent populations in which the share of agents playing action ai is

distributed uniformly is 96% (resp., 89%) of the maximal payoff that can be obtained by

payoff-maximizing revising agents in the left (resp., right) panel.
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Figure 7.2: Supporting Stable Coordination with Homogeneous Logit dynamics

The figure revisits the examples presented in Figure 7.1: a game with u1 = u2 = 2.5
in the left panel, and a game with u1 = 1

u2
= 5 in the right panel. In both panels a

heterogeneous variant of logit dynamics in which 50% of the the agents in each population
have moderate level of noise η = 0.6 and 50% have a negligible level of η = 0.01 induce
an asymptotically stable state with miscoordination in which each action is played with
a probability of at-least 10%.

8 Conclusion

The conventional wisdom, which is supported by key results in evolutionary game theory,

is that only coordinated outcomes can predict long-run behavior in coordination games.

By contrast, we show that plausible learning dynamics, in which new agents rely on

samples to estimate the behavior of the opponent’s population, can induce stable misco-

ordination. This happens if there is heterogeneity in the sample sizes: some agents have

accurate information about the opponents’ aggregate behavior, while other agents rely

on anecdotal evidence induced by small samples. We further show that stable miscoordi-

nation holds under a broader set of heterogeneous distributions, for coordination games

in which one of the action is sufficiently more risk-dominant than the other action.

Our numeric analysis of logit dynamics suggest that the insight that heterogeneity in

the noise level can induce stable miscoordination is relevant to various learning dynamics.

As such heterogeneity is plausible in many applications (e.g., bargaining involving both

professional traders, and inexperienced buyers/sellers), we think that this provides an
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interesting testable new explanation for the persistence of miscoordination in some inter-

actions (see, Section 2, for our suggestion of how to experimentally test our predictions).

A Appendix

A.1 General Result for Binomial Distributions

Recall our notation of X(k, p) ∼ Bin (k, p) denoting a random variable with binomial

distribution, and of the function F k
m (p) ≡ Pr (X (k, p) ≥ m).

Proposition. 2 Fix arbitrary integers satisfying 0 < m1 ≤ k1 and 0 < m2 ≤ k2. There

exists at most one probability p ∈ (0, 1) such that
(

F k1
m1

◦ F k2
m2



(p) = p.

Proof. Let wi (p) ≡ F k1
m1

(p) for each i ∈ ¶1, 2♢, F (p) ≡
(

F k1
m1

◦ F k2
m2



(p) ≡ (w1 ◦ w2) (p) ,and

G (p) = F (p) − p. Proposition is implied by showing that there is at most one p ∈ (0, 1)

such that G (p) = 0. Observe that G (0) = G (1) = 0. Assume to the contrary that there

exists two different interior points 0 < p < p < 1 such that G
(

p


= G (p). Thus G is

equal to zero in 4 points in the interval [0, 1]. By Rolle’s Theorem, this implies that G′ is

equal to zero in at-least 3 points in the interval (0, 1), and, this, in turn, implies that G′′

is equal to zero in at-least 2 interior points in the interval (0, 1). Observe that G′′ ≡ F ′′.

Thus, in order to obtain a contradiction we have to show that F ′′ (p) = 0 in at most one

interior point. Recall that (see, e.g., Green, 1983, Eq. (5)):

w′
i (p) = mi







ki

mi





 pmi−1 (1 − p)ki−mi ,

which immediately implies that

w′′
i (p−i)

w′
i (p−i)

=
mi − 1

p
− ki − mi

1 − p
.

Observe that F ′ (p) = w′
1 (w2 (p)) w′

2 (p), which implies that

F ′′ (p) = w′′
1 (w2 (p)) (w′

2 (p))
2

+ w′
1 (w2 (p)) w′′

2 (p) =

w′
1 (w2 (p)) w′

2 (p)

[(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

w′
2 (p) +

m2 − 1

p
− k2 − m2

1 − p

]
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The fact that each wi (p) is strictly increasing implies that F ′′ (p) = 0 iff

(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

w′
2 (p) =

k2 − m2

1 − p
− m2 − 1

p
⇔

m2







k2

m2







(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

pm2−1 (1 − p)k2−m2 =
k2 − m2

1 − p
− m2 − 1

p
⇔

m2





k2

m2





















(m1 − 1) pm2 (1 − p)
k2−m2

∑

k2

l=m2





k2

l



 pl (1 − p)
k2−l

− (k1 − m1) pm2 (1 − p)
k2−m2

∑

m2−1
l=0





k2

l



 pl (1 − p)
k2−l

















1

p
=

k2 − m2

1 − p
−m2 − 1

p
⇔

m2







k2

m2





























(m1 − 1)

∑k2

l=m2







k2

l







(

p

1−p

l−m2

− k1 − m1

∑m2−1
l=0







k2

l







(

1−p

p

m2−l























1

p
=

k2 − m2

1 − p
−m2 − 1

p

Observe that the rhs (resp., lhs) is strictly increasing (resp., decreasing) in p, which

implies that they are equal in at most one point.

Observe that in the symmetric case when k1 = k2 and m1 = m2, the fact that there

is at most one fixed point to F k
m ◦ F k

m implies that any fixed point of F k
m ◦ F k

m must be a

fixed point of F k
m. This implies the following corrolary on random binomial variables.

Corollary 3. If Pr (X (k, p) ≥ m) = q, Pr (X (k, q) ≥ m) = p for p ∈ (0, 1), then p = q.

A.2 Standard Definitions of Dynamic Stability

For completeness, we present in this appendix the standard definitions of dynamic sta-

bility that are used in the paper (see, e.g., Weibull, 1997, Chapter 5).

A state is said to be stationary if it is a rest point of the dynamics.

Definition 3. State p∗ ∈ [0, 1]2 is a stationary state if wi (p∗) = p∗
i for each i ∈ ¶1, 2♢.
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Let E (w) denote the set of stationary states of w, i.e., E (w) = ¶p∗♣wi (p∗) = p∗
i ♢.

Under monotone dynamics, an interior (mixed) state p∗ ∈ (0, 1)2 is a stationary state iff

it is a Nash equilibrium (Weibull, 1997, Prop. 4.7). By contrast, under nonmonotone

dynamics (such as the sampling dynamics analyzed below) the two notions differ.

A state is Lyapunov stable if a population beginning near it remains close, and it is

asymptotically stable if, in addition, it eventually converges to it. A state is unstable if it

is not Lyapunov stable. It is well known (see, e.g., Weibull, 1997, Section 6.4) that every

Lyapunov stable state must be a stationary state. Formally:

Definition 4. A stationary state p∗ ∈ [0, 1]2 is Lyapunov stable if for every neighborhood

U of p∗ there is a neighborhood V ⊆ U of p∗ such that if the initial state p (0) ∈ V , then

p (t) ∈ U for all t > 0. A state is unstable if it is not Lyapunov stable.

Definition 5. A stationary state p∗ ∈ [0, 1]2 is asymptotically stable (or locally stable) if

it is Lyapunov stable and there is some neighborhood U of p∗ such that all trajectories

initially in U converge to p∗, i.e., p (0) ∈ U implies limt→∞ p (t) = p∗.

A.3 Proof of Claim 2 (Reaching Area Between the Curves)

We say that state p is above (resp., below) curve w2(p1) if p2 > w2(p1) (resp., (p2 <

w2(p1)). Similarly, we say that state p is to the right (resp., left) of the curve w1(p2)

if p1 > w1(p2) (resp., p1 < w1(p2)). We say that the state p is on the curve wi(p−i) if

pi = wi(p−i). Due to the fact that the two curves are strictly increasing, we identify the

notion of being above a curve and being to the left of the curve, and similarly we identify

the notion of being below a curve and being to the right of the curve. The states on the

curve w2(p1) (resp., w1(p2)) are characterized by having ṗ2 = 0 (resp., ṗ1 = 0). Observe

that ṗ2 > 0 (resp., ṗ2 < 0) in any state p above and to the left (resp., below and to the

right) of the curve w2(p1). Similarly, ṗ1 > 0 (resp., ṗ1 < 0) in any state p above and to

the left (resp., below and to the right) of the curve w1(p2).

Any state p ∈ [0, 1] can be classified in one of 9 = 3 · 3 classes, depending on its

relative location with respect to the two curves, i.e., whether p is below, above or on each

of the two curve wi(p−i). If state p is on (resp., above, below) the curve w2(p1), then

ṗ2 is zero (resp., negative, positive). Similarly, if state p is on (resp., above, below) the

curve w1(p2), then ṗ1 is zero (resp., positive, negative).
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In particular, any state p that is above (resp., below) both curves must satisfy that

ṗ1 > 0 > ṗ2. This implies that any trajectory that begins above (resp., below) both

curves must always move downward and to the right. This (together with the fact that

all stationary states are in the intersections of the two curves) implies that the trajectory

must cross one of the curves, and reach a state p (t) that satisfies either w−1
1 (p1 (t)) ≤

p2 (t) ≤ w2 (p1 (t)) or w2 (p1 (t)) ≤ p1 (t) ≤ w−1
1 (p1 (t)).

A.4 Proof of Claim 3 (Convergence to Stationary States)

We first show why we can assume WLOG that p (t) is strictly between the two curves.

If p (t) crosses one of the curves and is strictly above (resp., below) the remaining curve,

then the dynamics must take the populations to a state that is strictly below one of the

curves and strictly above the remaining curve. This is so because on the crossing point

one of the ṗi is zero and the remaining derivative ṗ − i is negative (resp., positive), which

implies that the dynamics take the trajectory below and to the right (resp., above and

to the left) of the curve that was crossed.

Next assume that pi (t) ∈
(

w−1
1 (p1 (t)) , w2 (p1 (t))



(resp., pi (t) ∈
(

w2 (p1 (t)) , w−1
1 (p1 (t))



.

By the classification presented in the proof of claim 2, the trajectory must move upward

and to the right; i.e., ṗ1, ṗ2 > 0 (resp., downward and to the left; i.e., ṗ1, ṗ2 < 0). This

implies that the trajectory must cross one of the curves. The crossing point cannot be

only on the curve of w2(p1) (resp., w1(p2)), because at such a point the trajectory moves

horizontally to the left (vertically upward), which implies that it must cross the lower

(resp., higher) curve w2(p1) (resp.,w1(p2)) from the left side (resp., from below) and we

get a contradiction. This implies that the crossing point must the closest intersection

points of the two curves to the right (resp., left) of pi (t), namely, p (resp., p).

A.5 Proof of Claim 4 (Convergence to Pure States)

If p is below (resp., above) both curves, then by the classification presented in the proof

of Claim 2 it must that ṗ2 > 0 (resp., ṗ1 > 0), which implies that convergence to (0,0)

is possible only if the trajectory passes through a state that is strictly between the two

curves, and that the closest intersection point of the two curves to the left of this state

is (0,0). By the classification presented in the proof of Proposition 1 it must be that

the curve of w2(p1) is strictly below the curve of w1(p2) in a right neighborhood of (0,0),
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which implies that (0,0) is asymptotically stable because any sufficiently close initial state

would converge to (0,0).

A.6 Proof of Proposition 1 (Stability of Pure States)

We are interested in deriving conditions for the stability of the pure stationary states.

In what follows, we compute the Jacobian of the sampling dynamics in the pure state

a = (0, 0) (resp., b = (1, 1)). For this, we consider a slightly perturbed state with a “very

small” ϵi share of agents playing bi (resp., ai) in population i. By “very small,” we mean

that higher-order terms of ϵi and ϵj are neglected.

Consider a new agent of population i with a sample size of ki. Action bi (resp., ai) has

a weakly (resp., strictly) higher mean payoff against a sample size of ki iff (neglecting rare

events of having multiple b−i-s (resp., a−i − s) in the sample): (1) the sample includes

the single opponent action b−i (resp., a−i), and (2) ki < 1
ui

+ 1 (resp., ki ≤ ui + 1).

The probability of (1) is ki · ϵ−i + o(ϵ−i), where o(ϵ−i) denotes terms that are sublinear

in ϵ−i, and, thus, it will not affect the Jacobian as ϵ−i → 0. This implies that the

probability that a new agent of population i (with a random sample size distributed

according to θi) has a higher mean payoff for action bi (resp., ai) against her sample

is wi(1 − ϵ−i) = ϵ−i · E< 1
ui

+1 (θi) + o(ϵ−i) (resp., wi(ϵ−i) = ϵ−i · E≤ui+1 (θi) + o(ϵ−i) ).

Therefore, the sampling dynamics at (ϵ1, ϵ2) (resp., (1 − ϵ1, 1 − ϵ2)) can be written as

follows (ignoring the higher-order terms of ϵ1 and ϵ2):

ϵ̇i = ϵ−i · E< 1
ui

+1 (θi) − ϵi (resp., ϵ̇i = ϵi − ϵ−i · E≤ui+1 (θi)). (A.1)

Define: aθi
= E< 1

ui
+1 (θi) (resp., bθi

= E≤ui+1 (θi)). The Jacobian of the above system of

Equations (A.1) is then given by Ja =







−1 aθ1

aθ2
−1





 (resp., Ja =







1 −bθ1

−bθ2
1





). The

eigenvalues of Ja (resp., Jb) are −1 − √
aθ1

aθ2
and −1 +

√
aθ1

aθ2
(resp., −1 −

√

bθ1
bθ2

and

−1 +
√

bθ1
bθ2

), Observe that: (1) if aθ1
aθ2

< 1 (resp., bθ1
bθ2

>1) then both eigenvalues are

negative, which implies that the pure state a (resp., b) is asymptotically stable, and (2)

if aθ1
aθ2

> 1 (resp., bθ1
bθ2

>1) then one of the eigenvalues is positive, which implies that

this state is unstable (see, e.g., Perko, 2013, Theorems 1–2 in Section 2.9).
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A.7 Proof of Theorem 3 (Stability of Miscoordination)

Fix a distribution profile θ. Let wk
i (p−i) (resp., wθi

i (p−i)) denote the sampling dynamics

of an agent with sample size k (resp., of agents with a distribution of sample sizes θi).

We present two constructive proofs, one for games with a risk-dominant equilibrium, and

the games in which each population has a different risk-dominant action (the arguments

are illustrated in Figure 6.1).

Consider first games that admit a risk-dominant equilibrium (i.e., u1, u2 > 1). Fix

any q < 1
max(supp(θ1),supp(θ2))

, and any u1, u2 > 1
q
. Observe that for any k ∈ supp (θi)

wk
i (p−i) = Pr (X (k, p−i) ≥ 1) = 1 − (1 − p−i)

k = kp−i −







k

2





 (p−i)
2 + O

(

(p−i)
3


.

This implies that wθi
i (p−i) = E (θi) p−i − Aθi

(p−i)
2 + O

(

(p−i)
3


,where Aθi
> 0. Fix

a sufficiently small ϵ > 0. Let 0 < p̂1 < pNE
1 − ϵ be sufficiently small such that the

term O
(

(p−i)
3


< ϵ is negligible. For each i ∈ ¶1, 2♢, let αi ∈ (0, 1) be such that:

(1) αiE (θi) > 1 and (2) αiE (θi) − Aθi
p−i < 1 − 2ϵ. Observe that there is an open

interval of αi-s that satisfy these inequalities. This implies that wθi
i (p−i) > p−i

αi
in a right

neighborhood of zero, and wθi
i (p−i) < p−i

αi
in a left neighborhood of p̂1.

Observe that limk→∞ wk
2 (p̂1) = 0 and limk→∞

(

wk
1

−1
(p̂1) = pNE

2 . This implies that

there exists k sufficiently large such that wk
2 (p̂1) < ϵ and

(

wk
1

−1
(p̂1) > pNE

2 − ϵ > p̂1 for

any k ≥ k. Let θ̄i be any distribution of types satisfying min
(

supp
(

θ̄i



> k. Observe

that wθiαθ̄i
i (p−i) > p−i in a right neighborhood of zero, and wθiαθ̄i

i (p−i) < p−i in a left

neighborhood of p̂1. This, in turn, implies that wθiαθ̄i
2 (p1) > p1 >

(

wθiαθ̄i
1

−1
(p1) in a

right neighborhood of zero, and wθiαθ̄i
2 (p1) < p1 <

(

wθiαθ̄i
1

−1
(p1) in a left neighborhood

of p̂1. Thus, there exist a stationary state p̃ that satisfies 0 < p̃1 < p̂1 < 1, and that

wθiαθ̄i
2 (p1) >

(

wθiαθ̄i
1

−1
(p1) (resp., wθiαθ̄i

2 (p1) <
(

wθiαθ̄i
1

−1
(p1)) in a left (resp., right)

neighborhood of p̃1. This implies, due to Claim 5, that p̃is asymptotically stable. The

argument in this case is illustrated in the left panel of Figure 6.1.

Next we analyze games that do not admit a risk-dominant equilibrium (i.e., u2 < 1 <

u1). Observe that wθ
1 (p2) = Pr (having at-least one a2 in the sample) is the same for all

values of u1 > max (supp (θ1) , supp (θ2)), and, similarly, that wθ
2 (p1) = Pr (having no b1-s

in the sample) is the same for all values of u2 < 1
max(supp(θ1),supp(θ2))

. Fix a sufficiently
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small ϵ > 0. Let ū1, ū2 be payoffs satisfying pNE
2 = 1

1+ū1
<

w
θ2
2 ( 1

2)
2

− ϵ and 1 − pNE
1 =

ū2

1+ū2
<

1−w
θ1
1 ( 1

2)
2

− ϵ. Let q = min
(

1
1+u1

, u2

1+u2



. Let k be sufficiently large such that

wk
i

(

pNE
−i − ϵ



< ϵ, wk
i

(

pNE
−i + ϵ



> 1 − ϵ for any k ≥ k. Let θ̄i be any distribution of

types satisfying min
(

supp
(

θ̄i



> k.

In what follows any environment with u1 > 1
q
, u2 < q and distribution θi

1
2
θ̄i with

min
(

supp
(

θ̄i



≥ k admits an interior asymptotically stable state. By Proposition 1,

the two pure equilibria are asymptotically stable and w
θ2

1
2

θ̄2

2 (p1) <


w
θ1

1
2

θ̄1

1

−1

(p1) (resp.,

w
θ2

1
2

θ̄2

2 (p1) >


w
θ1

1
2

θ̄1

1

−1

(p1)) in a right (resp., left) neighborhood of zero (resp., one).

Next observe that w
θ2

1
2

θ̄2

2

(

1
2



> 1
2
wθ2

2

(

1
2



> p2
NE +ϵ >



w
θ1

1
2

θ̄1

1

−1 (
1
2



, which implies that

there an (unstable) interior stationary state p̂ that satisfies p̂1 < 0.5 and p2
NE − ϵ < p̂2 <

p2
NE + ϵ < 0.5, and that w

θ2
1
2

θ̄2

2 (p1) >


w
θ1

1
2

θ̄1

1

−1

(p1) in a right neighborhood of p̂1. By

an analogous argument there is also an (unstable) interior stationary state p̃ that satisfies

p̃2 > 0.5 and pNE
1 − ϵ < p̃1 < pNE

1 + ϵ < 0.5, and that w
θ2

1
2

θ̄2

2 (p1) <


w
θ1

1
2

θ̄1

1

−1

(p1) in a

left neighborhood of p̃1. This implies that must be an interior stationary state p̀ between

p̂ such that w
θ2

1
2

θ̄2

2 (p1) >


w
θ1

1
2

θ̄1

1

−1

(p1) (resp., w
θ2

1
2

θ̄2

2 (p1) >


w
θ1

1
2

θ̄1

1

−1

(p1)) in a left

(resp., right) neighborhood of p̀. Finally, Claim 5 implies that p̀ is asymptotically stable.
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