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Abstract 

This paper studies the evolution of government spending multipliers in the post-war U.S. using 

a time-varying parameter VAR model. We achieve identification by imposing sign and zero 

restrictions on the systematic component of policy rules and impulse responses. Our results 

show that the U.S. multipliers in the post-OBRA93 period are smaller than those in the 1970s. 

The multipliers are found to be more strongly correlated with the estimated coefficients of the 

debt-stabilizing rule than the debt-to-GDP ratios. The increased magnitude of fiscal adjustments 

appears to be the major driving force behind the decline in multipliers rather than debt 

accumulation itself.  
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I Introduction

The past decade has witnessed increased attention to the size of government spending

multipliers and their heterogeneity over time and across countries. Investigating the

sources of heterogeneity in multipliers across countries, the literature has provided ample

evidence that government spending multipliers are large in countries with low public debt

(e.g., Ilzetzki et al. (2013); Nickel and Tudyka (2014); Huidrom et al. (2020)). The role of

public debt in a¤ecting the size of multipliers has also become a very relevant issue for the

United States. As illustrated in Figure 1, the public debt-to-GDP ratio in the U.S. has

been following an upward trajectory since the 1980s. After the Global Financial Crisis,

it soared to a level above the thresholds used to de�ne high-debt countries in previous

studies.
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Figure 1. U.S. debt-to-GDP ratio.
Notes: The red solid line and the blue dashed line represent the debt-to-GDP ratio of the general
government and that of the federal government, respectively. The horizontal lines indicate the threshold
debt-to-GDP ratios used to de�ne high-debt countries in the studies by Ilzetzki et al. (2013) and Huidrom
et al. (2020). The thresholds used by Ilzetzki et al. (2013) and Huidrom et al. (2020) are those for the
federal government and the general government, respectively.

However, the public debt dependency of government spending multipliers in the U.S.

time-series data remains somewhat neglected in the literature. Although time variation in
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U.S. multipliers is an area of active research, existing studies focus on its state-dependent

nature across business cycles, relying on a regime-switching framework. The growing

body of empirical evidence suggests that multipliers are larger in recessions than in ex-

pansions (e.g., Auerbach and Gorodnichenko (2012); Candelon and Lieb (2013); Caggiano

et al. (2015)).1 Aside from business cycle dependency, Bilbiie et al. (2008) �nd smaller

multipliers in the post-1980 period than in the preceding period. However, they attribute

the cause to changes in the conduct of monetary policy after Volcker�s appointment as

Fed Chairman.2

The nexus between public debt and �scal policy e¤ects has been studied since Giavazzi

and Pagano (1990)�s report of cases of expansionary �scal adjustments from Danish and

Irish experiences in the 1980s.3 The transmission, through which households reduce their

consumption in anticipation of future �scal adjustments, is examined in the literature

(e.g., Blanchard (1990); Sutherland (1997); Perotti (1999)). Huidrom et al. (2020) call the

transmission a Ricardian channel and consider it to be the underlying cause of the debt-

dependent multipliers. In providing evidence of the U.S. government�s reaction to debt

accumulation, Bohn (1998) �nds a positive correlation between the magnitude of �scal

1For a theoretical account of the business cycle dependency of government spending multipliers, see
Canzoneri et al. (2016), Shen and Yang (2018), and Ghassibe and Zanetti (2022). Ghassibe and Zanetti
(2022) develop a general theory of state-dependent �scal multipliers that accounts for the business cycle
dependency of tax cut multipliers in addition to that of spending multipliers. Whereas Ferraro and Fiori
(2022) suggest that the stimulative e¤ect on employment of a tax cut is larger in a recession than in an
expansion using a heterogeneous-agent model, recent empirical studies point to the procyclical nature of
the U.S. tax multipliers (e.g., Eskandari (2019); Ziegenbein (2021)). Ghassibe and Zanetti (2022) show
that the source of business cycle �uctuations explains the cyclicality of spending and tax cut multipliers
in a consistent manner with the empirical evidence.

2Bilbiie et al. (2008) also suggested that smaller multipliers in the post-Volcker period can be at-
tributed to increased asset market participation as well as the more active monetary policy of the period.
In theory, asset market participation allows households to save or borrow to smooth their consumption
in anticipation of future �scal adjustments. Therefore, its increase could also represent strengthening of
the Ricardian channel through which households reduce their consumption in expectation of larger �scal
adjustments.

3The general theory of state-dependent �scal multipliers recently developed by Ghassibe and Zanetti
(2022) provides a theoretical account of the expansionary e¤ects of �scal adjustments (the �expansionary
austerity hypothesis�). For an overview of empirical �ndings on the hypothesis, see Alesina et al. (2019).
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adjustments and the debt-to-GDP ratio. Based on this �nding, the empirical literature

investigating the size of U.S. multipliers documents the importance of capturing the

dynamics of �scal adjustments in structural vector autoregressive (SVAR) models (e.g.,

Chung and Leeper (2007); Corsetti et al. (2012); Favero and Giavazzi (2012)). However,

empirical evidence for the debt dependency of U.S. multipliers is not yet established.

Caggiano et al. (2015) and Bernardini and Peersman (2018) control for public debt levels

in their regime-switching models, but they do not �nd major di¤erences between the

sizes of multipliers across di¤erent debt regimes. The empirical di¢culty in isolating the

debt-dependent government spending e¤ects is also addressed by Bi et al. (2016). To

provide theoretical grounds for debt-dependent multipliers, they �rst show that a larger

magnitude of �scal adjustments induces stronger negative e¤ects on consumption, thus

leading to smaller multipliers when the debt levels are high. They then perform VAR

estimations using the simulated data from their neoclassical model and conclude that

debt-dependent e¤ects are di¢cult to recover even if the e¤ects exist in the data, because

of various factors such as monetary policy.

Against this background, this paper aims to provide time series evidence of debt-

dependent multipliers from the U.S. data and to investigate the transmission, paying

particular attention to the role of �scal adjustments. For these purposes, we employ the

time-varying parameter vector autoregressive (TVP-VAR) model with stochastic volatil-

ity developed by Primiceri (2005).4 The TVP-VAR model allows parameters to vary

continuously over time in a stochastic manner and therefore does not require researchers

to have particular knowledge of regimes. Although the TVP-VAR model has drawbacks

4The importance of a stochastic volatility assumption is revisited in the recent research by Alessandri
and Mumtaz (2017) and Alessandri and Mumtaz (2019).
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in �exibility,5 it is suitable for capturing permanent and gradual changes in the transmis-

sion mechanism and hence may well describe the possible changes in household behaviour

and in the magnitude of �scal adjustments.6 Furthermore, the abovementioned �ndings of

Bohn (1998) indicate the necessity of estimating a debt-stabilizing rule with time-varying

coe¢cients. While Caldara and Kamps (2017) address the deterministic role of the co-

e¢cients of �scal rules in the size of multipliers estimated in SVAR models, Arias et al.

(2019)�s recent work shows that restrictions on the systematic component of the mone-

tary policy equation help in identifying monetary policy shocks. In this paper, we apply

the SVAR methodology of Arias et al. (2019) to a TVP-VAR framework and extend it

to restrict the systematic component of the �scal policy equation. Our algorithm draws

heavily from Rubio-Ramírez et al. (2010) and Arias et al. (2018). The application allows

us to estimate permanent and gradual changes in the coe¢cients of the �scal policy rule

as well as in household behaviour so that we can address the role of �scal adjustments

in the size of multipliers and the relevance of the Ricardian channel. While �scal ad-

justments can be achieved either by cutting spending or by raising tax, Corsetti et al.

(2012) argue that spending-based adjustments are more relevant to the U.S. �scal policy.

We hence consider a debt-stabilizing spending rule in our TVP-VAR model. Because

monetary policy is considered to be an important factor in determining the size of the

multipliers (e.g., Bilbiie et al. (2008); Bi et al. (2016)), we also impose restrictions on the

coe¢cients of the monetary policy rule.

5Because the TVP-VAR model has a large number of parameters relative to the number of obser-
vations, it faces a higher computational burden and greater concerns about overparameterization and
over�tting than other VARs. To avoid the risk of imprecise estimates due to over�tting, researchers
typically set tight priors for hyperparameters in the TVP-VAR model (e.g., Koop (2012); Prüser and
Schlösser (2020)).

6Primiceri (2005) provides a succinct discussion of the advantages and disadvantages of the TVP-VAR
model over regime-switching models.
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The analysis provides evidence of a decline in the multipliers between the 1970s and

the early 1990s. We then examine the underlying cause of the decline. While the results

do not support a strong o¤setting response of monetary policy during the period, we

�nd that the magnitude of spending-based �scal adjustments increased in the 1990s.

The multipliers are more strongly correlated with the estimated coe¢cients of the debt-

stabilizing spending rule than the debt-to-GDP ratios. The result leads us to conjecture

that the increased magnitude of �scal adjustments could be the major driving force behind

the decline in the multipliers. Furthermore, we show the relevance of the Ricardian

channel by augmenting the baseline model with private consumption.

From a methodological standpoint, this paper is related to those of Canova and Gam-

betti (2009) and Belongia and Ireland (2016), both of which report the evolution of

coe¢cients of the monetary policy rule in a TVP-VAR model with stochastic volatility.

However, they impose sign restrictions only on impulse responses. This paper�s contri-

bution is to be the �rst to extend the identi�cation procedure of Arias et al. (2019) to

allow for time variation both in the coe¢cients and in the covariance matrix. In addi-

tion, we apply the procedure to restrict the systematic component of �scal policy as well

as monetary policy. With regard to the time-varying e¤ects of government spending,

Kirchner et al. (2010) present the only study that we are aware of that explores the debt

dependency of government spending multipliers using time series data. By conducting

regression analysis on the posterior mean multipliers calculated from their recursively

identi�ed TVP-VAR model for the euro area and the possible explanatory factors, they

conclude that an increase in the debt-to-GDP ratio has a negative impact on the multi-

pliers.7 Our study di¤ers from theirs in that it identi�es the U.S. government spending

7The application of the TVP-VAR framework to �scal policy analysis is relatively limited when
comparing it with its application to monetary policy. Although there has been a growing interest
in applying the TVP-VAR framework to �scal policy analysis, studies such as those by Ra�q (2012),
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shocks by imposing sign and zero restrictions on both the impulse responses and the

structural parameters in monetary and �scal policy rules. Accordingly, it considers that

the Ricardian channel operates in response to the increased magnitude of �scal adjust-

ments rather than debt accumulation itself, while Kirchner et al. (2010) focus on the

direct relationship between the multipliers and the debt-to-GDP ratio.

The remainder of this paper is organized as follows. Section II discusses the empirical

methodology. Section III reports the results. Section IV investigates the sources for the

debt-dependent multipliers. Section V concludes.

II Empirical methodology

To implement the identi�cation procedure of Arias et al. (2019) in a TVP-VAR model,

we exploit the algorithms developed by Rubio-Ramírez et al. (2010) and Arias et al.

(2018). This section describes a way to extend the SVAR model identi�ed with sign and

zero restrictions to allow for time variation both in the coe¢cients and in the covariance

matrix following Primiceri (2005).

The TVP-VARmodel identi�ed with sign and zero restrictions

Let us consider the following TVP-VAR model with stochastic volatility8:

y0tA0;t =
PX

l=1

y0t�lAl;t + "0tH
1=2
t (1)

Pereira and Lopes (2014), and Glocker et al. (2019), do not �nd any evidence to support debt-dependent
multipliers using data from Japan, the U.S., and the U.K., respectively.

8The TVP-VAR model with stochastic volatility is broadly used in analysing the behaviour of macro-
economic time series. For applications that study in�ation and monetary policy, the e¤ects of globaliza-
tion, and labor market dynamics, see Benati and Surico (2008), Bianchi and Civelli (2015), and Mumtaz
and Zanetti (2015), respectively.

6



for t = P + 1; :::; T; where yt is a k � 1 vector of observed variables, Al;t; l = 0; :::; P ,

are k � k matrices of time-varying parameters, and the structural impact matrix A0;t is

invertible. "t is Gaussian with mean zero and covariance matrix Ik, the k � k identity

matrix, and H
1=2
t is a diagonal matrix of time-varying standard deviations. Let A0

+;t =

[A0

1;t � � � A
0

P;t] and x
0

t = [y
0

t�1 � � � y
0

t�P ]; then, the model (1) can be written compactly

as follows:

y0tA0;t = x
0

tA+;t + "0tH
1=2
t : (2)

The reduced-form representation is given by the following equation:

y0t = x
0

tBt + u
0

t; (3)

where Bt = A+;tA
�1

0;t : Like Mumtaz and Zanetti (2015), we factor the covariance matrix

of the innovations ut as V AR(ut) � �t = (A
�1
t )

0HtA
�1
t , where Ht is a diagonal matrix

with variances of structural shocks de�ned as Ht = diag [h1;t; : : : ; hk;t]
0 and At is a k � k

upper triangular matrix with all the diagonals equal to one.

Let eA0;t be a matrix that satis�es �t = eA0;t
0 eA0;t: Using a k�k orthogonal matrix, Qt,

a candidate structural impact matrix is given asA0;t = eA0;tQt.
9 Notice that orthogonality

among the structural shocks is ensured by design (e.g., Fry and Pagan (2011)). The time-

varying VAR model

y0t = x
0

tBt + "0t
eA0;t; (4)

represents an observationally-equivalent rotation of the model�s equation (3). We impose

sign and zero restrictions on some elements of A0;t and on the impulse responses at the

9Although we cannot give an economic interpretation of the orthogonal matrix Qt, as described
by Baumeister and Hamilton (2015), we exploit the structure of the matrix to preserve computational
e¢ciency of our algorithm. As argued by Arias et al. (2018), an alternative approach could become
computationally ine¢cient.
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short- and long-run horizons exploiting the algorithms developed by Rubio-Ramírez et

al. (2010) and Arias et al. (2018). Following Arias et al. (2015), we let the elements

of matrices IRS;t(A0;t; A+;t) and IRL;t(A0;t; A+;t) be the impulse responses of the i-th

variable to the j-th structural shock at the short- and long-run horizons10 and consider

a single stacked matrix of dimension 3k � k :

f(A0;t;A+;t) =

2
6666664

A0;t

IRS;t(A0;t; A+;t)

IRL;t(A0;t; A+;t)

3
7777775

| {z }
3k�k

=

2
6666664

eA0;tQt

IRS;t(eA0;tQt; Bt eA0;tQt)

IRL;t(eA0;tQt; Bt eA0;tQt)

3
7777775

| {z }
3k�k

: (5)

We de�ne the sj � 3k matrix Sj as the sign restrictions on the j-th structural shocks and

the zj � 3k matrix Zj as the zero restrictions on the j-th structural shocks, where sj and

zj are the numbers of sign and zero restrictions imposed to identify the j-th structural

shock for 1 � j � k. The structural parameters are assumed to satisfy the identifying

restrictions Sjf(A0;t; A+;t)ej > 0 and Zjf(A0;t; A+;t)ej = 0 for 1 � j � k, where ej is

the j-th column of Ik. As indicated in equation (5), we can make inferences on structural

parameters from the reduced-form parameters and orthogonal matrices.11

The stochastic volatility assumption requires Bayesian inference via Markov Chain

Monte Carlo (MCMC) methods. Following Primiceri (2005), we estimate the reduced-

form parameters in time-varying matrices Bt, At, and Ht. Letting �t be the stacked

k2P � 1 vector of the elements in the columns of Bt, and at be the stacked vector of

non-zero and non-one elements in At, we assume that these vectors follow a random-walk

process: �t+1 = �t+ u�;t, and at+1 = at+ ua;t. The elements of Ht are assumed to evolve

10The short- and long-run horizons are set to S = 1 and L = 40; respectively.
11We present a more detailed procedure for implementing sign and zero restrictions in Online Appendix

A.
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as geometric random walks ln hj;t+1 = ln hj;t + u
j
h;t, belonging to the class of stochastic

volatility models. All the innovations in the model are assumed to be jointly normally

distributed with the following assumptions on the covariance matrix:

2
66666666664

"t

u�;t

ua;t

uh;t

3
77777777775

� N

0
BBBBBBBBBB@

0;

2
66666666664

Ik O O O

O �� O O

O O �a O

O O O �h

3
77777777775

1
CCCCCCCCCCA

; (6)

where ��; �a; and �h are assumed to be block diagonal for simplicity. The TVP-VAR

model has a �exible structure that requires researchers to choose only the priors for the

hyperparameters of the covariance matrix. The �exibility, however, can lead to a risk of

over�tting. Therefore, we set tight priors for the hyperparameters in the estimation.12

To draw samples of �t and at, we use the simulation smoother of de Jong and Shephard

(1995). In drawing samples of ht; we employ the multi-move sampler of Shephard and

Pitt (1997) and Watanabe and Omori (2004) for non-linear and non-Gaussian state-space

models.13 For each draw of reduced-form parameters, we need to �nd an orthogonal

matrix Qt that satis�es the identifying restrictions. The structural parameters can be

recovered from the reduced-form parameters and the corresponding orthogonal matrix.

Data and the identi�cation scheme

Our baseline model consists of �ve variables in yt ordered as yt = [gt; yt; dt; pt; rt]
0, where

gt is the government spending, yt is the gross domestic product (GDP), dt is the debt-

12Regardless of the tight priors that we set, we �nd substantial time variation in some impulse re-
sponses and structural parameters, as we will show below.

13To estimate a model that contains a relatively large number of variables, we rely on the e¢cient algo-
rithm proposed by Nakajima et al. (2011), which is developed by modifying Primiceri (2005)�s algorithm.
See Online Appendix B for an outline of the MCMC algorithm used in this study.
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to-GDP ratio, pt is the GDP de�ator, and rt is the interest rate. We use U.S. quarterly

data for the period from 1952:Q1 to 2019:Q4.14 The government spending and GDP are

expressed in real per capita terms. We use the logarithm for all the variables except

the debt-to-GDP ratio and the interest rate. The lag length is set to P = 4; following

Blanchard and Perotti (2002). All the data are extracted from the FRED database of

the Federal Reserve Bank of St. Louis. See the Appendix for a detailed description of

the data sources.

Our identi�cation scheme consists of three parts. First, we identify multiple funda-

mental shocks by imposing sign restrictions because the identi�cation of additional shocks

helps to identify the structural shock of interest (e.g., Peersman (2005); Mountford and

Uhlig (2009)).15 While we are interested in a government spending shock only, control-

ling for other shocks that are uncorrelated with a government spending shock allows us

to �lter out the automatic response of government spending to these shocks. Second,

we impose sign and zero restrictions on the systematic component of policy rules fol-

lowing Arias et al. (2019). Third, we impose long-run exclusion restrictions on impulse

responses in addition to sign restrictions on short-run impulse responses. The objec-

tive is two-fold. First, the set of admissible models can be narrowed down by imposing

long-run exclusion restrictions on which most economists can easily agree. As addressed

by Kilian and Lütkepohl (2017), it is di¢cult to �nd enough short-run restrictions in

14The sample period starts at the time when quarterly data series on public debt become available.
Our sample covers the zero-interest-rate policy period in light of the �ndings of Nakajima (2011). Based
on the Japanese experience, Nakajima (2011) documents that a zero lower bound on nominal interest
rates has negligible e¤ects on impulse responses in a TVP-VAR model with stochastic volatility.

15Sign restrictions have become popular as an attractive alternative to the traditional recursive identi-
�cation. While the recursive identi�cation sometimes produces results at odds with economic theory, sign
restrictions allow researchers to impose restrictions in a theoretically consistent manner. See, e.g., Mum-
taz and Zanetti (2012), Mumtaz and Zanetti (2013), and Liu et al. (2019). Because sign-identi�ed SVAR
models are only set identi�ed, most papers, including ours, rely on the Bayesian approach. See Granziera
et al. (2018) for a method of constructing classical con�dence intervals in sign-restricted SVARs. In a
more recent work, Jarociński and Karadi (2020) propose to combine high-frequency identi�cation and
sign restrictions to analyse the case in which the data contradict the standard theory.
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practice. Furthermore, imposing long-run exclusion restrictions helps to satisfy the rank

condition described by Arias et al. (2018),16 while short-run exclusion restrictions often

lack a theoretical foundation and can lead to implausible results (e.g., Peersman (2005)).

To implement those restrictions, we exploit the algorithms developed by Rubio-Ramírez

et al. (2010) and Arias et al. (2018).

We identify four structural shocks: an expansionary government spending shock, a

contractionary monetary policy, a positive demand shock, and a positive supply shock.17

Table 1 reports the sign restrictions imposed on the impulse responses for a quarter

after the shock.18 We impose a minimum set of restrictions to make our identi�cation

as agnostic as possible. In particular, we leave the responses of output to a monetary

policy shock and a government spending shock unrestricted, as suggested by Uhlig (2005)

and Mountford and Uhlig (2009), respectively. In addition, we follow previous studies

to identify monetary policy and demand and supply shocks (e.g., Canova et al. (2007);

Benati and Surico (2008); Belongia and Ireland (2016)). A government spending shock is

assumed to increase the debt-to-GDP ratio, which is the key identifying restriction that

distinguishes the shock from other shocks. The restriction shares similarities with those

in previous studies (e.g., Canova and Pappa (2011); Enders et al. (2011); Bouakez et al.

(2014)).

16The su¢cient condition requires there to be at least k � j zero restrictions and at least one sign
restriction on the impulse responses to the j-th structural shock, for 1 � j � k: The necessary rank
condition requires the number of zero restrictions to be greater than or equal to k (k � 1) =2:

17To compare the results with those of other studies, we restrict our focus in this study to a traditional
unanticipated government spending shock.

18The choice of the period during which to restrict the responses does not change the basic results. It
is also computationally burdensome to estimate impulse responses from a TVP-VAR model that imposes
sign restrictions for several periods.
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TABLE 1

Sign restrictions on short-run impulse responses

Shocks
Variables Monetary policy Gov. spending Demand Supply

Government spending +
GDP + +

Debt-to-GDP ratio +
GDP de�ator � + �

Interest rate + +

Notes: The table shows the sign restrictions imposed on the impulse responses of the variables to a
contractionary monetary policy shock, an expansionary government spending shock, a positive demand
shock, and a positive supply shock. A blank indicates that the variable�s response is unrestricted. A
positive [negative] sign indicates that the variable�s response is restricted to being positive [negative] for
a quarter after the shock.

We combine the sign restrictions on impulse responses described above with sign and

zero restrictions on the systematic component of monetary and �scal policy equations.19

Following Arias et al. (2019), we concentrate on the contemporaneous coe¢cients of the

policy equations as it is more controversial to impose restrictions on lagged coe¢cients.

Without loss of generality, we let the �rst and second shocks in our TVP-VAR model

described in equation (1) be the monetary and �scal policy shocks, respectively. Thus, we

only restrict the contemporaneous coe¢cients that correspond to the elements in the �rst

and second columns of A0;t. Letting a0;t;ij denote the (i; j) entry of A0;t, the monetary

policy equation can be expressed as

rt = 'g;tgt + 'y;tyt + 'd;tdt + 'p;tpt + ur;t, (7)

where 'g;t = �a
�1

0;t;51a0;t;11, 'y;t = �a
�1

0;t;51a0;t;21, 'd;t = �a
�1

0;t;51a0;t;31, 'p;t = �a
�1

0;t;51a0;t;41,

and ur;t = �a
�1

0;t;51h
1=2
1;t "1;t. Note that the lagged variables are abstracted from the equa-

tion. In line with the standard speci�cation of the Taylor rule, we assume that the central

19Table A.1 in the Online Appendix provides a summary of the sign and zero restrictions imposed on
the systematic component of the monetary and �scal policy equations as well as those on the short- and
long-run impulse responses.
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bank only reacts contemporaneously to an increase in output and prices by raising the

interest rate as in Arias et al. (2019). This assumption implies 'g;t = 'd;t = 0 and 'y;t,

'p;t > 0. Abstracting from the lagged variables, the �scal policy equation is expressed as

gt =  y;tyt +  d;tdt +  p;tpt +  r;trt + ug;t, (8)

where  y;t = �a
�1

0;t;12a0;t;22,  d;t = �a
�1

0;t;12a0;t;32,  p;t = �a
�1

0;t;12a0;t;42,  r;t = �a
�1

0;t;12a0;t;52,

and ug;t = �a
�1

0;t;12h
1=2
2;t "2;t. Compared with monetary policy, there is much less agreement

on the speci�cation of the �scal rule. Because we are interested in the role of spending-

based �scal adjustments in determining the size of government spending multipliers, we

assume that government spending only reacts contemporaneously to output and public

debt. This assumption implies  p;t =  r;t = 0. Although Blanchard and Perotti (2002)

and Corsetti et al. (2012) suggest  y;t = 0 and  d;t < 0, respectively, we leave these

coe¢cients unrestricted to remain agnostic in the estimates.

When implementing the procedure of Arias et al. (2019), we need to add two more

zero restrictions on the monetary policy equation and one more zero restriction on the

�scal policy equation to satisfy the rank condition. When we label the third and fourth

shocks to be the demand and supply shocks, the rank condition requires us to impose

two more and one more zero restrictions on those equations, respectively. Hence, we

impose long-run exclusion restrictions on the responses of output to the monetary policy,

government spending, and demand shocks because, following the work of Blanchard and

Quah (1989), it is widely accepted that those shocks have no long-run impact on output.20

In addition, assuming that government spending is exogenously determined, we impose

long-run exclusion restrictions on the responses of government spending to the other three

20Canova et al. (2007) consider government spending shocks as real demand shocks.
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shocks.21

III Results

Identi�ed macroeconomic shocks

The endogenous variables used in the estimation are shown in Figure 2. The left panels

present the raw time series data described in the previous section. We extract trend

components of all the variables, except for the interest rate, using the methodology of

Hamilton (2018).22 The procedure suggests that the detrended component of a variable

at horizon h can be constructed as the residual of the linear projection of the variable on

a constant and its four most recent values.23 Formally, the regression can be written as

zt+h = b0 + b1zt + b2zt�1 + b3zt�2 + b4zt�3 + �t+h;

where zt+h is the realized value of the variable at time t + h. We choose a horizon of

h = 8 as suggested by Hamilton (2018) for quarterly data. The detrended components

21Government spending is typically modelled as an exogenous stochastic process (e.g., Mertens and
Ravn (2010)). In the short run, however, Caldara and Kamps (2017) �nd evidence that government
spending responds to in�ation negatively, suggesting that it is not fully indexed to in�ation within a
quarter.

22The methodology of Hamilton (2018) is proposed as a better alternative to the Hodrick-Prescott
(HP) �lter showing that the HP �lter introduces spurious dynamic relations. The methodology is em-
ployed in the recent works by Richter et al. (2019), Mihai (2020), Montagnoli et al. (2021), and Gabriel et
al. (2022). While we obtain similar results to those of our baseline estimation using a linear and quadratic
trend, the detrended data appears to put too much emphasis on very low-frequency components. Taking
the �rst di¤erence is another popular method for detrending, but it does not remove high-frequency com-
ponents that are not of interest in our research. For discussions on high- and low-frequency components
of time series and detrending methods, see Baxter and King (1999). The detrended series obtained by
taking the �rst di¤erence and those obtained by removing a linear and quadratic trend are shown in
Figure E.1 in the Online Appendix. The evolution of the government spending multipliers estimated
using data detrended with a linear and quadratic trend is also presented in Figure E.2.

23Extracting a trend component via regression prior to the estimation is popular in the empirical
literature on the e¤ects of �scal policy (e.g., Brückner and Pappa (2012); Ravn et al. (2012); Ilzetzki et
al. (2013); Nickel and Tudyka (2014); Caldara and Kamps (2017); Huidrom et al. (2020); Angelini et al.
(2022)).
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are shown in the right panels of Figure 2.
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Figure 2. Endogenous variables used in the estimation
Notes: The raw time series data are plotted in the left panels. For the �rst four variables, we detrend
the raw series using the methodology of Hamilton (2018). The cyclical components are plotted in the
right panels. The shaded areas represent recessions as de�ned by the NBER.
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We run eight parallel MCMC chains, each chain executing 70,000 replications and dis-

carding the �rst 20,000 draws. We conduct the convergence diagnostics of Gelman and

Rubin (1992) and Geweke (1992), which �nd no evidence of non-convergence.24 Figure

3 presents the stochastic volatility of the identi�ed structural shocks. We compute the

volatility using the structural impact matrix. The estimated volatility of the monetary

policy shock is consistent with that reported in previous studies (e.g., Canova and Gam-

betti (2009); Mumtaz and Zanetti (2013); Belongia and Ireland (2016)). The volatility

increased substantially during the Great In�ation of the mid-1970s and then at the time of

Volcker�s appointment as Fed Chairman, while showing a large decline in the early 1980s.

The observed reduction in the volatility of the government spending shock from the 1960s

to the 1990s can also be found in Justiniano and Primiceri (2008). As our sample period

covers the Great Recession of 2007-2009, a substantial increase in the volatility during

the period is observed re�ecting the massive �scal response of the period. The volatility

of the demand and supply shocks increased during the Great In�ation and reached its

peak after the oil shock of 1978-79. Similar patterns are reported by Belongia and Ireland

(2016). Because demand and supply shocks are associated with the reduced-form inno-

vations of the output growth and in�ation equations respectively, similarity can also be

found in those reported in previous studies (e.g., Canova and Gambetti (2009); Mumtaz

and Zanetti (2013)). As in the case of government spending shocks, the volatility of the

demand and supply shocks shows smaller peaks during the Great Recession. Since the

estimation results here are largely consistent with those reported in previous studies, we

can conclude that the time-varying volatility is captured well in our model. The inclu-

sion of stochastic volatility in the TVP-VAR model appears to be essential to detecting

structural changes appropriately in the transmission of government spending shocks.

24The results of the diagnostics are provided in Online Appendix C.
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Figure 3. Stochastic volatility of the structural shocks
Notes: The solid lines represent the posterior mean, with the shaded areas representing the 16th-84th
percentile ranges.

Before investigating the evolution of the government spending multipliers, it is instruc-

tive to consider whether there has been a change in the structure of the U.S. economy.

Figure 4 displays the time pro�le of the posterior mean impulse responses of output to

our four identi�ed structural shocks. As we deal with relatively large numbers of variables

and restrictions, we compute impulse responses for each period based on the parameters

estimated for that period following the standard convention in the literature (e.g., Prim-

iceri (2005); Koop et al. (2009); Korobilis (2013); Belongia and Ireland (2016)). The

impulse responses thus indicate how the economy responded to shocks at each point in

time.25

25Given the non-linear nature of our TVP-VAR framework, simulation method of Koop et al. (1996)
can be applied in computing impulse responses. The main drawback of the method is its heavy compu-
tational burden (e.g., Koop et al. (2009); Korobilis (2013)). Moreover, Koop et al. (2009) document that
only a slight di¤erence is expected from using the computationally demanding method. We compared
impulse responses for the baseline model computed using the method of Koop et al. (1996) against those
obtained following the standard convention and con�rmed that the method did not alter our results
reported in this paper.
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Figure 4. Evolution of output responses to structural shocks
Notes: The �gure shows the time pro�les of the posterior mean responses of output to a one-standard-
deviation innovation of a contractionary monetary policy shock, an expansionary government spending
shock, a positive demand shock, and a positive supply shock.

One can easily notice that the shape of the output response to a government spending

shock has changed over time while those to the other three shocks has hardly changed.

While we will examine the impulse responses to a government spending shock in detail

in the next subsection, we would like to mention here that the results are in line with

the previous evidence. The output falls immediately after the contractionary monetary

policy shock and returns to its pre-shock level within a year. The shape of the response

and its time variation are quite similar to those reported in previous studies (Canova

and Gambetti (2009); Baumeister and Benati (2013); Belongia and Ireland (2016)). The

positive demand and supply shocks increase the output on impact. The output responses

show similar shapes while the e¤ect of the demand shock is less persistent than that of

the supply shock. The slight di¤erence in the persistence of the output responses can
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also be seen in previous studies (Canova et al. (2007); Gambetti et al. (2008); Belongia

and Ireland (2016)). To conclude, Figure 4 suggests that the overall structure of the

U.S. economy has changed very little and that changes in the e¤ects of a government

spending shock are not interrelated with those in the transmission mechanism of other

fundamental structural shocks.

Evolution of the government spending multipliers

Figure 5 shows the impulse responses of output to government spending shocks in four

arbitrarily selected time periods: 1955:Q1, 1975:Q1, 1995:Q1, and 2015Q1. While pre-

vious studies tend to �nd positive output e¤ects on impact (e.g., Blanchard and Perotti

(2002); Mountford and Uhlig (2009)), we do not obtain initial increases in output regard-

less of the time period chosen. The ambiguous impact response can be attributed to our

identi�cation scheme. Caldara and Kamps (2017) show that government spending shocks

may either increase or decrease output on impact depending on the estimated values of

�scal policy rule coe¢cients.26 Although initial responses are statistically insigni�cant

throughout the estimation period, the peak output responses di¤er substantially across

time periods. A comparison of impulse responses in the four representative periods in-

dicates expansionary e¤ects of government spending in 1955:Q1 and 1975:Q1, but they

disappear in 1995:Q1 and 2015:Q1. The highest peaks in the former two selected time

periods are observed around a three-year horizon. The timing of the peak e¤ect is similar

to those reported in previous studies (e.g., Blanchard and Perotti (2002)).

26Caldara and Kamps (2017) also �nd a zero impact response of output to a government spending
shock under a simple �scal rule estimated using the identi�cation scheme of Mountford and Uhlig (2009).
While we consider a more general �scal policy rule than theirs, our estimates of the coe¢cients are
consistent with those reported in previous studies as we will see below. From a di¤erent perspective,
Ben Zeev and Pappa (2015) obtain a zero impact response of output to a defense spending shock using
measurement-error free measures of output and TFP.
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Figure 5. Output responses to a government spending shock
Notes: The solid lines represent posterior mean responses to a 1 percentage point increase in government
spending, with the shaded areas representing the 16th-84th percentile ranges.

To illustrate the evolution of the government spending multipliers, we compute the

multipliers for each sample period following Blanchard and Perotti (2002).27 The govern-

ment spending multiplier, often referred to as the peak multiplier, is de�ned as the ratio

of the peak of the output response to the initial government spending shock. Because

government spending and output are expressed in logs, we convert the peak response

using the sample average ratio of output to government spending.28 The upper panel

of Figure 6 presents the time pro�le of the posterior mean estimates of the multipliers

together with the 16th-84th percentiles. The lower panel indicates the horizon when

the output response reaches its peak in each sample period. The multipliers are posi-

tive until the late 1980s but not statistically larger than zero in the post-1990 period. A

steady downward trend can be seen between the 1970s and the early 1990s. The observed

27Auerbach and Gorodnichenko (2013), Leeper et al. (2013), Caldara and Kamps (2017), and others
follow Blanchard and Perotti (2002).

28Ramey and Zubairy (2018) point out a potential problem arising from the use of the sample average
ratio to calculate multipliers by considering the large variation found in their long samples of historical
data. Nevertheless, we use the average ratio not only because it is relatively stable in our post-war
sample but also because we intend to highlight the time variation in multipliers without interference
from changes in the ratio.
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decline in multipliers corroborates Bilbiie et al. (2008)�s �nding of smaller multipliers in

the post-1980 period than in the earlier period.

1960 1970 1980 1990 2000 2010 2020
-3

0

3

6

Horizon after the impact

1960 1970 1980 1990 2000 2010 2020
5

10

15

20

Figure 6. Evolution of the government spending multipliers
Notes: The upper panel presents the time pro�le of the government spending multipliers. The multipliers
are calculated as the maximum impact of a 1 dollar increase in government spending on output for each
period. The solid line represents the posterior mean of the multipliers with the shaded area representing
the 16th-84th percentile range. The lower panel indicates the horizon when the maximum impact on
output is observed after the government spending increase.

Table 2 reports the sample average, maximum, and minimum values of the posterior

means of the government spending multipliers together with the averages of the selected

subsample periods, such as the post-OBRA93 period. We believe that the choice of the

post-OBRA93 period is relevant because the debt-to-GDP ratio was stable for several

years after its passage. The sample average of time-varying multipliers lies between 0.8

and 1.5, which is suggested as a reasonable range of the government spending multiplier in

the Ramey (2011)�s review of the literature. As we have seen in Figure 6, the con�dence

intervals of the maximum and minimum multipliers do not overlap. While the estimates

do not provide evidence of larger multipliers in the pre-Volcker period than in the later

period, we �nd that the multipliers in the 1970s are statistically larger than those in
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the post-OBRA93 period on average. Our results point to a decline in the government

spending multipliers during the period between the 1970s and the early 1990s.

TABLE 2

Multipliers

Sample avg. Max Min

(1955:Q1-2019:Q4) (1973:Q1) (1995:Q3)

1.27 3.35 -0.44

[0.05 2.50] [1.85 4.86] [-1.55 0.68]

Pre-Volcker Post-OBRA93 1960s 1970s

(-1979:Q2) (1993:Q3-)

2.39 0.24 1.94 3.01

[1.07 3.71] [-0.95 1.43] [0.75 3.12] [1.58 4.45]

1980s 1990s 2000s 2010s

1.48 0.18 0.39 0.25

[0.35 2.62] [-0.97 1.34] [-0.76 1.53] [-1.00 1.49]

Notes: The �rst row of the table reports the sample average, maximum, and minimum values of the
posterior means of the government spending multipliers. The second and third rows report the average
values of the posterior mean multipliers computed over the subsample periods shown. The 16th-84th
percentile ranges reported in square brackets are calculated using the corresponding standard deviations.

IV Explaining the evolution of multipliers

In this section, we turn our attention to the sources of the debt-dependent multipliers.

We investigate whether the decline in multipliers can be attributed to changes in the

conduct of monetary and �scal policy. The relevance of the Ricardian channel is also

considered.

Monetary policy response

The results from the baseline model show that the government spending multipliers

declined between the 1970s and the early 1990s. One explanation for the decline is
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that the more active monetary policy during the post-Volcker period o¤sets the stimula-

tive e¤ects of government spending strongly (e.g., Bilbiie et al. (2008)). Figure 7 shows

the interest rate responses to government spending shocks in selected time periods. The

same time periods are chosen as in Figure 5, so that we can compare the changes in the

responses of the output and interest rate. While we have seen that the expansionary

e¤ects of government spending disappeared in 1995:Q1 and 2015:Q1 in Figure 5, we do

not observe signi�cant increases in the interest rate response in those periods. The initial

negative responses of interest observed in 1975:Q1 and 1995:Q1 seem puzzling, but the

counterintuitive results can be found in previous studies, such as Mountford and Uhlig

(2009).29
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Figure 7. Interest rate responses to a government spending shock
Notes: The solid lines represent posterior mean responses to a 1 percentage point increase in government
spending, with the shaded areas representing the 16th-84th percentile ranges.

To see the role of the interest rate response in the evolution of multipliers, we look at

the time pro�le of the interest rate response in the upper panel of Figure 8. Because an

29Following Mountford and Uhlig (2009), we do not impose a sign restriction on the response of the
interest rate to a government spending shock. Enders et al. (2011) obtain a positive response of the
interest rate to a government spending shock while restricting the response to be positive.
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increase in the interest rate has an immediate negative impact on the output, as we have

seen in Figure 4, we choose the response at the horizon when the output response reaches

its peak. The horizons shown in the lower panel are therefore the same as those presented

in Figure 6. The evolution of the interest rate response does not show a similar pattern

to that of multipliers. In particular, there is no visible trend during the period between

the 1970s and the early1990s. It is also worth noting that the interest rate responses are

not statistically di¤erent from zero throughout the sample period.

1960 1970 1980 1990 2000 2010 2020
-0.8

-0.4

0

0.4

0.8

Horizon after the impact

1960 1970 1980 1990 2000 2010 2020
5

10

15

20

Figure 8. Evolution of the interest rate response
Notes: The upper panel presents the time pro�le of the interest rate response at the horizon when
the maximum impact of a 1 dollar increase in government spending on output is observed for each
period. The solid line represents the posterior mean of the interest rate response with the shaded area
representing the 16th-84th percentile range. The lower panel indicates the horizon when the maximum
impact on output is observed after the government spending increase.

As we employ the identi�cation procedure of Arias et al. (2019) in our TVP-VAR

framework, the coe¢cients of the systematic component of monetary policy can be esti-

mated as time-varying parameters. The evolution of the monetary policy rule coe¢cients

is shown in Figure 9. Both of the coe¢cients for output, 'y;t and in�ation, 'p;t are rel-

atively stable over the sample period, with the posterior mean estimates close to 0.25
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and 1.0, respectively. The similar relative size di¤erence between the two coe¢cients

can be found in the estimates of Arias et al. (2019), although our estimated values are

substantially smaller than theirs.30 One explanation for this result is that our model

allows for changes in the volatility of a monetary policy shock. In this regard, perhaps

the most comparable study to ours is that of Belongia and Ireland (2016). They consider

a reduced-form interest rate equation as a monetary policy rule within their second-order

TVP-VAR model with stochastic volatility.31 Despite the di¤erences in the speci�cation

of the monetary policy rule, our estimates are broadly in line with their estimates for

the impact coe¢cients. While small peaks are observed around the time of Volcker�s

appointment in Belongia and Ireland (2016)�s estimates for the both coe¢cients, these

may be related to the fact that their estimates for the volatility of monetary policy shocks

during the periods are much smaller than our estimates.
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Figure 9. Evolution of monetary policy rule coe¢cients
Notes: The solid lines represent the posterior mean with the shaded areas representing the 16th-84th
percentile ranges.

30Arias et al. (2019) report the posterior median estimates for the coe¢cients for output and in�ation
as 0.84 and 2.73, respectively.

31Belongia and Ireland (2016) estimate the monetary policy equation that includes a time-varying
intercept terms, time-varying coe¢cients for the current and two lagged values of in�ation and the
output gap and the lags of the interest rate. Using the coe�cients for the lagged values, they also report
estimates for the long-run coe¢cients, the median values of which are about twice as large as those of
the impact coe¢cients. Canova and Gambetti (2009) also consider an interest rate equation within their
second-order TVP-VAR model with stochastic volatility. Their model consists of intercepts and up to
two lags of interest rate, in�ation, output growth, and money growth. They only report estimates for
long-run coe¢cients with wide intervals that contain zero for most of the sample period.
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Overall, the results do not suggest a strong o¤setting response of monetary policy

during the period between the 1970s and the early 1990s. The decline in multipliers does

not appear to be attributable to the change in the conduct of monetary policy.

Fiscal adjustments

In theory, the smaller multipliers during times of high debt could be attributed to a larger

magnitude of �scal adjustments (Bi et al. (2016)). Regarding the adjustment measures

taken in the U.S., Corsetti et al. (2012) provide evidence of spending-based adjustments

using data covering the period 1983:Q1 to 2007:Q4.32 Figure 10 shows the time path of

government spending after a government spending shock in selected time periods. The

same time periods as those in Figures 5 and 7 are chosen. As predicted, the results

con�rm the evidence of spending-based �scal adjustments for the period 1995:Q1, which

is the mid-point of the sample period used by Corsetti et al. (2012).

Nevertheless, the impulse response of government spending alone does not provide a

de�nitive answer to the question of whether government spending adjusts in a manner

to stabilize debt. Figure 11 illustrates the evolution of the government spending rule

coe¢cients. The mean estimate for the coe¢cient for output,  y;t, exhibits a gradual

downward trend, although the con�dence interval contains zero throughout the sample

period. Similar results can be found in the study by Caldara and Kamps (2017), who

report a negative median estimate for  y;t with the interval that contains zero. Caldara

and Kamps (2017) also analytically show the negative relationship between the size of the

government spending multiplier and the systematic response to output in the government

32Corsetti et al. (2012) also show that the New Keynesian business cycle model can generate crowding-
in of consumption by incorporating a debt-stabilizing spending rule. The crowding-in is attributed to
the decline in the interest rate caused by the expected reduction in the tax burden. Our results, however,
do not support the transmission channel because we do not �nd unambiguous evidence of a decline in
the interest rate after a government spending shock.
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spending rule. Thus, the results suggest that the coe¢cient for output appears to play

no role in the decline of the multipliers observed in Figure 6. On the other hand, the

coe¢cient for debt,  d;t, shows a clear downward trend since the 1970s and turns negative

in the 1990s, consistent with what we have seen in Figure 10. Recall that the value

of  d;t is left unrestricted and that the negative value of  d;t represents the degree of

�scal adjustments in response to an increase in debt. Our estimate for the coe¢cient

corroborates the action-based data set of Devries et al. (2011), which suggests that U.S.

�scal consolidation relies more on spending cuts during the post-OBRA93 period than in

the preceding period.33
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Figure 10. Time paths of government spending after a government spending shock
Notes: The solid lines represent the posterior mean responses to a 1 percentage point increase in gov-
ernment spending, with the shaded areas representing the 16th-84th percentile ranges.

As regards the macroeconomic e¤ects of spending-based �scal adjustments, two dif-

ferent theoretical predictions have been provided. While neoclassical models typically

assume that spending cuts have positive wealth e¤ects associated with a lower future

33The data set records �scal consolidation during the period 1978-2009. While �scal consolidation
based on a tax hike and spending cut amount to 0.8% and 1.7% of the GDP during the post-OBRA
period, those occurring during the preceding period account for 1.9% and 1.1% of the GDP, respectively.
The data set reports no �scal consolidation occurring during the period 2000-2009.
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tax burden (e.g., Perotti (1999)), traditional Keynesian models and new Keynesian mod-

els tend to predict contractionary e¤ects (e.g., DeLong and Summers (2012); Galí et

al. (2007)). The importance of wealth e¤ects has been highlighted in the literature in

favor of the �expansionary austerity hypothesis� (e.g., Alesina et al. (2019)). Recent

cross-country empirical studies, however, �nd evidence that �scal adjustments are con-

tractionary even when they are based on spending cuts (e.g., Guajardo et al. (2014);

House et al. (2020)). With regard to the e¤ects of spending-based �scal adjustments

on the U.S. economy, Alesina et al. (2015) present evidence that spending-based �scal

adjustments have negative e¤ects on consumption while they are less harmful than tax-

based ones. More recently, Barnichon et al. (2022) document that contractionary e¤ects

of negative government spending shocks are larger in absolute terms than expansionary

e¤ects of positive government spending shocks. These empirical observations support the

view that �scal adjustments in the U.S. are contractionary even when they are spending-

based ones. Therefore, the policy change observed during the post-OBRA93 period in

the presence of debt accumulation might have contributed to raising expectations of the

future �scal adjustments, thereby leading to smaller multipliers. It is worth mentioning

that the magnitude of �scal adjustments decreased in the 2010s when the U.S. public

debt reached its highest level in the post-war period. The observed timing of the de-

crease is consistent with D�Erasmo et al. (2016)�s evidence of structural change leading

to smaller �scal adjustments in the post-2008 U.S. data. Despite the high levels of debt,

the government spending multipliers do not exhibit a substantial decline in the 2010s, as

we have seen in Figure 6.
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Figure 11. Evolution of the government spending rule coe¢cients
Notes: The solid lines represent the posterior mean, with the shaded areas representing the 16th-84th
percentile ranges.

We now proceed to examine the role of observed spending-based �scal adjustments

in debt-dependent multipliers. The left panel of Figure 12 displays a scatter plot of the

mean estimates of the multipliers against historical data on the debt-to-GDP ratio of

corresponding periods. The negative correlation provides evidence of the debt-dependent

nature of the U.S. multipliers, which is not reported in previous studies to our knowledge.

The right panel of Figure 12 shows the relationship between the multipliers and the

magnitude of spending-based �scal adjustments. Interestingly, the multipliers are more

strongly correlated with the magnitude of �scal adjustments than debt. This leads us to

conjecture that the increased magnitude of �scal adjustments in the presence of rising

indebtedness could be the major driving force for the decline in multipliers observed

between the 1970s and the early 1990s.34

34We also estimate smooth transition VAR models with the same data set using two di¤erent types
of transition variables: the debt-to-GDP ratio and the magnitude of �scal adjustments estimated in our
baseline model. In line with the �ndings of Caggiano et al. (2015) and Bernardini and Peersman (2018),
we do not �nd any signi�cant di¤erence across regimes. However, it is worth mentioning that we obtain
positive multipliers during the regime of weak �scal adjustments while the multipliers in other regimes
are not statistically di¤erent from zero. We present the impulse responses of output to government
spending shocks in high- and low-debt regimes and strong and weak �scal adjustment regimes in Figure
F.2 in the Online Appendix.
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Figure 12. Relationship between debt (left) [�scal adjustments (right)] and multipliers
Notes: The left [right] panel plots the debt-to-GDP ratio [government spending rule coe¢cients] and the
government spending multipliers. R-squared: 0.46 (left); 0.68 (right).

Extended experiment

Our next question is whether the increased magnitude of spending-based �scal adjust-

ments caused the decline in multipliers via the Ricardian channel. To examine the rele-

vance of the channel, we augment the baseline model with private consumption following

Huidrom et al. (2020). Using cross-country panel data, they establish the relevance by

showing negative responses of output and consumption to a government spending shock

for countries with weak �scal positions. As in the case of the government spending and

GDP, the private consumption is expressed in the logarithm of real per capita terms and

detrended following Hamilton (2018). See the Appendix for a detailed description of the

data. Because our augmented model consists of six variables, we need to impose more

zero restrictions either on the contemporaneous coe¢cients or on the impulse responses

in addition to the restrictions that we imposed on the baseline model. As we are inter-

ested in exploring the changes in household behaviour, we leave the short-run impulse

responses of consumption unrestricted. While letting the �rst and second shocks be the

monetary and �scal policy shocks as in the baseline model, we label the third, fourth, and
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�fth shocks as the demand, consumption, and supply shocks in the augmented model,

respectively. The rank condition then requires us to add one more zero restriction on the

monetary policy, government spending, and demand shocks and two zero restrictions on

the consumption shock. As we assume that the monetary and �scal policy do not react to

a contemporaneous increase in consumption, the corresponding coe¢cients for consump-

tion are restricted to be zero. The demand and consumption shocks are assumed to have

no long-run impact on consumption. We also impose long-run exclusion restrictions on

the response of government spending to a consumption shock, assuming that government

spending is exogenously determined.35

Figure 13 shows the responses of output and consumption to government spending

shocks in selected periods in the augmented model. The periods are chosen to determine

whether the augmented model replicates the disappearance of expansionary e¤ects of

government spending between the 1970s and the early 1990s observed in Figure 5. The

shapes of the output responses shown in the left two panels are basically the same as those

in Figure 5. Overall, the inclusion of consumption in the baseline model does not change

the results. The responses of consumption, shown in the right two panels, exhibit similar

shapes and time variation to those of output. While a crowding-in of consumption can

be seen in the 1970s, it disappears in the 1990s when spending-based �scal adjustments

are observed, as shown in Figure 10. The results are consistent with Alesina et al. (2015),

who �nd negative e¤ects of spending-based �scal adjustments on consumption for U.S.

data.

35Table A.2 in the Online Appendix provides a summary of the restrictions imposed. The results
of the convergence diagnostics of Gelman and Rubin (1992) and Geweke (1992) are provided in Online
Appendix C.
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Figure 13. Output and consumption responses to a government spending shock
Notes: The solid lines represent the posterior mean response to a 1 percentage point increase in govern-
ment spending, with the shaded areas representing the 16th-84th percentile ranges.

Figure 14 illustrates the similarity between the evolution of peak responses of output

and that of consumption to government spending shocks. The evolution in the peak

response of output shows basically the same pattern as those of the multipliers shown in

Figure 6. The peak responses of output and consumption both show a steady downward

trend between the 1970s and the early 1990s. Their co-movement indicates that the

decline in the output response is mostly led by that in consumption. The results suggest

that the Ricardian channel accounts for the decline in multipliers: households reduce the

amount of consumption after a government spending shock, expecting a larger magnitude

of �scal adjustments.
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Figure 14. Evolution of the peak responses of output and consumption to a government spending shock
Notes: The peak responses are calculated as the maximum impact of a 1 percentage point increase in
government spending on output and consumption in each period. The solid lines represent the posterior
mean of the peak responses, with the shaded areas representing the 16th-84th percentile ranges.

V Conclusions

This study provides new time series evidence of government spending multipliers during

the post-war period in the United States. We achieve identi�cation by imposing sign

and zero restrictions on the systematic component of policy rules as well as impulse

response functions. We apply the SVAR methodology of Arias et al. (2019) to a TVP-

VAR framework and extend it by imposing restrictions on the �scal policy equation.

The application allows us to observe permanent and gradual time variation in policy

coe¢cients and multipliers in a single framework, enabling us to consider the e¤ects of

changes in the conduct of monetary and �scal policy on the size of the multipliers.

Our results show that the U.S. multipliers declined between the 1970s and the early

1990s. The U.S. public debt grew rapidly over most of this period but was stable for

several years after the passage of OBRA93. Accordingly, we �nd a negative correlation

between the debt-to-GDP ratios and the multipliers. The public debt dependency of

multipliers is investigated empirically and theoretically in previous studies, but this study

di¤ers from them in that we provide the empirical evidence by analysing U.S. time series
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data. Our �ndings point to the advantage of the TVP-VARmodel in capturing permanent

and gradual time variation in multipliers because previous studies �nd it di¢cult to isolate

the debt-dependent government spending e¤ects by �tting regime-switching models to

U.S. data (e.g., Caggiano et al. (2015); Bernardini and Peersman (2018)).

Another contribution of the study is the investigation of the underlying structural

changes in the transmission mechanism behind the debt-dependent multipliers. By

analysing the evolution of impulse responses to government spending shocks and the

coe¢cients of policy rules, we �nd that spending-based �scal adjustments play an impor-

tant role in determining the size of multipliers while monetary policy has little e¤ect. The

multipliers are found to be more strongly correlated with the estimated coe¢cients of the

debt-stabilizing spending rule than the debt-to-GDP ratios. Furthermore, we �nd that

the decline in the output response is mostly led by that in consumption. Households ap-

pear to reduce the amount of consumption after a government spending shock, expecting

a larger magnitude of �scal adjustments. Our results suggests that the increased mag-

nitude of �scal adjustments is the major driving force behind the decline in multipliers

rather than debt accumulation itself. This could have major policy implications for �scal

adjustment strategies when �scal stimulus is necessary.

Nevertheless, there remains much work ahead. Although our atheoretical approach is

a �exible way to model the evolution of time series data, it has limitations in explaining

the transmission mechanism. Future research could be directed toward developing a the-

oretical model that accounts for the decline in multipliers and its underlying mechanism

reported in this paper. Extending our analysis to investigate the evolution of taxation

multipliers would be another interesting avenue. Moreover, while we do not consider the

relevance of a sovereign risk channel as the U.S. economy has supposedly not yet reached
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the �scal limit, it would be worth exploring the channel as the concerns about the U.S.

debt sustainability increase in the future (e.g., Corsetti et al. (2013); Huidrom et al.

(2020)).
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Appendix: Data Sources

We obtain all quarterly data from the FRED database of the Federal Reserve Bank

of St. Louis. The seasonally adjusted series for real government spending, the real gross

domestic product, and real private consumption are Real Government Consumption Ex-

penditures and Gross Investment (GCEC1), Real Gross Domestic Product (GDPC1),

and Real Personal Consumption Expenditures (PCECC96), respectively. To convert the

series into per capita terms, we divide them by the seasonally adjusted Civilian Labor

Force (CLF16OV). The ratios of output to government spending used to calculate the

multipliers are constructed from seasonally adjusted series for Gross Domestic Product

(GDP) and Government Consumption Expenditures and Gross Investment (GCE), re-

spectively. We use the seasonally adjusted GDP Chain-type Price Index (GDPCTPI) as

the price and the 3-Month Treasury Bill Secondary Market Rate (TB3MS) as the nom-

inal interest rate. The debt-to-output ratio is calculated by dividing the sum of federal,

state, and local government liabilities by the seasonally adjusted Gross Domestic Product

(GDP). We use the Liabilities of the Federal Government (FGDSLAQ027S) and those of

the State and Local Governments (SLGLIAQ027S) in the calculation.
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Yasuharu Iwata & Hirokuni Iiboshi
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A Estimation Methods

This section describes the procedures of the econometric method employed in this paper. First, the overall

procedure of the Bayesian estimation method with MCMC is presented. Next, the derivation of the structural

VAR using the zero-sign constraint method is explained, followed by the Bayesian estimation method for the

TVP-VAR model, and finally, the stochastic volatility estimation method is described.

A.1 Bayesian inference and MCMC Algorithm

The MCMC algorithm estimating our model consists of the following nine steps.

1. Initialize parameters: Σβ , Σa, Σh, and state variables: at, βt, ht.

2. Generate the state variables βt given at, ht, Σβ , yt, from the conditional posterior distribution:

f(βt|at, ht,Σβ ,yt).

3. Generate the parametersΣβ given βt, from the conditional posterior distribution: f(Σβ |βt).

4. Generate the state variables at given βt, ht, Σa, yt, from the conditional posterior distribution:

f(at|βt, ht,Σa,yt).

5. Generate the parametersΣa given at, from the conditional posterior distribution: f(Σα|αt).

6. Generate the state variables ht given βt, at, Σh, yt, from the conditional posterior distribution:

f(ht|at, βt,Σβ ,yt).

7. Generate the parameters Σh, given ht, from the conditional posterior distribution: f(Σh|ht).
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8. Generate the IRFs: f(A0, A+), based on the structural parameters: A0, A+, identified with zero and

sign restrictions, given at, βt, ht, yt.

9. Return to step 2 until the required number of draws from the posterior distribution

Here, we remark some points of the above MCMC simulation. In Steps 2 and 4, the simulation smoother of

de Jong and Shephard (1995) is used for drawing βt and at . In Step 7, a nonlinear filtering method based

on block-sampling method is used for sampling stochastic volatility ht, following Shephard and Pitt (1997),

Watanabe and Omori (2004) and Nakajima et a. (2011). These parts explaining the MCMC procedure

generating parameters in reduced-form TVP-VARs are described in the following Section A3 and A4 in more

detail. In Step 8, the identification of SVARs and generation of IRFs are implemented from the way described

in the following appendix section A2.

The priors of the parameters are specified as:(Σβ)
2
i ∼ IG(20, 10−4), (Σa)

2
i ∼ IG(20, 10−4), and (Σh)

2
i ∼

IG(20, 10−4), where subscript i denotes the i-th diagonal elements of the covariance matrices and IG an

inverse-Gamma distribution. The initial state variables are set as β0 ∼ N(0, 10I), a0 ∼ N(0, 10I), and

h0 ∼ N(0, 10I).

In the state space model and the impulse response function involved the SVARs, draws generated iter-

atively from the above conditional posterior distributions of state variables and parameters must tend to

convergence to the posterior joint distributions based on the property of Gibbs sampler. We collect 400,000

draws which consists of 50,000 MCMC iterations times 8 chains, after discarding the first 20,000 iterations

of each chain to converge to the ergodic distribution, and sampling only draws satisfying the zero and sign

restrictions out of these simulations.

A.2 Algorithm of Zero and Sign Restrictions

1. Zero restrictions

We consider how to impose the IRFs from the zero restrictions, using the manner by Arias, Rubio-Ramirez,

and Waggoner (2018). Let Zj denote a matrix in which the number of column is equal to the number of rows

in f(A0, A+) and j is the j-th structural shock imposing the zero restrictions. Using the orthogonal matrix

Qt, the product of the zero restrictions matrices and the IRF is transformed as below.

Zj f(A0Q, A+Q) ej = Zj f(A0, A+)Qej = Zj f(A0, A+) qj ,

where qj = Qej . And, the zero restrictions will hold if and only if
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Zjf(A0, A+)qj = 0, for 1 ≤ j ≤ n.

where n is number of endogenous variables. From Table A1 for the case of five variables (and Table A2 for

the case of six variables), we set up the matrix of zero restrictions of government spending shock, Z1, as

Z1
︸︷︷︸

Rz×3n

=



















g y dbt p int | g y dbt p int | g y dbt p int

− − − − − | − − − − − | − − − − −

0 0 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 1 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 0 0

0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0



















︸ ︷︷ ︸

ContemporaneousBlock, ShortRun,Block LongRunBlock

where elements corresponding to the endogenous variables imposed zero restrictions are set one, otherwise

zero. The first n columns block of the zero restriction matrix correspond to contemporaneous matrix A0 ,

the second n columns block correspond to the short run restriction; LR0(A0, A+), while the last n columns

block of the matrix do to the long run restrictions: LRL(A0, A+). And the number of rows, RZ , equals the

number of the zero restrictions of the corresponding i-th shock shown in Tables A1 and A2. Notice that

the the number of the zero restrictions is equal to the number of endogenous variables: n, less the ordinal

number i of the i-th structual shock.

2. Sign restrictions

In the similar way to the above zero restrictions, sign restrictions can be implemented using a matrix expres-

sion. Let Sj be a matrix in which the number of column is equal to the number of rows in f(A0, A+) and

j is the j-th structural shock imposed the sign restrictions. Using the orthogonal matrix Qt, the product of

the sign restrictions matrices and the IRF is transformed as below.

Sj f(A0Q,A+Q) ej = Sjf(A0, A+)Qej = Sjf(A0, A+)qj ,

And then, the sign restrictions will hold if and only if

Sj f(A0, A+) qj > 0, for 1 ≤ j ≤ n.
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From Table A1 for the case of five variables (and Table A2 for the case of six variables), we set up the matrix

of sign restrictions of government spending shock, S1, as

S1
︸︷︷︸

RS×3n

=















g y dbt p int | g y dbt p int | g y dbt p int

− − − − − | − − − − − | − − − − −

+1 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 0 | +1 0 0 0 0 | 0 0 0 0 0

0 0 0 0 0 | 0 0 +1 0 0 | 0 0 0 0 0















︸ ︷︷ ︸

ContemporaneousBlock, ShortRunBlock, LongRunBlock

,

where elements corresponding to the endogenous variables imposed the positive and negative sign restrictions

are set plus and minus one, respectively, and otherwise zeros. The first n columns block of the sign restriction

matrix correspond to contemporaneous matrix A0 , the second n columns block correspond to the short

run restriction; LR0(A0, A+), while the last n columns block of the matrix do to the long run restrictions:

LRL(A0, A+). And the number of rows, RS , indicates the number of the sign restrictions of the corresponding

i-th shock shown in Tables A1 and A2.

Table 1: Zeros and Signs Restrictions of SVAR with Five Variables

variables
shocks

gov. spending demand supply monetary policy

systematic component

gov + 0
y ? + -
dbt ? 0
p 0 - -
int 0 +

Short Run

gov +
y + +
dbt +
p + -
int + +

Long Run

gov 0 0 0
y 0 0 0
dbt
p
int

# of zero restrictions 3 2 1 4
Notes:
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Table 2: Zeros and Signs Restrictions of SVAR with Six Variables

variables
shocks

gov. spending demand supply monetary policy consumption

systematic component

gov + 0
y ? + -
dbt ? 0
p 0 - -
int 0 +
cons 0 0

Short Run

gov +
y + +
dbt +
p + -
int + +
cons

Long Run

gov 0 0 0
y 0 0 0 0
dbt
p
int
cons 0 0

# of zero restrictions 4 3 1 5 2

Notes: see Table A1

3. QR decomposition

Let X = QR be the QR decomposition of a n× n matrix X. The n× n random matrix Q has the uniform

distribution, i.e., QQ′ = I. and the n× n matrix R is a upper triangular matrix.

Let the matrix X be defined as

Xj(A0, A+)
︸ ︷︷ ︸

n×n

=






Zjf(A0, A+)

Q′

j−1






T

,

and the orthogonal matrix Qj given from the QR decomposition of a n× n matrix Xj(A0, A+) satisfies the

zero restrictions, or Xj(A0, A+)qj = 0 where qj = Qjej . By stacking them such as Q = [q1, · · · , qn], we

obtain the rotation matrix Q to identify the SVAR model.

4. Impulse Response Functions (IRFs) with identified with zero and sign restrictions

We consider the derivation of IRFs in a standard VAR with constant structural parameters:A0, A+, following

Arias, Rubio-Ramirez, and Waggoner (2018). Let Lh(A0, A+) denote the IRF of the i-th variable to j-th

structural shock at finite horizon h given by a n× n matrix as below.
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IRh(A0, A+)
︸ ︷︷ ︸

n×n

= (A−1
0 J ′FhJ)′

where A′

+ = [A′

1, · · · , A
′

p],

F
︸︷︷︸

pn×pn

=












A1A
−1
0 In · · · 0

...
...

. . .
...

Ap−1A
−1
0 0 · · · In

ApA
−1
0 0 · · · 0












and J
︸︷︷︸

pn×n

=












In

0

...

0












,

where In is a n × n identity matrix. And, we apply them to the IRFs in the TVP-VARs. The IRFs:

Lh(A0, A+), can be rewritten as

IRh(At,0, At,+)
︸ ︷︷ ︸

n×n

=

(

A−1
t,0J

′

(
t+h∏

i=t

Fi

)

J

)T

,

where A′

t,+ = [A′

t,1, · · · , A
′

t,p],

Ft
︸︷︷︸

pn×pn

=












At,1A
−1
t,0 In · · · 0

...
...

. . .
...

At,p−1A
−1
t,0 0 · · · In

At,pA
−1
t,0 0 · · · 0












.

Notice that the product of time-varying structural parameters: At,kA
−1
t,0 is equivalent to time-varying reduced-

form parameters Bt,k for 1 ≤ k ≤ p.

Using the orthogonal matrix Qt, the above IRF, IRh(A0, A+)= IRh(AtrQ,A+) , is transformed to

IRh(Atr, A+Q
′)Q, for horizons, 0 ≤ h ≤ ∞. It indicates that the sets of structural parameters (A0, A+)

and (Atr, A+Q
′) are observationally equivalent so that we can replace A0 with Atr in the IRF. Accordingly,

instead of A0, the lower triangular matrix Atr derived from Cholesky decomposition is used together with

the matrix Q to be convenient to calculate. Let f(A0, A+) be combination of contemporaneous matrix A0

and the stacked IRF at horizon zero and long term: L, given by a 3n× n matrix as below.
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f(A0, A+) =









A0

IR0(A0, A+)

IRL(A0, A+)









︸ ︷︷ ︸

3n×n

=









AtrQ

IR0(Atr, A+Q
′)Q

IRL(Atr, A+Q
′)Q









︸ ︷︷ ︸

3n×n

. (1)

Using the function f(A0, A+), we can identify the SVARs imposed from the zero and sign restrictions of the

IRFs to the four structural shocks including monetary and fiscal policy shocks.

5. Algorithm for zero and sign restrictions

Finally, we show algorithm for the two restrictions using the above QR decomposition. The sets of structural

parameters are identified based on Algorithm 4 by Arias et al. (2018) consisting of the following four steps.

1. Draw the sets of reduced-form parameters (B,Ω).

2. Using the QR decomposition mentioned above, draw an orthogonal matrix Q satisfies the zero restric-

tions, or Zjf(A0, A+)qj = 0, for 1 ≤ j ≤ n .

3. Keep the draw if the sign restrictions are satisfied, or Sj f(A0, A+) qj > 0, for 1 ≤ j ≤ n, otherwise

discard the draw.

4. Return to step 1 until the required number of draws from the posterior distribution conditional on the

sign and zero restrictions has been obtained.

Here, we remark as follows. In Step 2 and Step 3, the structural parameters A0 are observationally equivalent

to the lower triangular matrix Atr. So instead of A0, we use Atr derived from the inverse of Cholesky

decomposition of Ω. And A+ is derived from BAtr.

A.3 MCMC procedure for TVP-VARs

In Section A1, we describe the nine steps of the MCMC algorithm estimating our model. Here, we focus on

the steps generating parameters in reduced-form TVP-VARs. This section is described based on Appendix

of Nakajima (2011) and Nakajima et al. (2011).

Step 1. Generate the state variables βt given at, ht, Σβ, Yt, from the conditional posterior distri-

bution: f(βt|at, ht,Σβ , Yt). To generate βt from the conditional posterior distribution: f(βt|at, ht,Σβ , Yt),

we introduce the simulation smoother by de Jong and Shephard (1995) and Durbin and Koopman (2002)

using the state space model with respect to βt given by
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yt = Xtβt +A−1
t Σtεt, t = s+ 1, · · · , n, (2)

βt+1 = βt + uβ , t = s+ 1, · · · , n− 1,

where βs is set as µβ0
, and uβs

∼ N(0,Σβ0
).

Step 2. Generate the state variables at given βt, ht, Σa, Yt , from the conditional posterior distri-

bution: f(at|βt, ht,Σa, Yt). To generate at from the conditional posterior distribution: f(at|βt, ht,Σa, Yt),

the simulation smoother is also adopted from the following state space model,

ŷt = X̂tat +Σtεt, t = s+ 1, · · · , n,

at+1 = at + uat, t = s, · · · , n− 1,

where as = µa0, uas ∼ N(0,Σa0), ŷt = yt −Xtβt, and

X̂t =



















0 · · · 0

−ŷ1t 0 0 · · ·
...

0 −ŷ1t −ŷ2t 0 · · ·

0 0 0 −ŷ1t · · ·

...
. . . 0 · · · 0

0 · · · 0 −ŷ1t · · · −ŷk−1t



















,

for t = s+ 1, · · · , n.

Step 3. Generate the state variables ht given βt, at, Σh, Yt, from the conditional posterior

distribution: f(ht|at, βt,Σβ , Yt). To generate the stochastic volatility ht from the conditional posterior

distribution: f(ht|at, βt,Σβ , Yt), we conduct the inference for hjt
n
t=s+1 separately for j, because it is assumed

that Σh and Σh0 are diagonal matrices. Let y∗it denote the i-th element of Atyt. Then, we can write:

y∗it = exp(hit/2)εit, t = s+ 1, · · · , n,

hi,t+1 = hit + ηit, t = s, · · · , n− 1,
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




εit

ηit




 ∼ N




0,






1 0

0 ν2i









 ,

where ηis ∼ N(0, ν2i0), and ν2i are the i-th diagonal elements of Σh and Σh0, respectively, and ηit is the i-th

element of uht. We sample ht = (hi,s+1, · · · , hin) using the multi-move sampler developed by Shephard and

Pitt (1997) and Watanabe and Omori (2004), the algorithm of which is described in the following subsection.

Step 4. Generate the parameters Σα , Σβ, andΣh. To generate the parameter Σa given at, we

draw the sample from the conditional posterior distribution: Σ|at ∼ IW (ν̂, Ω̂−1), where IW denotes the

inverse-Wishart distribution, and ν̂ = ν0 + n− 1, Ω̂ = Ω0 +
∑n−1

t=1 (at+1 − at)(at+1 − at)
′ in which the prior

is set as Σ ∼ IW (ν0,Ω
−1
0 ). Sampling the diagonal elememts of Σβ , Σh is also the same way to sample Σa.

A.4 Multi-Move Sampler of Stochastic Volatilities

This section is described based on Appendix of Nakajima (2011) and Nakajima et al. (2011). The algoritm

of the multi-move sampler proposed by Shephard and Pitt (1997), Watanabe and Omori (2004) is adopted

to generate draws of stochastic volatilities in the TVP-VARs from the conditional posterior distributions

explainded in Appendix A2. We show the stochastic volatilities model again.

y∗t = exp(ht/2)εt, t = s+ 1, · · · , n,

ht+1 = φht + ηt, t = s, · · · , n− 1,






εt

ηt




 ∼ N




0,






1 0

0 σ2
η









 ,

where y∗t denote the i-th element of Atyt shown in Eq.(??). For drawing a typical block such as(hr, · · · , hr+d),

we consider the draw of

(ηr−1, · · · , ηr+d−1) ∼ π(ηr−1, · · · , ηr+d−1|ω)

∝

∏ 1

eht/2
exp

(
y∗2t
2eht

)

×
∏

f(ηt)× f(hr+d) (3)

9



where

f(ηt) =







exp
{

−
(1−φ2)η2

0

2σ2
η

}

exp
(

−
η2
t

2σ2
η

)

(if t = 0),

(if t ≥ 1),

f(hr+d) =







exp
{

− (hr+d+1−φhr+d)
2

2σ2
η

}

1

(if r + d < n),

(if r + d = n),

and ω = (hr−1, hr+d+1, β, γ, φ, ). The posterior draw of (hr, · · · , hr+d) can be obtained by running the state

equation with the draw of (ηr−1, · · · , ηr+d−1) given hr−1.

We sample (ηr−1, · · · , ηr+d−1) from the density (3) using the acceptance-rejection MH algorithm (Tierney,

1994; Chib and Greenberg, 1995) with the following proposal distribution constructed from the second-order

Taylor expansion of

g(ht) ≡ −
ht

2
−

y∗2t
2eht

,

around a certain point ĥt which is given by

g(ht) + g(ht) + g′(ĥt)(ht − ĥt) +
1

2
g′′(ĥt)(ht − ĥt)

2

∝
1

2
g′′(ĥt)

{

ht −

(

ĥt −
g′(ĥt)

g′′(ĥt)

)}2

,

Here, the first and second derivatives are obtained such that

g′(ĥt) = −
1

2
+

y∗2t
2eht

, g′′(ĥt) = −
y∗2t
2eht

,

And the proposal density of π(ηr−1, · · · , ηr+d−1|ω) is given by

q(ηr−1, · · · , ηr+d−1|ω) ∝
∏

exp

{

−
(h∗

t − ht)
2

2σ∗2
t

}

×
∏

f(ηt),

where

σ∗2
t = −

1

g′′(ĥt)
, h∗

t = ht + σ∗2
t g′(ĥt), (4)
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for t = r, · · · , r + d− 1, and t = r + d in the case that r + d = n. Meanwhile, in the case thatr + d ≤ n,

σ∗2
r+d =

1

−g′′(ĥt+d) + φ2/σ2
η

(5)

h∗

r+d = σ∗2
r+d

{
g′(hr+d)− g′′(hr+d)hr+d + hr+d/σ

2
η

}
, (6)

for t = r+ d. The proposal density of the AR-MH algorithm is derived from the following state space model,

h∗

t = ht + ςt, t = s+ 1, · · · , n,

h,t+1 = ht + ηt, t = s, · · · , n− 1, (7)






ςt

ηt




 ∼ N




0,






σ∗2
t 0

0 σ2
η









 ,

with ηr−1 ∼ N(0, σ2
η) when r ≥ 2 and ηs ∼ N(0, σ2

η/(1 − φ2)). Given ω, we draw candidate point of

(ηr−1, · · · , ηr+d−1) for AR-MH algorithm by running the simulation smoother over the state-space represen-

tation (7).

For realizing efficient drawings, we need to calculate the mode of the above posterior density for (ĥr, · · · , ĥr+d).

Numerically, we obtain the mode by iterating the following steps several times,

1. Initialize (ĥr, · · · , ĥr+d).

2. Compute (h∗

r , · · · , h
∗

r+d), and (σ∗

r , · · · , σ
∗

r+d) by eq.(4) through eq.(6).

3. Run the simulation smoother for state space model eq.(7) with (h∗

r , · · · , h
∗

r+d), and (σ∗

r , · · · , σ
∗

r+d) as

obervable variables. And Generate estimations h∗

t = E(ht|ω) for t = r, · · · , r + d.

4. Replace (ĥr, · · · , ĥr+d) with (h∗

r , · · · , h
∗

r+d).

5. Return to Step 2.

To implement a block sampling for ht, they are devided into K + 1 blocks, say, (hk(i−1), · · · , hk(i)) for i =

1, · · · ,K +1. Shephard and Pitt (1997) suggested to adopt stochastic knots for determining the positions of

blocks: i, the rule of which is given by
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k(i) = int

[
n(j + Ui)

K + 2

]

,

for i = 1, · · · ,K, where int is a function rounding to an integer value from the insight, and Ui is the random

sample from the uniform distribution U [0, 1].

B Estimation Results and Convergence Diagnostic

Here we report posterior estimates of the parameters of the reduced forms of our two TVP-VAR models

and the results of the convergence diagnostics for the MCMC estimation results. The parameters of the

structural model presented in this paper are derived from the posterior estimates of the parameters of the

reduce forms. As will be shown below, the only fixed parameters in our model are hyper-parameters, i.e., the

standard deviations portion of the random walk process that accounts for the time-varying parameters.

Tables B1 and B2 show the posterior estimation results for the five- and six-variable models, respectively.

The values of the parameters, all of which are standard deviations, do not differ significantly in the magnitude

of the posterior estimates because the set values of the prior distributions are much larger than the likelihood

information provided by the data. Again, however, since the values of the hyper-parameters have only a

secondary effect, we are confident that stable estimation results are obtained by keeping these parameters

within a certain range rather than arbitrarily relaxing these values to larger values in the sense of comparing

our study with a SVAR model with the usual fixed coefficients

Table 3: Posterior Estimate of hyper-parameter in the TVP-VAR with Five Variables

parameters posterior mean standard deviation convergence diagnostic
(Σβ)1 0.21788 ∗ 10−2 0.11870 ∗ 10−3 1.000
(Σβ)2 0.21794 ∗ 10−2 0.11900 ∗ 10−3 1.000
(Σβ)3 0.21790 ∗ 10−2 0.11911 ∗ 10−3 1.000
(Σβ)4 0.21792 ∗ 10−2 0.11888 ∗ 10−3 1.000
(Σβ)5 0.21793 ∗ 10−2 0.11909 ∗ 10−3 1.000
(Σa)1 0.16978 ∗ 10−2 0.7211 ∗ 10−4 1.000
(Σa)2 0.16980 ∗ 10−2 0.7209 ∗ 10−4 1.000
(Σa)3 0.16979 ∗ 10−2 0.7215 ∗ 10−4 1.000
(Σa)4 0.16980 ∗ 10−2 0.7236 ∗ 10−4 1.000
(Σa)5 0.16978 ∗ 10−2 0.7218 ∗ 10−4 1.000
(Σh)1 8.4900 ∗ 10−2 3.6110 ∗ 10−3 1.000
(Σh)2 8.4895 ∗ 10−2 3.6154 ∗ 10−3 1.000
(Σh)3 8.4896 ∗ 10−2 3.6054 ∗ 10−3 1.000
(Σh)4 8.4885 ∗ 10−2 3.6053 ∗ 10−3 1.000
(Σh)5 8.4889 ∗ 10−2 3.6127 ∗ 10−3 1.000
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Table 4: Posterior Estimate of hyper-parameters in the TVP-VAR with Six Variables

parameters posterior mean standard deviation convergence diagnostic
(Σβ)1 0.21788 ∗ 10−2 0.11870 ∗ 10−3 1.000
(Σβ)2 0.21794 ∗ 10−2 0.11900 ∗ 10−3 1.000
(Σβ)3 0.21790 ∗ 10−2 0.11911 ∗ 10−3 1.000
(Σβ)4 0.21792 ∗ 10−2 0.11888 ∗ 10−3 1.000
(Σβ)5 0.21793 ∗ 10−2 0.11909 ∗ 10−3 1.000
(Σβ)5 0.21793 ∗ 10−2 0.11909 ∗ 10−3 1.000
(Σa)1 0.16978 ∗ 10−2 0.7211 ∗ 10−4 1.000
(Σa)2 0.16980 ∗ 10−2 0.7209 ∗ 10−4 1.000
(Σa)3 0.16979 ∗ 10−2 0.7215 ∗ 10−4 1.000
(Σa)4 0.16980 ∗ 10−2 0.7236 ∗ 10−4 1.000
(Σa)5 0.16978 ∗ 10−2 0.7218 ∗ 10−4 1.000
(Σa)5 0.16978 ∗ 10−2 0.7218 ∗ 10−4 1.000
(Σh)1 8.4900 ∗ 10−2 3.6110 ∗ 10−3 1.000
(Σh)2 8.4895 ∗ 10−2 3.6154 ∗ 10−3 1.000
(Σh)3 8.4896 ∗ 10−2 3.6054 ∗ 10−3 1.000
(Σh)4 8.4885 ∗ 10−2 3.6053 ∗ 10−3 1.000
(Σh)5 8.4889 ∗ 10−2 3.6127 ∗ 10−3 1.000
(Σh)5 8.4889 ∗ 10−2 3.6127 ∗ 10−3 1.000

Our estimation uses eight independent chains as sampling for the posterior distribution of the parameters.

Thus, as a convergence diagnostic, it seems more efficient to employ the diagnostic proposed by Gelman and

Rubin (1992). The Gelman–Rubin convergence diagnostic provides a numerical convergence summary based

on multiple chains.1 The convergence diagnostic itself is R =
√

(d+3)V̂
(d+1)W Values substantially above 1 indicate

lack of convergence.

1Convergence is diagnosed when the chains have ‘forgotten’ their initial values, and the output from all chains is indistin-

guishable. There are two ways to estimate the variance of the stationary distribution: the mean of the empirical variance

within each chain,W , and the empirical variance from all chains combined, which can be expressed as σ̂2 =
(n−1)W

n
+ B

n
where

n is the number of iterations and B/n is the empirical between-chain variance. The convergence diagnostic is based on the

assumption that the target distribution is normal. A Bayesian credible interval can be constructed using a t-distribution with

mean µ̂ = Sample mean of all chains combined and variance V̂ = σ̂2 + B

mn
and degrees of freedom estimated by the method of

moments d = 2∗V̂ 2

Var(V̂ )
Use of the t-distribution accounts for the fact that the mean and variance of the posterior distribution

are estimated.
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C Robustness Check for Detrend

Figure 1: Data after Detrend
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Figure 2: Peak Mulipliers with Detrend of Linear and Quadratic

D Comparison with Case of Smooth Transition VAR model

Our study computes fiscal multipliers by using a VAR model with time-varying parameters to identify fiscal

policy shocks by imposing zero and sign restrictions. A model belonging to a similar strand is a structured

VAR model with switch coefficients caused by changes in state variables such as government debt. In this

section, we discuss the fiscal multipliers estimated by the same strand of models.

In this section, we employs alternative threshold and smooth transition VAR models. Background on

these models is provided by Hubrich and Terasvirta (2013) in their survey paper on the threshold and

smooth transion VAR model for macroeconomic analysis. Following Threshold VAR models by Alessandri

and Mumtaz (2017, 2019), we apply their model to a smooth transition VAR model as

Yt =



c1 +

P∑

j=1

B1,jYt−j +Ω
1/2
1 et



St +



c2 +

P∑

j=1

B2,jYt−j +Ω
1/2
2 et



 (1− St)
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where St = 1(or 0) denote the period t reime is in Regime 1 (or Regime 2), and we set St = G(γ, c; st) which

is a logistic function of st given as

G(γ, c; st) = (1 + exp{−γ(st − c)})−1, γ > 0.

Here we examine two models, each with a Debt regime or an FA regime. Table 5 reports the results of

the fiscal multipliers estimated in these models

Table 5: Multipliers in the TwoSTVAR Models

(a) Smooth Transition VAR model shifted by Debt Regime
Regime 1 Regime 2

Posterior Mean 2.25 1.71
90% Credible Bands [-0.58, 4.42] [-0.86, 4.13]

\

(b) Smooth Transition VAR model shifted by FA Regime
Regime 1 Regime 2

Posterior Mean 2.95 1.64
90% Credible Bands [0.58, 4.83] [-0.73, 4.17]

Figure 3: Probabilities of Regimes in the Two STVAR Models
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Figure 4: IRF with Mulipliers with Detrend of Linear and Quadratic
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