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ABSTRACT 
 
We show how time-series of random market trade values and volumes completely describe 

stochasticity of stock returns. We derive equation that links up returns with current and past 

trade values and show how statistical moments of the trade values and volumes determine 

statistical moments of stock returns. We estimate statistical moments of the trade values and 

volumes by the conventional frequency-based probability. However we believe that 

frequencies of stock returns don’t define its probabilities as market and financial concepts. 

We present the market-based treatment of the probability of stock returns that defines average 

returns during “trading day” that completely match conventional notion of the weighted value 

return of the portfolio. We derive how statistical moments of the market trade values and 

volumes define approximations of the characteristic functions and probability density 

functions of stock returns. We derive volatility of stock returns, autocorrelations of stock 

returns, returns-volume and returns-price correlations through corresponding relations 

between statistical moments of the market trade values and volumes. The market-based 

probability of stock returns reveals direct dependence of statistical properties of stock returns 

on market trade randomness and economic uncertainty. Any reasonable forecasting of stock 

returns should be based on well-grounded predictions of the market trades and economic 

environment.  
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1. Introduction 

Forecasts of stock returns are among the most appealing predictions for investors. Modelling 

and forecasting of the market price and stock returns define the core research issues of 

financial economics. Irregular behavior of the stock returns during almost any time interval 

from minutes to months causes usage of probability methods for their assessments. The 

spectrum of returns research is very diverse and any its review requires a special survey.  

This paper is not a review of returns studies and we assume that readers are familiar enough 

with conventional methods, models and results. However, complexity of economic and 

financial processes allows consider the familiar problems from a new perspective. In this 

paper we present a new, market-based look on current studies of stock returns statistics. To 

explain the meaning of our approach we briefly note conventional methods and models that 

are currently in use for description of statistical properties of stock returns. 

Actually, returns have a wide importance in economics and finance and Solow (1963) 

indicates, “that the central concept in capital theory should be the rate of return on 

investment”. That Solow’s remark arises a question: how the average rate of return should be 

assessed? We present the market-based look on statistics of stock returns. Forecasts of stock 

returns and volatility are developed in numerous studies (Ferreira and Santa-Clara, 2008; 

Diebold and Yilmaz, 2009; Jordà et al., 2019; Bryan et al., 2022). Investors are interested in 

expected returns and assessments of factors those impact expected returns play central role in 

studies (Fisher and Lorie, 1964; Mandelbrot, Fisher and Calvet, 1997; Campbell, 1985; 

Brown, 1989; Fama,1990; Fama and French, 1992; Lettau and Ludvigson, 2003; Greenwood 

and Shleifer, 2013; van Binsbergen and Koijen, 2015; Martin and Wagner, 2019). Irregular 

evolution of stock prices and returns makes probability theory a major tool for modelling 

returns. Investigations of probability distributions and correlation laws that may explain 

returns change are presented by (Kon, 1984; Campbell, Grossman and Wang, 1993; Davis, 

Fama and French, 2000; Llorente, et al., 2001; Dorn, Huberman and Sengmueller, 2008; 

Lochstoer and Muir, 2022). Description of expected returns are complemented by research of 

realized returns and volatility (Schlarbaum, Lewellen and Lease, 1978; Andersen, et al., 

2001; Andersen and Bollerslev, 2006; McAleer and Medeiros, 2008; Andersen and Benzoni, 

2009). Probability distributions of realized and expected returns time-series are studied by 

(Amaral, et al., 2000; Knight and Satchell, 2001; Tsay, 2005). 

In our paper we study the market-based origin of stock returns probability. The widespread 

definition of returns probability is the conventional and generally accepted issue. “The 
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probabilistic description of financial prices, pioneered by Bachelier.” (Mandelbrot, et al., 

1997). Starting with Bachelier (1900) who outlines probabilistic character of the price 

frequent change, it became routinely to consider frequency of price and returns values as a 

firm ground for their probabilistic description. Indeed, habitual frequency-based treatment of 

probability of returns r(ti) presented by time-series at time ti, i=1,.. during time averaging 

interval Δ is determined by number mr of terms r(ti) or frequency mr/N that returns r(ti) take 

particular value r(ti)=r. If the total number of terms r(ti) of the time-series during the 

averaging interval Δ equals N then probability P(r) of returns r is assessed as: 𝑃(𝑟) ~ 𝑚𝑟𝑁       (1.1) 

Common frequency-based definition of n-th statistical moments E[rn(ti)] of returns r(ti) 

during interval Δ or mathematical expectation E[rn(ti)] of the n-th degree of returns rn(ti) is 

assessed as: 𝐸[ 𝑟𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝑟𝑛(𝑡𝑖)𝑁𝑖=1     (1.2) 

That frequency-based assessment of probability of a random returns r(ti) presented by finite 

time-series r(ti) during the averaging interval Δ serves as ground for almost all probabilistic 

models of price and returns. That is absolutely correct and completely verified approach 

based on solid ground of probability theory (Shephard, 1991; Shiryaev, 1999; Shreve, 2004). 

We note it further as the frequency-based approach to probability of returns. The frequency-

based origin of the probability of price and returns is so simple and conventional that it is 

almost never discussed as a particular and important issue. 

However, simple issues often hide complex relations and the conventional frequency-based 

probability of returns is exactly such a case.  

Actually, description of highly irregular time-series of stock returns as a standing alone, 

independent problem leaves no chance except adopt and use the frequency-based probability 

(1.1; 1.2). However, returns time-series are not independent. Returns are completely 

determined by corresponding price time-series and probabilistic properties of price time-

series for sure impact random properties of returns. In its turn, randomness of price time-

series is completely determined by the market trade stochasticity. Thus, to describe 

randomness of returns one should take into account stochastic properties of market trades. 

Distribution of random returns as an issue of financial economics should reflect properties of 

the random market price and stochasticity of the market trades. Moreover, we feel that there 

exists a strange collision, a paradox between the frequency-based descriptions of probability 

of stock returns and the conventional portfolio theory. Indeed, starting at least with 
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Markowitz (1952), portfolio returns are assessed as weighted by values of the securities those 

compose the portfolio. Contrary to that generally accepted view, frequency-based assessment 

(1.1; 1.2) of mean returns does not take into account the values of the underling market trades 

and that results in significant distinctions with the conventional portfolio theory.  

Our pure theoretical paper develops statistical description of stock returns that takes into 

account and brings together both issues. We present statistical moments of returns in a way 

that completely coincides with logic and requirements of the portfolio theory and define 

average returns “as weighted by values of the securities”. As well, our description of 

statistical moments of returns, correlation functions of returns time-series, direct expressions 

of approximate characteristic functions and probability density functions of stock returns 

demonstrate direct dependence on the market trade stochasticity and randomness of the 

market price. As well we use conventional frequency-based probability (1.1; 1.2) to assess n-

th statistical moments of the market trade values and volumes. We show how frequency-

based n-th statistical moments of the market trade values and volumes determine statistical 

moments of returns, correlations of returns, approximations of characteristic function and 

corresponding approximations of probability density function of returns. 

In the next Section we introduce main notations. In Sec. 3 for convenience we briefly present 

the description of the market-based statistical moments of price. In Sec.4 we introduce main 

equation that determines dependence of stock returns on the market trade values and derive 

the value weighted expressions of n-th statistical moments of returns that satisfy requirements 

of the portfolio theory. In Sec 5 we consider the market-based autocorrelations of returns. In 

Sec 6 we discuss the market-based probability of returns that is determined by set on n-th 

statistical moments. Actually, any reasonable time averaging interval Δ contain only finite 

number of terms of trade time-series and thus one can assess only a finite number m of 

statistical moments of stock returns. For the finite number m of statistical moments we 

present m-approximations of the characteristic functions and corresponding m-

approximations of the probability density functions of returns. Sec. 7 – Conclusion. Appendix 

A presents derivation of correlations of returns in terms of the market-based price statistical 

moments. In Appendix B we describe return-volume correlations. In Appendix C we show 

how statistical moments of the market values and volumes determine returns-price relations. 

We assume that readers are familiar enough with conventional models of stock returns and 

have skills in probability theory, usage of statistical moments, characteristic functions and 

etc. This paper is not for novices and we propose that readers know or can find on their own 

definitions, notions and terms that are not given in the text. 
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2. Initial considerations 

To study random properties of stock returns researchers investigate the market price time-

series to assess returns with particular time shift. Fisher and Lorie (1964) consider “monthly 

closing prices of all common stocks on the New York Stock Exchange” and “daily high, low, 

and closing prices of all common stocks” as ground to derive returns time-series. Amaral et 

al. (2000) consider “trades and quotes (TAQ) database, and analyze 40 million records for 

1000 US companies” and study “the probability distribution of returns over varying time 

scales| from 5 min up to 4 years”. Andersen at al. (2001) mention that “five-minute return 

series are constructed from the logarithmic difference between the prices recorded at or 

immediately before the corresponding five minute marks”. Overall we say that main attention 

is taken to select initial market price data and chose sample with closing prices, daily high or 

low prices “immediately before the corresponding five minute marks”. Then “the logarithmic 

difference between the prices” or simple ratio of prices generates the time-series of stock 

returns. Samples of selected time-series of prices and corresponding samples of returns time-

series can be as long as 5 years “for a total of 1,366 trading days” (Andersen et al., 2001) and 

even “35-year period 1962-96” (Amaral et al., 2000).  

The common method of these studies: usage of price time-series to assess samples of returns 

time-series with selected time shift τ that can be equal 5 min, day, month etc. Duration of the 

samples of returns time series can be very long up to 5 years or even up to 35 years. Price 

time-series p(ti) allow determine returns r(ti,τ) time-series in various forms: 𝑟(𝑡𝑖, 𝜏) =  𝑝(𝑡𝑖)𝑝(𝑡𝑖−𝜏)    ;    𝑟𝑐(𝑡𝑖, 𝜏) = 𝑟(𝑡𝑖, 𝜏) − 1      ;     𝑅(𝑡𝑖, 𝜏) = ln 𝑝(𝑡𝑖) − ln 𝑝(𝑡𝑖 − 𝜏)    (2.1) 

Frequency-based studies (Amaral et al., 2000; Andersen et al., 2001) of returns time-series 

(2.1) give a lot of important results those uncover or seem to uncover the nature of stocks 

returns stochasticity. We say, “Seem to uncover” to underline existence of a different look on 

the random nature of stocks returns. 

We believe that “frequency-based” investigations of returns time-series (2.1) alone are not 

sufficient for understanding and description of the economic nature of stock returns 

randomness. Investigation of the conventional frequency-based statistics of time-series (2.1) 

does not display the economic roots and properties of stock returns randomness and does not 

reveal impact of the market trade stochasticity. Moreover, as we mentioned above, 

conventional frequency-based treatment of returns time-series (2.1) does not match the 

common portfolio theory. Indeed, any introduction into the portfolio theory determines 

returns of the portfolio composed by N securities as weighted by “relative amount Xi invested 
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in security i” (Markowitz, 1952). Actually, there is no difference between the assessments of 

returns of the portfolio composed by N securities and the assessments of the average returns 

as a result of N market trades during the averaging interval Δ that we note further as a 

“trading day”. Indeed, one can consider each market trade during “trading day” as a separate 

“security” of the portfolio. Conventional frequency-based probability of returns considers 

1000 trades with same returns r as much more probable than one trade with return R. 

However, if these 1000 trades were performed with the trade values $1 each, then they should 

have much less impact on the mean returns then one trade of $1 billion value with returns R. 

These considerations are absolutely similar to reasons those approve the choice of volume 

weighted average price (VWAP) (Berkowitz et al., 1988; Duffie and Dworczak, 2018) vs. 

frequency-based average price. Indeed, one trade of 10 million stocks with price p1 gives 

much more impact on average price than 100 trades of 10 stocks each with price p2. Thus, 

average returns during the “trading day” should be weighted average by “relative amount of 

securities values” absolutely in the same way as assessment of the portfolio’s returns.  

Frequency-based treatment of statistics of the returns time-series in current studies gives 

average returns according to (2.1) assessment for n=1. That contradicts with definition of 

portfolio returns (Markowitz, 1952). We introduce assessment of returns stochasticity that 

completely coincides with definition of the portfolio returns (Markowitz, 1952). 

Below we show that to derive random properties of return time-series that reflect economic 

origin and impact of the market trade stochasticity on stock returns, one should complement 

conventional returns time-series (2.1) by time-series that describe corresponding market trade 

values and volumes.  

In this paper we regard the market trade randomness as the origin of price and returns 

stochasticity. We show how statistical moments of the market trade values and volumes 

determine statistical moments of stock returns.  

2.1. Main notations 

We assume that initial time-series of the realized market transactions describe trade values 

C(ti), volumes U(ti) and  prices p(ti) at time ti. Time-series ti determine initial discreteness of 

the problem and for simplicity we take the constant shift ε between moments ti: 𝑡𝑖 − 𝑡𝑖−1 = 𝜀 

Highly irregular market trade time-series are of little help for modelling asset pricing and 

returns on long-term horizon T>> ε. To describe statistical properties of returns and to model 

regular dynamics of mean returns at horizon T one should select particular time averaging 
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interval Δ such that T> Δ > ε. We assume that the number N of terms of the market trade 

values C(ti) and volumes U(ti) time-series inside each interval Δ is sufficient to assess their 

statistical moments using conventional frequency-based probability similar to (1.1; 1.2). The 

choice of the averaging interval Δ determines time discreteness of the averaged variables. We 

note averaging interval Δ as a “trading day” or simply a “day” at t and Δk denotes the 

averaging interval or “trading day” that happened k days ago then “today” time t:   ∆𝑘= [𝑡𝑘 − ∆2 ; 𝑡𝑘 + ∆2]     ;    𝑡𝑘 = 𝑡 − ∆ ∙ 𝑘   ;   𝑘 = 0, 1, 2, …  ;  ∆0= ∆ (2.2) 

For convenience we denote as ti,k market trade time-series those belong to interval Δk:  𝑡𝑖,𝑘 ∈ ∆𝑘    ;        ∆= 2𝑛 ∙ 𝜀  ;     𝑖 = 1, . . 𝑁   (2.3) 

Thus we obtain that 𝑡𝑖+1,𝑘 − 𝑡𝑖,𝑘 = 𝜀  ;    𝑡𝑖,𝑘 − 𝑡𝑖,𝑘+1 = ∆= 2𝑛 ∙ 𝜀   (2.4) 

We consider moving averaging intervals with time shift less then Δ in Sec.5. We take 

instantaneous returns r(ti,τ) with time shift τ as a simple ratio of price p(ti) at time ti during 

“today” interval Δ to price p(ti- τ): 𝑟(𝑡𝑖, 𝜏) =  𝑝(𝑡𝑖)𝑝(𝑡𝑖−𝜏)      ;   𝑖 = 1, . . 𝑁 ;        (2.5) 

As a time shift τ we consider multiple of ε and take τ=εl, l=1,2,... Conventional instantaneous 

returns rc(ti,τ) take form: 𝑟𝑐(𝑡𝑖, 𝜏) =  𝑟(𝑡𝑖, 𝜏)  − 1 = 𝑝(𝑡𝑖)−𝑝(𝑡𝑖−𝜏)𝑝(𝑡𝑖−𝜏)    (2.6) 

The knowledge of statistical properties of returns r(ti,τ) (2.5) completely determine statistical 

properties of conventional returns rc(ti,τ) (2.6). To describe price and returns during the 

interval Δk that was k “trading days” ago one should replace time ti in (2.5; 2.6) by ti,k (2.2-

2.4). For simplicity we describe returns “today” at t during the interval Δ (2.2; 2.3).  

3. The market-based statistical moments of price 

Our description of the market-based probability of stock returns is alike to our consideration 

of the market-based asset price probability. For convenience and simplicity we briefly present 

below main results of the market-based price probability and refer to (Olkhov, 2021c; 2022a; 

2022b) for all further details. 

The initial reason for modelling the market-based price probability is simple. The market 

trade with value C(ti) and volume U(ti) at moment ti determines the market price p(ti) as: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (3.1) 

Equation (3.1) states that given statistical distributions of the market trade values C(ti) and 

volumes U(ti) determine statistical properties of the market price p(ti). One can’t consider 
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statistical properties of the price p(ti) independently of statistical properties of the time-series 

of market trade values C(ti) and volumes U(ti). We take market trade randomness as primary 

source of the market price stochasticity and describe random price properties as a result of 

random properties of market trades. We regard time-series of the market trade values C(ti), 

volumes U(ti) and price p(ti) as random variables during the interval Δ “today” and assume 𝑡 − ∆2 ≤  𝑡𝑖  ≤ 𝑡 + ∆2   ;    𝑖 = 1, . . 𝑁    (3.2) 

One can equally describe a random variable by its probability density function, characteristic 

function and by set of n-th statistical moments (Shephard, 1991; Shiryaev, 1999; Shreve, 

2004). For finite number N of terms of time-series during Δ we denote n-th statistical 

moments of the market trade value C(t;n) and volume U(t;n) using usual frequency-based 

(1.1;1.2) probability: 𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)]~ 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1 ;  𝑈(𝑡; 𝑛) = 𝐸[𝑈𝑛(𝑡𝑖)]~ 1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ; 𝑛 = 1,2,.  (3.3) 

We use E[…] to denote mathematical expectation and ~ to remind that (3.3) is an assessment 

of n-th statistical moments by finite number N of terms of time-series.. That allows determine 

n-th statistical moments of price p(t;n) that differ from frequency-based statistical moments 

assessed directly from price time-series p(ti) in a way alike to (1.2; 3.3). Let us take n-th 

degree of equation (3.1): 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)    (3.4) 

Relations (3.4) between n-th degrees of the market trade value Cn(ti), volume Un(ti) and price 

pn(ti) allow introduce (Olkhov, 2021c; 2022a) n-th price statistical moments p(t;n) as a 

generalization of the well-known volume weighted average price (VWAP) (Berkowitz et al., 

1988; Duffie and Dworczak, 2018). We define n-th statistical moments of price p(t;n) as: 𝑝(𝑡; 𝑛) = 𝐸[𝑝𝑛(𝑡𝑖)] ~ 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1    ;    𝑛 = 1,2, … (3.5) 

From (3.3; 3.4) one can present relations (3.5) in equal forms (3.6): 𝑝(𝑡; 𝑛) ~ ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)      ;     𝐶(𝑡; 𝑛) = 𝑝(𝑡; 𝑛) 𝑈(𝑡; 𝑛)   (3.6) 

It is obvious, that 1-st statistical moment of price p(t;1) coincides with common VWAP. 

Statistical moments of price p(t;n) completely describe its properties as a random variable 

during Δ (3.2). However, due to finite number of terms of time-series of the market trade 

values C(ti) and volumes U(ti), relations (3.3) assesses only finite number of n-th statistical 

moments. Thus, relations (3.5; 3.6) determine only finite number of price statistical moments 

and hence describe approximations of price characteristic function and probability density 

function only. For further details we refer to (Olkhov, 2021c; 2022a; 2022b). In Sec.6 we 
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consider similar approximations of the characteristic function and probability density 

function of stock returns.  

4. The market-based statistical moments of stock returns  

The reasons for derivation of the market-based probability of stock returns are very similar to 

those found the market-based asset price probability model. Indeed, as we show above, the 

random properties of the stock price during Δ (3.2) are completely determined by the market 

trade value C(t;n) and volume U(t;n) statistical moments. Hence, stochastic moments of 

stock returns r(ti,k,τ) (2.5) should be determined by price statistical moments p(t;n) (3.5; 3.6) 

and thus by the market value C(t;n) and volume U(t;n) statistical moments. It seems 

reasonable that stochasticity of market trade should determine random properties of market 

price and returns. However, almost all studies, for example (Fisher and Lorie, 1964; Amaral, 

et al., 2000; Andersen et al., 2001) consider time-series of returns in terms of conventional 

frequency-based statistics. The frequency of returns during the “trading day” plays the 

primary and the only role in determining the average returns. In other words, returns related 

with small market trades are considered on equal basis with returns related with big market 

trades. However, conventional introductions to the portfolio theory at least since Markowitz 

(1952) define returns of the portfolio composed by N securities as returns weighted by “the 

relative amount invested in security i” i=1,..N, Markowitz (1952). Simply put, contribution 

into the portfolio’s returns should be proportional to values of stocks weighted by their 

returns. Market trades during the “trading day” have numerous returns associated with 

different market trades values. So, why the assessments (Amaral, et al., 2000; Andersen et al., 

2001) of average market trade returns based on frequency of the returns during the “trading 

day” ignores the values of corresponding market trades?  

We introduce definition of the value weighted average returns that completely matches the 

portfolio theory and in the similar way determine all higher market-based n-th statistical 

moments of stock returns. We start with the same simple market trade equation (3.1; 3.4) at ti 

during “today” and a time shift τ:   𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (4.1) 

We take definition of returns r(ti,τ) (2.5) and transform (4.1) as: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑝(𝑡𝑖−𝜏)  𝑝(𝑡𝑖 − 𝜏)𝑈(𝑡𝑖)    (4.2) 

We denote Ca(ti,τ) as market trade value determined by market price p(ti-τ) “adjusted” to 

trading volume U(ti) during Δ as: 𝐶𝑎(𝑡𝑖, 𝜏) ≡ 𝑝(𝑡𝑖 − 𝜏)𝑈(𝑡𝑖)     (4.3) 
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Thus equation (4.2) takes form of (4.4) that determines the returns r(ti,τ) (2.5) through the 

market trade value C(ti) “today” and “adjusted” market trade value Ca(ti,τ) (4.3): 𝐶(𝑡𝑖) = 𝑟(𝑡𝑖, 𝜏) 𝐶𝑎(𝑡𝑖, 𝜏)     (4.4) 

Equation (4.4) has a simple interpretation in terms of the conventional portfolio theory. Let 

us consider each market trade i, i=1,2,.. N during Δ (3.2) as a deal with a particular “security 

i” of the portfolio. Equation (4.4) demonstrates that the “security i” of the portfolio has value 

Ca(ti,τ) at time ti-τ and since time τ at moment ti due to returns r(ti,τ) of that particular 

“security i” its value equals C(ti). Equation (4.4) generates relations that determine all n-th 

statistical moments of returns in a way that match the portfolio theory. 

Similar to (3.4), n-th degree of (4.4) results 𝐶𝑛(𝑡𝑖) = 𝑟𝑛(𝑡𝑖, 𝜏) 𝐶𝑎𝑛(𝑡𝑖, 𝜏)    ;      𝑛 = 1,2, …   (4.5) 

We introduce n-th statistical moments Ca(t,τ;n) of the “adjusted” trade values Ca(ti,τ) similar 

to (3.3): 𝐶𝑎(𝑡, 𝜏; 𝑛) ≡ 𝐸[𝐶𝑎𝑛(𝑡𝑖, 𝜏)]~ 1𝑁 ∑ 𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑁𝑖=1    (4.6) 

Similar to equations (3.1; 3.4) one can state that equations (4.4; 4.5) prohibit independent 

description of random properties of the n-th degree of the market trade value Cn(ti), 

“adjusted” market trade value Ca(ti,τ) (4.3) and returns rn(ti,τ) with time shift τ. Given n-th 

statistical moments C(t;n) of the market trade value C(ti) and n-th  statistical moments 

Ca(t,τ;n) of the “adjusted” market trade value Ca(ti,τ) (4.3) completely determine n-th 

statistical moments r(t,τ;n) of the returns r(ti,τ). From (4.5; 4.6) and (3.3) similar to (3.5; 3.6) 

we introduce n-th statistical moments of returns r(t,τ;n) at day t with the time shift τ as:  𝑟(𝑡, 𝜏; 𝑛) ≡ 𝐸[𝑟𝑛(𝑡𝑖, 𝜏)]~ 1∑ 𝐶𝑎𝑛(𝑡𝑖,𝜏)𝑁𝑖=1  ∑ 𝑟𝑛(𝑡𝑖, 𝜏)𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑁𝑖=1   (4.7) 𝑟(𝑡, 𝜏; 𝑛)~ ∑ 𝑟𝑛(𝑡𝑖,𝜏)𝐶𝑎𝑛(𝑡𝑖,𝜏)𝑁𝑖=1∑ 𝐶𝑎𝑛(𝑡𝑖,𝜏)𝑁𝑖=1 = ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝐶𝑎𝑛(𝑡𝑖,𝜏)𝑁𝑖=1 = 𝐶(𝑡;𝑛)𝐶𝑎(𝑡,𝜏;𝑛)   (4.8) 𝐶(𝑡; 𝑛) = 𝑟(𝑡, 𝜏; 𝑛)𝐶𝑎(𝑡, 𝜏; 𝑛)     (4.9) 

For n=1 relations (4.7- 4.9) describe value weighted average returns r(t,τ;1) (VaWAR): 𝑟(𝑡, 𝜏; 1)~ 1∑ 𝐶𝑎(𝑡𝑖,𝜏)𝑁𝑖=1  ∑ 𝑟(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖, 𝜏)𝑁𝑖=1 = 𝐶(𝑡;1)𝐶𝑎(𝑡,𝜏;1)  (4.10) 

VaWAR r(t,τ;1) (4.10) is alike to well-known expression of VWAP p(t;1) (3.5) for n=1 

(Berkowitz  et al., 1988; Duffie and Dworczak, 2018): 𝑝(𝑡; 1) = 𝐸[𝑝(𝑡𝑖)]~ 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡;1)𝑈(𝑡;1)  (4.11) 

We underline that VaWAR r(t,τ;1) (4.10) almost coincides with definition of the returns of 

the portfolio (Markowitz, 1952) composed by i securities, i=1,…N with values Ca(ti,τ) at 
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times ti-τ and returns r(ti,τ) of each “security i”. The only distinction – at this stage we don’t 

take into account depreciations of the “securities”. 

We outline interesting relations between VaWAR r(t,τ;1) (4.10) and VWAP p(t;1) (4.11). 

Indeed, from (4.7; 4.8) for VaWAR r(t,τ;1) (4.10) obtain: 𝑟(𝑡, 𝜏; 1) = 𝐶(𝑡;1)𝐶𝑎(𝑡,𝜏;1)     (4.12) 

Let us mention that n-th degree of (4.3) gives:   𝐶𝑎𝑛(𝑡𝑖, 𝜏) ≡ 𝑝𝑛(𝑡𝑖 − 𝜏)𝑈𝑛(𝑡𝑖)    (4.13) 

From equation (4.13) and similar to (3.5; 3.6) obtain n-th statistical moments pa(t,τ;n) of price 

p(ti-τ) at time ti-τ “adjusted” to volumes U(ti) traded  at ti during Δ “today”:  𝑝𝑎(𝑡, 𝜏; 𝑛) ≡ 𝐸[𝑝𝑎𝑛(𝑡𝑖, 𝜏)]~ 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖 − 𝜏)𝑈𝑛(𝑡𝑖)𝑁𝑖=1   (4.14) 

From (3.3; 3.4) present (4.14) in equal forms: 𝑝𝑎(𝑡, 𝜏; 𝑛) =  𝐶𝑎(𝑡,𝜏;𝑛)𝑈(𝑡;𝑛)      ;    𝐶𝑎(𝑡, 𝜏; 𝑛) = 𝑝𝑎(𝑡, 𝜏; 𝑛)𝑈(𝑡; 𝑛)   (4.15) 

It is obvious that for all n=1,.2,.. equation (4.15) results zero correlations between n-th 

degrees of trade volume and “adjusted” price: 𝑐𝑜𝑟𝑟𝑝𝑎𝑈(𝑡, 𝜏; 𝑛|𝑡; 𝑛) ≡ 𝐸[𝑝𝑛(𝑡𝑖, 𝜏)𝑈𝑛(𝑡𝑖)] − 𝐸[𝑝𝑛(𝑡𝑖, 𝜏)]𝐸[𝑈𝑛(𝑡𝑖)] = 0 

However, similar to the market-based price probability, time-series U(ti) and p(ti-τ) are not 

statistically independent. For example (Olkhov, 2021c; 2022a), one can easy assess 

correlation between time-series of p(ti-τ) and U2(ti): 𝑐𝑜𝑟𝑟𝑝𝑎𝑈2(𝑡, 𝜏; 1|𝑡; 2) = 𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡, 𝜏; 1|𝑡; 1) − 𝑝𝑎(𝑡, 𝜏; 1)𝜎𝑈2(𝑡)    

Here volatility σ2
U(t) of trade volumes takes form 𝜎𝑈2(𝑡) = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)      

and: 𝑐𝑜𝑟𝑟𝑝𝑎𝑈2(𝑡, 𝜏; 1|𝑡; 2) ≡ 𝐸[𝑝(𝑡𝑖, 𝜏)𝑈2(𝑡𝑖)] − 𝐸[𝑝(𝑡𝑖, 𝜏)]𝐸[𝑈2(𝑡𝑖)]   𝐸[𝑝(𝑡𝑖, 𝜏)𝑈2(𝑡𝑖)] = 𝐸[𝐶𝑎(𝑡𝑖, 𝜏)𝑈(𝑡𝑖)] = 𝐶𝑎(𝑡, 𝜏; 1)𝑈(𝑡; 1) + 𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡, 𝜏|𝑡)  𝐸[𝐶𝑎(𝑡𝑖, 𝜏)𝑈(𝑡𝑖)]~ 1𝑁 ∑ 𝐶𝑎(𝑡𝑖, 𝜏)𝑈(𝑡𝑖)𝑁𝑖=1      

For n=1 relations (4.14; 4.15) define volume weighted average price pa(t,τ;1) (VWAPa) at 

time t-τ “adjusted” to volumes U(ti). From (4.11-4.15) obtain for VaWAR r(t,τ;1) returns:  𝑟(𝑡, 𝜏; 1) = 𝐶(𝑡;1)𝐶𝑎(𝑡,𝜏;1) = 𝑝(𝑡;1) 𝑝𝑎(𝑡,𝜏;1)     ;    𝑝(𝑡; 1) = 𝑟(𝑡, 𝜏; 1) 𝑝𝑎(𝑡, 𝜏; 1)  (4.16) 

We obtain, that the market-based value weighted average returns r(t,τ;1) with a time shift τ 

equal ratio of VWAP p(t;1) (3.6) for n=1, today at t to volume weighted average price 

pa(t,τ;1) (VWAPa) (4.14; 4.15) at time t-τ “adjusted” to volumes U(ti) traded today. 
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From (4.9; 4.15) obtain similar relation for all n-th statistical moments of returns: 𝑟(𝑡, 𝜏; 𝑛) = 𝑝(𝑡;𝑛) 𝑝𝑎(𝑡,𝜏;𝑛)         ;        𝑝(𝑡; 𝑛) = 𝑟(𝑡, 𝜏; 𝑛) 𝑝𝑎(𝑡, 𝜏; 𝑛)    (4.17) 

We underline that VWAP p(t;1) is a price p(ti) “today” weighted by volumes U(ti) and it 

differs from VWAPa pa(t,τ;1) that is price p(ti-τ) at ti- τ weighted by volumes U(ti). 

Relations (4.7; 4.8; 4.17) allow derive the market-based volatility σ2
r(t,τ) of returns. The 

market-based volatility σ2
r(t,τ) of returns r(ti,τ) is determined by 2-d statistical moment 

r(t,τ;2) of returns (4.17) for n=2. From (4.8-4.10) and (3.3; 4.6) obtain: 𝑟(𝑡, 𝜏; 2) ≡ 𝐸[𝑟2(𝑡𝑖, 𝜏)] =  𝐶(𝑡;2)𝐶𝑎(𝑡,𝜏; 2) = 𝑝(𝑡;2)𝑝𝑎(𝑡,𝜏; 2)    (4.18) 

Hence, volatility of returns σ2
r(t,τ) “today” at t with time shift τ takes form: 𝜎𝑟2(𝑡, 𝜏) ≡ 𝐸[(𝑟(𝑡𝑖, 𝜏) − 𝑟(𝑡, 𝜏; 1))2] = 𝑟(𝑡, 𝜏; 2) − 𝑟2(𝑡, 𝜏; 1)  (4.19) 𝜎𝑟2(𝑡, 𝜏) = 𝐶(𝑡;2)𝐶𝑎(𝑡,𝜏;2) − 𝐶2(𝑡;1)𝐶𝑎2(𝑡,𝜏;1) = 𝑝(𝑡;2)𝑝𝑎(𝑡,𝜏; 2) − 𝑝2(𝑡;1)𝑝𝑎2(𝑡,𝜏;1)   (4.20) 

Let us take volatility σ2
C(t) of the trade value and volatility of the adjusted trade value 

σ2
Ca(t,τ) as: 𝜎𝐶2(𝑡) = 𝐶(𝑡; 2) − 𝐶2(𝑡; 1)     ;  𝜎𝐶𝑎2 (𝑡, 𝜏) = 𝐶𝑎(𝑡, 𝜏;  2) − 𝐶𝑎2(𝑡, 𝜏;  1) (4.21) 

then volatility σ2
r(t,τ) of returns (4.20) takes form:  𝜎𝑟2(𝑡, 𝜏) = 𝜎𝐶2(𝑡)𝐶𝑎2(𝑡,𝜏;1)−𝜎𝐶𝑎2 (𝑡,𝜏)𝐶2(𝑡;1)𝐶𝑎2(𝑡,𝜏;1)𝐶𝑎(𝑡,𝜏;2)     (4.22) 

The similar relations present volatility of returns through volatilities of prices (App. A.6): 𝜎𝑟2(𝑡, 𝜏) = 𝜎𝑝2(𝑡)𝑝𝑎2(𝑡,𝜏; 1)−𝜎𝑝𝑎2 (𝑡,𝜏)𝑝2(𝑡;1)𝑝𝑎2(𝑡,𝜏; 1)𝑝𝑎(𝑡,𝜏; 2)     (4.23) 𝜎𝑝2(𝑡) = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1)     ;  𝜎𝑝𝑎2 (𝑡, 𝜏) = 𝑝𝑎(𝑡, 𝜏;  2) − 𝑝𝑎2(𝑡, 𝜏;  1) 

Expression (4.20-4.23) ties down volatility σ2
r(t,τ) of returns with volatilities of trade 

volumes or volatilities of market-based prices (Olkhov, 2021c; 2022a; 2022b). 

5. The market-based autocorrelations of stock returns  

Above considerations can be generalized for moving averaging intervals. Below we take 

moving averaging interval Δk-1 (2.2; 2.3) with time shift εj to the previous time interval Δk: 𝑡𝑘 − 𝑡𝑘+1 = 𝜀𝑗    ;    𝑡𝑖,𝑘 − 𝑡𝑖,𝑘+1 = 𝜀𝑗   ;     𝑗 = 1,2, ..   (5.1) 𝑡𝑖,𝑘  ∈ ∆𝑘= [ 𝑡𝑘 − ∆2 , 𝑡𝑘 + ∆2 ] ;    𝑖 = 1, . . 𝑁;   𝑘 = 0,1, ..   (5.2) 

Moving averaging intervals (5.1; 5.2) allow describe autocorrelations of returns with time 

shift multiple of εj that can be less εj <Δ than the averaging interval Δ: 𝑡𝑖,𝑘 − 𝑡𝑖,𝑘+1 = 𝜀𝑗 <  ∆      (5.3) 
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Let us show, how moving averaging intervals (5.1-5.3) allow describe the market-based 

autocorrelations between stock returns. The derivation of correlations of returns follows 

description of the market-based price correlations (Olkhov, 2022c) and we refer there for 

details. Let us take returns r(ti,τ) (2.5) “today” at t with time shift τ and returns r(ti,2,τ2) at 

“day” t2 ago with time shift τ2 so, that time shift between ti and ti,2 equals λ: 𝑡𝑖 − 𝑡𝑖,2 = 𝜆   ;   𝜆 = 𝜀𝑗  ;   𝑗 = 0,1,2, ..    (5.4) 

Time shift λ (5.4) can be less than the time shift τ and even equals zero. Let us describe 

autocorrelations corrr(t,τ|t2,τ2) between returns r(ti,τ) and r(ti,2,τ2)  𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) = 𝐸[𝑟(𝑡𝑖 , 𝜏)𝑟(𝑡𝑖,2 , 𝜏2)] − 𝐸[𝑟(𝑡𝑖 , 𝜏)] 𝐸[𝑟(𝑡𝑖,2 , 𝜏2)]  (5.5) 

From (4.10; 4.12; 4.16; 4.17) obtain expressions for average returns r(t,τ;1) and r(t2,τ2;1): 𝑟(𝑡, 𝜏; 1) ≡  𝐸[𝑟(𝑡𝑖 , 𝜏)] = 𝐶(𝑡;1)𝐶𝑎(𝑡,𝜏;1) = 𝑝(𝑡;1) 𝑝𝑎(𝑡,𝜏;1)    (5.6) 𝑟(𝑡2, 𝜏2; 1) ≡  𝐸[𝑟(𝑡𝑖2 , 𝜏2)] = 𝐶(𝑡2;1)𝐶𝑎(𝑡2,𝜏2;1) = 𝑝(𝑡2;1)𝑝𝑎(𝑡2,𝜏2;1)  (5.7) 

We denote as Ca(t,τ;1) and pa(t,τ;1) (4.3; 4.14; 4.15) – mean trading value and price at “day” 

t - τ “adjusted” to trading volumes at day t. Respectively, Ca(t2,τ2;1) and pa(t2,τ2;1) denote 

mean trading value and price at “day” t2-τ2 “adjusted” to trading volumes at day t2. 

To describe autocorrelations of returns corrr(t,τ|t2,τ2) one should describe mathematical 

expectation of their product in (5.5). To do that let us take equation (4.4) that describes 

returns and repeat it for times ti with time shift τ and ti,2 with time shift τ2 𝐶(𝑡𝑖) = 𝑟(𝑡𝑖, 𝜏) 𝐶𝑎(𝑡𝑖, 𝜏)     ;    𝐶(𝑡𝑖,2) = 𝑟(𝑡𝑖,2, 𝜏2) 𝐶𝑎(𝑡𝑖,2, 𝜏2) (5.8) 

The product of equations (5.8) gives equation that allows describe mathematical expectation 

of product of stock returns: 𝐶(𝑡𝑖)𝐶(𝑡𝑖,2) = 𝑟(𝑡𝑖, 𝜏)𝑟(𝑡𝑖,2, 𝜏2)  𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2)   (5.9) 

We denote mathematical expectations of products of trade values (5.10; 5.11) using 

conventional frequency-based probability (1.1; 1.2) : 𝐶(𝑡; 𝑡2) ≡ 𝐸[𝐶(𝑡𝑖)𝐶(𝑡𝑖,2)]~ 1𝑁  ∑ 𝐶(𝑡𝑖)𝐶(𝑡𝑖,2)𝑁𝑖=1    (5.10) 𝐶𝑎(𝑡, 𝜏; 𝑡2, 𝜏2) ≡ 𝐸[𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2)]~ 1𝑁  ∑ 𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2)𝑁𝑖=1   (5.11) 

We define mathematical expectations of product of returns similar to (4.10; 4.11): 𝑟(𝑡, 𝜏; 𝑡2, 𝜏2) ≡ 𝐸[𝑟(𝑡𝑖, 𝜏)𝑟(𝑡𝑖,2, 𝜏2)]     (5.12) 𝑟(𝑡, 𝜏; 𝑡2, 𝜏2) = 1 ∑ 𝐶𝑎(𝑡𝑖,𝜏)𝐶𝑎(𝑡𝑖,2,𝜏2)𝑁𝑖=1 ∑ 𝑟(𝑡𝑖, 𝜏)𝑟(𝑡𝑖,2, 𝜏2)𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2)𝑁𝑖=1      (5.13) 𝑟(𝑡, 𝜏; 𝑡2, 𝜏2) = 𝐶(𝑡;𝑡2)𝐶𝑎(𝑡,𝜏;𝑡2,𝜏2)    (5.14) 
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Now we outline that relations (5.10; 5.11) allow present (5.14) through autocorrelations 

corrC(t|t2) between trading values C(ti) and C(ti,2) and corrCa(t,τ|t2,τ2) between trading values 

Ca(ti,τ) and Ca(ti2,τ2).  𝐸[𝐶(𝑡𝑖)𝐶(𝑡𝑖,2)] = 𝐸[𝐶(𝑡𝑖)] 𝐸[𝐶(𝑡𝑖,2)] + 𝑐𝑜𝑟𝑟𝐶(𝑡|𝑡2)    𝐸[𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2)] = 𝐸[𝐶𝑎(𝑡𝑖, 𝜏)] 𝐸[𝐶𝑎(𝑡𝑖,2, 𝜏2)] + 𝑐𝑜𝑟𝑟𝐶𝑎(𝑡, 𝜏|𝑡2, 𝜏2)   

We underline that autocorrelations corrC and corrCa are significantly different. Function 

corrC(t|t2) describes correlation (5.15) between trading values C(ti) during trading “days” t 

and values C(ti,2) during “day” t2 and thus is a function of two times t and t2. The same time 

function corrCa(t,τ|t2,τ2) describes correlation between “adjusted” values Ca(ti,τ) and Ca(ti2,τ2) 

and hence is a function of all four times t,τ;t2,τ2. 𝐶(𝑡; 𝑡2) ≡ 𝐶(𝑡; 1)𝐶(𝑡2; 1) + 𝑐𝑜𝑟𝑟𝐶(𝑡|𝑡2)    (5.15) 𝐶𝑎(𝑡, 𝜏; 𝑡2, 𝜏2) ≡ 𝐶𝑎(𝑡, 𝜏; 1)𝐶𝑎(𝑡2, 𝜏2; 1) + 𝑐𝑜𝑟𝑟𝐶𝑎(𝑡, 𝜏|𝑡2, 𝜏2)  (5.16) 

Substituting (5.15; 5.16) into (5.5) and (5.6; 5.7) and simple transformations give  𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) =  𝑐𝑜𝑟𝑟𝐶(𝑡|𝑡2)−𝑟(𝑡,𝜏;1)𝑟(𝑡2,𝜏2;1)𝑐𝑜𝑟𝑟𝐶𝑎(𝑡,𝜏|𝑡2,𝜏2)𝐶𝑎(𝑡,𝜏;𝑡2,𝜏2)   (5.17) 

If t2=t and τ2=τ than corrr(t,τ|t,τ) (5.17) coincides with volatility σ2
r(t,τ) of returns (4.19; 

4.20) and coincides with (4.22). 𝜎𝑟2(𝑡, 𝜏) =  𝜎𝐶2(𝑡)𝐶𝑎2(𝑡,𝜏;1)−𝜎𝐶𝑎2 (𝑡,𝜏)𝐶2(𝑡;1)𝐶𝑎2(𝑡,𝜏;1)𝐶𝑎(𝑡,𝜏;2)       

Correlation corrr(t,τ|t2,τ2) (5.17) equals zero if 1.   𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) = 0    𝑖𝑓    𝑟(𝑡, 𝜏; 1)𝑟(𝑡2, 𝜏2; 1) = 𝑐𝑜𝑟𝑟𝐶(𝑡|𝑡2)𝑐𝑜𝑟𝑟𝐶𝑎(𝑡,𝜏|𝑡2,𝜏2)   2.    𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) = 0     𝑖𝑓     𝑐𝑜𝑟𝑟𝐶(𝑡|𝑡2) = 𝑐𝑜𝑟𝑟𝐶𝑎(𝑡, 𝜏|𝑡2, 𝜏2) = 0   

Relations (5.17) uncover dependence of returns correlation corrr(t,τ|t2,τ2) on correlations 

corrC(t|t2) (5.15) between trade values C(ti) and C(ti,2) and on correlation corrCa(t,τ|t2,τ2) 

(5.16) between “adjusted” trade values Ca(ti,τ) and Ca(ti,2,τ2). If t2=t then 𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡, 𝜏2) =  𝜎𝐶2(𝑡) −𝑟(𝑡,𝜏;1)𝑟(𝑡,𝜏2;1)𝑐𝑜𝑟𝑟𝐶𝑎(𝑡,𝜏|𝑡,𝜏2)𝐶𝑎(𝑡,𝜏;𝑡,𝜏2)     

if corrCa(t,τ|t,τ2)=0 then (see App.A ) 𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡, 𝜏2) =  𝜎𝐶2(𝑡) 𝐶𝑎(𝑡,𝜏;1)𝐶𝑎(𝑡,𝜏2;1) = 𝜎𝑝2(𝑡)𝑝𝑎(𝑡,𝜏;1)𝑝𝑎(𝑡,𝜏2;1)   (5.18) 

One can derive relations similar to (5.17) through price correlations (A.6 - App. A). Relations 

(5.18) demonstrate correlations of returns at t today with different time shifts τ and τ2. Even 

in the absence of correlations between “adjusted” trade values, correlations corrr(t,τ|t,τ2) 

(5.18) of returns r(ti,τ) “today” at t with time shift τ and returns r(ti,τ2) with time shift τ2, in 

the main are determined by price volatility σ2
p(t) “today”.  
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The market-based returns-volume autocorrelations corrrU(t,τ|t2) between returns “today” at t 

with time shift τ and trade volumes at “day” t2 are derived in (B.6; App. B).  𝑐𝑜𝑟𝑟𝑟𝑈(𝑡, 𝜏|𝑡2) = 𝑐𝑜𝑟𝑟𝐶𝑈(𝑡|𝑡2)𝐶𝑎(𝑡, 𝜏; 1) = 𝑐𝑜𝑟𝑟𝐶𝑈(𝑡|𝑡2)𝑝𝑎(𝑡, 𝜏; 1)𝑈(𝑡; 1) 

The market-based returns-price autocorrelations corrrp(t,τ|t) can be expressed through value-

volume corrCaU(t,τ|t), volatility of value σ2
C(t) (see C.12; App.C): 𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏|𝑡) = 𝜎𝐶2(𝑡) − 𝑟(𝑡, 𝜏; 1)𝑝(𝑡; 1)𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡, 𝜏|𝑡)𝐶𝑎𝑈(𝑡, 𝜏|𝑡)  

It is clear that various consequences of the above relations require further investigations, but 

that is not the subject of the current paper. 

6. The market-based probability of returns 

In this section we consider the market-based probability of stock returns that results from 

assessments of the statistical moments (4.7-4.9) of returns. Our derivation is parallel to 

description of the market-based price probability and we refer (Olkhov, 2021c; 2022a) for 

further details. As we mentioned above the set of n-th statistical moments completely 

describes properties of a random variable and determines its characteristic function 

(Shephard, 1991; Shiryaev, 1999; Shreve, 2004). Characteristic function R(t,τ;x) determined 

by n-th statistical moments r(t,τ;n) (4.7-4.9) of returns, (3.3; 4.6) or (3.6; 4.14; 4.15) is given 

by Taylor series as : 𝑅(𝑡, 𝜏; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!∞𝑛=1 𝑟(𝑡, 𝜏; 𝑛) 𝑥𝑛    (6.1) 𝑟(𝑡, 𝜏; 𝑛) = 𝐶(𝑡;𝑛)𝐶𝑎(𝑡,𝜏; 𝑛) = 𝑝(𝑡;𝑛) 𝑝𝑎(𝑡,𝜏;𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝑅(𝑡, 𝜏; 𝑥)|𝑥=0  (6.2) 

In (6.1;6.2), we note i as imaginary unit and i2=-1. Relations (6.1; 6.2) completely determine 

random properties of returns during the averaging interval Δ (2.3; 2.4). However, the finite 

number of market trades during the averaging interval Δ results that only finite number m of 

the n-th statistical moments of stock returns can assessed. Finite number m of statistical 

moments of stock returns r(t,τ;n) (4.7-4.9) determine only m-approximation of the 

characteristic function Rm(t,τ;x) of returns and m-approximation of the probability density 

function of returns as Fourier transform of the characteristic function. Usage of finite Taylor 

series (6.1) is not convenient to get Fourier transform and we replace m-approximation of the 

characteristic functions Rm(t,τ;x) as Taylor series (6.3) 𝑅𝑚(𝑡, 𝜏; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!𝑚𝑛=1 𝑟(𝑡, 𝜏; 𝑛) 𝑥𝑛    (6.3) 

by integrable exponential characteristic function Qm: 
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𝑄𝑚(𝑡, 𝜏; 𝑥) = exp {∑ 𝑖𝑗𝑛!𝑚𝑛=1  𝑎𝑛(𝑡, 𝜏; 𝑛) 𝑥𝑛 − 𝑏 𝑥2𝑞}   ;   𝑚 = 1,2, . . ;   𝑏 ≥ 0;   2𝑞 > 𝑚  (6.4) 

Functions an(t,τ;n) can be obtained in recurrent series from requirements (6.2): 𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝑄𝑚(𝑡, 𝜏; 𝑥)|𝑥=0 = 𝑟(𝑡, 𝜏; 𝑛) = 𝐶(𝑡;𝑛)𝐶𝑎(𝑡,𝜏; 𝑛) = 𝑝(𝑡;𝑛) 𝑝𝑎(𝑡,𝜏;𝑛)    ;   𝑛 = 1, . . 𝑚 (6.5) 

Relations (6.4) guaranties existence of m-approximation of returns probability density 

function μm(t,τ;r)  as Fourier transform of (6.4): 𝜇𝑚(𝑡, 𝜏; 𝑟) = 1√2π ∫ 𝑑𝑥 𝑄𝑚(𝑡, 𝜏; 𝑥) exp(−𝑖𝑥𝑟)   (6.6) 𝑟(𝑡, 𝜏; 𝑛) = 𝐶(𝑡;𝑛)𝐶𝑎(𝑡,𝜏; 𝑛) = 𝑝(𝑡;𝑛) 𝑝𝑎(𝑡,𝜏;𝑛) = ∫ 𝑑𝑟 𝑟𝑛𝜇𝑚(𝑡, 𝜏; 𝑟)    ;     𝑛 ≤ 𝑚 (6.7) 

For n=2 approximation of the returns characteristic function Q2(t,τ;x) takes form 𝑄2(𝑡, 𝜏; 𝑥) = exp {𝑖 𝑟(𝑡, 𝜏; 1)𝑥 − 𝜎𝑟2(𝑡,𝜏)2 𝑥2}    (6.8) 

The market-based mean returns r(t,τ;1) (4.16) and returns volatility σ2
r(t,τ) (4.20) determine 

2-approximation of the characteristic function Q2(t,τ;x) of returns (6.8). Corresponding 2-

approximation of the returns probability density function μ2(t,τ;r) take usual Gaussian form  𝜇2(𝑡, 𝜏; 𝑟) =  1(2𝜋)12𝜎𝑟(𝑡,𝜏) exp {− (𝑟−𝑟(𝑡,𝜏;1))22𝜎𝑟2(𝑡,𝜏) }    (6.9) 

Simplicity of (6.9) is compensated by requirement to assess second statistical moments (4.16; 

4.18; 4.20) of returns. Assessments of higher n-th statistical moments n=3,4,.. of the trade 

values C(t;n) (3.3) and Ca(t,τ;n) (4.6) and corresponding assessments of statistical moments 

of returns allow derive higher approximations of the characteristic function Qm(t,τ;x) (6.4; 

6.5) of returns and approximations of its probability density function μm(t,τ;r). 

7. Conclusion 

We present theoretical model that concludes that the randomness of time-series of the market 

trade values and volumes completely describe the stochasticity of stock returns.  

The market-based approach to probability of stock returns is grounded on a simple issue. We 

presume that 1000 identical returns r related with trade values $1 should have much less 

impact on the average returns and on probability of returns than one return R of one $100 

million deal. Since (Markowitz, 1952) definition of the portfolio returns is taken as weighted 

value of N securities of the portfolio. Thus any market-based probability of the stock returns 

should support the same definition of the returns, averaged during the interval Δ. However, 

conventional frequency-based descriptions of the stock returns stochasticity assess 1000 deals 

with return r as 1000 times more probable then 1 deal with return R, not taking into account 
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the values of corresponding market trades. That seems not too fair, especially for investors 

and market traders who manage $50 billion portfolios and make $100 million deals.  

We use conventional frequency-based probability to assess statistical moments of the market 

trade values and volumes. Finite number terms of time-series of trades during any particular 

interval Δ results that only finite number m of trade statistical moments can assessed. That 

results that only m-approximations of the characteristic function and probability density 

function of stock returns can be assessed. We take simple equation (3.1) which links up trade 

value, volume and price at time ti and transform it into equation (4.4) on returns which binds 

trade value at ti, returns at ti with time shift τ and trade value at ti-τ. Equation (4.4) allows 

define n-th statistical moments of returns similar to definition of the market-based n-th 

statistical moments of asset price (Olkhov, 2021c; 2022a). We underline parallels between 

values of N securities those compose the portfolio and N market trades during the “trading 

day” which define average returns. Usage of equation on returns (4.4) and dependence of 

statistical moments of stock returns on market trade statistical moments allow derive value 

weighted average returns (VaWAR) that coincide with definition of the portfolio’s return 

(Markowitz, 1952). Further we derive expressions for returns volatility, time autocorrelation 

of returns, return-volume and return-price correlations as functions of corresponding 

statistical moments of the market trade values and volumes.  

However, our consideration of the market-based probability of stock returns reveals a lot of 

hidden complexity. Even apparent simplicity of usual Gaussian distribution (6.9) hides tough 

problems related with volatility of returns σ2
r(t,τ) (4.20; 4.22; 4.23). Indeed, volatility of 

returns σ2
r(t,τ) depends on 2-d statistical moments of the trade values C(t;2) (3.3) and 

Ca(t,τ;2) (4.6). Thus volatility of returns σ2
r(t,τ) links the “simple” problem of forecasting 

Gaussian distribution (6.9) of returns with completely new and undiscovered problem of 

description and prediction of the market and economic variables composed by squares of 

corresponding variables of economic agents. We call that latent and still invisible problem as 

the second order economic theory (Olkhov, 2021a; 2021b). Indeed, current economic models 

attempt describe relations between macroeconomic variables composed by sums of agent’s 

variables, by sums of variables of the 1-st degrees. For example, macroeconomic 

investments, credits, consumption are composed as sums (without duplicating) of the 1-st 

degrees of investments, credits, consumption made by economic agents. Description of the 2-

d statistical moments of the trade values C(t;2) (3.3) arises the problem of modelling relations 

between macroeconomic variables composed as sums of squares of corresponding agent’s 

variables. For example: macroeconomic 2-investments composed as sums of squares of 
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investments made by separate economic agents. On one hand such 2-d order economic 

variables open the way for description of volatility of macroeconomic variables - volatility of 

investments, credits, consumption. On the other hand that arises tough problems of 

econometric assessments and theoretical description of evolution and mutual interactions of 

these 2-d order macroeconomic variables. That is the high price for understanding the covert 

and secret relations that conduct the market-based volatility of stock returns.  

Note one effect else. Forecasts of probability distribution of stock returns at horizon T often 

serve as hedging tool and ground for Value-at-Risk (VAR) methods that help investors 

reduce their losses due to market-based returns fluctuations. Our paper demonstrates that the 

market-based probability of stock returns completely depends on statistical moments of the 

trade values and volumes. The more statistical moments of the market trades could be 

predicted explicitly at horizon T – the more accuracy of probability of returns could be 

achieved. Thus, to get high accuracy of predictions of probability of returns at horizon T one 

should derive high accuracy forecasting of many statistical moments of trade values and 

volumes at same horizon T. But that lucky person who would be able to predict exactly 

statistical moments of the market trade values and volumes at horizon T could benefit of 

managing alone the future market trades much more, then modelling VAR. However, the 

secret of long-term predictions of statistical moments of the market trades is hidden probably 

along with treasuries of Ali Baba’s cave. 

The market-based probability of stock returns reveals direct dependence of statistical 

properties of stock returns on the market trade randomness and economic uncertainty. To 

forecast returns trends or statistical moments one should predict statistical moments of the 

market trade values and volumes. Further specification and investigation of different 

consequences of the above relations and econometric assessments of the market-based 

statistical moments of stock returns require a lot of extra studies. And that are really 

interesting and though problems for the future.   
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Appendix A 

Correlations of returns depend on correlations of prices 

Let us derive how relations similar to (5.17) depend on price correlations (Olkhov, 2022c). 

To do that let us multiply equation (3.1) at time ti by same equation at time ti,2 and obtain: 𝐶(𝑡𝑖)𝐶(𝑡𝑖,2) = 𝑝(𝑡𝑖)𝑝(𝑡𝑖,2)𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)   (A.1) 

Equation (A.1) is similar to (5.9). Let us determine mathematical expectation of product of 

trade volumes in (6.1) and trade volume correlations similar to (5.10) and (5.15): 𝑈(𝑡; 𝑡2) ≡ 𝐸[𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)]~ 1𝑁  ∑ 𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)𝑁𝑖=1    (A.2) 𝑐𝑜𝑟𝑟𝑈(𝑡|𝑡2) ≡ 𝑈(𝑡; 𝑡2) − 𝑈(𝑡; 1)𝑈(𝑡2; 1)    (A.3) 

Average of product of prices in (A.1) and their correlations have similar form: 𝑝(𝑡; 𝑡2) ≡ 𝐸[𝑝(𝑡𝑖)𝑝(𝑡𝑖,2)]      ;     𝑐𝑜𝑟𝑟𝑝(𝑡|𝑡2) ≡ 𝑝(𝑡; 𝑡2) − 𝑝(𝑡; 1)𝑝(𝑡2; 1)  (A.4) 

Same considerations that allows derive VWAP (3.5; 3.6), VaWAR (4.10; 4.11) and (5.10-

5.14) give definition of (A.4) as: 𝑝(𝑡; 𝑡2) = 1 ∑ 𝑈(𝑡𝑖)𝑈(𝑡𝑖,2,)𝑁𝑖=1 ∑ 𝑝(𝑡𝑖)𝑝(𝑡𝑖,2)𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)𝑁𝑖=1 = 𝐶(𝑡;𝑡2)𝑈(𝑡;𝑡2)   (A.5) 

We define the product of “adjusted” prices with time shifts τ and τ2 in the same way: 𝐶𝑎(𝑡𝑖, 𝜏)𝐶𝑎(𝑡𝑖,2, 𝜏2) = 𝑝(𝑡𝑖 − 𝜏)𝑝(𝑡𝑖,2 − 𝜏2)𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)    

From (5.16) and (6.2) obtain: 𝑝𝑎(𝑡, 𝜏; 𝑡2, 𝜏2) = 1 ∑ 𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)𝑁𝑖=1 ∑ 𝑝(𝑡𝑖 − 𝜏)𝑝(𝑡𝑖,2 − 𝜏2)𝑈(𝑡𝑖)𝑈(𝑡𝑖,2)𝑁𝑖=1 = 𝐶𝑎(𝑡,𝜏;𝑡2,𝜏2)𝑈(𝑡;𝑡2)   𝑐𝑜𝑟𝑟𝑝𝑎(𝑡, 𝜏|𝑡2𝜏2) = 𝑝𝑎(𝑡, 𝜏; 𝑡2𝜏2) − 𝑝𝑎(𝑡, 𝜏; 1)𝑝𝑎(𝑡2, 𝜏2; 1)    

That allow present (5.14) as 𝑟(𝑡, 𝜏; 𝑡2, 𝜏2) = 𝐶(𝑡;𝑡2)𝐶𝑎(𝑡,𝜏;𝑡2,𝜏2) = 𝐶(𝑡;𝑡2)𝑈(𝑡;𝑡2)  𝑈(𝑡;𝑡2)𝐶𝑎(𝑡,𝜏;𝑡2,𝜏2) = 𝑝(𝑡;𝑡2)𝑝𝑎(𝑡,𝜏;𝑡2,𝜏2)    

From (4.17) obtain: 𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) = 𝑝(𝑡;𝑡2)𝑝𝑎(𝑡,𝜏;𝑡2,𝜏2) − 𝑝(𝑡;1)𝑝𝑎(𝑡,𝜏;1) 𝑝(𝑡2;1)𝑝𝑎(𝑡2,𝜏2;1)    𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡2, 𝜏2) = 𝑝𝑎(𝑡,𝜏;1)𝑝𝑎(𝑡2,𝜏2;1)𝑐𝑜𝑟𝑟𝑝(𝑡|𝑡2)−𝑝(𝑡;1)𝑝(𝑡2;1)𝑐𝑜𝑟𝑟𝑝𝑎(𝑡,𝜏|𝑡2,𝜏2)𝑝𝑎(𝑡,𝜏;𝑡2,𝜏2)𝑝𝑎(𝑡,𝜏;1)𝑝𝑎(𝑡2,𝜏2;1)    

If t2=t and τ2= τ 𝑐𝑜𝑟𝑟𝑟(𝑡, 𝜏|𝑡, 𝜏) = 𝜎𝑟2(𝑡, 𝜏) = 𝑝𝑎2(𝑡,𝜏;1)𝜎𝑝2(𝑡)−𝑝2(𝑡;1)𝜎𝑝𝑎2 (𝑡,𝜏)𝑝𝑎(𝑡,𝜏;2)𝑝𝑎2(𝑡,𝜏;1)   (A.6) 𝜎𝑟2(𝑡, 𝜏) = 𝜎𝑝2(𝑡)−𝑟2(𝑡,𝜏;1)𝜎𝑝𝑎2 (𝑡,𝜏)𝑝𝑎(𝑡,𝜏;2)        ;        𝜎𝑝2(𝑡)𝜎𝑝𝑎2 (𝑡,𝜏) > 𝑟2(𝑡, 𝜏; 1)   
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Appendix B 

Return–volume correlation 

We underline that the choice of the averaging procedure primary and substantially determines 

the return-volume correlation. Campbell, Grossman and Wang (1993) present the frequency-

based approach to return-volume correlations. The market-based approach to probability of 

stock returns presented in our paper gives another look at the same problem and allows 

present return-volume correlations in a simple form. 

To assess returns-volume correlations let us take equation (4.4) at time ti with time shift τ and 

multiply it by trade volume U(ti,2) at ti,2. Then obtain: 𝐶(𝑡𝑖)𝑈(𝑡𝑖,2) = 𝑟(𝑡𝑖, 𝜏)𝑈(𝑡𝑖,2)𝐶𝑎(𝑡𝑖, 𝜏)   (B.1) 

Similar to above define: 𝐶𝑈(𝑡, 𝑡2) ≡ 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖,2)]~ 1𝑁 ∑ 𝐶(𝑡𝑖)𝑈(𝑡𝑖,2)𝑁𝑖=1    (B.2) 𝑟𝑈(𝑡, 𝜏; 𝑡2) ≡ 𝐸[𝑟(𝑡𝑖, 𝜏)𝑈(𝑡𝑖,2)] = 1∑ 𝐶𝑎(𝑡𝑖,𝜏)𝑁𝑖=1  ∑ 𝑟(𝑡𝑖, 𝜏)𝑈(𝑡𝑖,2)𝐶𝑎(𝑡𝑖, 𝜏)𝑁𝑖=1 = 𝐶𝑈(𝑡,𝑡2)𝐶𝑎(𝑡,𝜏;1)   (B.3) 𝑐𝑜𝑟𝑟𝑟𝑈(𝑡, 𝜏|𝑡2) = 𝐸[𝑟(𝑡𝑖, 𝜏)𝑈(𝑡𝑖,2)] − 𝐸[𝑟(𝑡𝑖, 𝜏)]𝐸[𝑈(𝑡𝑖,2)]  (B.4) 

From (3.3; B.2; B.3; 4.16) obtain 𝑐𝑜𝑟𝑟𝑟𝑈(𝑡, 𝜏|𝑡2) = 𝐶𝑈(𝑡,𝑡2)𝐶𝑎(𝑡,𝜏;1) − 𝐶(𝑡;1) 𝐶𝑎(𝑡,𝜏;1) 𝑈(𝑡2; 1)   (B.5) 

From (B.2) and (3.6) obtain: 𝐶𝑈(𝑡, 𝑡2) = 𝐶(𝑡; 1)𝑈(𝑡2; 1) + 𝑐𝑜𝑟𝑟𝐶𝑈(𝑡|𝑡2)     

Hence 𝑐𝑜𝑟𝑟𝑟𝑈(𝑡, 𝜏|𝑡2) = 𝑐𝑜𝑟𝑟𝐶𝑈(𝑡|𝑡2)𝐶𝑎(𝑡,𝜏;1) = 𝑐𝑜𝑟𝑟𝐶𝑈(𝑡|𝑡2)𝑝𝑎(𝑡,𝜏;1)𝑈(𝑡;1)    (B.6) 
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Appendix C 

Price-return relations 

In this Appendix we show, how our market-based method describes mathematical 

expectations and correlations between n-th degrees of returns and m-th degrees of prices for 

n,m=1,2,.. Let us take equation on n-th degree of returns rn(ti,τ) with time-shift τ (4.5) and 

multiply it by equations on m-th degree of price pm(ti,2) (3.4) at ti,2 𝐶𝑛(𝑡𝑖)𝐶𝑚(𝑡𝑖,2) = 𝑟𝑛(𝑡𝑖, 𝜏)𝑝𝑚(𝑡𝑖,2) 𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑈𝑚(𝑡𝑖,2)  (C.1) 

Similar to (3.3; 3.5; 4.6) we introduce: 𝐶(𝑡; 𝑛|𝑡2; 𝑚) ≡ 𝐸[𝐶𝑛(𝑡𝑖)𝐶𝑚(𝑡𝑖,2)]~ 1𝑁  ∑ 𝐶𝑛(𝑡𝑖)𝐶𝑚(𝑡𝑖,2)𝑁𝑖=1   (C.2) 𝐶𝑎𝑈(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) ≡ 𝐸[𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑈𝑚(𝑡𝑖,2)]~ 1𝑁  ∑ 𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑈𝑚(𝑡𝑖,2)𝑁𝑖=1   (C.3) 𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) ≡ 𝐸[𝑟𝑛(𝑡𝑖, 𝜏)𝑝𝑚(𝑡𝑖,2)]    (C.4) 𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 1∑ 𝐶𝑎𝑛(𝑡𝑖,𝜏)𝑈𝑚(𝑡𝑖,2)𝑁𝑖=1  ∑ 𝑟𝑛(𝑡𝑖, 𝜏)𝑝𝑚(𝑡𝑖,2) 𝐶𝑎𝑛(𝑡𝑖, 𝜏)𝑈𝑚(𝑡𝑖,2)𝑁𝑖=1    (C.5) 𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝐶(𝑡;𝑛|𝑡2;𝑚)𝐶𝑎𝑈(𝑡,𝜏;𝑛|𝑡2;𝑚)    (C.6) 𝐶(𝑡; 𝑛|𝑡2; 𝑚) = 𝐶(𝑡; 𝑛)𝐶(𝑡2; 𝑚) + 𝑐𝑜𝑟𝑟𝐶(𝑡; 𝑛|𝑡2; 𝑚)  (C.7) 𝐶𝑎𝑈(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝐶𝑎(𝑡, 𝜏; 𝑛)𝑈(𝑡2; 𝑚) + 𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡, 𝜏; 𝑛|𝑡2; 𝑚)  (C.8) 𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝑟(𝑡, 𝜏; 𝑛)𝑝(𝑡2; 𝑚) + 𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚)  (C.9) 

From (3.3; 3.6; 4.6; 4.8) and (C.2-C.9) obtain: 𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝐶(𝑡;𝑛|𝑡2;𝑚)𝐶𝑎𝑈(𝑡,𝜏;𝑛|𝑡2;𝑚) − 𝐶(𝑡;𝑛)𝐶𝑎(𝑡,𝜏;𝑛)  𝐶(𝑡2;𝑚)𝑈(𝑡2;𝑚)   (C.10) 𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝐶(𝑡;𝑛)𝐶(𝑡2;𝑚)+𝑐𝑜𝑟𝑟𝐶(𝑡;𝑛|𝑡2;𝑚)𝐶𝑎(𝑡,𝜏;𝑛)𝑈(𝑡2;𝑚)+𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡,𝜏;𝑛|𝑡2;𝑚) − 𝐶(𝑡;𝑛)𝐶(𝑡2;𝑚)𝐶𝑎(𝑡,𝜏;𝑛)𝑈(𝑡2;𝑚)   𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏; 𝑛|𝑡2; 𝑚) = 𝑐𝑜𝑟𝑟𝐶(𝑡;𝑛|𝑡2;𝑚)−𝑟(𝑡,𝜏;𝑛)𝑝(𝑡2;𝑚)𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡,𝜏;𝑛|𝑡2;𝑚)𝐶𝑎𝑈(𝑡,𝜏;𝑛|𝑡2;𝑚)  (C.11) 

To simplify notations we omit notations 1 in correlations when degrees n=m=1. For t2=t and 

n=m=1 obtain correlations between returns and prices as 𝑐𝑜𝑟𝑟𝑟𝑝(𝑡, 𝜏|𝑡) = 𝜎𝐶2(𝑡)−𝑟(𝑡,𝜏;1)𝑝(𝑡;1)𝑐𝑜𝑟𝑟𝐶𝑎𝑈(𝑡,𝜏|𝑡)𝐶𝑎𝑈(𝑡,𝜏;1|𝑡;1)   (C.12) 
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