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Abstract 

This article discusses the limitations of linear models in explaining certain aspects of 

homelessness-related data and proposes the use of nonlinear models to allow for state-

dependent or regime-switching behavior. The threshold autoregressive (TAR) model and its 

smooth transition autoregressive (STAR) extensions are introduced as a popular class of 

nonlinear models. The article explains how these models can be applied to univariate time series 

data to investigate variations in weather conditions on the flow of homeless shelters over time. 

The objective is to identify the sensitivity of publicly-funded emergency shelter use to changes in 

weather conditions and better inform social agencies and government funders of predictable and 

unpredictable changes in demand for shelter beds. The smooth transition regression (STR) model 

is proposed as a useful tool for investigating nonlinearities in non-autoregressive contexts using 

both time series and panel data. The article concludes by highlighting the advantages of STR 

models and their three-stage modeling procedure: model specification, estimation, and 

evaluation. 
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1. Introduction 

Most of the statistical models employed in the homelessness literature are linear models. These 

models investigate the impact of different factors on homelessness-related variables. For 

example, Jadidzadeh and Kneebone (2015) identify the impact of weather conditions on 

emergency shelters using Ordinary Least Square (OLS) regressions with time series data. 

Although linear regressions remain at the forefront of academic and applied research, it has been 

found that simple linear models do not explain certain aspects of the data with structural and 

behavioral changes. Therefore, it is reasonable to employ nonlinear models to explain the 

empirical data in different states of the world or regimes and to allow the dynamics to be 

different in different regimes. 

There is a wide range of nonlinear models that are usually applied to economic and financial time 

series data to allow for state-dependent or regime-switching behaviour. Examples are bilinear 

models, k nearest neighbor methods, neural networks, and regime-switching models – see books 

written by Tong (1990), Granger and Teräsvirta (1993), and Franses and van Dijk (2000) for a 

detailed description of nonlinear models. Given the existence of nonlinearity in our variable of 

interest, 𝑦𝑦𝑡𝑡, theories or even stylized empirical facts may suggest a specific form of nonlinearity. 

A basic, but popular, class of regime-switching models is the threshold autoregressive (TAR) 

model which is proposed by Tong (1978) and discussed in detail by Tong (1990). TAR models are 

autoregressive models of order p, AR(P), which allow for the model parameters to change 

according to the value of threshold variables, where there is a structural break at a time point. 

The threshold variables in TAR models are specific lags of the dependent variable, 𝑦𝑦𝑡𝑡−𝑑𝑑, which 

allows for an abrupt or discontinuous regime switch when they cross a certain value. TAR models 

have the flexibility of describing processes that can move from one regime to the other such that 

the transition is smooth. Therefore, if the discontinuity of the thresholds is replaced by a smooth 

transition function, TAR models can be generalized to smooth transition autoregressive (STAR) 

models. Two main classes of STAR models are logistic STAR (LSTAR) and exponential STAR (ESTAR) 

models.  
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This family of nonlinear models is developed for univariate time series data, and I do not think 

they have considerable implications for homelessness research. However, the next generation of 

threshold models was developed to address the nonlinearities in non-autoregressive contexts 

using both time series and even panel data. Smooth transition regression (STR) models use 

exogenous transition variables, in addition to the standard autoregressive lags of the dependent 

variable, as threshold variables in modeling the regime switching behavior of the dependent 

variable. For example, Khan and Senhadji (2001) and Espinoza et al. (2012) investigate whether 

there is a nonlinear relationship between inflation and long-run growth first identified by Fischer 

(1993). Using panel data from many countries for different years, they show that there is a trade 

off between lowering inflation and achieving higher growth. At some low levels, inflation may be 

positively correlated with growth, but at higher levels, inflation is likely to be harmful to growth. 

In a different study, Fahmy (2014) investigates the nonlinearities in commodity prices using time 

series data. He shows that two exogenous transition variables are successful in capturing the 

regime switching behavior of commodity prices: inflation rate and oil price. 

STR models have been used extensively in the regime switching literature - see, van Dijk et al. 

(2002) for a recent survey. In addition to their popularity, STR models possess some appealing 

features. They are based on a three-stage modeling procedure beginning with model 

specification, estimation, and ending with diagnostic tests for evaluation. In this report, I propose 

an application of STR models to show how to investigate variations in weather conditions on the 

flow of homeless shelters over time. My objective is to propose a method to identify the 

sensitivity of publicly-funded emergency shelter use to changes in weather conditions. This 

sensitivity arises due to the influence of weather conditions on so-called rough sleepers, people 

who are experiencing homelessness and normally prefer, for many reasons, to sleep outdoors. 

The hope is that by identifying the sensitivity of shelter use to weather conditions one can better 

inform social agencies and government funders of the predictable and unpredictable changes in 

the demand for shelter beds. To do so, I follow Teräsvirta (1998),  van Dijk et al. (2002) and Fahmy 

(2014), in specifying, estimating, and evaluating nonlinear time series models. 

In the next two sections, I provide a detailed description of the smooth transition regression (STR) 

models and the corresponding modeling strategy (i.e. specification, estimation and evaluation) 
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and discuss the application of STR models on sensitivity of emergency homeless shelter use 

to weather conditions. The final section concludes the paper.  

2. Smooth transition regression (STR) 

Consider the following univariate smooth transition model to investigate the nonlinear 

relationship between overnight stays and weather conditions: 

y𝑡𝑡 = α + 𝛟𝛟′𝒛𝒛𝑡𝑡 + 𝛙𝛙′𝐳𝐳tG(ωt; γ, 𝐜𝐜) + 𝛉𝛉′𝐗𝐗t + εt (1) 

where yt is the dependent variable (in this case, number of overnight stays in emergency 

shelters), α  represents intercept, 𝐳𝐳t = (z1t,⋯ , zmt)  is a vector of weather variables such as 

temperature, precipitation, wind and windchill which are potential candidates to be a transitions 

variable (ωt), 𝛟𝛟 = (ϕ1,⋯ ,ϕm)′and 𝛙𝛙 = (ψ1,⋯ ,ψm)′ are parameter vectors, 𝑿𝑿𝑡𝑡 is a vector of 

(h × 1) control variables with 𝛉𝛉 = (θ1,⋯ , θh)′  parameter vectors, and εt ∼ i. i. d. (0,σ2). The 

preferred transition variable, ωt, to be identified by the estimation strategy is meant to explain 

the transition from rough sleeping to using a bed in an emergency shelter (and vice versa).1 𝐺𝐺(ω𝑡𝑡; 𝛾𝛾, 𝐜𝐜) is a logistic function with the general form 

G(ωt; γ, c) =
1

1 + exp(−γ∏ (ωt − ck)Kk=1 )
, 𝛾𝛾 > 0 (2) 

where ω𝑡𝑡 is a transition variable (in this case one of the weather variables), c = (c1,⋯ , cK)′ is a 

vector of threshold parameters such that c1 ≤ c2 ≤ ⋯ ≤ cK , and 𝛾𝛾 > 0  is the slope of the 

transition function (2) or the speed of transition from one regime to another. The STR model in 

(1)  with (2)  define the logistic STR (LSTR) model. 2  The transition function (2)  is a bounded 

 

1 Model (1) can also be presented for panel data with i and t dimensions as follows: 

y𝑖𝑖𝑡𝑡 = α + 𝛟𝛟′𝒛𝒛𝑖𝑖𝑡𝑡 + 𝛙𝛙′𝐳𝐳itG(ωit; γ, 𝐜𝐜) + 𝛉𝛉′𝐗𝐗it + εit 
2 Another alternative for transition function (2) is an exponential function with the general form: 

G(ωt; γ, c) = 1 − exp�−γ�(ωt − ck)

K
k=1 � , 𝛾𝛾 > 0 

This specification of transition function produces Exponential Smooth Transition Regression (ESTR) model. 
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(between zero and one), continuous and monotonically increasing function of transition variable, ωt. The most common choices for K are K = 1 (LSTR(1)) and K = 2 (LSTR(2)). In a LSTR model 

with K = 1 there is one threshold (two regimes) such that parameter vector 𝛟𝛟 + 𝛙𝛙G(ωt; γ, 𝐜𝐜) 

changes monotonically from 𝛟𝛟 to 𝛟𝛟 + 𝛙𝛙 as a function of ωt. In this case, LSTR(1) is capable of 

characterizing asymmetric behavior of overnight stays, y𝑡𝑡 , to a weather variable such as 

windchill. As an example, the sensitivity of overnight stays to temperature is different during 

extreme cold days (lower regime) than during warm days (upper regime) such that the transition 

from one extreme regime to the other is smooth -- For more detail refer to Teräsvirta et al. 

(2010).  

The transition function (2)  in an LSTR(1) model has the form 

𝐺𝐺(wt; γ, c) =
1

1 + exp�−γ(ωt − c)� (3) 

It is plotted in Figure 1 with different values of γ. The function implies that 

• when the transition variable, ωt, is very low (i.e. ωt → −∞), then G(⋅) → 0; this defines 

the lower regime in which the effect of 𝐳𝐳t on y𝑡𝑡 is represented by 𝛟𝛟. 

• when ωt  is very high (i.e. ωt → +∞), then G(⋅) → 1; this defines the upper regime in 

which the effect of 𝐳𝐳𝐭𝐭 on y𝑡𝑡 is represented by 𝛟𝛟 + 𝛙𝛙.  

• The parameter γ  captures the speed of transition from one regime to another. For 

example the effect of windchill on stays may not be strongly negative when γ is low. On 

the other hand, the transition function becomes steeper when γ is larger, which means 

the faster the speed of transition is (see Figure 1). 

• when γ = 0, the LSTR(1) turns to a linear model. 

• when γ → +∞, the LSTR(1) turns to a pure threshold model (TR/TAR); see the blue dotted 

line in Figure 1. The policy implication of a high γ for a transition variable such as windchill 

would be that after the threshold, shelters have to be ready for, and capable of dealing 

with, a large inflow of rough sleepers. 
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Figure 1. Logistic transition function represented in (3) with c = 0 

3. Building the  Smooth Transition Regression Model 

The application of the STR model represented in (1) with (2) requires a modeling strategy. The 

STR model building consist of three stages: specification, estimation and evaluation. The 

specification stage includes testing null hypothesis of linearity, selecting the transition variable 

(ωt ), and determining the number of thresholds (K). We employ nonlinear least square to 

estimate parameters. Following González et al.  (2005), at the evaluation stage the estimated 

model is subjected to misspecification tests. The null hypotheses tested at this stage include 

parameter constancy, no remaining heterogeneity and no autocorrelation in the errors. 

3.1. Specification 

The sensitivity of the transition from rough sleeping to shelter use due to weather conditions is 

unknown. Economics and theories of social welfare offer little guidance beyond the obvious 

suggestion that when it comes to the choice of rough sleeping and shelter use, cold and wet 

conditions compete against the preference for privacy and concerns for safety. Our strategy is to 

test alternative specifications of the transition variable. In the initial specification, linearity is 

tested against an STR model with a predetermined transition variable. The test is repeated for 
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each potential transition variable. The purpose of these tests is twofold. First, they are used to 

test linearity against alternatives. If no rejections of the null hypothesis are obtained, we accept 

the linear model and do not proceed with STR models. Second, if the null hypothesis is rejected 

for at least one of the models, the model against which the rejection, measured in the p-value, is 

strongest is chosen to be the STR model to be estimated. If there are several small p-values close 

to each other, Teräsvirta et al. (2010) suggest that a reasonable way to proceed is to estimate 

the corresponding STR models and postpone the choice between them to the evaluation stage. 

Testing Linearity 

The LSTR model (1)  with (2)  can be reduced to a linear model by imposing H0: γ = 0. The 

classical tests, such as F-test, are nonstandard because under the null hypothesis the LSTR model 

contains unidentified parameters. In particular, the threshold parameters (𝐜𝐜) and  vector of 

parameters 𝛙𝛙 are not identified under the null hypotheses. The problem of testing linearity 

against STR has been addressed, for example, in Davies (1987), Luukkonen et al. (1988), 

Teräsvirta (1994) and Teräsvirta (1998). To circumvent the identification problem, the transition 

function (2) in Equation (1) is approximated by a Taylor expansion around the null hypothesis, 

H0: 𝛾𝛾 = 0. As suggested by Teräsvirta (1998), it is customary to assume K = 1 in (2) and use the 

third-order Taylor approximation. The resulting test has power both against the LSTR(1), i.e. K =

1, and LSTR(2), i.e. K = 2, model. After merging terms and reparametrizing, this approximation 

yields the following auxiliary regression 

yt = α0 + 𝛃𝛃0′  𝐳𝐳t + 𝛃𝛃1′  𝐳𝐳tωt + 𝛃𝛃2′  𝐳𝐳tωt2 + 𝛃𝛃3′ 𝐳𝐳tωt3 + 𝛉𝛉0′ 𝐗𝐗t + εt∗ (4) 

Where 𝜀𝜀𝑡𝑡∗ = 𝜀𝜀𝑡𝑡 + R3(ω𝑡𝑡; γ, 𝐜𝐜)𝛙𝛙j′𝐳𝐳t with the remainder of the Taylor expansion, 𝑅𝑅3(ω𝑡𝑡; 𝛾𝛾, 𝐜𝐜), and 𝛃𝛃j′ , j = 1,2,3, is of the form γ𝛽𝛽�𝑗𝑗  where 𝛽𝛽�𝑗𝑗 ≠ 0 is a function of 𝛙𝛙 and 𝒄𝒄. Consequently, testing 

H0: γ = 0 in (1) is equivalent to testing the null hypothesis H0:𝛃𝛃1 = 𝛃𝛃2 = 𝛃𝛃3 = 0 in (4). Note 

that under the null hypothesis 𝜀𝜀𝑡𝑡 = εt∗, so the Taylor series approximation does not affect the 

asymptotic distribution theory if an LM-type test is used as follows: 

1. Estimate model (1) under H0 (i.e. estimate a linear model), and computed the residuals, 𝜀𝜀�̃�𝑡, and the sum of squared errors, SSE0. 
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2. Regress 𝜀𝜀�̃�𝑡  on the control variables (𝐗𝐗t ), 𝐳𝐳t  and ht0 = (𝐳𝐳t′ωt, 𝐳𝐳t′ωt2, 𝐳𝐳t′ωt2)′ , and retrieve 

SSE1.  

3. Compute the χ2 - or F-version of LM test. 

 

The χ2-version of LM test has χ2 distribution with 3m degree of freedom and has the form 

LMχ2 = T
SSE0 − SSE1

SSE0 ∼ χ2(3m) (5) 

where m is the number of variables in 𝐳𝐳t (𝒎𝒎 × 𝟏𝟏). Further the F-version of this test has an 

approximate F distribution with 3m and T-4m-1 degree of freedom  

LMF =
(SSE0 − SSE1)/3m

SSE1/(T − 4m − 1)
∼ F(3m, T − 4m − 1) (6) 

where T is the length of the time series for t = 1,⋯ , T. The F-version is preferred to χ2-version 

of LM test in small and moderate samples. 

As noted by González et al. (2005), this test can be used for selecting the appropriate transition 

variable ωt in the LSTR model. The test is carried out for a set of possible transition variables, and 

the variable that gives rise to the strongest rejection of linearity (if any), i.e. with the smallest p-

value, is chosen as the transition variable. 

Choosing the number of thresholds 

If the rejection of linearity hypothesis is obtained and the transition variable is selected in the 

previous stage, the next step is to choose between two types of LSTR(1) and LSTR(2). That is, we 

need to choose the number of thresholds. Teräsvirta (1994) shows in the special case 𝐜𝐜 = 𝟎𝟎 and 

then 𝛃𝛃2 = 0, the model is an LSTR(1), whereas 𝛃𝛃1 = 𝛃𝛃3 = 0 when the model is an LSTR(2). The 

following F-tests sequence was then suggested based on the auxiliary regression in (4): 

1. Test 𝐻𝐻03:𝛃𝛃3 = 0 

2. Test 𝐻𝐻02:𝛃𝛃2 = 0 given that 𝛃𝛃3 = 0 

3. Test 𝐻𝐻01:𝛃𝛃1 = 0 given that 𝛃𝛃2 = 𝛃𝛃3 = 0 
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In short, select LSTR(2) if the rejection of 𝐻𝐻02  is the strongest one, measured in p-value. 

Otherwise, select the LSRT(1) model. 

3.2. Estimation 

If the vector of threshold (𝐜𝐜) and the transition speed parameter (γ) are known, the model in (1) 

reduces to a linear model that can be estimated by ordinary least squares (OLS). Therefore, the 

first step of estimation is to determine value of 𝐜𝐜 and γ. To do so, we need to follow Chan (1993) 

and estimate 𝐜𝐜 and γ by minimizing the sum of squared errors (SSE) for different potential values 

of 𝐜𝐜 and γ in (1). 

(𝒄𝒄, 𝛾𝛾) = Argmin
(𝒄𝒄,𝛾𝛾)

��ε�𝑡𝑡2𝑡𝑡 � (7) 

where 𝜀𝜀�̂�𝑡 are the residuals left by OLS estimation at each iteration of the nonlinear optimization 

for all combinations of 𝐜𝐜 and γ. The solution, (𝒄𝒄, 𝛾𝛾), is to find a combination of 𝐜𝐜 and γ that 

produces the minimum sum of squared errors (SSR). After having estimated (𝒄𝒄, 𝛾𝛾) from the first 

step, the LSTR in (1) is estimated by OLS. 

3.3. Evaluation 

After estimation, the STR model is evaluated to determine whether the assumptions under which 

it was estimated are valid. We closely follow Teräsvirta (1998) and Teräsvirta et al. (2010), in 

performing LM-type tests of no error autocorrelation, no remaining nonlinearity and parameter 

constancy. 

The null hypothesis of no error autocorrelation of order q against the alternative of 

autocorrelation in (2) is tested. This test can be viewed as a special case of a general test that 

was first suggested by Godfrey (1988). After estimating the STR model in (1) , we need to 

investigate whether the model adequately characterizes the nonlinearity originally found in the 

data. We test for no remaining nonlinearity using linearity tests. Finally, before we can be 

confident the estimated model can be used for forecasting or policy simulation, parameter 

nonconstancy is tested. 
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4. Conclusion and Discussion 

The smooth transition regression (STR) model is a useful approach to capturing nonlinearities in 

homeless-related variables. We discussed how the STR model could be employed to identify the 

sensitivity of emergency homeless shelter use to weather conditions. There are rich data sets 

describing daily shelter use in the Canadian cities in Alberta, including Edmonton, Calgary, Fort 

McMurray, Grande Prairie, Lethbridge, Lethbridge, Red Deer, and Lloydminster, which are 

publicly available in the Government of Alberta open datasets and publications. Large cities, such 

as Calgary and Edmonton, make for an interesting laboratory to investigate this issue as they are 

a magnate for job-seekers and have a very small stock of rental accommodations that often force 

job seekers to use alternative sources of shelter including rough sleeping, couch surfing, and 

emergency homeless shelters. Calgary and Edmonton also have a climate that is prone to rapid 

temperature changes that are potentially life-threatening to persons who might choose to sleep 

outdoors. Therefore, the investigation of the possible non-linear sensitivity of shelter use to 

combinations of weather-related variables, such as windchill and precipitation, using time series 

data will be unique. I believe the results using the nonlinear models to be important because 

assessments of the need for additional shelter beds are, in Alberta and I believe elsewhere, 

exclusively based on an assumed linear relationship with the temperature that ignores the 

importance of non-linearities and identifying speeds of transition from one state to another. 

In addition, by taking advantage of the panel representation of STR models and individual-level 

data describing the daily movements in and out of emergency shelters, we can investigate the 

transition of people from shelters to not-in-shelters or even discover how the transition from 

being a transitional user of shelters to being an episodic or chronic user. We could be guided by 

economics and theories of social welfare to choose the transition variables to address these 

issues. There is considerable evidence not only that the number of people experiencing 

homelessness is sensitive to rental market tightness (see, for example, Kneebone and Wilkins 

(2022) and Hanratty (2017)) but also that this relationship may be non-linear – see Glynn and Fox 

(2019) and Glynn et al. 2021 (2021). Glynn and Fox (2019) suggest that once the ratio of rent to 

income exceeds 30%, rates of homelessness increase at an increasing rate. This suggests the 
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possibility that the tighter the rental market, the slower may be the transition out of shelters. 

Therefore, the transition variable which, in this case, could be a measure of rental market 

tightness such as daily interest (mortgage) rates. As interest rates increase, renting looks more 

attractive than buying and so increases the demand for rentals. Higher interest rates also 

encourage landlords to pass along these extra costs. The same reasoning suggests that we could 

investigate the transition from being a transitional user of shelters to being an episodic or chronic 

user and use the measure of rental market tightness as the transition variable. The tighter the 

rental market, the more likely a transitional shelter user transition into chronic homelessness. 

Specifically, we employ the threshold models to investigate that when the interest rate exceeds a certain 

threshold level, the shelter users are going to experience longer stays. This structural break between the 

interest rates and the length of stay helps us to measure the state of homelessness. In addition, we also 

estimate the speed of transition from one regime (low effect of interest rate on length of stay) to another 

(high effect of interest rate on length of stay). When the speed of transition is fairly low (high), it implies 

that interest rates are going to impact the length of stays very smoothly (fast) soon after it exceeds the 

threshold. 
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