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Samenvatting

With this piece of evidence, I try to shed light upon the effects of fixed and variable
costs on revenues for four firms operating in the sectors of lathing and milling, packaging
machine construction, mechanical component production and shoe parts building, all four in
the vicinity of Bologna, Italy, through the estimation of a linear bivariate simultaneous equa-
tion model where variable and fixed costs explain revenues; with a sample of eleven/twelve
years of annual data for each firm, and find that a marginal increase in variable costs lead
to more than proportional increases in revenues; similarly for fixed costs; I consider both
contemporaneous regressions and distributed lags ones. I further estimate a Cobb-Douglas
production function, in order to find out whether the returns to scale are increasing, constant
or decreasing comparing various estimation methods: OLS, instrumental variable method,
dynamic panel methods, as well as the Levinsohn and Petrin 2003 method, first separately
for each single firm and then pooling the individual firms’ samples in a panel; I find support
for the hypothesis of slightly increasing returns to scale with the baseline Cobb-Douglas
transformed in logarithms with capital, labour and materials as inputs.
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1 Literature on Cobb-Douglas’ estimation

The literature on the empirical estimation of the Cobb-Douglas, 1928 production function began
to appear in economics in the early 1950s; one of the most significant contributions is De Min

Wu 1975, which appeared in Econometrica: there, the author deals with the exact distribution
of the indirect least squares estimator of the coefficients of the Cobb-Douglas production function
in the context of a stochastic frontier production model of the Marschak-Andrews 1944 type
and derives finite sample tests of hypotheses on the coefficients of the production function with
the underlying assumption of profit maximization.

In the realm of stochastic frontier production function models, Aigner, Knox-Lovell and
Schmidt 1977 developed a whole theory, based on the theoretical production frontier of the firm,
and constructed maximum likelihood estimates of such a stochastic frontier - see, for example,
the exposition in Greene 2012, pp. 501-505 - the efficient production frontier is an ideal
concept, and any positive stochastic error that leads the firm to deviate from such an ideal,
should be interpreted as a form of inefficiency. Aigner, Knox-Lovell and Schmidt 1977

include in the error term also any measurement error. As such, inefficiency can be derived
from 1. productive inefficiency; and/or 2. firm specific idiosynchratic effects, which can enter
the model with both signs. The Cobb-Douglas production function would then take the form
ln y = β1 +

∑

k βk lnxk + u, u ≥ 0, with u being the error term related with the inefficiency; the
stochastic frontier would then be ln y = β1 +

∑

k βk lnxk − u + v, with v ∼ N(0, σ2) therefore
ln y = β1 +

∑

k βk lnxk + ǫ; the frontier of every single firm is h(x, β) + v; the inefficiency term
is u, a random variable → u is a percentage measure of the extent to which the particular
observation does not reach the frontier → the ideal rate of production. The authors posit two
likely distributions for the inefficiency term u, the absolute value of a normally distributed random
variable and of an exponentially distributed one; ǫ = v − u; λ = σu

σv
; σ = (σ2

u + σ2
v)

1/2; Φ(z)
is the probability of being to the left of z in a standard normal distribution probability density
function.

S. N. Afriat 1972 also considers the efficiency estimation of production functions including
a disturbance term in the model; as does Phoebus Dhrymes 1962, who previously studied
the issue of devising unbiased estimation for the parameters of the Cobb-Douglas production
function, referring first to investigations on the geometric mean of observed factor shares as an
estimate of the factor exponents in a Cobb-Douglas; then referring to the work of Klein 1953.
Dhrymes 1962 also claims, in note 2 of the paper, that the name Cobb-Douglas is inappropriately
attributed, since Wicksell 1916 already defined a production function with analogous features
as those of the so called Cobb-Douglas type. Overall, Dhrymes 1962 derives a estimators for
the exponents of the Cobb-Douglas production function that are unbiased, sufficient, efficient
and consistent.

Mundlak and Hoch 1965 studied the consequences of alternative specifications in the esti-
mation of the Cobb-Douglas production functions; they claimed that the usual Cobb-Douglas
production function is based on the assumptions of perfect competition between firms and
profit maximization of each single firm, and that the consistency of the estimators de-
pends on whether the stochastic error term is directly transmitted to the inputs of production:
the least squares estimates would be unbiased only if the disturbance is not transmitted to the
inputs; alternatively, the estimates would be unbiased only if some restrictions are imposed on
the second moments of the disturbances of the system; most often, in empirical applications,
the disturbance is partially transmitted to the imputs of productions, as such none of estimators
would be definitely consistent.

A. A. Walters 1963, instead considers both production functions and cost functions

in order to evaluate the efficiency and productivity of a single firm, starting from set theoretical
definitions of production sets and their convexity in order to represent technological possibilities;
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he draws up an analogue among decisions of allocations within the firm and those between firms
and industries, claiming the relevance of studying the decisions of allocations internal to the
firm. He also considers both production functions and cost functions, which I attempt to do as
well in the present contribution1.

Dennis J. Aigner 1976 considered the estimation of production frontiers; Houa, Zhaob,
and Khumbakar 2023, develop the GMM estimation of semi-parametric spatial stochastic fron-
tier models, especially as an application of productivity differentials across space, specifying spa-
tial autoregressive models; they consider inefficiency and controlled random noise in a production
frontier context → random productivity shocks; and undertake an estimation of the production
technology, accouting for geographic or economic distances among units (firms, states, or coun-
tries); they relate their study to the spatial frontier literature → spatial auto-regressive models
or spatial error models → with no closed form expression for the likelihood function; the errors
in the model follow a spatial moving average process and have a sparse spatial weight matrix; the
degree of a country spatial dependence upon other countries increases with net trade openness.

Farrell 1957 studied average labour productivity, analyzing the French census of manufac-
turing industries, considering different sectors of activity among which were machine construc-
tion and mechanical tools, textile, electrical engineering, paper, industrial chemicals, vehicles
and cycles, footwear, milk products, sugar works, distilleries and beverages, glass products;
he considered some likelihood functions of the form logL(w | θ) =

∑

i log fi(wi | θ), where
θ =

(
λ σ logA β1 β2

)
, where β1 and β2 are the production elasticities of capital and

labour respectively, and it is retained a purely statical definition of efficiency - as we do in our
Cobb-Douglas estimation2.

Aigner and Chu 1968 estimate Cobb-Douglas production functions for entire industries in
the US, while Z. Griliches and V. Ringstad 1971 study the economies of scale and the form
of the production function, while J. Mairesse 1976 compared production function estimates on
the French and Norwegian censuses of manufacturing industries in order to achieve a measure of
factor productivities.

Timmers 1971 applied a probabilistic frontier production function to measure technical ef-
ficiency, for US agriculture from 1960 to 1967, using the “average farm” in each state as an
observation, adopting ordinary leasts squares and analysis of covariance estimates of the produc-
tion function, finding low technical inefficiency across states, when the inputs are, beyond capital
and labour, also intermediate factors of productions (such as raw materials)3.

In the context of operational research, operational efficiency is the crucial point of enquiry
while studying production functions; production and/or cost efficiency are related with perfor-
mance, depending on the productivity and competitiveness of operational units, which, in our
case are a single plant, located in the Northern Italian Appennines between the two regions of
Emilia-Romagna and Toscana.

Finally, Zellner Kmenta and Drèze 1966 considered very broadly the specification and
estimation of Cobb-Douglas production function models, assuming deterministic profit maximi-
zation; in such a context, output, inputs and profit of a firm are determined by a production
function; the definition of profit, and the conditions of profit maximization are therefore:

X = ALα1Kα2 → production function;
π = pX − wL− rK → profit definition;

1Starting to study the connections between fixed and variable costs and revenues, and afterwards proceeding
towards the simple estimation of a production function of the Cobb-Douglas form, starting first with a non linear
least squares estimation of the Cobb-Douglas with the variables in levels, with capital and labour as the only inputs
of production, and further onwards considering a (linear) logarithmic transformation of the production function
which we estimate via ordinary least squares; in an extension, we consider also purchases of raw materials as a
third factor or input of production - Borowski and Borwein 1989, p. 163.

2Where we consider contemporaneous values of inputs and output.
3As I will show in the subsequent sections of the paper.
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∂π
∂L = 0 and ∂π

∂K = 0 → maximizing conditions;
in a production model of the firm, Zellner, Kmenta and Drèze 1966 developed a produc-

tion model of the firm where X, L and K are the quantities of output, labour and capital; p, w
and r are their respective prices; firm i thus solves:

Xi = ALα1
i Kα2

i eu0i

namely, a stochastic production function, where u0i is the random term, which, if equal
to zero implies that the firms maximize profits; if different than zero (namely with weather
shocks, variations in machine or labour performance, etc.) implies that the production process
is affected not instantaneously but with a delay of one or two periods by the stochastic shocks;
the entrepreneurs therefore maximize anticipated profits, facing expectations of prices p+i , w

+
i ,

r+i → expectations of factor prices → profit maximizing conditions become thus:
∂E(π)
∂L = 0 and ∂E(π)

∂K = 0; and E(π) = p+(X)− w+L− r+K;

[X] = ALα1Kα2e
1
2σ00 ;

σ00 = [u0i].

1.1 Recent methodological contributions

Zvi Girliches and Jacques Mairesse 1995 noticed that the econometric production functions
are a tool for testing hypotheses about the workings of marginal productivity theory originally
started with the analysis of macro data, more recently dealing with micro data instead. At first
the analysis and estimation of production functions was done for agriculture and afterwards the
interest shifted towards the industrial sector of the economy; they stress the existence of the dual
literature on cost functions and factor demand systems, emphasizing the importance of a correct
measure of outputs and inputs; other relevant issues in the estimation of production function are
the presence of economies of scale in production, as well as the market structure and markups of
a given industry.

The simultaneous equations methodology originated with the study of Marschak and

Andrews 1944 in agricultural economics as a system of functional relationships of the type
y = αz+βx+u where labour was a treated as a variable input, while capital as a fixed input, and
u as embodying the left out factors, and the functional form discrepancies, as well as the errors of
measurement. y = x+w+v−lnβ; x = (1−β)−1[αz−(w+v)+u]; y = (1−β)−1 ·[αz−β(w+v)+u]
−→ reduced form system which leads to no structural interpretation of OLS estimates; the mi-
cro data analyzed came from farms, and there was no transmission, and thus no simultaneity
bias, with weather and land quality as stochastic factors; the objective of the estimates was the
estimation of the factor shares for the unkown parameters.

Specifically, the estimation methods were the within estimator and first-differences, in order
to solve the issue of simultaneity; the error in the production function was

uit = ait + eit
︸ ︷︷ ︸

known by the economic agent

+ εit
︸︷︷︸

data collection, measurement error

where εit is the net error, embodying the capital components unmeasured by the econome-
trician. The errors transmitted to the choice of x and z constitute the simultaneity problem in
production functions estimation. In the error terms there are also factors connected with risk
aversion, as well as functional form’s approximation errors, and actual errors in optimization.

In the past thirty years there has been an increasing availability of panel data, which allowed
researchers to estimate models of the type yit = αzit + βxit + ai + λt + eit or (yit − yi) =
α(zit − zi) + β(xit − xi) + (eit − ei).

Industrial micro data led to an empirical and theoretical problem connected with the strict
exogeneity of the x’s; furthermore, the typical heteroskedasticity of micro data led to the necessity
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of specification testing; a square diagonal matrix leading to E[ai|x1, x2, x3] = δ1x1i+δ2x2i+δ3x3i;
other estimation options related with the fixed effects panel data models with terms such as
ζt = at − at−1; the log - differences are very weakly correlated and covariance analysis becomes
a relevant tool of enquiry −→ ancova, which included quasi - fixed labour and land inputs.

Between and within estimators are used in the literature of panel data estimation of produc-
tion functions in the context of micro data of entire sectors in a given industry.

uit = ait + λit + εit + eit
with λit = λt + git
ait = ζit + ait−1

duit = ζit + ct + gi + deit + dεit∑
dy

T−1 = yT−y1

T−1
time and industry dummies are adopted.
it = it( at

︸︷︷︸

random product. shocks

, zt
︸︷︷︸

fixed invest.

)

at = ht(it, zt)
yt = βxt + φt(it, zt) + et
φt = αzt + hi(it, zt)
yt = αzt + βxt + at + et
The difficulty in estimating production function lies mainly in the identification of pure pro-

duction function parameters, which are characterized by the individual level heterogeneity, which
occurs due to the existence of micro data on single firms; such an estimation is certainly connec-
ted with stochastic frontiers for different sectors. It seems that the individual firm heterogeneity
might somehow be connected with frailty in survival models. Often, it might occur that the
production functions are misspecified, also because census data are too general to be synthesized
by single equation models. To achieve the aim of consistent estimation of production functions
parameters, data quality and model specification are essential prerequisite of any analysis.

To achieve credible identification, detailed financial data is needed as well as differential
cost-of-capital variables, possibly instrumental variables; also the product mix of production is
required; it is likely that a large number of products, labour types, machines, technologies exists
within each given firm. In order to reduce aggregation biases and to reduce heterogeneity, it is
necessary to distinguish between these various categories of factors of production; output, labour,
capital are indeed quite vague concepts; issues such as the quality of the labour force, technologies
used, and organizational structures, markets served, all contribute to reduce multicollinearity.

Other relevant issues in estimation of production functions, always according to Griliches

and Mairesse 1996, are economies of scale, rates of technological change, rates of return to R
and D; and new data and appropriate theoretical and econometric models are needed to account
for real heterogeneity.

Ackerberg, Caves and Frazer 2015 study the functional dependence problem, an econo-
metric problem due to unobserved heterogeneity, unobserved by the econometrician; LAD esti-
mates of a Cobb-Douglas of Greene 2012; a very relevant contribution in production function
estimation is Olley and Pakes 1996; Ackerberg et al. 2015 invert optimal input decisions
to control for the unobserved productivity shocks. An intermediate input demand function is
thus derived.

The data generating process is crucial, though unobserved by the researcher as well as by
the economic agent; a Cobb-Douglas production function in logarithms (with lower case letters
denoting logged variables) might be yit = β0 + βkkit + βllit + ωit + εit; ωit and εit are two
econometric unobservables; εit are completely unobservable, while ωit are observable productivity
shocks, such as managerial ability of a firm or down time due to a machine breakdown; the three
most relevant variables variables in estimation are thus (kit, lit) and ωit.
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ωit is a time-invariant shock absorbing all the endogeneity, which leads to low estimates of βk;
the first order conditions of the firm’s maximization problem carry over information; εit expresses
the deviations from the expected breakdown or measurement error in a variable; in panel data
models with fixed effects, ωit = ωi −→ fixed effects observed by the firm prior to choosing the
inputs.

Estimating cost functions requires a theoretical and statistical model accounting for the cost
shares of each input −→ to derive the input elasticities −→ flexible function and stochastic
specification; dynamic issues are not to be neglected, such as adjustment costs or wedges between
purchase and release prices; dynamic implications of the static first order conditions are to be
taken into account as well.

An option for estimation is to consider wages rate and interest rate as instruments for labour
and capital −→ input prices are exogenous; → uncorrelated with ωit+εit → a source of exogenous
variation → kit and lit are identified via input prices based IV methods.

A subset of inputs −→ dynamic in nature, while there are no dynamic first order conditions;
an econometric problem is the input endogeneity in production functions’ estimation; therefore, a
discrete time model of dinamically optimizing firms is needed −→ {ωiτ}

+∞
τ=0 → past productivity

shocks; {ωτ}
+∞
τ=t+1, with the assumption that E[εit|Iit] = 0, where Iit denotes the information

available to the econometrician up to time t for firm i.
p(ωit+1|Iit) = p(ωit+1|ωit) → law of motion of productivity shocks.
A new set of statistical and theoretical restrictions are necessary to identify the model −→

functional dependence issue; timing assumptions; scalar unobservable assumptions anf monoto-
nicity.

kit = κ(kit−1, iit−1) → law of motion of capital; the identifying assumption is that investment
is chosen one period in advance with respect to the production time.

The firm knows something about the distribution of future productivity shocks and labour
choice is non - dynamic; capital is the dynamic input subject to an investment process → kit ∈
Iit−1, it is the policy function resulting from a dynamic optimization problem.

iit = ft(kit, ωit) → stricly ր in ωit; kit → state variable; lit → non - dynamic variable;
firm - specific unobservables → differ across firms on cost of capital as well as the demand or

labour market conditions;
differences in these variables across time −→ p(ωit+1|ωit), stochastically ր in ωit;
ωit = f−1

t (kit, iit)

φ(kit, iit), where what matters is the estimation of β̂i and φ̂(kit, iit);
Kt+1 = (1− δ)Kt + ψ

(
It
Kt

)
−→ convex adjustment costs, Wang and Wen, 2011;

φt(kit, iit) = βkkit + f−1
t (kit, iit)

a complex dynamic programming problem dealing with the evolution of industry - wide prices
and treat f−1

t non - parametrically.
ωit = E[ωit|Iit−1] + ξit

= E[ωit|ωit−1] + ξit = g(ωit−1 + ξit)
numerical, non - linear search; polynomials or kernels;
βl and φt−1

Demand function for an intermediate input → yit = β0 + βkkit + βllit + βmmit + ωit + εit
mit = ft(kit, ωit)
ωit = f−1

t (kit,mit)
lit and mit → non - dynamic inputs;
ωit is the only unobservable entering the intermediate input demand function; the intermedi-

ate input can be a heterogeneous good or differentiated product;
firm specific shocks investment prices;
intermediate input → non dynamic inputs; lumpy investment data.
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mit = ft(kit,, ωit, p
m
it , p

i
it)

εit → pure measurement error
yit = ln

(
1

βm

)
ln
(
pm

py

)
+mit + εit

inverted first order conditions → treat them non - parametrically; partially linear model;
E[{lit − E[lit|kit,mit, t]}

′{lit − E[lit|kit,mit, t]}]
this object is positive definite
lit = ht(kit, ωit)
labour has no dynamic implications
mit = ft(kit, ωit)
mit|kit, lit, ωit

ιit = gt(kit, f
−1
t (kit,mit)
︸ ︷︷ ︸

ωit

)

φt(kit,mit)
firm specific input prices of labour and materials affect optimization error; the firm chooses

optimal levels of labour + noise and we should consistently estimate β;
sick days, union issues, unobserved union shocks are amoung the classical measurement errors

in lt −→ noise in observed labour;
information set;
yit +Φ(kit, lit,mit) + εit
an investment function is useful to control for differentials in productivity;
p(ωit−b|Iit−1) = p(ωit−b|ωit−1), with 0 < b < 1
p(ωit|Iit−1) = p(ωit|ωit−b)
iit = ft(kit, ωit)
ιit = gt(ωit−b, kit)
f−1
t (kit, iit) → non - parametric function
labour is non - dynamic;
firm specific adjustment costs, unobserved to the labour input;
kit = κ(kit−1, iit−1)
yit = β0 + βkkit + βllit + ωit + εit
mit = f̃it(kit, lit, ωit) → strictly ր in ωit

one year

t− 1 t− c

|

t

0 < c < 1

t+ 1

conditional input demand function; input function of mit conditional on lit; value added
production function; leontief production function in the intermediate input; mixed systems and
their dual variables; revenue share equations + foc

mit and lit can be chosen simultaneously in presence of multiple structural observables
ωit = f−1

t (kit, lit,mit)
first stage moment condition
Φt(kit, lit,mit) = β0 + βkkit + βllit + ωit

like an IV or GMM procedure; one first difference
ωit = ρωit−1 + ξit → AR(1)
maxlit,mit{·} = maxlit{maxmit|lit{·}}
mit = ft(kit, ωit)
Φ̂t(kit, lit,mit)
current state (kit, ωit)
estimate β0, βk, and βl
lit ∈ Iit−1 → in some industries;
ωit → unoebserved by the firm in t+ 1
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search, non-linear, in the second step
conditional intermediate input demand → avoiding functional dependence issue; i.i.d. firm

specific shocks on output and wage prices; labour is a dynamic input → adjustment costs;
wage adjustment costs;

serially correlated, exogenous, unobserved shocks to the kit, lit, mit;
iit = ft(kit, lit, ωit)
yit = φt(kit, lit, iit) + εit
adjustment costs of capital;
non-linear search on:
β0, βk, βl → ols estimation
serially correlated unobserved wage shocks;
dynamic labour with adjustment costs;
dynamic panel data methods;

yit = β0 + βkkit + βllit + ωit + εit
ωit = ρωit−1 + ξit
endogenous exit from a sample

variables measured in physical units
price taker firms
Klette and Griliches 1996, JAE

quality 6= across firm → same
menu of prices
chilean data
convex capital adjustment costs
Kit = (1− δ)Kit−1 + Iit−1

Yit = min{β0K
βk

it L
βl

it exp{ωit, βmMit}} · exp{εit}
→ leontief production function

yit = β0 + βkkit + βllit + ωit + εit
intermediate input variable approach

ց unobserved variation across firms
ωit = ρωit−1 + εit

labour → dynamic implications
sensitivity to measurement error → Monte Carlo experiments;
robustness to misspecification;
across firm variation;

K = α+ βL+ ε

ωit = ρωit−1 + ξit

labour → dynamic input, ξit ∼ N(0, σ2
ξ )

firm specific wage shocks ωit

knowledge of ωit

ωit−b = ρ1−bωit−1 + ξAit
ωit = ρbωit−1 + ξBit

firms → less than perfect information about ωit

(ρb)ξAit + ξBit = (ξit)
(ξAit) = σ2

ξA

(ξBit ) = σ2
ξB
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within firms across time
Yit = min{β0K

βk

it L
βl

it e
ωitm(Mit)}e

εit

m(Mit) = β0K
βk

it L
βl

it e
ωit

commitment to planned optimal Lit and Mit → try a non parametric estimation;
Yit = β0K

βk

it L
βl

it eωiteεit
︸ ︷︷ ︸

unobserved

steady state → capital ≡ dynamic input
Kit = (1− δ)Kit−1 + Iit−1

shock to the price of material input;
between firm wage variation

convex adjustment costs
1
φi

∼ logN → unobserved heterogeneity

Ci(Iit) =
φi

2 · I2it
within firm versus across firm variation

ωit, φi, and ln(Wit)
Ki0 and (ωi0, φi, ln(Wi0))

leontief - derived value added production function
Yit = β0K

βk

it L
βl

it e
ωiteεit

higher order polynomial in the explanatory variables
mit → a linear function of kit, lit, and ωit

β̃0 + ωit(βk, βl)
→ β̃0 + ωit−1(βk, βl)

Petrin, Poi and Levinsohn 2004 implement in stata the Levinsohn and Petrin 2003

method to estimate production function, which is based on the idea of using inputs to control
for unobservables, specifically unobservable productivity shocks and input levels;

lumpy investment at the firm level; plant level research
manufacturing surveys
cobb-douglas in logarithms

yt = β0 + βllt + βkkt + βmmt + ωt + ηt
the error has two components → transmitted productivity components → state variables +
an error term uncorrelated with input choices → simultaneity problem in production function
estimation
mt = mt(kt, ωt)
ωt = ωt(kt,mt)
first - order Markov process → ωt = E[ωt|ωt−1] + ξt

trans-log production functions
vt = β0 + βllt + βkkt + ωt + ηt
= βlt + φ(kt,mt)
where φ(kt,mt)

︸ ︷︷ ︸

third order polynomial

= β0 + βkkt + ωt(kt,mt)

first stage: estimate βl and φt;
second stage

φ̂t = v̂t − β̂llt
= δ̂0 +

∑3
i=0

∑3−i
i=0 δ̂ijk

i
tm

j
t − β̂llt

ω̂t = φ̂t − β∗
kkt

ω̂t = γ0 + γ1ωt−1 + γ2ω
2
t−1 + γ3ω

3
t−1 + εt
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E ̂[ωt|ωt−1]
bootstrap

β̂t, β
∗
k and E ̂[ωt|ωt−1]

η̂t + ξt = vt − β̂llt − β∗
kkt − E ̂[ωt|ωt−1]

β̂k, βk = minβ∗

k

∑

t(vt − β̂llt − β∗
kkt −

̂[ωt|ωt−1])
2

yt = β0 + βllt + βkktβmmt + ωt + ηt
= βllt + φt(kt,mt) + ηt

φt(kt,mt) = β0 + βkkt + βmmt + ωt(kt,mt)
moment conditions on the conditional distribution of the errors on each of the three factors
kt,mt−1, lt−1,mt−2, kt.1

E[ηt + ξt|lt−1] = 0;
E[ηt + ξt|mt−2] = 0;
E[ηt + ξt|kt−1] = 0;

min{β∗

k ,β
∗

m}

∑

h

{∑

t(
ˆηt + ξt|Zht)

}

recenter the moment conditions
a series of global macros
panel data
ricavi lordi
ω̂t = exp{yt − β̂llt − β̂kkt − β̂mmt}

1987 - 1996 → chilean data
ols, fe, lp comparison

Yasar, Raciborski, and Poi 2008 implement operationally in stata the Olley and

Pakes 1996 semi-parametric method; the idea is approximating the sum of the inputs from
the estimation of the Cobb-Douglas production function in order to overcome the drawbacks of
simultaneity and selection bias of ols; the method allows to control for these biases → leading
to reliable productivity estimates; productivity is known to the profit maximizing firms but not
to the econometrician; unobserved productivity shocks are thus neglected by the ols method.

levpet → controls for simultaneity bias, but not for selection bias; an issue is the existence of
productivity shocks and their connection with the probability of exit from the market of a firm;
in particular, the amount of capital stock is linked with the Pr[exit]; unobserved time-varying
productivity shocks affect survival probabilities of firms to remain in the sample.

Ωit
︸︷︷︸

product. indicator or shock

, Kit
︸︷︷︸

capital stock

, ait
︸︷︷︸

age of the firm

→ state variables

intermediate inputs to control for correlation between inputs and the unobserved productivity
shocks;

E[Ωit|Ωit,kit
] → expected productivity;

the dynamic optimization problem of the representative firm is:
maxu0,u1

∑+∞
t=0 β

tF (xt, ut) s.t. xt+1 = f(xt, ut), x0 given, ut ∈ U
I(x) = maxu∈U F (x, u) + βI(f(x, u))
the bellman equation looks like:
Vit(kit, ait,Ωit) = max[Φ, supIit≥0 Πit(kit, ait,Ωit)− Cit + ρE{Vi,t+1(ki,t+1, ai,t+1,Ωit)|Jit}]

where Jit is the information set of the firm and Cit is a cost function;

χit

{
= 1 if Ωit ≥ Ωit(kit, ait)
= 0 otherwise

Ωit(kit, ait) → lower bound of productivity to stay in the market;
Iit = I(Ωit, kit, ait)

10



the inputs of production here are:
labour
materials
energy
capital
age

five inputs

Yit = F (Lit, Eit,Kit, ait, ωit)
yit = β0 + βllit + βmmit + βeeit + βkkit + βaait + uit
uit = Ωit

︸︷︷︸

unobs. by econometrician

+ ηit
︸︷︷︸

unobs. by both firm and econ.

a first order markov process
Ωit = I−1(Iit, kit, ait) = h(Iit, kit, ait) → inverse function for the unobserved shock;
yit = βllit + βmmit + βeeit + φ(iit, kit, ait) + ηit
phi(iit, kit, ait) = β0 + βkkit + βaait + h(iit, kit, ait)

first step;

second step to control for selection bias and estimate survival probabilities;
probability of survival → in period t depends on Ωi,t−1 and Ω

︸︷︷︸

i,t−1

and on age, capital, and

investment at time t− 1 → probit model of χit on Ii,t−1,Ki,t−1, and ai,t−1;
second step, thid step

yit − β̂llit − β̂mmit − β̂eeit =
= βkkit + βaait + g(φ̂t−1 − βkKi,t−1 − βaai,t−1, P̂it) + ξit + ηit

kernel estimator for the second stage;
for the stata implementation, a panel variable and a time variable must be specified;
φ(·) and g(·) → polynomial expansion;
3,772 firms, t = 1995, . . . , 2002

coeffs. associated w/variable inputs → biased upward;
and coeffs. for capital input → biased downward.

Arthur S. Goldberger 1968 points out that, to carry out a Cobb-Douglas production
function estimation, it is customary to append a multiplicative log-normal disturbance and fit a
linear regression in the logarithmic variables; in addition to that, the attention is shifted from
the conditional median to the conditional mean, which is ordinarily the primary object of study;
the typical procedure may be varied in order to assure minimum variance unbiased estimation of
the conditional median or the conditional mean.

Marjorie B. McElroy 1987 studies input demand or share systems in the context of the
stochastic frontier literature; specifically, she deals with a cost function setup, input demand,
and share functions in the framework of general error models; the nature of the problem is of
primal or dual optimization based on a standard duality relationship. a stochastic share system
may be based on a dirilichet distribution; the model is a stochastic frontier one with technical
errors compared with a standard neoclassical model;

y = q(x1 − ε1, . . . , xn − εn; θ) = q(x− ε; θ)

11



the known parameters are θ and ε
ε ∼ (0,Σ)
c(y,w) → cost function
ε → known to the firm but not to the researcher;
θ are the same for all firms → suppressed;
minimum cost of producing output level y under the above production function,
given output prices w when ε = 0n

additive general error model
c(y, ε,w) → firm specific cost function

C = C(y,w, ε)
︸ ︷︷ ︸

firm specific cost funct.

= c(y,w)
︸ ︷︷ ︸

deterministic cost funct.

+

n∑

j=1

wjεj

︸ ︷︷ ︸

stochastic part

the stochastic part is price weighted;
the sum of the εj is E[C(y,w, ε)] = c(y,w)

C(·) and c(·) are both concave and linear homogeneous in w, and dual to q(x− ε) and q(x),
respectively; errors in cost - minimizing behaviour; demand system:
qi(x−ε)
qj(x−ε) =

wi

wj
, for i, j = 1, . . . , n; i 6= j

xi = ci(y,w, ε) = ci(y,w) + εi, i = 1, . . . , n
Ci(·) and c(·) are homogeneous of degree zero in w; E[Ci(y,w, ε)] = ci(y,w) → deterministic

or average demand function of the population of firms; εi > 0 → the firm uses εi more of xi to
produce y than does the average firm;

∑

i wixi =
∑

i wici(y,w) +
∑

i wiεi = c(y,w) +
∑

i wiεi ≡ C(y,w, ε)
the cost function is the dual of the production function
an n-input demand system and a dost-cum-share system,
with conditional firm - specific input demand functions;

Si = si(y,w) + vi, i = 1, . . . , n
Si ≡

wixi∑
j wjxj

;
∑

i Si ≡ 1

si(y,w) ≡ ∂ ln c(y,w)
∂ lnwi

≡ wici(y,w)
c(y,w) , i = 1, . . . , n

vi = νi(y,w, ε) =
1

c(y,w)+
∑

j wjεj
· [wii − si(y,w)

∑

j wjεj ], i = 1, . . . , n
∑

i wici(y,w) = c(y,w)

wixi∑
j wjxj

= wi ·
ci(y,w)

c(y,w)+
∑

j wjεj
+ wiεi

c(y,w)+
∑

j wjεj
, i = 1, . . . , n;

C = c(y,w) + vc
Si = si(y,w) + vi, i = 1, . . . , n− 1
vc →

∑n
j=1 wjεj

d(y,w) = (c1(y,w), . . . , cn(y,w))
= (ε1, . . . , εn) → deterministic demand + noise
Si = s∗i (d(y,w),w; ε)

xi = x∗i (s̄(y,w),w, ṽ) = 1
wi
si(y,w)c(y,w)+ 1

wi
{[c(y,w)+vc]vi+si(y,w)wc}} for i = 1, . . . , n

e(s̃(y,w),w; ṽ) ≡ εi, ∀i = 1, . . . , n
∃ a specific firm production function
y = q∗(x,w, ε)
q(x− e(y,w, ṽ))

lnC = θ(y,w) +
∑

i ηi lnwi + η0
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Si =
∂θ(y,w)
∂ lnwi

+ ηi, i = 1, . . . , n
∑n

i=1 ηi = 0

stochastic frontier model with technical errors;
panel data vs a single cross - section or a time series;

∂vi

εi
> 0; ∂vi

∂εk
< 0 for k 6= i

∂Si

∂εi
· εi
Si

= wiεi
C(y,w,ε) ·

1−Si(y,w,ε)
Si(y,w,ε)

h(y,w) = lnα0 +
∑

i αi lnwi+∑

i

∑

j 1/2γij lnwi lnwj+∑

i µi lnwi ln y+
µ ln y + θ

2 (ln y)
2

c(y,w, ε) = exp{h(y +w)}+
∑

j wjεj∑

i αi = 1; γij = γji∑

i γij =
∑

j γji = 0
∑

i µi = 0

isomorphic demand representation
ŝi(y,w) = wiĉi(y,w)/

∑

j wj ĉj(y,w)
ε(t) ∼ (0n,Σ)

cost and share system → two components of the error term
di = εi + ei(y,w,̃ w), ı = 1, , n

ε ∼ N(0n,Σ)
ṽ ∼ N(0n,Ω)
are positive definite matrices
di = εi

HA : E[di(t)dj(t)] = σij + z′ij(t)αij(t),
for i, j = 1, . . . , n and t = 1, . . . , T

σij → ijth

0 + Σn×n

H0 : E[di(t)dj(t)] = σij , i = 1, . . . , n and t = 1, . . . , T
εi(t) ∼ jointly normal and iid;

LMij =
∑T

t=1[z
′

ij(tt,wt)α̂ij ]
2

2
i, j = 1, . . . , n, i ≤ j

1 to n commodities (i and j)
n2+n

2 = n(n+1)
2 hyps.

non - linear iterated seemingly unrelated regression

µi = θ = 0; µi = 1
annual aggergates for U.S. manufacturing
capital, labour, energy, and materials
iterated three stages least squares;
constant returns to scale tanslog models;
(ε1, . . . , εn) ∼ iidN(0n,Σ)
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Si = αi +
∑

j γij lnwj + vi, i = 1, . . . , n
lnC = h(y,w) + vc

full information maximum likelihood;
elasticities are often of interest → allen - uzawa partial elasticities
partial elasticity of substitution between capital and labour → small cost shares of capital and
energy; ten cases;

ith and jth input demand equations
error specifications → fundamental to empirical work on general error model; theory - based

research strategy; static neoclassical model; production theory or approximation theory
E[εi(t)εj(t)], i, j = 1, 2, 3, 4, i 6= j
gems and stochastic frontier production function.

Steven Olley and Ariel Pakes 1996 estimated a production function for the telecommu-
nication equipment industry in the U.S. tackling the selection and simultaneity biases; their data
was taken from the U.S. bureau of census and it allowed to deal with liquidation and simulta-
neity bias → endogeneity; they studied the production function residuals within a reduced form
sales equation; they constructed a balanced panel data set, where output share was the weigh-
ted average of productivity of all active plants; they thus pursued a decomposition of industry
productivity; capital, age and productivity were the main independent variables in the study.

switching and transmission signals → equipment industry; 24 years of data; industrial outlook
is linked to the entry process in that market of telecommunication equipment, where AT&T
held a form of monopoly with bell as main supplier; 1982, . . . , 1986; exit and input demand
decisions; the production function developed by Olley and Pakes 1996 are accounting for
entry and exit of firms from a market; the exit action is connected with selection; each firm
max{E[discounted value of future cash flow]};

the data analyzed are balanced panels with fixed effects → unobserved productivity realizati-
ons; selection bias; first order markov process; markov perfect nash equilibrium; they developed a
dynamic model of firm behaviour → firm - specific efficiency differences and idiosyncratic changes
over time info available when input decisions are made → simultaneity;

input demand and liquidation are the two relevant phenomena which the paper models; state
variables and factor prices → at → age; kt → capital; ωt → efficiency; the combination of the
these three state variables gives a market structure;

dynamics and industry structure
kt+1 = (1− δ)kt + it and at+1 = at + 1
Fω = {F (·|ω), ω ∈ Ω}

restricted profit function conditional on the vector of state variables

χt

{
= 1 if ωt ≥ ωt(at, kt)
= 0 otherwise

it = it(ωt, at, kt)

markov perfect nash equilibrium
y0 = β0 + βaait + βkkit + βllit + ωit + ηit

ωit is a state variable, ηit isn’t input survival;
it(at, ωt, kt) ≥ 0
ωt = ht(i,at, kt)
→ productivity as a function of observables;
E[ωt|at, kt, ωt−1, χt = 1]
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value function is ր in ωt;
age effects on productivity are small → continue operations or sell off;

ω → unobserved, firm specific state → simple estimation algorithm
ωt+1 → reservation productivity;

βa and βk are age and capital, identify them separately through βl and φ(·)
ωt = ht(it, at, kt)
yt+1 − βllt+1

selection equation
Pr{χt+1 = 1|ωt+1(kt+1, at+1), Jt}

= Pr{ωt+1 ≥ ωt+1(kt+1, at+1)|ωt+1(kt+1, at+1), ωt}
= pt{ωt+1(kt+1, at+1), ωt}
= pt(it, at, kt)
= Pt

φt = β0 + βaat + βkkt + ωt

yit = βtlit + φt(iit, ait, kit) + ηit

φt(iit, ait, kit) = β0 + βaait + βkkit + ht(iit, ait, kit)

semi-parametric regression of ωt and ωt+1

g(ωt+1, ωt) = β0 +
∫

ωt+1
ωt+1

F (dωt+1|ωt)∫
ωt+1

F (dωt+1|ωt)

partially linear model;
kernel and series estimators;
polynomial series estimators;
probit estimation → dynamic discrete choice model; a series of approximating functions; triple
(at, it, kt) → age, investment, capital → fourth order polynomial; stopping rule and investment
equation; form of the survival probability; unit of analysis → plant; βt, φt, and Pt.

ĥt = φ̂t − βaat − βkkt

yt+1 = bllt+1 − βaat+1 − βkkt+1

bias ց; bandwidth selection; smoothness conditions; capital, age, and time coefficients; age
is negligible;

three step estimation procedure;
selecting on survival; annual survey of manufacturers: ols and within estimates; single index

selection model; a polynomial expansion in the triple (it, at, kt) for ωt

Kt = (1− δ)Kt−1 + It

E[ωt+1|ωt, χt+1 = 1] = E[ωt+1|ωt]
total and within estimates; probit model and mill’s ratio; micro estimates of capital and labour

coefficients; std. non - linear search routines; low density regions of the data ωt+1 = ρωt + ξt+1;
ξt ∼ N(0, σ2);

polynomial estimates of a survival probability; testing investment assumption;
yt+1 − bllt+1 = βaat+1 + βkkt+1 + g(Pt, φt − βaat − βkkt) + γLLt + ξt+1 + ηt+1
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ξt+1 + ηt+1 → error term
ξt+1 ≡ ωt+1 − E[ωt+1|Jt, χt+1 = 1]

investment demand = φ(capital, age, productivity) → assmpt.
mills ratio
m(x) := F̄ (x)

f(x) ; f(x) is the probability density function;

F̄ (x) := Pr[X > x] =
∫ +∞

x
f(u) → survival rate;

h(x) := limδ→0
1
δPr[x < X ≤ x+ δ|X > x], m(x) = 1

h(x) → hazard rate;

E[X|X > α] = µ+ σ ·
φ
(

α−µ
σ

)

1−Φ
(

α−µ
σ

) 4

E[X|X < α] = µ− σ ·
φ
(

α−µ
σ

)

Φ
(

α−µ
σ

)

yt+1 − bLLt+1 = βaat+1 + βkkt+1 + g(Pt, φt − βaat − βkkt) + γkkt + γaat + ξt+1 + ηt+1

1974/’78 and 1982/’87 → three - step kernel estimation
ols 1974/’78 = 1.05 ր; 3-step = .9 ց;
ols 1982/’87 = .95; 3-step = .95;
switch makers → ols = 1.04 ր; 3-step = 0.97;
non-switch makers → ols = .99; 3-step = .96 ց

bias ց kernel;
fourth - order polynomial;

plant-level productivity

pit = exp{yit − bllit − βkkit − βaait};
pit = exp{ωit + ηit} → error → unobserved productivity
bureau of labour statistics
∆ regulatory environment;

cost of a new process; exit → low productivity growth;

{ ηit
︸︷︷︸

measurement error

} and { ωit
︸︷︷︸

plant level productivity

}

efficiency of the output allocation among plants
share weighted average of the plant- level productivity measure
→ weights ≡ plant level output shares;
aggregate productivity index;

distribution of fixed factors versus variable costs

C(Yt,Ki, ai, pi, wi) = minLt wiLi s.t. Yt ≤ Lβl
t K

βk
t eβaaiepi

static efficiency index; intrafirm and interfirm efficiency;
minY1,...,YN

∑N
i=1 C(Yi,Ki, ai, pi, wi) s.t.

∑N
i=1 Yi = Y

pt =
∑N

i=1 sit · pit
︸︷︷︸

plant-level productivity

1987 → competitive structure of the market

4Φ is the cdf, φ the pdf of x for a standard normal distribution.
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sample covariance
plant-level capital and plant-level productivity → reduced form evidence;

state vector triple; dynamic general equilibrium model; capital-productivity correlation;
survival probabilities; probit analysis;
shift in productivity
telephone equipment
transmission equipment
switching equipment
copper wire; glass fiber;
serial correlation of plant’s efficiency → rates of expansion of plants;
military space satellites;
buildings and equipment
︸ ︷︷ ︸

capital

→ inventory method;

sampling design.

Levinsohn and Petrin 2003 study unobserved firm - specific productivity, looking at
intermediate inputs as a choice set; they also focus on adjustment costs as well as non convex
kink points, and propose an estimation method based on lagged instrumental variables;

yit = f(xit, εit;β), {εit}
+∞
t=1

hicks neutral productivity shocks

εit ⊥ Xit → inputs and shocks
applied researchers;

yit = β0 + βllit + βkkit + εit

β̂L = βl +
σ̂kkσ̂lε−σ̂lkσ̂k

σ̂llσ̂kk+σ2
lk

σlε > 0
unobserved firm - specific fixed effects;

yt = β0 + βllt + βkkt + ωt + ηt
structural model of the optimizing firm
it = it(ωt, kt)
ωt = ωt(it, kt)
yt = βllt + φt(it, kt) + ηt

{Xit, εit}
+∞
t=1

φt(it, kt) = β0 + βkkt + ωt(it, kt)
→ non - parametric estimator in φt(·)
fourth order polynomial in it and kt
to approximate φ(·) with ols;

E[yt|it, kt] = βlE[lt|iit, kt] + φt(it, kt)
ηt ⊥ it, kt; E[φt(it, kt)|it, kt]

yt − E[yt|it, kt] = β(lt − E[lt|it, kt]) + ηt

ωt → first-order markov process;
ηt ⊥ lt
ξt = ωt − E[ωt|ωt−1]
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y∗t = yt − bllt = β0 + βkkt + E[ωt|ωt−1] + η∗t
η∗t → ξt + ηt

ols within iv

ωt ≥ ω̄t(kt) → kink point;
it(ωt, kt) → investment is a function of productivity and capital;

inertial behaviour in investment data from US and UK plant-level surveys → non - convex
adjustment costs

ηt + (ωt − ω̄t(kt)), when ωt ≥ ω̄t(kt); it = it(ω̄t, kt)

investment is a control or a state variable → costly to adjust; ∃ non - convex adjustment
costs; intermediate inputs → materials or energy; additive separability assumption on the inputs

yt
︸︷︷︸

revenues

= β0 + βllt
︸︷︷︸

labour

+ βkkt
︸︷︷︸

capital

+ βeet
︸︷︷︸

energy

+ωt + ηt → three regressors

ιt = ιt(ωt, kt) → inverting ωt = ωt(ιt, kt)
E[ιt−1η

∗
t ] = 0 → identification

sign
(
∂t
∂ω

)
= sign(fιlftω − fllflω)

fll =
∂2f
∂t2 ; fll < 0; flω ≥ 0

φt(ιt, kt) = β0 + βkkt + βllt + ωt(lt, kt)

y∗t = β0 + βkkt + βllt + E[ωt|ωt−1] + η∗t
E[ιt, η∗t ] 6= 0; flω ≥ 0

cobb - douglas or CES → investment is monotonic in productivity; firm’s dynamic problem:
ιt = ιt(ωt, kt) → intermediate input;
demand equation → time, region, firm;
eight year panel from chile; many firm - level variables with a reasonable time - series dimension;
6,665 plants ≡ firms; multi-plant firms are neglected; revenue ≡ plant output;

revenue → monetary value;
labour → man - years hired for production;
kjt = (1− δj)kj,t−1 + ijt
kt =

∑

j kjt
capital adjustment process → ωt−1

1979 - 1986; ωt(ιt, kt)
t = 1, 2, 3
projected initial capital stock
food, metals, textiles, wood
capital intensive telecommunication industry

materials, electricity, fuels
ιt(ωt, kt)
specification check;
(lt, ξt+1) = 0
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skilled and unskilled labour; capital; materials; fuels; electricity;
yt = β0 + βkkt + βsl

s
t + βul

u
t + βeet + βfft + βmmt + ωt + ηt

locally weighted quadratic least squares approx.
y = βsl

s
t + βul

u
t + βeet + βfft + φt(mt, kt) + ηt

φt(mt, kt) = β0 + βmmt + βkkt + ωt(mt, kt)

ols and a polynomial expansion
E[yt|kt,mt]; E[lut |kt,mt];
E[lst |kt,mt]; E|et|kt,mt]; E[ft|kt,mt];

locally weighted least squares regression; ols - with - a - polynomial - approximation approach;
6= sub periods of the sample; various macroeconomic cycles;
capital coefficient; a plant - level measure of productivity;

two moment conditions → βm and βk, capital does not respond immediately to the innovation
in productivity ξt; also materials purchases in the last period; E[ωt|ωt−1]
(β∗

m, β
∗
k)

E[(ξt + ηt)Zt]
gmm

E[(ξt + ηt)mt−1] = E[ξt−1] = 0
β∗ = (β∗

m, β
∗
k)

a set of firm - level observations
Zt = {kt,mt−1, l

s
t−1, l

u
t−1, et−1, ft−1, kt−1,mt−2}

yit = β′Xit + γt
︸︷︷︸

time fixed effects

+( ηi
︸︷︷︸

firm fixed effect

+ νit
︸︷︷︸

AR(1)

+ mit)
︸︷︷︸

MA(0)

;

clothing; machinery; mechanical components;
metal and wood products → ր returns
food and textiles → ց returns
materials and electricity;
ωt = ωt(mt, kt)
the three macroeconomic cycles in the data→ 1979/’81; 1982/’83; 1984/’86; specification changes
→ proxy choice → satisfying monotonicity; inputst−1 ↔ productivity shocks
over-identifying restrictions

loosening the functional restrictions on φ(kt,mt, ωt)
proxy controlling for an unobserved transmitted productivity shock;
proxy → electricity and materials;

ols vs. lp method
skilled labour

β̂OLS − β̂LP

the simultaneity story
inputs lagged one period are instruments;

arellano and bond dynamic panel estimation;
fixed effects and instrumental variables;
boundary of the parameter space;
H0 : β1 = β2
6,115 obs.
you have 48 obs.
proxies to address simultaneity biases
ιt(ω; pl, pk, k)

Y = f(K,L, ι, ω) : R4 −→ R
(k, l, ι, ω) ∈ R4

19



ι(ωl; pl, pι, k)− ι(ω1; pl, pι, k) =
∫ ω2

ω1

∂ι
∂ω (ω; pl, pι, k)p(dω|k)

weakly separable production function
y∗t = βkkt + E[ωt|ωt−1]η

∗
t

η∗t = ξt + ηt
y∗t = yt − βllt − sιt∫ ω2

ω1

∂ι
∂ω (ω; pl, pι, k)P (dω|k) >

∫ ω2

ω1
0P (dω|k) = 0

E[yt|mt, kt]
E[lut |mt, kt]

φt(mt, kt), t = 1, 2, 3

rudi dornbusch

Erwin Diewert and Kevin J. Fox 2008 tried to distinguish between returns to scale
and technological progress, knowing that there exists a degree of monopolistic elements in the
economy → US manufacturing in 1950, . . . , 2000;

multiple outputs and inputs;
productivity growth; growth of output relative to the growth of inputs;
measure the performance of economies; growth and business cycle;

procyclical nature of productivity growth;
standard econometric methods and aggregate annual data; index of total factor productivity
growth → index numbers techniques;

local returns to scale → multiplier;
cost function → dual of a production function;
∑M

m=1 wm · xm → inner product;

R(w, y, t) =
∑N

n=1
∂ lnC(w,y,t)

∂ ln yn

trans-log joint cost function;
bias in technical progress term;

R(w, y, t) =
∑N

n=1
∂ lnC(w,y,t)

∂ ln yn

β + γ ln y + φ lnw + κt
P t
n(yn)

technical progress

T (w, y, t) ≡ ∂lnC(w,y,t)
∂t

productivity possibility set
wedge → lnP t

n(yn) ≡ atn − ctn ln yn → markup;
index numbers techniques
Y t ≡ lnQT (p

t−1, pt, yt−1, yt)
Xt ≡ lnQ∗

T (w
t−1, wt, xt−1, xt)

(y′y)−1x′y
ρy ≤ ρx
Xt = −τ + ρY t

Y t = τ/ρ+ 1/ρXt

ρ =
∑

n pnynMn∑
m wmxm

ρv ≡ [
∑N

n=1 PnynMn −
∑K

k=1 wkxk]/
∑M

m=k+1 wmxm
ρv < ρ < 1; 1 < ρ < ρv
value added or gross output
primary input share →value added returns to scale parameters;

productivity shocks → ωit
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national income accounting;
have varying levels of technical efficiency for i = 1, . . . , N and t = 1, . . . , T ;

Y t = ρ−1τ + ρ−1Xt + ρ−1εt, t = 1, 2, . . . , T ;
input growth and output growth
ψt = θξt

Xt = α+ ξt + ηt

Y t = β + ψtεt

errors in variables model
θ = 1

ρ

Y t = µt + θXt; t = 1, 2, . . . , T ; µt = ρ−1τ t

Y t = (β − αθ) + θXt + εt − θηt

Y t ≡ lnQt(p
t−1, pt, tt−1, yt)

törnqvist output quantity index
shadow input vector price
cost functions → factor demand equations
deflated sales ≈ output
unobserved quality or 6= prices

λ ≡
σ2
ε

σ2
η
→ linear or quadratic splines

θML ≡ {y′y − λx′x+ [(y′y − λx′x) + 4λ(x′y)2]1/2}/2x′y

Yt
︸︷︷︸

real output

= At

θ

Kt
︸︷︷︸

capital

(ηt Ht
︸︷︷︸

hours worked

)1−θ

M ≡ I ′ − Z(Z ′Z)−1Z ′

projection matrix
ols ≡ mle

µ = β − αθ
µML ≡ βML − αMLθML

Zα and Zβ
ψ = θξ; X = Zα+ ξ + η
Y = Zβ + ψ + ε
=k= ξ′Z = ψ′Z
θx ≤ θy
empirical cobb - douglas estimation
ψ = θξ
X = Zα+ ξ + η
Y = Zβ + ψ + ε
etT , Zα, etT , Zβ
σ11 = θ2σξ2 + σ2

ε

σ12 = θσ2
ξ

σ22 = σ2
ξ + σ2

η

capital, labour, energy, materials, purchased business services
engineering production function
piece-wise linear time trends
QT (·) =

τ
ρ + 1

ρ lnQ
∗
T (·)

all the other sectors have ր returns to scale;

why reverse regressions? M t = ρ(wt·xt)
P t·yt

aggregate manufacturing
generalized leontief cost function
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❼ returns to scale

❼ technological progress

❼ monopolistic markups

→ multiple inputs/outputs
revenue function
trade and industry
productivity and returns to scale

2 Firms at hand

I analyze data for four manufacturing firms that are clients of the office where I work as a chartered
professional accountant in Bologna, Italy; the four of them are operating in the vicinity of the
town, two in the Appennines area and two on the Pianura Padana; I am going to describe the
business they operate in before showing the descriptive statistics and performing the estimation
procedures.

2.1 Firm 1

The first firm whose data I analyze throughout the paper, which I call firm 1 was founded in
1977 as a “società in nome collettivo”, based in the Southern part of the Bolognese Appenninens,
Italy, due to the will of the actual shareholders, who developed the company in order to make it a
significant reality in the field of small metal parts. The company makes small metal parts both in
steel and in brass, as well as aluminium, based on the drawings provided by the clients, with multi-
spindle equipment. In such an activity, the firm has reached a quite high level of specialization,
both in the workings and in the product and process controls, keeping its competitiveness in the
specific reference market.

Throughout the years, thanks to the detailed requests of the clients, the firm acquired a
deeper degree of consciousness upon the required level of quality; as such, it qualified as a certified
company according to the ISO 9001 quality standard as well as the ISO TS 16949 in the field
of the automotive industry; its main clients operate in the automobile sector indeed, especially
in Germany and Sweden; the reference market for the company is therefore the one of builders
of mechanical components, especially in the car industry: such a sector is extremely specialized
and the request for quality of products and of specialization of the employees dedicated to the
production process is fairly high, and thus the firm is able to properly respond to the expectations
of the clientele with the certification of its quality system.

The firm is operating with its multi-spindle automatic lathes Gildemeister and Mori-Say for
the main operations; and it is also endowed with a drying system, separation of the chip from
the oil and washing of the products. The company also has an automatic weighing and batch
identification system via bar-code, directly connected to the corporate information system for
production batch control and better identification and traceability of lots.

As far as the checks are concerned, these are carried out using a profilometer linked to a
computerized statistical program which automatically issues the control charts. The checks are
also carried out through measuring instruments connected to a program for the construction of
control charts which allows safety and speed in the formalization of the surveys.
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2.2 Firm 2

the second firm I include in the data set of firms performance is one operating in the sector of shoe
parts making, in particular, heels for female luxury shoes; born in the 1930s it claimed to have
launched the female heel in the modern stylistic conception and industrialized it; the company
designs and constructs innovative heels requiring specialized machinery such as high quality 3D
printers; since the 1970s, firm 2 has been a partner of numerous fashion brands, mostly Italian,
such as Ferragamo, Gucci and Prada, but also foreign brands, especially from Germany and
Portugal, among others.

The firm dominates and manages the whole set of technological tools needed to produce heels
at the highest quality standard, in order to satisfy clients’ requirements, ranging from the design,
modeling, construction of moulds, shape mouldings and painting; the expertise acquired by the
firm allows it to hand in samples of products at any time and guarantee quality and precisions
in all the phases of the productive process.

They are focused to be the ideal partner for the most important and renowned women’s foot-
wear, that are recognized by the market to produce high volumes and which make of innovation
and quality their main competitive advantages. The disciplined application of CRM-Customer
Relationship Management allows Tacchificio di Molinella to pursue the continuous improvement
in the Total Customer Satisfaction.

The core business strategy is to always have the best R and D and styling team for creativity
and problem solving. The skill of developing in a proactive approach new samples and technical
proposals in real time is the main goal of their business strategy. The skilled human resources,
from senior to juniors working together, allow them to manage quickly all the customer’s inquiries,
while developing new R and D developing projects, new materials tests and continuously field
training job experience enrichment of their technicians.

Also for that, firm 2 is ,and will keep being for the years to come, a worldwide leader in the
fashion footwear heels market. The highest focus on the total quality management, lead time
improvement and outstanding execution are their main target and allowed them to grow the
marked share in the top footwear players market.

The daily capacity of production amounts to about 16,000 pairs of heels; total quality ma-
nagement is applied and the organization allows it to be among the top supplier of heels in
Northern Italy as well as on the global market (Europe, mostly), competing with other five/six
similar companies in a radius of about two hundred kilometers.

2.3 Firm 3

The third firm in our sample is located in the plain nearby Bologna, and it designs, constructs
and sells packaging machinery mostly for the food and beverage industry. Founded in 1974 by
a former manager of a bigger firm working in the same business, it rapidly started to grow, to
expand in foreign markets, mostly European, but also extra European.

Since the beginning of its operations, its field of operation has been the design and construction
of packaging machinery exploiting the technology of wrapping with shrink film starting from a
film folded in the center and the wrapping stretch. The firm soon acquired the property of having
an ample productive range, which covers a variety of industries, from the multiple pack of food
products (cans, jars, bottles and boxes with standardized supplies and systems), to that of the
wood working products, from the packaging of expanded polystyrene products to that of the
most diverse industrial products.

Nowadays, the productive range has been further expanded through the insertion in pro-
duction of combined tray/carton machines with ”wrap around”system and high-speed machines
without ”film launch”sealing bar. In 2018, the firm was acquired by a bigger player in a similar
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market, from Rimini5, as part of a company restructuring which allowed it to overcome a moment
of financial distress, due to poor economic results in the past years; the acquisition allowed firm 3
to integrate in a productive ensemble that covers additional markets, namely those of cardboard
and film solutions at medium-low speed.

Together with other business units of the group, the firm is able to supply complete systems
for the end of line. In light of this fact, the firm has always been endowed with a technical office
able to promote a continuous technological updating of the products and to ensure a personalized
study of the clients’ need: this further allowed yhe firm to elaborate and supply the entire end
of the line in a productive process.

In parallel with the electronic progress, the company also powered the software advancement
which enables the softwares to be constantly up to date and properly manage the hardware
of electronical components, always finalized to ease the operativity of the machines. The whole
system is managed in a fast paced and flexible structure which favours technical and technological
progress.

2.4 Firm 4

The history of firm 4 is rooted in the early years of the 1960s; it is a story made of commitment,
research, passion and hard work. The protagonist is its founder, who, as a turner first, then as a
mechanical designer, guided the growh of the company upon solid values. First of all, reliability.

The imprinting given by the founder characterizes the firm even tady. The familiarity, the
sharing of challenges, the exchange of visions based on sociability and the desire to find innovative
solutions, are the elements which make unique and high performing the group of the firms’
employees. The presence of these great human values reflects in the action of each one in the
company, creating a system generating quality, non just productive, but also relational. This
is the true receipt characterizing FRB, besides the high level of technical ability and a natural
tendency to the pursuit of innovative solutions, other inheritance of the founder.

In the plant located in the South West of Bologna, nearby the birth place of Guglielmo
Marconi, the inventer of the first wireless telegraph and of the radio, Nobel prize winner for
physics in 1909, a highly qualified personnel operates with a technologically advanced set of
machineries and tools to fulfil the clients’ requests to construct machine tools, in Italy and
abroad. The specialty of the firm is tailstocks, the adjustable part of a lathe holding the fixed
spindle, and draggers.

The company was characterized by having some patents covering its inventions, new products
conceived by the founder and by his son Marco; at present there are still two patents in course
of validity entitled to the company. Two years ago, the firm evaluated the possibile acquisition
by an North American multinational met at an international fair in Dusseldorf in Germany; the
negotiations went on for months, without eventually leading to the transaction.

3 Data construction and summary

I use data on revenues, fixed and variable costs for the firm at hand (who is a client of the
chartered accountant studio where the author works) to estimate the following model in order to
better understand and formally quantify the relations among the three financial variables:

Y
︸︷︷︸

revenues

= X1
︸︷︷︸

variable costs

β1 + X2
︸︷︷︸

fixed costs

β2 + ε
︸︷︷︸

stochastic error

5A so called pocket multinational.
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with the variables defined in levels, in euros, at annual frequency, for the years t = 2011, . . . , 2021;
notice that the balance sheet from which the data have been retrieved are the analytical financial
statements of the end of the solar year, for all but 2021, for which I have data only up to the end
of the third quarter (September 30); therefore, up to now, the length of the time series is T = 11
years with yearly observation and k = 2, the number of parameters to be estimated, due to the
omission of the intercept term in all the five regressions I run.

In particular, I considered as components of variable costs −→ the following voices of the
income statements of the firm:

purchases −→ purchase of raw materials, namely iron, aluminium, brass, inox; purchase of
finite goods from both italy and abroad ; production costs −→ external processing, industrial
lubricants, equipment and small parts, cleaning and garbage collection, compressor maintenance,
petrol/diesel trucks, consumables, treatments, car fuel, truck fuel, truck insurance; sales costs

−→ transport for sales, travel and transfers, packaging for sales, commercial expenses, passive
commissions; general expenses −→ postal and telegraph expenses, telephone expenses, revenue
stamps, bank expenses, administrative services, mobile phone expenses, various rentals;

as part of the fixed costs, I included the following components of the income statements:
cost of productive labour −→ gross workers’ salaries, INPS and INAIL social security con-
tributions for workers, severance indemnity ; production costs −→ electricity, maintenance
and repairs, heating, water consumption, insurance, car insurance, computer rental fees, truck
insurance, sylos system maintenance and repairs, truck maintenance and repairs, forklift truck re-
pairs, heating system maintenance, electrical system maintenance, washing machine maintenance
and repair ; general expenses −→ stationery and printed matter, legal and notary consultancy6,
administrative consultancy, directors’ fees, computer programming assistance services, contribu-
tion of 10% for self-employed workers, compliance with law 6267, ISO 9002 compliance, board of
statutory auditors compensation; cost of administrative labour −→ administrative salaries,
INPS and INAIL social security contributions for employees, severance pay for employees;

Finally, as part of the revenues, I chose the following: miscellaneous revenues and

income −→ sales of production in Italy, exports, sale of scrap and various scraps, recovery of ex-
penses and other indemnities, bank interest income, interest income (coupons), contingent assets,
capital gains.

I report in numerical and graphical form the data employed in the analysis, arising from the
illustrated aggregations, respectively in tables 1, 2, 3 and 4 below, and in figures 1 to 9 in the
appendix.

As a comment to the summary statistics, we may notice that the firm with the highest mean
revenues is firm 3, with an average over the last twelve years of about eight and a half million
euros, followed by firm 2 with about six million euros of revenue on average since 2011, and lastly
firms 1 and 4; in terms of costs, the variable costs are highly collinear with revenues for the whole
sample, even though this can be seen via a detailed inspection of revenues and variable costs in
the data set, available as a supplement to the paper and via a graphical representation of the
relevant variables. Fixed costs are particularly high for firm 3, around 3 and a half million euros
on average.

Capital for firm 3 is the lowest paradoxically, being a bit higher than half a million euro;
labour cost, on the contrary in highest for firm 3, being of about two and a half million euros,
followed by firm 2, 4 and 1, respectively. The number of employees is of about 30/40 persons per
firm per year on average in the sample period. Finally, purchases of materials as intermediate
inputs, are highest for firm 3 as well, being of about 4 million euros on average, followed by firm
2, 1 and 4.

6Due to their occasional occurrence.
7Safety on the job for the workers.

25



Tabel 1: Descriptive statistics for firm 1metals turner and cutter in levels over t = 2011, . . . , 2021

Variable Obs Mean Std. Dev. Min Max

y → revenues 11 2,429,347 579,151.1 1,814,393 3,863,768
X1 → variable costs 11 1,180,501 425,585.4 705,503.7 2,265,687
X2 → fixed costs 11 1,112,846 111,622.4 866,459 1,288,783
K → capital 11 1,288,783 304,253.2 1,041,229 2,014,860
L → labour 11 784,828.1 102747.6 580,403.1 998,017.4
M → materials 11 814,736.5 285,877.2 556,881 1,564,775

Tabel 2: Descriptive statistics for firm 2 shoes’ heels producer in levels over t = 2011, . . . , 2021

Variable Obs Mean Std. Dev. Min Max

y → revenues 11 6,114,797 1,577,543 3,514,682 8,675,828
X1 → variable costs 11 3,348,968 962,382.6 1,881,723 5,001,197
X2 → fixed costs 11 534,365.1 69,694.92 414,012.2 650,225.6
K → capital 11 1,483,513 203,196.4 1,081,358 1,828,179
L → labour 11 1,554,276 281,281.5 864,448.8 1,828,018
M → materials 11 2,119,399 501,035.9 1,481,902 3,237,446

Tabel 3: Descriptive statistics for firm 3 or packaging machines producer in levels over t =
2011, . . . , 2021

Variable Obs Mean Std. Dev. Min Max

y → revenues 12 8,625,000 1,917,444 6,800,000 1.20e+07
X1 → variable costs 12 4,787,536 1,940,533 389,905.9 7,807,371
X2 → fixed costs 12 3,445,353 528,552.7 2,743,034 4,715,607
K → capital 12 691,247 379,873 158,742 1,200,000
L → labour 12 2,500,000 343,775.8 2,100,000 3,300,000
M → materials 12 4,141,667 1,142,134 2,700,000 6,100,000

4 Cost functions estimation

I hereby express the various specifications of the multivariate linear regression models which I
estimate through stata 13.0 SE, that depart from the basic version of the bivariate equation
with the variables in contemporaneous time, allowing for some lagged independent variables to
appear on the right hand side of the equations:

yt = X1tβ1
︸ ︷︷ ︸

no lags

+X2tβ2
︸ ︷︷ ︸

no lags

+εt (1)

yt = X1t−1β1
︸ ︷︷ ︸

one lag

+X2t−1β2
︸ ︷︷ ︸

one lag

+εt (2)
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Tabel 4: descriptive statistics for firm 4 tailstocks and drivers producer in levels over t =
2011, . . . , 2021

Variable Obs Mean Std. Dev. Min Max

y → revenues 22 2,357,330 722,897.7 1,068,269 3,954,619
X1 → variable costs 11 1,174,144 472,311.4 197,644.9 2,009,533
X2 → fixed costs 11 1,071,414 408,217.3 184,431 1,594,414
K → capital 14 1,824,297 530,329.2 1,013,524 2,439,805
L → labour 22 795,686.5 125,505.3 591,510 1,070,519
M → materials 18 314,472.7 85,200.19 204,741 452,746

yt = X1t−1β11
︸ ︷︷ ︸

one lag

+X1tβ12
︸ ︷︷ ︸

no lags

+X2t−1β21
︸ ︷︷ ︸

one lag

+X2tβ22
︸ ︷︷ ︸

no lags

+εt (3)

yt = X1t−2β11
︸ ︷︷ ︸

two lags

+X1t−1β12
︸ ︷︷ ︸

one lag

+X2t−2β21
︸ ︷︷ ︸

two lags

+X2t−1β22
︸ ︷︷ ︸

one lag

+εt (4)

y = X1t−2β11
︸ ︷︷ ︸

two lags

+X1t−1β12
︸ ︷︷ ︸

one lag

+X1tβ13
︸ ︷︷ ︸

no lags

+X2t−2β21
︸ ︷︷ ︸

two lags

+X2t−1β22
︸ ︷︷ ︸

one lag

+X2tβ23
︸ ︷︷ ︸

no lags

+εt (5)

The idea is that, fixed costs especially may take time to deploy their positive effects on
revenues, since they are connected with fixed assets, which have a relatively long economic life
and therefore a longer time of transmission into products, sales and revenues; therefore, I consider
equations with one to two lags, combining various layers of complication; below are synthetically
reported the results of the regressions, where the number of each column corresponds to each
one of the five equations.

Equation (1) is the baseline specification as well as the most relevant one, as far as it allows
to best exploit the information at hand, regressing the current values of revenues on those of two
categories of costs within the same year (i.e. contemporaneous effect of variable and fixed costs
on revenues); while in equation (2) I basically regress the revenues each year on the fixed and
variable costs of the previous year; in equation (3) I analyze the effect of the variable costs of
a year on the revenues of the same year and of the subsequent year as well; in equation (4), I
consider the independent variables lagged of two and of one year; and, finally, in equation (5) I
set up a lag of two years, one year, and no lag of each of the two categories of costs on revenues.

Despite the lagged structure of fixed costs on output, for firm 1 the most significant estimated
coefficients appear to be those arising from the first regression, which points to the direction that
marginal increases in variable costs lead to higher revenues, while, paradoxically, increases in fixed
costs tend to reduce revenues, on impact; in particular, a marginal increase in variable costs of
1 euro should lead to an increase in revenues of about 1.185 euros; while an increase in fixed
costs seems to be negatively related with revenues, being the associated coefficient point estimate
slightly lower than 1, of about 0.763; both the estimates are highly statistically significant.

The trend seems to invert itself when we move on to consider once lagged variable and fixed
costs on revenues in column 2 of table 5: as a matter of fact, marginally higher lagged fixed costs
have, ceteris paribus, a negative but statistically insignificant effect on revenues, reducing them
of a double amount, but this seems truly implausible; while holding fixed costs constant, and
raising of one currency unit the variable costs leads to only 0.817 higer revenues, with a decent
degree of statistical significance (90%).
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Tabel 5: Exploratory regressions of revenues on variable and fixed costs, with and without time
lags in the independent variables of firm 1, close to Riola di Vergato, Bologna, Italy

{1} {2} {3} {4} {5}
variables revenuest revenuest revenuest revenuest revenuest

variable costst 1.185*** 0.932** 0.671
(0.125) (0.235) (0.271)

fixed costst 0.763 0.822 1.370
(0.478) (0.512) (0.625)

variable costst−1 0.817* 0.288 0.853 0.0195
(0.414) (0.165) (1.060) (0.342)

fixed costst−1 -2.212 -0.669 -1.836 -0.371
(2.233) (0.871) (3.358) (0.965)

variable costst−2 -0.0469 0.0221
(0.654) (0.195)

fixed costst−2 -1.590 -0.794
(3.299) (1.025)

constant 181,638 3.810e+06 795,746 5.233e+06 1.308e+06
(435,551) (2.142e+06) (827,337) (3.031e+06) (1.042e+06)

observations 11 10 10 9 9
r-squared 0.969 0.430 0.954 0.409 0.977

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Tabel 6: Exploratory regressions of revenues on variable and fixed costs, with and without time
lags in the independent variables of firm 2, Molinella, Bologna, Italy

{1} {2} {3} {4} {5}
variables revenuest revenuest revenuest revenuest revenuest

variable costst 1.569*** 1.534*** 1.459**
(0.0702) (0.113) (0.172)

fixed costst 1.159 1.198 -1.664
(0.969) (1.777) (1.982)

variable costst−1 0.565 0.0305 -0.806 0.112
(0.829) (0.122) (0.429) (0.174)

fixed costst−1 7.811 0.741 38.94*** 3.953
(12.05) (1.679) (6.950) (4.049)

variable costst−2 -3.107*** -0.449
(0.462) (0.297)

fixed costst−2 27.92** 2.141
(6.431) (3.032)

constant 241,599 -129,117 -173,219 -1.636e+07** 34,809
(371,001) (5.104e+06) (1.067e+06) (4.315e+06) (2.305e+06)

observations 11 10 10 9 9
r-squared 0.994 0.283 0.995 0.945 0.999

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

In the third model, with the regressors both contemporaneous to the dependent variable and
lagged of one period, it appears that the variable costs increase revenues less than proportionally
to a marginal increase in their entity, and that the fixed costs raise revenues on impact, but
reduce them if fixed costs enter the model with one lag, again, a counterintuitive effect, which
should be taken with caution, due to its statistical non significance, contrarily than in the first
specification; here, only the coefficient estimate associated with contemporaneous variable costs
seems to be statistically significant, though, overall raising doubts on the meaningfulness of such
specification.

Similar considerations hold for the fourth regression model, where, again the lagged fixed
costs seems to cause negative effects on revenues, which is harly likely to be a plausible case; the
fifth regression presents similar results than the third one, with the exception of contemporaneous
fixed costs which have a very positive effects on revenues on impact, a result which seem very
meaningful and significant.

I am led to conclude from the analysis that the bivariate contemporaneous regression (1) is
the best suited to capture the relationships between fixed and variable costs on the one side, and
revenues on the other side, with the side condition that the typical assumptions of the exogeneity
of the independent variables (the regressors), sphericity and homoschedasticity of the errors, and
full column rank of the matrix of regressors8 hold; only if such a case happens to be holding,
these econometric estimates could have a causal interpretation.

If that indeed happens to be the case, it would be worthwhile for such a firm to raise variable
costs with the reasonable expectation of producing a higher share of output and thus obtaining

8The first three assumptions for the consistency and unbiasedness of the OLS estimator, namely the conditions
of applicability of the Gauss-Markov theorem.
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Tabel 7: Exploratory regressions of revenues on variable and fixed costs, with and without time
lags in the independent variables of firm 3, Anzola Emilia, Bologna, Italy

{1} {2} {3} {4} {5}
variables revenuest revenuest revenuest revenuest revenuest

variable costst 0.196 0.118 0.430
(0.240) (0.262) (1.053)

fixed costst 2.583** 3.054** 2.673
(0.882) (1.085) (3.495)

variable costst−1 0.261 0.372 0.0984 0.401
(0.433) (0.266) (0.392) (0.489)

fixed costst−1 1.957 -1.575 3.512 -1.779
(2.119) (1.547) (1.969) (3.211)

variable costst−2 0.835* -0.122
(0.403) (0.571)

fixed costst−2 -4.749* -1.371
(2.330) (2.104)

constant -1.213e+06 1.011e+06 1.101e+06 8.489e+06 6.239e+06
(2.352e+06) (6.035e+06) (3.719e+06) (8.085e+06) (6.330e+06)

observations 12 11 11 10 10
r-squared 0.753 0.288 0.811 0.666 0.906

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Tabel 8: Exploratory regressions of revenues on variable and fixed costs, with and without time
lags in the independent variables of firm 4, Pontecchio Marconi, Bologna, Italy

{1} {2} {3} {4} {5}
variables revenuest revenuest revenuest revenuest revenuest

variable costst 0.227 0.177 0.295
(0.374) (0.156) (0.164)

fixed costst 1.310** 0.556** 0.442
(0.433) (0.210) (0.203)

variable costst−1 0.817*** 0.724*** 0.872** 0.844**
(0.210) (0.153) (0.261) (0.164)

fixed costst−1 0.804** 0.571** 0.550 0.378
(0.245) (0.194) (0.356) (0.205)

variable costst−2 0.316 0.373
(0.474) (0.304)

fixed costst−2 0.185 0.157
(0.406) (0.229)

constant 1.135e+06* 1.133e+06** 654,759* 757,183 64,081
(606,994) (340,042) (324,098) (582,544) (471,768)

observations 11 10 10 9 9
r-squared 0.566 0.816 0.936 0.837 0.975

standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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higher revenues, especially on the voices of costs most related with raw materials purchases.
The stochastic frontier model with the same contemporaneous variables as before happens to

produce extremely similar results to the ordinary least squares estimation, with the same point
estimates and differing standard errors. For more details, see the stata replication code.

For firm 2, the one making heels for women’s shoes, the effects of both fixed and variable costs
on revenues are stronger, especially noting that, in column 1, a marginal increase in variable costs
of 1 euro led to higher revenues of 1.57 euros over the sample period, while a marginal increase
of one ECU in fixed costs led to 1.16 euro higher revenues over the same period. With one lag,
it seems that fixed costs led to higher revenues by a factor of 7, which seems quite too high,
hopefully non statistically significant - we may think of the positive effects on prototyping and
production the purchase of a 3D printer may have.

Moving onwards to column 3 of table 6, we find reinforcement of the results exposed in
column 1, especially for the contemporaneous effects of fixed and variable costs; in column 4,
we get some strange results, with coefficients extremely high associated with fixed costs lagged
once, and twice; the only statistically significant point estimate is a negative coefficient equal
to -3.12 associated with twice lagged variable costs; in column 5, the results go back to normal
magnitudes, with positive effects of contemporaneous variable costs and once and twice lagged
fixed costs of about 3.9 and 2.12 respectively.

Firm 3, the producer of packaging machines, is characterized by a very high coefficient
associated with fixed costs: a marginally higher fixed cost of a unit led to 2.58 higher revenues
on average over the past twelve years; while an increase in variable costs had very little impact
on revenues, perhaps due to the structure of production, whereby the firm is exploiting some
complex types of machinery which are all investments in fixed capital, and hence connected
with fixed costs; while variable costs might just be higher purchases of raw materials which do
not significantly contribute to generate output, or at least, not as much as investments in fixed
capital. Similar trends energe by reading the estimates in the subsequent columns of table 7.

Turning to firm 4 is also strangely characterized by the negative association between variable
costs on impact and revenues, and with the positive and statistically significant relation between
fixed costs and revenues (table 8, column 1). Introducing a distributed lag structure in the
regressors, both fixed and variable costs contribute to raise revenues to an extent that is less
than proportional to their increase (column 2); similar trends emerge also from column 3 and 4;
as well as from five. At least, for firm 4, which, as already stated, operates in the high precision
mechanical components industry, all categories of costs, lagged or not, have a positive impact on
revenues. Very similar results to those of column 1 hold for the stochastic frontier model as well,
which is reported in the replication files.

As a final note on this exercise of estimation of cost functions, we decided to keep the intercept,
as it allows a more precise estimation of the model parameters, the value of the estimated intercept
is high in all specification for all the fours firms because the data are in levels and in millions of
euros, and thus they should not be seen with suspicion.

5 Properties of production sets

PRODUCTION SETS9 −→ in an economy with L commodities, a production vector is a vector
y = (y1, . . . , yL) ∈ RL, that describes the net output of the L commodities from a production
process;

Y ⊂ RL −→ production set; any y ∈ Y is possible, any y /∈ Y isn’t. a production set is a
primitive datum of the theory; technological constraints → legal restrictions or prior contractual

9this section is largely based upon Mas-Colell et al., 1995, pp. 128 - 136.
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commitment → F (.): transformation function, Y = {y ∈ RL : F (y) ≤ 0} and F (0) = 0 if and
only if y is an element of the boundary of Y ;

{y ∈ RL : F (y) = 0} → boundary ≡ transformation frontier;

MRTlk(ȳ) =
∂F (ȳ)
∂yl

∂F (ȳ)
∂yk

, ∀l, k, l 6= k goods, marginal rate of transformation of good l for good k

at ȳ;
∂F (ȳ)
∂yk

· dyk + ∂F (ȳ)
∂yl

· dyl = 0

z = (z1, . . . , zL−M ) ≥ 0 → firm’s L−M inputs;
q = (q1, . . . , qM ) ≥ 0 → outputs;
single output technology → f(z) → max. amount of q that can be produced using in-

put amounts z = (z1, . . . , zL−1) ≥ 0; if the output is good L → Y = {(z1, . . . , zL−1, q) :
q − f(z1, . . . , zL−1) ≤ 0 and (z1, . . . , zL−1) ≥ 0};

MRTSlk(z̄) =
∂f(z̄)
∂zl

∂f(z̄)
∂zk

→ marginal rate of technical substitution;

the cobb - douglas production function can be expressed as f(z1, z2) = zα1 z
β
2 , and, if α+β = 1

→ f(z1, z2) = zα1 z
1−α
2

(i) Y is non-empty10→ the firm has something to plan to do;
(ii) Y is closed −→ the set Y includes its boundary, the limit of a sequence of feasible input

- output vectors is also feasible; yn → y and yn ∈ Y → y ∈ Y ;
(iii) no free lunch −→ y ∈ Y and y ≥ 0 so that y doesn’t use any inputs; this property −→

this production vector cannot produce output either; Y ∩ RL
+ ⊂ {0}

it’s not possible to produce something out of nothing;
(iv) possibility of inaction −→ 0 ∈ Y ; the point in time at which production possibilities

are being analyzed is often important for the validity of this assumption; if we see a firm that
could access a set of technological possibilities but hasn’t yet been organized −→ inaction is
clearly possible; but otherwise (decisions already taken or irrevocable contracts signed), inaction
isn’t possible → sunk costs;

the firm is already committed to use at least −ȳ1 units of good 1;
ց the set is a restricted production set, reflecting the firm’s remaining choices from some

original production set Y like the ones in the previous graphs;
v. free disposal → holds if the absorption of any additional amount of inputs without any

ց in output is always possible, if y ⊂ Y and y′ ≤ y (so that y′ produces at most the same
amount of outputs using at least the same amount of inputs) → y′ ∈ Y ; Y − RL

+ ⊂ Y ↔ the
extra amounts of inputs (or outputs) can be disposed of or eliminated at no cost;

vi. irreversibility → y ∈ Y and y 6= 0;
−y /∈ Y ; it’s impossible to reverse a technologically possible production vector to transform

an amount of output into the same amount of input that was used to generate it;
drawing 5 — drawing 6 — drawing 7
vii. non ր returns to scale → the production technology Y exhibits non ր returns to

scale if for any y ∈ Y , we’ve αy ∈ Y for all scalars α ∈ [0, 1];
any feasible input - output vector can be scaled down;
viii. non ց returns to scale → if ∀y ∈ Y → αy ∈ Y for any scale α ≥ 1. any feasible

input - output vector can be scaled up;
ix. constant returns to scale → the production set Y exhibits constant returns to scale if

y ∈ Y → αy ∈ Y , for any scalar α ≥ 0. Y is a cone;
for single output technologies → properties of the production set translate into properties of

the production function, f(.); Y satisfies constant returns to scale if and only if f(.) is homoge-

neous of degree 1. f(2z1, 2z2) = 2α+βzα1 z
β
2 = 2α+βf(z1, z2);

10the production set.
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when α+ β < 1 → ց returns to scale;
when α+ β = 1 → constant returns to scale;
when α+ β > 1 → ր returns to scale; �
x. additivity → or free entry → y ∈ Y and y′ ∈ Y → y + y′ ∈ Y ↔ Y + Y ⊂ Y →

e.g. ky ∈ Y , ∀k ∈ N+; output here is available only in integer amounts. perhaps because of
indivisibilities, the economic interpretation is that both y and y′ are possible → one can set
up two plants that don’t interfere with each other and carry out production plans y and y′

independently. the result is the production vector y + y′;
additivity→ entry: if a firm produces y ∈ Y → net result→ y+y′ → the aggregate production

set → must satisfy additivity when ever unrestricted entry or free entry is possible;
xi. convexity → one of the fundamental assumptions of micro-economics → production set

Y is convex → if y, y′ ∈ Y and α ∈ [0, 1], αy + (1 − α)y′ ∈ Y → non ր returns, if inaction is
possible, i.e. if 0 ∈ Y → convexity → Y has non increasing returns to scale; hence if any α ∈ [0, 1]
→ αy = αy + 0(1− α), if y ∈ Y and 0 ∈ Y → αy ∈ Y , by convexity;

“unbalanced” inputs combinations aren’t more productive than balanced ones;
if production plans y and y′ produce exactly the same amount of output but use 6= input

combinations → a production vector that uses a level of each input that’s the average of the
levels used in these two plans can do at least as well as either y or y′.

ex. 5.B.311: Y is convex if f(z) is concave. suppose Y is convex; z, z′ ∈ RL−1
+ and α ∈ [0, 1]

→ (−z, f(z)) ∈ Y and (−z′, f(z′)) ∈ Y . by convexity
{−[αz + (1− α)z], αf(z) + (1− α)f(z)} ∈ Y
by convexity αf(z) + (1− α)f(z) ≤ f [αz + (1− α)z] → f(z) is concave
suppose f(z) is concave.
(q,−z) ∈ Y , (q′,−z′) ∈ Y , α ∈ [0, 1] q ≤ f(z) and q′ ≤ f(z) → αq + (1 − α)q′ ≤

αf(z) + (1− α)f(z′)
︸ ︷︷ ︸

by concavity
→ αf(z) + (1− α)f(z′)

︸ ︷︷ ︸
≤ f [αz + (1− α)z′] αq + (1− α)q′ ≤ f [αz + (1− αz′)]

→ {−[αz + (1− α)z′], αq + (1− α)q} = α(−z, q) + (1− α)(−z′, q′) ∈ Y
→ Y is convex. �
xii. Y is a convex cone → convexity ∩ CRS. if for any production vector y, y′ ∈ Y and

constants α ≥ 0 and β ≥ 0 → αy + βy′ ∈ Y .
proposition 5.B.1 the production set Y is additive and satisfies the non ր returns condition

iff it’s a convex cone.
proof αy + βy′ ∈ Y ; k > max{α, β},

ky ∈ Y , ky′ ∈ Y ; α
k < 1 and αy = α

k ky → αy ∈ Y , similarly for β.
feasible input - output combination can be scaled down, and simultaneous operation of several

technologies w/out mutual interference is possibile → convexity! production set → technology.
ց returns reflect the scarcity of an underlying, unlisted input of production.

proposition 5:B.2: for any convex production set Y ⊂ RL with 0 ∈ Y , there is a constant

return convex production set Y ′ ⊂ RL+1 such that Y = {y ∈ RL : (y,−1) ∈ Y }
additional input → entrepreneurial factor - whose return’s precisely the firm’s profit. Y ′ =

{y′ ∈ RL+1 : y′ = α(y,−1) for some y′ ∈ Y and α ≥ 0}.

11of Mas-Colell, Whinston, Green, 1995.
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6 Estimation of the exponents of a Cobb-Douglas

I set up an empirical estimation of a Cobb-Douglas production function with the data of the firm
which I have at hand; the function is of the form:

Yit = AKα
itL

β
ite

εit

where the variables Yit, Kit and Lit, for i = 1, 2, 3, 4 and t = 2011, . . . , 2021, represent,
respectively, revenues, capital and labour cost; ε is a mean zero iid random shock to productivity,
which is unobserved by both the econometrician and the firms’ managers; Yit, a flow variable,
is as of the ones resulting from the income statements; Kit, is here defined as the balance sheet
value of net fixed assets; while Lit is intended as the sum of both productive and administrative
labour cost, inclusive of the social security contributions; the data are composed of observations
spanning the period t = 2011,. . . ,2021, as in the previous exercise.

A is the so called technological augmenting factor, namely a measure of the technological
intensity of the productive process of the firm at hand.

My main point is connected with the exercise 3.B.1 of the Mas-Colell et al., 1995 hand-
book: I attempt to find out whether the sum of the estimated exponents α and β is T 1, in order
to conclude whether the returns to scale are respectively increasing, constant or decreasing.

In the appendix, I display, for the sake of understanding, some additional three dimensional
graphs made with MATLAB 2022a, which may give an indication of the geometric properties of
the production set of the firm which we are analyzing.

I first wrote a stata code that was based on the estimation of the Cobb-Douglas in level,
thus with the command nl, non linear least squares; but then, I show in the paper only the
estimates of the production function transformed in logarithms, which seems more meaningful,
with two version, one with just capital and labour as inputs, another one also including materials
purchases as an intermediate input as in Olley and Pakes 1996 as well as in Levinsohn and

Petrin 2003, among others.
I do the estimation separately for each firm, of equations (6) and (7), and I also try an

instrumental variable method, where the instruments are lagged values of labour and materials,
given the endogeneity of input choices in a simple production function model.

lnYit = lnA+ α lnKit + β lnLit + εit (6)

However, the four firms that we are considering here are heavily relying on the supply of
raw materials, metals for firms 1, 3 and 4 and plastic components for firm 2, which uses it to
create moulds. This led me to consider a version of the Cobb-Douglas production function which
also includes an additional factor of production: purchase cost of raw materials, variable also
extrapolated from the analytical income statements of the firms at hand, of which we dispose, as
part of our profession12. Such new equation is:

Yit = AKα
itL

β
itM

γ
ite

νit

As usual, I log transform the equation, to obtain the second important estimating equation
of the Cobb-Douglas production function:

lnYit = lnA+ α lnKit + β lnLit + γ lnMit + νit (7)

The determinant of the analysis is whether

α̂+ β̂ + γ̂ −→







> 1 −→ ր returns to scale
= 1 −→ constant retursn to scale
< 1 −→ ց returns to scale

12Borowski and Borwein, 1989.
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Tabel 9: Estimates for the returns to scale of firm 1 with ols with and without intermediate
inputs (materials) and with the instrumental variables method where the instruments are
the lagged labour and materials

{ols1} {ols2} {iv3}
variables revenues revenues revenues

capital -0.0471 -0.0962 -0.0889
(0.219) (0.132) (0.373)

labour 1.303*** 0.261 -0.775
(0.344) (0.336) (2.272)

materials 0.564*** 1.370
(0.144) (1.408)

constant -2.332 4.841 7.889
(6.433) (4.260) (21.71)

observations 11 11 10
R-squared 0.682 0.901 0.020

standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

6.1 Firm 1

I hereby report the results of the estimation of equation 6 and 7 as well as of an instrumental
variable two stages least squares regression where the instruments are lagged labour and materials,
following Levinsohn and Petrin 2003 and Ackerberg et al. 2015.

In the first case, eq. (1), table 9, column 1, I find that α̂ + β̂ = 1.2559 → > 1 → increasing

returns to scale; in the second case, eq. (2), table 9, column 2, I find that α̂+ β̂ + γ̂ = 0.7288 →
decreasing returns to scale.

The two estimated equations are thus:

lnY = −2.332
(6.433)

− 0.0471
(0.219)

lnK + 1.303
(0.344)

lnL

lnY = 4.841
(4.260)

− 0.0962
(0.132)

lnK + 0.261
(0.336)

lnL+ 0.564
(0.144)

lnM

α̂, β̂ and γ̂ are equal to the shares of revenues due to capital, labour, and materials respecti-
vely; the marginal product of each factor is proportional to its mean product.

Here, for firm 1, strangely, returns to scale switch from increasing to decreasing after the
inclusion of raw materials as further input of production.

In the case of the IV estimation, I find a very high, though not statistically significant,
coefficient for materials, of about 1.37, but a negative coefficient for both capital and labour.

Overall the IV estimation would lead me to accept the hypothesis of decreasing returns,
though, consistently with the estimation of the Cobb-Douglas in logarithms with capital, labour
and raw materials.

6.2 Firm 2

In the first case, eq. (1), table 10, column 1, I find that α̂ + β̂ = 1.237 → > 1 → increasing

returns to scale; in the second case, eq. (2), column 2, I find that α̂+ β̂+ γ̂ = 1.3277 → increasing
returns to scale as well.
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Tabel 10: Estimates for the returns to scale of firm 2 with ols with and without intermediate
inputs (materials) and with the instrumental variables method where the instruments are
the lagged labour and materials

{ols1} {ols2} {iv3}
variables revenues revenues revenues

capital 0.106 0.0177 0.0462
(0.338) (0.206) (0.282)

labour 1.131*** 0.664*** 0.739
(0.224) (0.182) (0.588)

materials 0.646*** 0.580
(0.168) (0.587)

constant -2.015 -3.504 -4.023
(6.499) (3.958) (5.827)

observations 11 11 10
R-squared 0.772 0.927 0.925

standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Here, for firm 2, I find that the returns to scale are increasing with both the Cobb-Douglas
specification, which leads me to conclude that firm 2 has indeed increasing returns to scale;
perhaps this may be due to the fact that it operates in the luxury industry, and is able to sell
its products to great brands of women’s fashion which extract a significant surplus to the final
customers.

The two former estimated equations thus look like

lnY = −2.015
(6.499)

+ 0.106
(0.338)

lnK + 1.131
(0.224)

lnL

lnY = −3.504
(3.957)

+ 0.0177
(0.206)

lnK + 0.664
(0.182)

lnL+ 0.646
(0.168)

lnM

The third estimated equation does nothing but confirming the conjecture arising from the
former two.

6.3 Firm 3

In the first vccase, eq. {1}, table 11, column 1, I find that α̂+ β̂ = 1.072 → > 1 → slightly more

than increasing returns to scale; in the second case, eq. {2}, column 2, I find that α̂ + β̂ + γ̂ =
0.6776 → decreasing returns to scale.

Here, as in the case of firm 1, I find first increasing returns to scale and then decreasing
ones, after the inclusion of raw materials as an additional input of production; the estimated
simultaneous equations are therefore:

lnY = 0.151
(5.4288)

− 0.0120
(0.0611)

lnK + 1.084∗∗
(0.341)

lnL

lnY = −5.639
(4.492)

− 0.0192
(0.0458)

lnK + 0.0808
(0.435)

lnL+ 0.616∗∗
(0.217)

lnM

This result means that a marginal increase in one of the two productive inputs (K or L) would
lead, in these conditions (those holding, on average, in the past twelve years) to an increase in
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Tabel 11: Estimates for the returns to scale of firm 3 with ols with and without intermediate
inputs (materials) and with the instrumental variables method where the instruments are
the lagged labour and materials

{ols1} {ols2} {iv3}
variables revenues revenues revenues

capital -0.0120 -0.0192 0.0149
(0.0611) (0.0458) (0.162)

labour 1.084** 0.0807 -2.102
(0.341) (0.435) (8.346)

materials 0.616** 2.333
(0.217) (5.698)

constant 0.151 5.640 11.25
(5.428) (4.492) (39.07)

observations 12 12 11
R-squared 0.593 0.798

standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

output (here measured as revenues, but one could also opt for other monetary measures such
as the value added13) slightly more than proportional to the increase in the input (or factor) of
production; adding materials as an intermediate input to the estimation, lead us to conclude an
opposite fact, namely that an increase in one of the three inputs (K, L orM) leads to an increase
in revenues (our monetary proxy for output) less than proportional than the increase in inputs.

6.4 Firm 4

In the first case, eq. {1}, table 12, column 1, I find that α̂ + β̂ = 1.894 → > 1 → significantly

increasing returns to scale; in the second case, eq. {2}, column 2, I find that α̂+ β̂ + γ̂ = 0.374
→ significantly decreasing returns to scale.

While in the first specification I find very high returns to scale, in the second one, including
raw materials, I find very low returns to scale - I do not know which could be the source of such
a polarization, perhaps the fact that materials are costly to treat and to transform into a finite
product.

Therefore, based on the previous results, the two Cobb-Douglas in logarithms for firm 4 are14:

lnY = −11.25
(2.818)

∗∗∗ + 0.235
(0.135)

lnK + 1.659
(0.248)

∗∗ lnL

lnY = 9.020
(6.086)

− 0.158
(0.146)

lnK + 1.248
(0.209)

∗∗∗ lnL− 0.716
(0.203)

∗∗∗ lnM

The iv estimates more or less confirm the predictions generated by the estimation of equations
(6) and (7).

13Francesco Giovanardi and Marco Luca Pinchetti pointed out that it would be more appropriate to consider
as a measure of both inputs and outputs of production a physical measure of the units employed, such as hours
worked and amount of pieces of product which have been generated; unfortunately, we do not this dispose of this
piece of information, therefore, we have to proxy these variable with their corresponding monetary counterpart,
as pointed out in Ackerberg et al. 2015.

14Standard errors in parentheses.
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Tabel 12: Estimates for the returns to scale of firm 4 with ols with and without intermediate
inputs (materials) and with the instrumental variable method where the instruments are
the lagged labour and materials

{ols1} {ols2} {iv3}
variables revenues revenues revenues

capital 0.235 -0.158 -0.462
(0.135) (0.146) (0.259)

labour 1.659*** 1.248*** 1.039***
(0.248) (0.209) (0.311)

materials -0.716*** -1.224**
(0.203) (0.390)

constant -11.25*** 9.020 22.63*
(2.818) (6.086) (10.99)

observations 14 14 14
R-squared 0.888 0.950 0.918

standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

6.5 Panel data estimates

As a final exercise, I pool the data of the four firms at hand in a panel with about 48 observa-
tion to compare the different results which I obtain by applying the various methods of simple
OLS, Levinsohn and Petrin 2003, panel data method with fixed effects, with random effects, an
instrumental variable method, and a generalized method of moments estimation method, where
the instruments for the endogenous inputs are their one period lagged values.

Tabel 13: comparison among OLS, Levinsohn and Petrin 2003, fixed effects, random effects
and instrumental variables estimation methods of estimating a production function with inputs
capital, labour and materials

OLS LP FE RE IV GMM
revenues revenues revenues revenues revenues revenues

capital 0.130*** 0.0174 0.0567 0.130*** 0.123** .150**
(0.0472) (0.160) (0.0531) (0.0472) (0.0486) (0.0795)

labour 1.197*** 0.738*** 1.420*** 1.197*** 1.230*** 1.236***
(0.0901) (0.248) (0.134) (0.0901) (0.108) (0.0775)

materials 0.0364 2.12e-41 -0.0317 0.0364 0.0142 0.0187
(0.0458) (0.267) (0.0902) (0.0458) (0.0545) (0.0516)

const. -3.887*** -5.044** -3.887*** -3.954*** -4.480***
(1.244) (2.264) (1.244) (1.338) (1.564)

observations 48 48 48 48 45 44
R-squared 0.942 χ2=0.61 0.741 0.7216 0.7147
number of id 4 4 4 4

comparison of six 6= estimation methods

*** p<0.01, ** p<0.05, * p<0.1

Levinsohn and Petrin 2003method leads me to more conservative estimates of the returns
to scale of the four firms together, thus, pointing towards lower returns to scale, if compared with
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the simple ols (baseline) method. As a matter of fact, with ols, I obtain evidence in favour of
increasing returns to scale for the sample at hand, considering capital, labour and raw materials
as inputs. Given the structure of the pooled data, I experiment fixed and random effects, which
both yield results in line with the ols method, especially with regards to the random effects
model. iv and gmm both lead to higher point estimates than the ols. Additional results based
on dynamic panel data models (the so called Arellano and Bond 1991 estimation method)
are further illustrated as part of the replication codes.

7 Conclusions

I carried out a double empirical exercise with some balance sheet data of four firms operating in
various manufacturing sectors in the neighbourhood of Bologna, Northern Italy. I first reviewed
the theory and empirics of Cobb-Douglas production functions estimation with firm/sector level
data, as well as that of cost functions estimation; then specified and estimated a set of five
bivariate linear regressions of revenues on fixed and variable costs, both contemporaneous and
lagged for the four firms at hand separately; I found evidence for positive impact of variable costs
on revenues on impact on average for the whole four firms.

Afterwards, I reviewed a part of the theory of production following Mas-Colell et al.,

1995, ch.5, stressing the relevance of the geometrical properties of production sets, with specific
reference to the returns to scale with the Cobb-Douglas production function; in particular, as-
suming the Cobb-Douglas is a good fit in approximating the firm’s production process, I tried
to find out whether the returns to scale have been, for the past eleven/twelve years of operati-
ons, increasing, decreasing or constant, depending on the magnitude of the summed exponents
estimates of the production function.

The results are mixed, depending on the industry in which the firm operate, and the inclusion
in the log linear production function of materials as an intermediate input besided capital and
labour; I also pool the data of the four firms together, trying different types of estimation: simple
ols as the baseline, Levinsohn and Petrin 2003 method15, panel data fixed effects models,
random effects, instrumental variable method and generalized method of moments. The most
significant trend is the downward pressure on the estimates due to the LP 2003 method.

More research is needed however on this topic, perhaps on estimating the returns to scale of
entire sectors of activity with coutry or region level data, as well as trying to estimate some other
forms of production functions such as the constant elasticity of substitution (CES as in Ramsey

and Zarembka 1971), of the form

y = [δ1K
ρ + δ2L

ρ]ν/ρ (8)

or a generalized production function,

yeγy = AKαLβ (9)

or a quadratic production function,

y = A+ αK + βL+ γK2 + δL2 + λKL (10)

15The Olley and Pakes 1996 method is inapplicable to our case, because we shall need a data set with many
firms, and some entering and some exiting the market, which we do not have.
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Supplementary information

The paper has an appendix with the stata code and data set used to produce the estimation
reported in the main text as well as the MATLAB code written to produce the figures contained
in the paper.
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Figuur 1: revenues, variable and fixed costs for firm 1
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Figuur 2: revenues, variable and fixed costs for firm 1
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Figuur 3: revenues, capital, disaggregated labour cost for firm 1
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Figuur 4: revenues, capital, labour for firm 1
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Figuur 5: revenues, capital, labour costs and purchases of raw materials for firm 1
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Figuur 6: sample autocorrelation functions for firm 1
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Figuur 7: revenues, fixed and variable costs for firm 2
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Figuur 8: revenues, fixed and variable costs for firm 2
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Figuur 9: revenues, capital and labour for firm 2
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Figuur 10: sample auto - correlation functions for firm 2
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Figuur 11: revenues, capital, labour and materials for firm 3
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Figuur 12: auto correlation for revenues, capital, labour and materials for firm 3

-0.5

0

0.5

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

auto correlatione of revenues

t = 2011,...,2020

0 5 10

Lag

-0.5

0

0.5

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

auto correlation of capital

t = 2011,...,2020

0 5 10

Lag

-0.5

0

0.5

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

auto correlation of labour cost

t = 2011,...,2020

0 5 10

Lag

53



A.1 Properties of the Cobb-Douglas

c. w. cobb - p. h. douglas, a theory of production, american economic review, march 192816

X = f(L,K, t)
X = aLαKβeγt

lnX = ln a+ α lnL+ β lnK + γt
α and β are equal to the shares of output received by labour and capital, respectively. the

marginal product of each factor is proportional to its average product, since
∂X
∂L = aαLα−1Lβeγt = αX

L → α = ∂X
∂L · L

X
∂X
∂K = aLαβKβ−1eγt = βX

K → β = ∂X
∂K · K

X
∂X
∂L = w

p and ∂X
∂K = r

p , where
w → wage rate; r → unit price of capital,
p→ product price level, for each purely competitive,

profit maximizing firm.

→ α =
wL

pX
︸ ︷︷ ︸

labour share of output

and β =
rK

pX
︸ ︷︷ ︸

capital share of output

in current prices.

α and β must sum to unity under this last assmpt., since wL+ rK = pX.
→ unduly restrictive functional form-

capital/labour ration ↔ strictly proportional
to the factor price ratio;

α
β =

∂X
∂L · L

X
∂X
∂K ·KX

= ∂K
∂L · L

K → α
β

∂L
∂K = L

K ↔

β
α · ∂K

∂L = K
L ; under cost minimization

∂X
∂L · 1

w = ∂X
∂K

1
r ↔ ∂K

∂L = w
r →

→ K
L = β

α · w
r → ln

(
K
L

)
= ln

(
β
α

)
− ln

(
∂L
∂K

)

d
(
ln K

L

)

d
(
ln ∂L

∂K

) = −1 → elasticity of substitution → σ. the cobb - douglas is said to have a unitary

elasticity of substitution.
CES → constant elasticity of substitution → σ can take any constant value. k. j. arrow, h.

b. cherney, b. s. minhas, and r. m. solow, capital - labour substitution and economic efficiency;
review of economics and statistics, vol. 43, no. 3, august 1961, pp. 225 - 250.

ln
(
X
L

)
= ln a+ σ lnw;

σ := elasticity of substitution;
pure competition and π max → constant returns to scale →

X = γ[δK−ρ + (1− δ)L−ρ]−
1
ρ

γ → efficiency parameter → scale factor;
δ → distribution parameter → a−1/σ · γ

σ
1−σ

ρ→ substitution parameter → 1
σ − 1

***

derivation of the CES production function → l. r. klein and r. s. preston, the measurement
of capacity utilization, american economic review- march 1967.

σ = 1 → cobb - douglas function
σ = ∞ → linear production function
σ = 0 → fixed - proportion or leontief function (right - angle isoquants).

16This section is based on Michael K. Evans, 1969, chapter 10, Aggregate Supply Components and Factor

Shares.
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ln
(
X
L

)
= ln a+ σ lnw

X = wL+ rK,
w = X

L − rKL = X
L − dX

dK · K
L

→ ln
(
X
L

)
= ln a+ σ ln

(
X
L − dX

dK · K
L

)

X
L = a

(
X
L − dX

dK · K
L

)σ

(
X
L

)1/σ
= a1/σ · X

L − a1/σ · K
L · d(X/L)

d(K/L)

→ d(X/L)
d(K/L) = −a−

1
σ (X/L)1/σ

K/L + X/L
K/L

ց d(X/L)
d(K/L) =

X/L−a−1/σ(X/L)1/σ

K/L

ց
d(X/L)

X/L− a−1/σ ·
(
X/L

)1/σ

︸ ︷︷ ︸

↓

= d(K/L)
K/L

()

d(X/L)
X/L + [a−1/σ(X/L)

1
σ

−2]d(X/L)
1−a−1/σ·(X/L)1/σ−1

to integrate the second term on the right hand side

1− a−
1
σ ·

(
X
L

) 1
σ−1

= z

ց −a−
1
σ ·

(
1
σ − 1

)(
X
L

) 1
σ−2

· d
(
X
L

)
= dz

∫
1

X/Ld
(
X
L

)
−
∫

σ
1−σ

dz
z = −

∫
1

K/Ld
(
K
L

)

ln
(
X
L

)
− σ

1−σ ln
[
1− a−

1
σ

(
X
L

) 1
σ−1]

= ln
(
K
L

)
− σ

1−σ lnβ

ց K
L = X

L

[
1− a−

1
σ

(
X
L

) 1−σ
σ

]− σ
1−σ · β

σ
1−σ

↔ K
L = X

L

[
1− α

(
X
L

)ρ]− 1
ρ · β

1
ρ

ρ = 1−σ
σ ; α = a−1/σ; β → a constant

of integration.
(
K
L

)ρ
=

(
X
L

)ρ
·
[
1− α

(
X
L

)ρ]−1
· β

β
(
K
L

)−ρ
=

(
X
L

)−ρ
·
[
1− α

(
X
L

)ρ]

β
(
K
L

)−ρ
=

(
X
L

)−ρ
− α

(
X
L

)ρ
= β

(
K
L

)−ρ
+ α

(
X
L

)
=

[
β
(
K
L

)−ρ
+ α

]− 1
ρ

X =
(
L−ρ

)− 1
ρ ·

[
β
(
K
L

)−ρ
+ α

]− 1
ρ

X =
[
βK−ρ + αL−ρ

]− 1
ρ

if we choose an efficiency parameter γ,
and let δ = αγρ−1, the function can
be rewritten as

X = γ
[
δK−ρ + (1− δ)L−ρ

]− 1
ρ

= γ
[
αγρ−1K−ρ + (1 + αγρ−1)L−ρ

]− 1
ρ

− • −
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when σ = 1, integrate the function

ln
(
X
L

)
= ln a+ lnw

X
L = a

(
X
L − dX

dK · K
L

)

X
L · a−1 = X

L − dX
dK · K

L

dX
dK · K

L = X
L − X

L · a−1

dX
dK = X/L

K/L − X/L
K/L · a−1

d(X/L)
d(K/L) =

X/L
K/L − X/L

K/L · a−1

d(X/L)
d(K/L) =

X/L
K/L ·

[
1− a−1

]

d(X/L)
X/L·[1−a−1] =

d(K/L)
K/L

a
a−1 · ln

(
X
L

)
= ln

(
K
L

)
+ a

a+1 lnβ

β ∈ R, constant of integration.

ց
(
X
L

) a
a−1 = K

L · β
a

a−1

X
L = β ·

(
K
L

) a−1
a

X = β · L
1
a ·K

a−1
a

→ the cobb - douglas pro=
duction function w/cons=
tant returns to scale

the fixed proportional leontief is even simpler; σ = 0 →
ln
(
X
L

)
= ln a or X

L = a→ X = aL,
for K > K0; also we can write
ln
(
X
K

)
= ln b or X

K = b→ X = bK
for L > L0 → when ∃ excess capital,

output is uniquely determined by labour
and viceversa → right angled isoquant for
which profit maximizing firms produce
only at the corner. a change in factor
prices for a given output will then have no ef=
fect on the ratio of factors demanded. ∄
any substitutability of one factor for ano=
ther relative prices change.

as σ → ∞ → the same method of integration
cannot be used; ρ = 1

σ − 1, σ → ∞ → ρ = −1

ց X = (βK−ρ + αL−ρ)−
1
ρ → becomes

X = βK + αL

− • −
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the CES function is more general than the cobb - douglas because it can take on any real
value. also, factor shares need not be constant as factor intensities vary.

X−ρ = γ−ρ[δK−ρ + (1− δ)L−ρ]

differentiate
−ρX−ρ−1 · ∂X

∂L = γ−ρ[−ρ(1− δ)L−ρ−1]

−ρX−ρ−1 · ∂X
∂K = γ−ρ[−ρδK−ρ−1]

∂X
∂L = (1− δ)

(
X
L

)ρ+1
· γ−ρ

∂X
∂K = δ

(
X
K

)ρ+1
· γ−ρ

∂X
∂L
∂X
∂K

= ∂K
∂L = 1−δ

δ ·
(
K
L

)ρ+1

(ρ+ 1) ln
(
K
L

)
= ln 1−δ

δ − ln
(
∂L
∂K

)

d(lnK/L)
d(ln ∂L/∂K) = − 1

1+ρ = −σ
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